1 /*
2  * BQ27xxx battery driver
3  *
4  * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
5  * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
6  * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
7  * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
8  * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
9  *
10  * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
11  *
12  * This package is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
18  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19  *
20  * Datasheets:
21  * https://www.ti.com/product/bq27000
22  * https://www.ti.com/product/bq27200
23  * https://www.ti.com/product/bq27010
24  * https://www.ti.com/product/bq27210
25  * https://www.ti.com/product/bq27500
26  * https://www.ti.com/product/bq27510-g1
27  * https://www.ti.com/product/bq27510-g2
28  * https://www.ti.com/product/bq27510-g3
29  * https://www.ti.com/product/bq27520-g1
30  * https://www.ti.com/product/bq27520-g2
31  * https://www.ti.com/product/bq27520-g3
32  * https://www.ti.com/product/bq27520-g4
33  * https://www.ti.com/product/bq27530-g1
34  * https://www.ti.com/product/bq27531-g1
35  * https://www.ti.com/product/bq27541-g1
36  * https://www.ti.com/product/bq27542-g1
37  * https://www.ti.com/product/bq27546-g1
38  * https://www.ti.com/product/bq27742-g1
39  * https://www.ti.com/product/bq27545-g1
40  * https://www.ti.com/product/bq27421-g1
41  * https://www.ti.com/product/bq27425-g1
42  * https://www.ti.com/product/bq27426
43  * https://www.ti.com/product/bq27411-g1
44  * https://www.ti.com/product/bq27441-g1
45  * https://www.ti.com/product/bq27621-g1
46  * https://www.ti.com/product/bq27z561
47  * https://www.ti.com/product/bq28z610
48  */
49 
50 #include <linux/device.h>
51 #include <linux/module.h>
52 #include <linux/mutex.h>
53 #include <linux/param.h>
54 #include <linux/jiffies.h>
55 #include <linux/workqueue.h>
56 #include <linux/delay.h>
57 #include <linux/platform_device.h>
58 #include <linux/power_supply.h>
59 #include <linux/slab.h>
60 #include <linux/of.h>
61 
62 #include <linux/power/bq27xxx_battery.h>
63 
64 #define BQ27XXX_MANUFACTURER	"Texas Instruments"
65 
66 /* BQ27XXX Flags */
67 #define BQ27XXX_FLAG_DSC	BIT(0)
68 #define BQ27XXX_FLAG_SOCF	BIT(1) /* State-of-Charge threshold final */
69 #define BQ27XXX_FLAG_SOC1	BIT(2) /* State-of-Charge threshold 1 */
70 #define BQ27XXX_FLAG_CFGUP	BIT(4)
71 #define BQ27XXX_FLAG_FC		BIT(9)
72 #define BQ27XXX_FLAG_OTD	BIT(14)
73 #define BQ27XXX_FLAG_OTC	BIT(15)
74 #define BQ27XXX_FLAG_UT		BIT(14)
75 #define BQ27XXX_FLAG_OT		BIT(15)
76 
77 /* BQ27000 has different layout for Flags register */
78 #define BQ27000_FLAG_EDVF	BIT(0) /* Final End-of-Discharge-Voltage flag */
79 #define BQ27000_FLAG_EDV1	BIT(1) /* First End-of-Discharge-Voltage flag */
80 #define BQ27000_FLAG_CI		BIT(4) /* Capacity Inaccurate flag */
81 #define BQ27000_FLAG_FC		BIT(5)
82 #define BQ27000_FLAG_CHGS	BIT(7) /* Charge state flag */
83 
84 /* BQ27Z561 has different layout for Flags register */
85 #define BQ27Z561_FLAG_FDC	BIT(4) /* Battery fully discharged */
86 #define BQ27Z561_FLAG_FC		BIT(5) /* Battery fully charged */
87 #define BQ27Z561_FLAG_DIS_CH	BIT(6) /* Battery is discharging */
88 
89 /* control register params */
90 #define BQ27XXX_SEALED			0x20
91 #define BQ27XXX_SET_CFGUPDATE		0x13
92 #define BQ27XXX_SOFT_RESET		0x42
93 #define BQ27XXX_RESET			0x41
94 
95 #define BQ27XXX_RS			(20) /* Resistor sense mOhm */
96 #define BQ27XXX_POWER_CONSTANT		(29200) /* 29.2 µV^2 * 1000 */
97 #define BQ27XXX_CURRENT_CONSTANT	(3570) /* 3.57 µV * 1000 */
98 
99 #define INVALID_REG_ADDR	0xff
100 
101 /*
102  * bq27xxx_reg_index - Register names
103  *
104  * These are indexes into a device's register mapping array.
105  */
106 
107 enum bq27xxx_reg_index {
108 	BQ27XXX_REG_CTRL = 0,	/* Control */
109 	BQ27XXX_REG_TEMP,	/* Temperature */
110 	BQ27XXX_REG_INT_TEMP,	/* Internal Temperature */
111 	BQ27XXX_REG_VOLT,	/* Voltage */
112 	BQ27XXX_REG_AI,		/* Average Current */
113 	BQ27XXX_REG_FLAGS,	/* Flags */
114 	BQ27XXX_REG_TTE,	/* Time-to-Empty */
115 	BQ27XXX_REG_TTF,	/* Time-to-Full */
116 	BQ27XXX_REG_TTES,	/* Time-to-Empty Standby */
117 	BQ27XXX_REG_TTECP,	/* Time-to-Empty at Constant Power */
118 	BQ27XXX_REG_NAC,	/* Nominal Available Capacity */
119 	BQ27XXX_REG_FCC,	/* Full Charge Capacity */
120 	BQ27XXX_REG_CYCT,	/* Cycle Count */
121 	BQ27XXX_REG_AE,		/* Available Energy */
122 	BQ27XXX_REG_SOC,	/* State-of-Charge */
123 	BQ27XXX_REG_DCAP,	/* Design Capacity */
124 	BQ27XXX_REG_AP,		/* Average Power */
125 	BQ27XXX_DM_CTRL,	/* Block Data Control */
126 	BQ27XXX_DM_CLASS,	/* Data Class */
127 	BQ27XXX_DM_BLOCK,	/* Data Block */
128 	BQ27XXX_DM_DATA,	/* Block Data */
129 	BQ27XXX_DM_CKSUM,	/* Block Data Checksum */
130 	BQ27XXX_REG_MAX,	/* sentinel */
131 };
132 
133 #define BQ27XXX_DM_REG_ROWS \
134 	[BQ27XXX_DM_CTRL] = 0x61,  \
135 	[BQ27XXX_DM_CLASS] = 0x3e, \
136 	[BQ27XXX_DM_BLOCK] = 0x3f, \
137 	[BQ27XXX_DM_DATA] = 0x40,  \
138 	[BQ27XXX_DM_CKSUM] = 0x60
139 
140 /* Register mappings */
141 static u8
142 	bq27000_regs[BQ27XXX_REG_MAX] = {
143 		[BQ27XXX_REG_CTRL] = 0x00,
144 		[BQ27XXX_REG_TEMP] = 0x06,
145 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
146 		[BQ27XXX_REG_VOLT] = 0x08,
147 		[BQ27XXX_REG_AI] = 0x14,
148 		[BQ27XXX_REG_FLAGS] = 0x0a,
149 		[BQ27XXX_REG_TTE] = 0x16,
150 		[BQ27XXX_REG_TTF] = 0x18,
151 		[BQ27XXX_REG_TTES] = 0x1c,
152 		[BQ27XXX_REG_TTECP] = 0x26,
153 		[BQ27XXX_REG_NAC] = 0x0c,
154 		[BQ27XXX_REG_FCC] = 0x12,
155 		[BQ27XXX_REG_CYCT] = 0x2a,
156 		[BQ27XXX_REG_AE] = 0x22,
157 		[BQ27XXX_REG_SOC] = 0x0b,
158 		[BQ27XXX_REG_DCAP] = 0x76,
159 		[BQ27XXX_REG_AP] = 0x24,
160 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
161 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
162 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
163 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
164 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
165 	},
166 	bq27010_regs[BQ27XXX_REG_MAX] = {
167 		[BQ27XXX_REG_CTRL] = 0x00,
168 		[BQ27XXX_REG_TEMP] = 0x06,
169 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
170 		[BQ27XXX_REG_VOLT] = 0x08,
171 		[BQ27XXX_REG_AI] = 0x14,
172 		[BQ27XXX_REG_FLAGS] = 0x0a,
173 		[BQ27XXX_REG_TTE] = 0x16,
174 		[BQ27XXX_REG_TTF] = 0x18,
175 		[BQ27XXX_REG_TTES] = 0x1c,
176 		[BQ27XXX_REG_TTECP] = 0x26,
177 		[BQ27XXX_REG_NAC] = 0x0c,
178 		[BQ27XXX_REG_FCC] = 0x12,
179 		[BQ27XXX_REG_CYCT] = 0x2a,
180 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
181 		[BQ27XXX_REG_SOC] = 0x0b,
182 		[BQ27XXX_REG_DCAP] = 0x76,
183 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
184 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
185 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
186 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
187 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
188 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
189 	},
190 	bq2750x_regs[BQ27XXX_REG_MAX] = {
191 		[BQ27XXX_REG_CTRL] = 0x00,
192 		[BQ27XXX_REG_TEMP] = 0x06,
193 		[BQ27XXX_REG_INT_TEMP] = 0x28,
194 		[BQ27XXX_REG_VOLT] = 0x08,
195 		[BQ27XXX_REG_AI] = 0x14,
196 		[BQ27XXX_REG_FLAGS] = 0x0a,
197 		[BQ27XXX_REG_TTE] = 0x16,
198 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
199 		[BQ27XXX_REG_TTES] = 0x1a,
200 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
201 		[BQ27XXX_REG_NAC] = 0x0c,
202 		[BQ27XXX_REG_FCC] = 0x12,
203 		[BQ27XXX_REG_CYCT] = 0x2a,
204 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
205 		[BQ27XXX_REG_SOC] = 0x2c,
206 		[BQ27XXX_REG_DCAP] = 0x3c,
207 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
208 		BQ27XXX_DM_REG_ROWS,
209 	},
210 #define bq2751x_regs bq27510g3_regs
211 #define bq2752x_regs bq27510g3_regs
212 	bq27500_regs[BQ27XXX_REG_MAX] = {
213 		[BQ27XXX_REG_CTRL] = 0x00,
214 		[BQ27XXX_REG_TEMP] = 0x06,
215 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
216 		[BQ27XXX_REG_VOLT] = 0x08,
217 		[BQ27XXX_REG_AI] = 0x14,
218 		[BQ27XXX_REG_FLAGS] = 0x0a,
219 		[BQ27XXX_REG_TTE] = 0x16,
220 		[BQ27XXX_REG_TTF] = 0x18,
221 		[BQ27XXX_REG_TTES] = 0x1c,
222 		[BQ27XXX_REG_TTECP] = 0x26,
223 		[BQ27XXX_REG_NAC] = 0x0c,
224 		[BQ27XXX_REG_FCC] = 0x12,
225 		[BQ27XXX_REG_CYCT] = 0x2a,
226 		[BQ27XXX_REG_AE] = 0x22,
227 		[BQ27XXX_REG_SOC] = 0x2c,
228 		[BQ27XXX_REG_DCAP] = 0x3c,
229 		[BQ27XXX_REG_AP] = 0x24,
230 		BQ27XXX_DM_REG_ROWS,
231 	},
232 #define bq27510g1_regs bq27500_regs
233 #define bq27510g2_regs bq27500_regs
234 	bq27510g3_regs[BQ27XXX_REG_MAX] = {
235 		[BQ27XXX_REG_CTRL] = 0x00,
236 		[BQ27XXX_REG_TEMP] = 0x06,
237 		[BQ27XXX_REG_INT_TEMP] = 0x28,
238 		[BQ27XXX_REG_VOLT] = 0x08,
239 		[BQ27XXX_REG_AI] = 0x14,
240 		[BQ27XXX_REG_FLAGS] = 0x0a,
241 		[BQ27XXX_REG_TTE] = 0x16,
242 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
243 		[BQ27XXX_REG_TTES] = 0x1a,
244 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
245 		[BQ27XXX_REG_NAC] = 0x0c,
246 		[BQ27XXX_REG_FCC] = 0x12,
247 		[BQ27XXX_REG_CYCT] = 0x1e,
248 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
249 		[BQ27XXX_REG_SOC] = 0x20,
250 		[BQ27XXX_REG_DCAP] = 0x2e,
251 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
252 		BQ27XXX_DM_REG_ROWS,
253 	},
254 	bq27520g1_regs[BQ27XXX_REG_MAX] = {
255 		[BQ27XXX_REG_CTRL] = 0x00,
256 		[BQ27XXX_REG_TEMP] = 0x06,
257 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
258 		[BQ27XXX_REG_VOLT] = 0x08,
259 		[BQ27XXX_REG_AI] = 0x14,
260 		[BQ27XXX_REG_FLAGS] = 0x0a,
261 		[BQ27XXX_REG_TTE] = 0x16,
262 		[BQ27XXX_REG_TTF] = 0x18,
263 		[BQ27XXX_REG_TTES] = 0x1c,
264 		[BQ27XXX_REG_TTECP] = 0x26,
265 		[BQ27XXX_REG_NAC] = 0x0c,
266 		[BQ27XXX_REG_FCC] = 0x12,
267 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
268 		[BQ27XXX_REG_AE] = 0x22,
269 		[BQ27XXX_REG_SOC] = 0x2c,
270 		[BQ27XXX_REG_DCAP] = 0x3c,
271 		[BQ27XXX_REG_AP] = 0x24,
272 		BQ27XXX_DM_REG_ROWS,
273 	},
274 	bq27520g2_regs[BQ27XXX_REG_MAX] = {
275 		[BQ27XXX_REG_CTRL] = 0x00,
276 		[BQ27XXX_REG_TEMP] = 0x06,
277 		[BQ27XXX_REG_INT_TEMP] = 0x36,
278 		[BQ27XXX_REG_VOLT] = 0x08,
279 		[BQ27XXX_REG_AI] = 0x14,
280 		[BQ27XXX_REG_FLAGS] = 0x0a,
281 		[BQ27XXX_REG_TTE] = 0x16,
282 		[BQ27XXX_REG_TTF] = 0x18,
283 		[BQ27XXX_REG_TTES] = 0x1c,
284 		[BQ27XXX_REG_TTECP] = 0x26,
285 		[BQ27XXX_REG_NAC] = 0x0c,
286 		[BQ27XXX_REG_FCC] = 0x12,
287 		[BQ27XXX_REG_CYCT] = 0x2a,
288 		[BQ27XXX_REG_AE] = 0x22,
289 		[BQ27XXX_REG_SOC] = 0x2c,
290 		[BQ27XXX_REG_DCAP] = 0x3c,
291 		[BQ27XXX_REG_AP] = 0x24,
292 		BQ27XXX_DM_REG_ROWS,
293 	},
294 	bq27520g3_regs[BQ27XXX_REG_MAX] = {
295 		[BQ27XXX_REG_CTRL] = 0x00,
296 		[BQ27XXX_REG_TEMP] = 0x06,
297 		[BQ27XXX_REG_INT_TEMP] = 0x36,
298 		[BQ27XXX_REG_VOLT] = 0x08,
299 		[BQ27XXX_REG_AI] = 0x14,
300 		[BQ27XXX_REG_FLAGS] = 0x0a,
301 		[BQ27XXX_REG_TTE] = 0x16,
302 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
303 		[BQ27XXX_REG_TTES] = 0x1c,
304 		[BQ27XXX_REG_TTECP] = 0x26,
305 		[BQ27XXX_REG_NAC] = 0x0c,
306 		[BQ27XXX_REG_FCC] = 0x12,
307 		[BQ27XXX_REG_CYCT] = 0x2a,
308 		[BQ27XXX_REG_AE] = 0x22,
309 		[BQ27XXX_REG_SOC] = 0x2c,
310 		[BQ27XXX_REG_DCAP] = 0x3c,
311 		[BQ27XXX_REG_AP] = 0x24,
312 		BQ27XXX_DM_REG_ROWS,
313 	},
314 	bq27520g4_regs[BQ27XXX_REG_MAX] = {
315 		[BQ27XXX_REG_CTRL] = 0x00,
316 		[BQ27XXX_REG_TEMP] = 0x06,
317 		[BQ27XXX_REG_INT_TEMP] = 0x28,
318 		[BQ27XXX_REG_VOLT] = 0x08,
319 		[BQ27XXX_REG_AI] = 0x14,
320 		[BQ27XXX_REG_FLAGS] = 0x0a,
321 		[BQ27XXX_REG_TTE] = 0x16,
322 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
323 		[BQ27XXX_REG_TTES] = 0x1c,
324 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
325 		[BQ27XXX_REG_NAC] = 0x0c,
326 		[BQ27XXX_REG_FCC] = 0x12,
327 		[BQ27XXX_REG_CYCT] = 0x1e,
328 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
329 		[BQ27XXX_REG_SOC] = 0x20,
330 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
331 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
332 		BQ27XXX_DM_REG_ROWS,
333 	},
334 	bq27521_regs[BQ27XXX_REG_MAX] = {
335 		[BQ27XXX_REG_CTRL] = 0x02,
336 		[BQ27XXX_REG_TEMP] = 0x0a,
337 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
338 		[BQ27XXX_REG_VOLT] = 0x0c,
339 		[BQ27XXX_REG_AI] = 0x0e,
340 		[BQ27XXX_REG_FLAGS] = 0x08,
341 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
342 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
343 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
344 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
345 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
346 		[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
347 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
348 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
349 		[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
350 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
351 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
352 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
353 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
354 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
355 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
356 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
357 	},
358 	bq27530_regs[BQ27XXX_REG_MAX] = {
359 		[BQ27XXX_REG_CTRL] = 0x00,
360 		[BQ27XXX_REG_TEMP] = 0x06,
361 		[BQ27XXX_REG_INT_TEMP] = 0x32,
362 		[BQ27XXX_REG_VOLT] = 0x08,
363 		[BQ27XXX_REG_AI] = 0x14,
364 		[BQ27XXX_REG_FLAGS] = 0x0a,
365 		[BQ27XXX_REG_TTE] = 0x16,
366 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
367 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
368 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
369 		[BQ27XXX_REG_NAC] = 0x0c,
370 		[BQ27XXX_REG_FCC] = 0x12,
371 		[BQ27XXX_REG_CYCT] = 0x2a,
372 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
373 		[BQ27XXX_REG_SOC] = 0x2c,
374 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
375 		[BQ27XXX_REG_AP] = 0x24,
376 		BQ27XXX_DM_REG_ROWS,
377 	},
378 #define bq27531_regs bq27530_regs
379 	bq27541_regs[BQ27XXX_REG_MAX] = {
380 		[BQ27XXX_REG_CTRL] = 0x00,
381 		[BQ27XXX_REG_TEMP] = 0x06,
382 		[BQ27XXX_REG_INT_TEMP] = 0x28,
383 		[BQ27XXX_REG_VOLT] = 0x08,
384 		[BQ27XXX_REG_AI] = 0x14,
385 		[BQ27XXX_REG_FLAGS] = 0x0a,
386 		[BQ27XXX_REG_TTE] = 0x16,
387 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
388 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
389 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
390 		[BQ27XXX_REG_NAC] = 0x0c,
391 		[BQ27XXX_REG_FCC] = 0x12,
392 		[BQ27XXX_REG_CYCT] = 0x2a,
393 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
394 		[BQ27XXX_REG_SOC] = 0x2c,
395 		[BQ27XXX_REG_DCAP] = 0x3c,
396 		[BQ27XXX_REG_AP] = 0x24,
397 		BQ27XXX_DM_REG_ROWS,
398 	},
399 #define bq27542_regs bq27541_regs
400 #define bq27546_regs bq27541_regs
401 #define bq27742_regs bq27541_regs
402 	bq27545_regs[BQ27XXX_REG_MAX] = {
403 		[BQ27XXX_REG_CTRL] = 0x00,
404 		[BQ27XXX_REG_TEMP] = 0x06,
405 		[BQ27XXX_REG_INT_TEMP] = 0x28,
406 		[BQ27XXX_REG_VOLT] = 0x08,
407 		[BQ27XXX_REG_AI] = 0x14,
408 		[BQ27XXX_REG_FLAGS] = 0x0a,
409 		[BQ27XXX_REG_TTE] = 0x16,
410 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
411 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
412 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
413 		[BQ27XXX_REG_NAC] = 0x0c,
414 		[BQ27XXX_REG_FCC] = 0x12,
415 		[BQ27XXX_REG_CYCT] = 0x2a,
416 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
417 		[BQ27XXX_REG_SOC] = 0x2c,
418 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
419 		[BQ27XXX_REG_AP] = 0x24,
420 		BQ27XXX_DM_REG_ROWS,
421 	},
422 	bq27421_regs[BQ27XXX_REG_MAX] = {
423 		[BQ27XXX_REG_CTRL] = 0x00,
424 		[BQ27XXX_REG_TEMP] = 0x02,
425 		[BQ27XXX_REG_INT_TEMP] = 0x1e,
426 		[BQ27XXX_REG_VOLT] = 0x04,
427 		[BQ27XXX_REG_AI] = 0x10,
428 		[BQ27XXX_REG_FLAGS] = 0x06,
429 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
430 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
431 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
432 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
433 		[BQ27XXX_REG_NAC] = 0x08,
434 		[BQ27XXX_REG_FCC] = 0x0e,
435 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
436 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
437 		[BQ27XXX_REG_SOC] = 0x1c,
438 		[BQ27XXX_REG_DCAP] = 0x3c,
439 		[BQ27XXX_REG_AP] = 0x18,
440 		BQ27XXX_DM_REG_ROWS,
441 	},
442 #define bq27411_regs bq27421_regs
443 #define bq27425_regs bq27421_regs
444 #define bq27426_regs bq27421_regs
445 #define bq27441_regs bq27421_regs
446 #define bq27621_regs bq27421_regs
447 	bq27z561_regs[BQ27XXX_REG_MAX] = {
448 		[BQ27XXX_REG_CTRL] = 0x00,
449 		[BQ27XXX_REG_TEMP] = 0x06,
450 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
451 		[BQ27XXX_REG_VOLT] = 0x08,
452 		[BQ27XXX_REG_AI] = 0x14,
453 		[BQ27XXX_REG_FLAGS] = 0x0a,
454 		[BQ27XXX_REG_TTE] = 0x16,
455 		[BQ27XXX_REG_TTF] = 0x18,
456 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
457 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
458 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
459 		[BQ27XXX_REG_FCC] = 0x12,
460 		[BQ27XXX_REG_CYCT] = 0x2a,
461 		[BQ27XXX_REG_AE] = 0x22,
462 		[BQ27XXX_REG_SOC] = 0x2c,
463 		[BQ27XXX_REG_DCAP] = 0x3c,
464 		[BQ27XXX_REG_AP] = 0x22,
465 		BQ27XXX_DM_REG_ROWS,
466 	},
467 	bq28z610_regs[BQ27XXX_REG_MAX] = {
468 		[BQ27XXX_REG_CTRL] = 0x00,
469 		[BQ27XXX_REG_TEMP] = 0x06,
470 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
471 		[BQ27XXX_REG_VOLT] = 0x08,
472 		[BQ27XXX_REG_AI] = 0x14,
473 		[BQ27XXX_REG_FLAGS] = 0x0a,
474 		[BQ27XXX_REG_TTE] = 0x16,
475 		[BQ27XXX_REG_TTF] = 0x18,
476 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
477 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
478 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
479 		[BQ27XXX_REG_FCC] = 0x12,
480 		[BQ27XXX_REG_CYCT] = 0x2a,
481 		[BQ27XXX_REG_AE] = 0x22,
482 		[BQ27XXX_REG_SOC] = 0x2c,
483 		[BQ27XXX_REG_DCAP] = 0x3c,
484 		[BQ27XXX_REG_AP] = 0x22,
485 		BQ27XXX_DM_REG_ROWS,
486 	};
487 
488 static enum power_supply_property bq27000_props[] = {
489 	POWER_SUPPLY_PROP_STATUS,
490 	POWER_SUPPLY_PROP_PRESENT,
491 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
492 	POWER_SUPPLY_PROP_CURRENT_NOW,
493 	POWER_SUPPLY_PROP_CAPACITY,
494 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
495 	POWER_SUPPLY_PROP_TEMP,
496 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
497 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
498 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
499 	POWER_SUPPLY_PROP_TECHNOLOGY,
500 	POWER_SUPPLY_PROP_CHARGE_FULL,
501 	POWER_SUPPLY_PROP_CHARGE_NOW,
502 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
503 	POWER_SUPPLY_PROP_CYCLE_COUNT,
504 	POWER_SUPPLY_PROP_ENERGY_NOW,
505 	POWER_SUPPLY_PROP_POWER_AVG,
506 	POWER_SUPPLY_PROP_HEALTH,
507 	POWER_SUPPLY_PROP_MANUFACTURER,
508 };
509 
510 static enum power_supply_property bq27010_props[] = {
511 	POWER_SUPPLY_PROP_STATUS,
512 	POWER_SUPPLY_PROP_PRESENT,
513 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
514 	POWER_SUPPLY_PROP_CURRENT_NOW,
515 	POWER_SUPPLY_PROP_CAPACITY,
516 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
517 	POWER_SUPPLY_PROP_TEMP,
518 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
519 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
520 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
521 	POWER_SUPPLY_PROP_TECHNOLOGY,
522 	POWER_SUPPLY_PROP_CHARGE_FULL,
523 	POWER_SUPPLY_PROP_CHARGE_NOW,
524 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
525 	POWER_SUPPLY_PROP_CYCLE_COUNT,
526 	POWER_SUPPLY_PROP_HEALTH,
527 	POWER_SUPPLY_PROP_MANUFACTURER,
528 };
529 
530 #define bq2750x_props bq27510g3_props
531 #define bq2751x_props bq27510g3_props
532 #define bq2752x_props bq27510g3_props
533 
534 static enum power_supply_property bq27500_props[] = {
535 	POWER_SUPPLY_PROP_STATUS,
536 	POWER_SUPPLY_PROP_PRESENT,
537 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
538 	POWER_SUPPLY_PROP_CURRENT_NOW,
539 	POWER_SUPPLY_PROP_CAPACITY,
540 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
541 	POWER_SUPPLY_PROP_TEMP,
542 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
543 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
544 	POWER_SUPPLY_PROP_TECHNOLOGY,
545 	POWER_SUPPLY_PROP_CHARGE_FULL,
546 	POWER_SUPPLY_PROP_CHARGE_NOW,
547 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
548 	POWER_SUPPLY_PROP_CYCLE_COUNT,
549 	POWER_SUPPLY_PROP_ENERGY_NOW,
550 	POWER_SUPPLY_PROP_POWER_AVG,
551 	POWER_SUPPLY_PROP_HEALTH,
552 	POWER_SUPPLY_PROP_MANUFACTURER,
553 };
554 #define bq27510g1_props bq27500_props
555 #define bq27510g2_props bq27500_props
556 
557 static enum power_supply_property bq27510g3_props[] = {
558 	POWER_SUPPLY_PROP_STATUS,
559 	POWER_SUPPLY_PROP_PRESENT,
560 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
561 	POWER_SUPPLY_PROP_CURRENT_NOW,
562 	POWER_SUPPLY_PROP_CAPACITY,
563 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
564 	POWER_SUPPLY_PROP_TEMP,
565 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
566 	POWER_SUPPLY_PROP_TECHNOLOGY,
567 	POWER_SUPPLY_PROP_CHARGE_FULL,
568 	POWER_SUPPLY_PROP_CHARGE_NOW,
569 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
570 	POWER_SUPPLY_PROP_CYCLE_COUNT,
571 	POWER_SUPPLY_PROP_HEALTH,
572 	POWER_SUPPLY_PROP_MANUFACTURER,
573 };
574 
575 static enum power_supply_property bq27520g1_props[] = {
576 	POWER_SUPPLY_PROP_STATUS,
577 	POWER_SUPPLY_PROP_PRESENT,
578 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
579 	POWER_SUPPLY_PROP_CURRENT_NOW,
580 	POWER_SUPPLY_PROP_CAPACITY,
581 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
582 	POWER_SUPPLY_PROP_TEMP,
583 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
584 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
585 	POWER_SUPPLY_PROP_TECHNOLOGY,
586 	POWER_SUPPLY_PROP_CHARGE_FULL,
587 	POWER_SUPPLY_PROP_CHARGE_NOW,
588 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
589 	POWER_SUPPLY_PROP_ENERGY_NOW,
590 	POWER_SUPPLY_PROP_POWER_AVG,
591 	POWER_SUPPLY_PROP_HEALTH,
592 	POWER_SUPPLY_PROP_MANUFACTURER,
593 };
594 
595 #define bq27520g2_props bq27500_props
596 
597 static enum power_supply_property bq27520g3_props[] = {
598 	POWER_SUPPLY_PROP_STATUS,
599 	POWER_SUPPLY_PROP_PRESENT,
600 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
601 	POWER_SUPPLY_PROP_CURRENT_NOW,
602 	POWER_SUPPLY_PROP_CAPACITY,
603 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
604 	POWER_SUPPLY_PROP_TEMP,
605 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
606 	POWER_SUPPLY_PROP_TECHNOLOGY,
607 	POWER_SUPPLY_PROP_CHARGE_FULL,
608 	POWER_SUPPLY_PROP_CHARGE_NOW,
609 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
610 	POWER_SUPPLY_PROP_CYCLE_COUNT,
611 	POWER_SUPPLY_PROP_ENERGY_NOW,
612 	POWER_SUPPLY_PROP_POWER_AVG,
613 	POWER_SUPPLY_PROP_HEALTH,
614 	POWER_SUPPLY_PROP_MANUFACTURER,
615 };
616 
617 static enum power_supply_property bq27520g4_props[] = {
618 	POWER_SUPPLY_PROP_STATUS,
619 	POWER_SUPPLY_PROP_PRESENT,
620 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
621 	POWER_SUPPLY_PROP_CURRENT_NOW,
622 	POWER_SUPPLY_PROP_CAPACITY,
623 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
624 	POWER_SUPPLY_PROP_TEMP,
625 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
626 	POWER_SUPPLY_PROP_TECHNOLOGY,
627 	POWER_SUPPLY_PROP_CHARGE_FULL,
628 	POWER_SUPPLY_PROP_CHARGE_NOW,
629 	POWER_SUPPLY_PROP_CYCLE_COUNT,
630 	POWER_SUPPLY_PROP_HEALTH,
631 	POWER_SUPPLY_PROP_MANUFACTURER,
632 };
633 
634 static enum power_supply_property bq27521_props[] = {
635 	POWER_SUPPLY_PROP_STATUS,
636 	POWER_SUPPLY_PROP_PRESENT,
637 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
638 	POWER_SUPPLY_PROP_CURRENT_NOW,
639 	POWER_SUPPLY_PROP_TEMP,
640 	POWER_SUPPLY_PROP_TECHNOLOGY,
641 };
642 
643 static enum power_supply_property bq27530_props[] = {
644 	POWER_SUPPLY_PROP_STATUS,
645 	POWER_SUPPLY_PROP_PRESENT,
646 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
647 	POWER_SUPPLY_PROP_CURRENT_NOW,
648 	POWER_SUPPLY_PROP_CAPACITY,
649 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
650 	POWER_SUPPLY_PROP_TEMP,
651 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
652 	POWER_SUPPLY_PROP_TECHNOLOGY,
653 	POWER_SUPPLY_PROP_CHARGE_FULL,
654 	POWER_SUPPLY_PROP_CHARGE_NOW,
655 	POWER_SUPPLY_PROP_POWER_AVG,
656 	POWER_SUPPLY_PROP_HEALTH,
657 	POWER_SUPPLY_PROP_CYCLE_COUNT,
658 	POWER_SUPPLY_PROP_MANUFACTURER,
659 };
660 #define bq27531_props bq27530_props
661 
662 static enum power_supply_property bq27541_props[] = {
663 	POWER_SUPPLY_PROP_STATUS,
664 	POWER_SUPPLY_PROP_PRESENT,
665 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
666 	POWER_SUPPLY_PROP_CURRENT_NOW,
667 	POWER_SUPPLY_PROP_CAPACITY,
668 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
669 	POWER_SUPPLY_PROP_TEMP,
670 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
671 	POWER_SUPPLY_PROP_TECHNOLOGY,
672 	POWER_SUPPLY_PROP_CHARGE_FULL,
673 	POWER_SUPPLY_PROP_CHARGE_NOW,
674 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
675 	POWER_SUPPLY_PROP_CYCLE_COUNT,
676 	POWER_SUPPLY_PROP_POWER_AVG,
677 	POWER_SUPPLY_PROP_HEALTH,
678 	POWER_SUPPLY_PROP_MANUFACTURER,
679 };
680 #define bq27542_props bq27541_props
681 #define bq27546_props bq27541_props
682 #define bq27742_props bq27541_props
683 
684 static enum power_supply_property bq27545_props[] = {
685 	POWER_SUPPLY_PROP_STATUS,
686 	POWER_SUPPLY_PROP_PRESENT,
687 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
688 	POWER_SUPPLY_PROP_CURRENT_NOW,
689 	POWER_SUPPLY_PROP_CAPACITY,
690 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
691 	POWER_SUPPLY_PROP_TEMP,
692 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
693 	POWER_SUPPLY_PROP_TECHNOLOGY,
694 	POWER_SUPPLY_PROP_CHARGE_FULL,
695 	POWER_SUPPLY_PROP_CHARGE_NOW,
696 	POWER_SUPPLY_PROP_HEALTH,
697 	POWER_SUPPLY_PROP_CYCLE_COUNT,
698 	POWER_SUPPLY_PROP_POWER_AVG,
699 	POWER_SUPPLY_PROP_MANUFACTURER,
700 };
701 
702 static enum power_supply_property bq27421_props[] = {
703 	POWER_SUPPLY_PROP_STATUS,
704 	POWER_SUPPLY_PROP_PRESENT,
705 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
706 	POWER_SUPPLY_PROP_CURRENT_NOW,
707 	POWER_SUPPLY_PROP_CAPACITY,
708 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
709 	POWER_SUPPLY_PROP_TEMP,
710 	POWER_SUPPLY_PROP_TECHNOLOGY,
711 	POWER_SUPPLY_PROP_CHARGE_FULL,
712 	POWER_SUPPLY_PROP_CHARGE_NOW,
713 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
714 	POWER_SUPPLY_PROP_MANUFACTURER,
715 };
716 #define bq27411_props bq27421_props
717 #define bq27425_props bq27421_props
718 #define bq27426_props bq27421_props
719 #define bq27441_props bq27421_props
720 #define bq27621_props bq27421_props
721 
722 static enum power_supply_property bq27z561_props[] = {
723 	POWER_SUPPLY_PROP_STATUS,
724 	POWER_SUPPLY_PROP_PRESENT,
725 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
726 	POWER_SUPPLY_PROP_CURRENT_NOW,
727 	POWER_SUPPLY_PROP_CAPACITY,
728 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
729 	POWER_SUPPLY_PROP_TEMP,
730 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
731 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
732 	POWER_SUPPLY_PROP_TECHNOLOGY,
733 	POWER_SUPPLY_PROP_CHARGE_FULL,
734 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
735 	POWER_SUPPLY_PROP_CYCLE_COUNT,
736 	POWER_SUPPLY_PROP_POWER_AVG,
737 	POWER_SUPPLY_PROP_HEALTH,
738 	POWER_SUPPLY_PROP_MANUFACTURER,
739 };
740 
741 static enum power_supply_property bq28z610_props[] = {
742 	POWER_SUPPLY_PROP_STATUS,
743 	POWER_SUPPLY_PROP_PRESENT,
744 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
745 	POWER_SUPPLY_PROP_CURRENT_NOW,
746 	POWER_SUPPLY_PROP_CAPACITY,
747 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
748 	POWER_SUPPLY_PROP_TEMP,
749 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
750 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
751 	POWER_SUPPLY_PROP_TECHNOLOGY,
752 	POWER_SUPPLY_PROP_CHARGE_FULL,
753 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
754 	POWER_SUPPLY_PROP_CYCLE_COUNT,
755 	POWER_SUPPLY_PROP_POWER_AVG,
756 	POWER_SUPPLY_PROP_HEALTH,
757 	POWER_SUPPLY_PROP_MANUFACTURER,
758 };
759 
760 struct bq27xxx_dm_reg {
761 	u8 subclass_id;
762 	u8 offset;
763 	u8 bytes;
764 	u16 min, max;
765 };
766 
767 enum bq27xxx_dm_reg_id {
768 	BQ27XXX_DM_DESIGN_CAPACITY = 0,
769 	BQ27XXX_DM_DESIGN_ENERGY,
770 	BQ27XXX_DM_TERMINATE_VOLTAGE,
771 };
772 
773 #define bq27000_dm_regs 0
774 #define bq27010_dm_regs 0
775 #define bq2750x_dm_regs 0
776 #define bq2751x_dm_regs 0
777 #define bq2752x_dm_regs 0
778 
779 #if 0 /* not yet tested */
780 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
781 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 10, 2,    0, 65535 },
782 	[BQ27XXX_DM_DESIGN_ENERGY]     = { }, /* missing on chip */
783 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
784 };
785 #else
786 #define bq27500_dm_regs 0
787 #endif
788 
789 /* todo create data memory definitions from datasheets and test on chips */
790 #define bq27510g1_dm_regs 0
791 #define bq27510g2_dm_regs 0
792 #define bq27510g3_dm_regs 0
793 #define bq27520g1_dm_regs 0
794 #define bq27520g2_dm_regs 0
795 #define bq27520g3_dm_regs 0
796 #define bq27520g4_dm_regs 0
797 #define bq27521_dm_regs 0
798 #define bq27530_dm_regs 0
799 #define bq27531_dm_regs 0
800 #define bq27541_dm_regs 0
801 #define bq27542_dm_regs 0
802 #define bq27546_dm_regs 0
803 #define bq27742_dm_regs 0
804 
805 #if 0 /* not yet tested */
806 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
807 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 23, 2,    0, 32767 },
808 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 48, 25, 2,    0, 32767 },
809 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800,  3700 },
810 };
811 #else
812 #define bq27545_dm_regs 0
813 #endif
814 
815 static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
816 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0, 32767 },
817 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
818 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800,  3700 },
819 };
820 
821 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
822 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0,  8000 },
823 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
824 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500,  3700 },
825 };
826 
827 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
828 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 12, 2,    0, 32767 },
829 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 14, 2,    0, 32767 },
830 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800,  3700 },
831 };
832 
833 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
834 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82,  6, 2,    0,  8000 },
835 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82,  8, 2,    0, 32767 },
836 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500,  3700 },
837 };
838 
839 #if 0 /* not yet tested */
840 #define bq27441_dm_regs bq27421_dm_regs
841 #else
842 #define bq27441_dm_regs 0
843 #endif
844 
845 #if 0 /* not yet tested */
846 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
847 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 3, 2,    0,  8000 },
848 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 5, 2,    0, 32767 },
849 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500,  3700 },
850 };
851 #else
852 #define bq27621_dm_regs 0
853 #endif
854 
855 #define bq27z561_dm_regs 0
856 #define bq28z610_dm_regs 0
857 
858 #define BQ27XXX_O_ZERO	0x00000001
859 #define BQ27XXX_O_OTDC	0x00000002 /* has OTC/OTD overtemperature flags */
860 #define BQ27XXX_O_UTOT  0x00000004 /* has OT overtemperature flag */
861 #define BQ27XXX_O_CFGUP	0x00000008
862 #define BQ27XXX_O_RAM	0x00000010
863 #define BQ27Z561_O_BITS	0x00000020
864 
865 #define BQ27XXX_DATA(ref, key, opt) {		\
866 	.opts = (opt),				\
867 	.unseal_key = key,			\
868 	.regs  = ref##_regs,			\
869 	.dm_regs = ref##_dm_regs,		\
870 	.props = ref##_props,			\
871 	.props_size = ARRAY_SIZE(ref##_props) }
872 
873 static struct {
874 	u32 opts;
875 	u32 unseal_key;
876 	u8 *regs;
877 	struct bq27xxx_dm_reg *dm_regs;
878 	enum power_supply_property *props;
879 	size_t props_size;
880 } bq27xxx_chip_data[] = {
881 	[BQ27000]   = BQ27XXX_DATA(bq27000,   0         , BQ27XXX_O_ZERO),
882 	[BQ27010]   = BQ27XXX_DATA(bq27010,   0         , BQ27XXX_O_ZERO),
883 	[BQ2750X]   = BQ27XXX_DATA(bq2750x,   0         , BQ27XXX_O_OTDC),
884 	[BQ2751X]   = BQ27XXX_DATA(bq2751x,   0         , BQ27XXX_O_OTDC),
885 	[BQ2752X]   = BQ27XXX_DATA(bq2752x,   0         , BQ27XXX_O_OTDC),
886 	[BQ27500]   = BQ27XXX_DATA(bq27500,   0x04143672, BQ27XXX_O_OTDC),
887 	[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0         , BQ27XXX_O_OTDC),
888 	[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0         , BQ27XXX_O_OTDC),
889 	[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0         , BQ27XXX_O_OTDC),
890 	[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0         , BQ27XXX_O_OTDC),
891 	[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0         , BQ27XXX_O_OTDC),
892 	[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0         , BQ27XXX_O_OTDC),
893 	[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0         , BQ27XXX_O_OTDC),
894 	[BQ27521]   = BQ27XXX_DATA(bq27521,   0         , 0),
895 	[BQ27530]   = BQ27XXX_DATA(bq27530,   0         , BQ27XXX_O_UTOT),
896 	[BQ27531]   = BQ27XXX_DATA(bq27531,   0         , BQ27XXX_O_UTOT),
897 	[BQ27541]   = BQ27XXX_DATA(bq27541,   0         , BQ27XXX_O_OTDC),
898 	[BQ27542]   = BQ27XXX_DATA(bq27542,   0         , BQ27XXX_O_OTDC),
899 	[BQ27546]   = BQ27XXX_DATA(bq27546,   0         , BQ27XXX_O_OTDC),
900 	[BQ27742]   = BQ27XXX_DATA(bq27742,   0         , BQ27XXX_O_OTDC),
901 	[BQ27545]   = BQ27XXX_DATA(bq27545,   0x04143672, BQ27XXX_O_OTDC),
902 	[BQ27411]   = BQ27XXX_DATA(bq27411,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
903 	[BQ27421]   = BQ27XXX_DATA(bq27421,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
904 	[BQ27425]   = BQ27XXX_DATA(bq27425,   0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
905 	[BQ27426]   = BQ27XXX_DATA(bq27426,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
906 	[BQ27441]   = BQ27XXX_DATA(bq27441,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
907 	[BQ27621]   = BQ27XXX_DATA(bq27621,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
908 	[BQ27Z561]  = BQ27XXX_DATA(bq27z561,  0         , BQ27Z561_O_BITS),
909 	[BQ28Z610]  = BQ27XXX_DATA(bq28z610,  0         , BQ27Z561_O_BITS),
910 };
911 
912 static DEFINE_MUTEX(bq27xxx_list_lock);
913 static LIST_HEAD(bq27xxx_battery_devices);
914 
915 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
916 
917 #define BQ27XXX_DM_SZ	32
918 
919 /**
920  * struct bq27xxx_dm_buf - chip data memory buffer
921  * @class: data memory subclass_id
922  * @block: data memory block number
923  * @data: data from/for the block
924  * @has_data: true if data has been filled by read
925  * @dirty: true if data has changed since last read/write
926  *
927  * Encapsulates info required to manage chip data memory blocks.
928  */
929 struct bq27xxx_dm_buf {
930 	u8 class;
931 	u8 block;
932 	u8 data[BQ27XXX_DM_SZ];
933 	bool has_data, dirty;
934 };
935 
936 #define BQ27XXX_DM_BUF(di, i) { \
937 	.class = (di)->dm_regs[i].subclass_id, \
938 	.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
939 }
940 
941 static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
942 				      struct bq27xxx_dm_reg *reg)
943 {
944 	if (buf->class == reg->subclass_id &&
945 	    buf->block == reg->offset / BQ27XXX_DM_SZ)
946 		return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
947 
948 	return NULL;
949 }
950 
951 static const char * const bq27xxx_dm_reg_name[] = {
952 	[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
953 	[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
954 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
955 };
956 
957 
958 static bool bq27xxx_dt_to_nvm = true;
959 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
960 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
961 	"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
962 	"Users must set this =0 when installing a different type of battery!\n"
963 	"Default is =1."
964 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
965 	"\nSetting this affects future kernel updates, not the current configuration."
966 #endif
967 );
968 
969 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
970 {
971 	struct bq27xxx_device_info *di;
972 	unsigned int prev_val = *(unsigned int *) kp->arg;
973 	int ret;
974 
975 	ret = param_set_uint(val, kp);
976 	if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
977 		return ret;
978 
979 	mutex_lock(&bq27xxx_list_lock);
980 	list_for_each_entry(di, &bq27xxx_battery_devices, list) {
981 		cancel_delayed_work_sync(&di->work);
982 		schedule_delayed_work(&di->work, 0);
983 	}
984 	mutex_unlock(&bq27xxx_list_lock);
985 
986 	return ret;
987 }
988 
989 static const struct kernel_param_ops param_ops_poll_interval = {
990 	.get = param_get_uint,
991 	.set = poll_interval_param_set,
992 };
993 
994 static unsigned int poll_interval = 360;
995 module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
996 MODULE_PARM_DESC(poll_interval,
997 		 "battery poll interval in seconds - 0 disables polling");
998 
999 /*
1000  * Common code for BQ27xxx devices
1001  */
1002 
1003 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
1004 			       bool single)
1005 {
1006 	int ret;
1007 
1008 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1009 		return -EINVAL;
1010 
1011 	ret = di->bus.read(di, di->regs[reg_index], single);
1012 	if (ret < 0)
1013 		dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
1014 			di->regs[reg_index], reg_index);
1015 
1016 	return ret;
1017 }
1018 
1019 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
1020 				u16 value, bool single)
1021 {
1022 	int ret;
1023 
1024 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1025 		return -EINVAL;
1026 
1027 	if (!di->bus.write)
1028 		return -EPERM;
1029 
1030 	ret = di->bus.write(di, di->regs[reg_index], value, single);
1031 	if (ret < 0)
1032 		dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
1033 			di->regs[reg_index], reg_index);
1034 
1035 	return ret;
1036 }
1037 
1038 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
1039 				     u8 *data, int len)
1040 {
1041 	int ret;
1042 
1043 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1044 		return -EINVAL;
1045 
1046 	if (!di->bus.read_bulk)
1047 		return -EPERM;
1048 
1049 	ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
1050 	if (ret < 0)
1051 		dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
1052 			di->regs[reg_index], reg_index);
1053 
1054 	return ret;
1055 }
1056 
1057 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
1058 				      u8 *data, int len)
1059 {
1060 	int ret;
1061 
1062 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1063 		return -EINVAL;
1064 
1065 	if (!di->bus.write_bulk)
1066 		return -EPERM;
1067 
1068 	ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
1069 	if (ret < 0)
1070 		dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
1071 			di->regs[reg_index], reg_index);
1072 
1073 	return ret;
1074 }
1075 
1076 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
1077 {
1078 	int ret;
1079 
1080 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
1081 	if (ret < 0) {
1082 		dev_err(di->dev, "bus error on seal: %d\n", ret);
1083 		return ret;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
1090 {
1091 	int ret;
1092 
1093 	if (di->unseal_key == 0) {
1094 		dev_err(di->dev, "unseal failed due to missing key\n");
1095 		return -EINVAL;
1096 	}
1097 
1098 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
1099 	if (ret < 0)
1100 		goto out;
1101 
1102 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1103 	if (ret < 0)
1104 		goto out;
1105 
1106 	return 0;
1107 
1108 out:
1109 	dev_err(di->dev, "bus error on unseal: %d\n", ret);
1110 	return ret;
1111 }
1112 
1113 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1114 {
1115 	u16 sum = 0;
1116 	int i;
1117 
1118 	for (i = 0; i < BQ27XXX_DM_SZ; i++)
1119 		sum += buf->data[i];
1120 	sum &= 0xff;
1121 
1122 	return 0xff - sum;
1123 }
1124 
1125 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1126 					 struct bq27xxx_dm_buf *buf)
1127 {
1128 	int ret;
1129 
1130 	buf->has_data = false;
1131 
1132 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1133 	if (ret < 0)
1134 		goto out;
1135 
1136 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1137 	if (ret < 0)
1138 		goto out;
1139 
1140 	BQ27XXX_MSLEEP(1);
1141 
1142 	ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1143 	if (ret < 0)
1144 		goto out;
1145 
1146 	ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1147 	if (ret < 0)
1148 		goto out;
1149 
1150 	if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1151 		ret = -EINVAL;
1152 		goto out;
1153 	}
1154 
1155 	buf->has_data = true;
1156 	buf->dirty = false;
1157 
1158 	return 0;
1159 
1160 out:
1161 	dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1162 	return ret;
1163 }
1164 
1165 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1166 					    struct bq27xxx_dm_buf *buf,
1167 					    enum bq27xxx_dm_reg_id reg_id,
1168 					    unsigned int val)
1169 {
1170 	struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1171 	const char *str = bq27xxx_dm_reg_name[reg_id];
1172 	u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1173 
1174 	if (prev == NULL) {
1175 		dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1176 		return;
1177 	}
1178 
1179 	if (reg->bytes != 2) {
1180 		dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1181 		return;
1182 	}
1183 
1184 	if (!buf->has_data)
1185 		return;
1186 
1187 	if (be16_to_cpup(prev) == val) {
1188 		dev_info(di->dev, "%s has %u\n", str, val);
1189 		return;
1190 	}
1191 
1192 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1193 	if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1194 #else
1195 	if (!(di->opts & BQ27XXX_O_RAM)) {
1196 #endif
1197 		/* devicetree and NVM differ; defer to NVM */
1198 		dev_warn(di->dev, "%s has %u; update to %u disallowed "
1199 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1200 			 "by dt_monitored_battery_updates_nvm=0"
1201 #else
1202 			 "for flash/NVM data memory"
1203 #endif
1204 			 "\n", str, be16_to_cpup(prev), val);
1205 		return;
1206 	}
1207 
1208 	dev_info(di->dev, "update %s to %u\n", str, val);
1209 
1210 	*prev = cpu_to_be16(val);
1211 	buf->dirty = true;
1212 }
1213 
1214 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1215 {
1216 	const int limit = 100;
1217 	u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1218 	int ret, try = limit;
1219 
1220 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	do {
1225 		BQ27XXX_MSLEEP(25);
1226 		ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1227 		if (ret < 0)
1228 			return ret;
1229 	} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1230 
1231 	if (!try && di->chip != BQ27425) { // 425 has a bug
1232 		dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1233 		return -EINVAL;
1234 	}
1235 
1236 	if (limit - try > 3)
1237 		dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1238 
1239 	return 0;
1240 }
1241 
1242 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1243 {
1244 	int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1245 	if (ret < 0 && ret != -EINVAL)
1246 		dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1247 
1248 	return ret;
1249 }
1250 
1251 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1252 {
1253 	int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1254 	if (ret < 0 && ret != -EINVAL)
1255 		dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1256 
1257 	return ret;
1258 }
1259 
1260 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1261 					  struct bq27xxx_dm_buf *buf)
1262 {
1263 	bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1264 	int ret;
1265 
1266 	if (!buf->dirty)
1267 		return 0;
1268 
1269 	if (cfgup) {
1270 		ret = bq27xxx_battery_set_cfgupdate(di);
1271 		if (ret < 0)
1272 			return ret;
1273 	}
1274 
1275 	ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1276 	if (ret < 0)
1277 		goto out;
1278 
1279 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1280 	if (ret < 0)
1281 		goto out;
1282 
1283 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1284 	if (ret < 0)
1285 		goto out;
1286 
1287 	BQ27XXX_MSLEEP(1);
1288 
1289 	ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1290 	if (ret < 0)
1291 		goto out;
1292 
1293 	ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1294 			    bq27xxx_battery_checksum_dm_block(buf), true);
1295 	if (ret < 0)
1296 		goto out;
1297 
1298 	/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1299 	 * corruption on the '425 chip (and perhaps others), which can damage
1300 	 * the chip.
1301 	 */
1302 
1303 	if (cfgup) {
1304 		BQ27XXX_MSLEEP(1);
1305 		ret = bq27xxx_battery_soft_reset(di);
1306 		if (ret < 0)
1307 			return ret;
1308 	} else {
1309 		BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1310 	}
1311 
1312 	buf->dirty = false;
1313 
1314 	return 0;
1315 
1316 out:
1317 	if (cfgup)
1318 		bq27xxx_battery_soft_reset(di);
1319 
1320 	dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1321 	return ret;
1322 }
1323 
1324 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1325 				       struct power_supply_battery_info *info)
1326 {
1327 	struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1328 	struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1329 	bool updated;
1330 
1331 	if (bq27xxx_battery_unseal(di) < 0)
1332 		return;
1333 
1334 	if (info->charge_full_design_uah != -EINVAL &&
1335 	    info->energy_full_design_uwh != -EINVAL) {
1336 		bq27xxx_battery_read_dm_block(di, &bd);
1337 		/* assume design energy & capacity are in same block */
1338 		bq27xxx_battery_update_dm_block(di, &bd,
1339 					BQ27XXX_DM_DESIGN_CAPACITY,
1340 					info->charge_full_design_uah / 1000);
1341 		bq27xxx_battery_update_dm_block(di, &bd,
1342 					BQ27XXX_DM_DESIGN_ENERGY,
1343 					info->energy_full_design_uwh / 1000);
1344 	}
1345 
1346 	if (info->voltage_min_design_uv != -EINVAL) {
1347 		bool same = bd.class == bt.class && bd.block == bt.block;
1348 		if (!same)
1349 			bq27xxx_battery_read_dm_block(di, &bt);
1350 		bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1351 					BQ27XXX_DM_TERMINATE_VOLTAGE,
1352 					info->voltage_min_design_uv / 1000);
1353 	}
1354 
1355 	updated = bd.dirty || bt.dirty;
1356 
1357 	bq27xxx_battery_write_dm_block(di, &bd);
1358 	bq27xxx_battery_write_dm_block(di, &bt);
1359 
1360 	bq27xxx_battery_seal(di);
1361 
1362 	if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1363 		bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1364 		BQ27XXX_MSLEEP(300); /* reset time is not documented */
1365 	}
1366 	/* assume bq27xxx_battery_update() is called hereafter */
1367 }
1368 
1369 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1370 {
1371 	struct power_supply_battery_info info = {};
1372 	unsigned int min, max;
1373 
1374 	if (power_supply_get_battery_info(di->bat, &info) < 0)
1375 		return;
1376 
1377 	if (!di->dm_regs) {
1378 		dev_warn(di->dev, "data memory update not supported for chip\n");
1379 		return;
1380 	}
1381 
1382 	if (info.energy_full_design_uwh != info.charge_full_design_uah) {
1383 		if (info.energy_full_design_uwh == -EINVAL)
1384 			dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1385 		else if (info.charge_full_design_uah == -EINVAL)
1386 			dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1387 	}
1388 
1389 	/* assume min == 0 */
1390 	max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1391 	if (info.energy_full_design_uwh > max * 1000) {
1392 		dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1393 			info.energy_full_design_uwh);
1394 		info.energy_full_design_uwh = -EINVAL;
1395 	}
1396 
1397 	/* assume min == 0 */
1398 	max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1399 	if (info.charge_full_design_uah > max * 1000) {
1400 		dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1401 			info.charge_full_design_uah);
1402 		info.charge_full_design_uah = -EINVAL;
1403 	}
1404 
1405 	min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1406 	max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1407 	if ((info.voltage_min_design_uv < min * 1000 ||
1408 	     info.voltage_min_design_uv > max * 1000) &&
1409 	     info.voltage_min_design_uv != -EINVAL) {
1410 		dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1411 			info.voltage_min_design_uv);
1412 		info.voltage_min_design_uv = -EINVAL;
1413 	}
1414 
1415 	if ((info.energy_full_design_uwh != -EINVAL &&
1416 	     info.charge_full_design_uah != -EINVAL) ||
1417 	     info.voltage_min_design_uv  != -EINVAL)
1418 		bq27xxx_battery_set_config(di, &info);
1419 }
1420 
1421 /*
1422  * Return the battery State-of-Charge
1423  * Or < 0 if something fails.
1424  */
1425 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1426 {
1427 	int soc;
1428 
1429 	if (di->opts & BQ27XXX_O_ZERO)
1430 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1431 	else
1432 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1433 
1434 	if (soc < 0)
1435 		dev_dbg(di->dev, "error reading State-of-Charge\n");
1436 
1437 	return soc;
1438 }
1439 
1440 /*
1441  * Return a battery charge value in µAh
1442  * Or < 0 if something fails.
1443  */
1444 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
1445 {
1446 	int charge;
1447 
1448 	charge = bq27xxx_read(di, reg, false);
1449 	if (charge < 0) {
1450 		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1451 			reg, charge);
1452 		return charge;
1453 	}
1454 
1455 	if (di->opts & BQ27XXX_O_ZERO)
1456 		charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1457 	else
1458 		charge *= 1000;
1459 
1460 	return charge;
1461 }
1462 
1463 /*
1464  * Return the battery Nominal available capacity in µAh
1465  * Or < 0 if something fails.
1466  */
1467 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
1468 {
1469 	int flags;
1470 
1471 	if (di->opts & BQ27XXX_O_ZERO) {
1472 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1473 		if (flags >= 0 && (flags & BQ27000_FLAG_CI))
1474 			return -ENODATA;
1475 	}
1476 
1477 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
1478 }
1479 
1480 /*
1481  * Return the battery Full Charge Capacity in µAh
1482  * Or < 0 if something fails.
1483  */
1484 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
1485 {
1486 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
1487 }
1488 
1489 /*
1490  * Return the Design Capacity in µAh
1491  * Or < 0 if something fails.
1492  */
1493 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
1494 {
1495 	int dcap;
1496 
1497 	if (di->opts & BQ27XXX_O_ZERO)
1498 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1499 	else
1500 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1501 
1502 	if (dcap < 0) {
1503 		dev_dbg(di->dev, "error reading initial last measured discharge\n");
1504 		return dcap;
1505 	}
1506 
1507 	if (di->opts & BQ27XXX_O_ZERO)
1508 		dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1509 	else
1510 		dcap *= 1000;
1511 
1512 	return dcap;
1513 }
1514 
1515 /*
1516  * Return the battery Available energy in µWh
1517  * Or < 0 if something fails.
1518  */
1519 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
1520 {
1521 	int ae;
1522 
1523 	ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1524 	if (ae < 0) {
1525 		dev_dbg(di->dev, "error reading available energy\n");
1526 		return ae;
1527 	}
1528 
1529 	if (di->opts & BQ27XXX_O_ZERO)
1530 		ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1531 	else
1532 		ae *= 1000;
1533 
1534 	return ae;
1535 }
1536 
1537 /*
1538  * Return the battery temperature in tenths of degree Kelvin
1539  * Or < 0 if something fails.
1540  */
1541 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
1542 {
1543 	int temp;
1544 
1545 	temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1546 	if (temp < 0) {
1547 		dev_err(di->dev, "error reading temperature\n");
1548 		return temp;
1549 	}
1550 
1551 	if (di->opts & BQ27XXX_O_ZERO)
1552 		temp = 5 * temp / 2;
1553 
1554 	return temp;
1555 }
1556 
1557 /*
1558  * Return the battery Cycle count total
1559  * Or < 0 if something fails.
1560  */
1561 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
1562 {
1563 	int cyct;
1564 
1565 	cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1566 	if (cyct < 0)
1567 		dev_err(di->dev, "error reading cycle count total\n");
1568 
1569 	return cyct;
1570 }
1571 
1572 /*
1573  * Read a time register.
1574  * Return < 0 if something fails.
1575  */
1576 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
1577 {
1578 	int tval;
1579 
1580 	tval = bq27xxx_read(di, reg, false);
1581 	if (tval < 0) {
1582 		dev_dbg(di->dev, "error reading time register %02x: %d\n",
1583 			reg, tval);
1584 		return tval;
1585 	}
1586 
1587 	if (tval == 65535)
1588 		return -ENODATA;
1589 
1590 	return tval * 60;
1591 }
1592 
1593 /*
1594  * Read an average power register.
1595  * Return < 0 if something fails.
1596  */
1597 static int bq27xxx_battery_read_pwr_avg(struct bq27xxx_device_info *di)
1598 {
1599 	int tval;
1600 
1601 	tval = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1602 	if (tval < 0) {
1603 		dev_err(di->dev, "error reading average power register  %02x: %d\n",
1604 			BQ27XXX_REG_AP, tval);
1605 		return tval;
1606 	}
1607 
1608 	if (di->opts & BQ27XXX_O_ZERO)
1609 		return (tval * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1610 	else
1611 		return tval;
1612 }
1613 
1614 /*
1615  * Returns true if a battery over temperature condition is detected
1616  */
1617 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1618 {
1619 	if (di->opts & BQ27XXX_O_OTDC)
1620 		return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1621         if (di->opts & BQ27XXX_O_UTOT)
1622 		return flags & BQ27XXX_FLAG_OT;
1623 
1624 	return false;
1625 }
1626 
1627 /*
1628  * Returns true if a battery under temperature condition is detected
1629  */
1630 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1631 {
1632 	if (di->opts & BQ27XXX_O_UTOT)
1633 		return flags & BQ27XXX_FLAG_UT;
1634 
1635 	return false;
1636 }
1637 
1638 /*
1639  * Returns true if a low state of charge condition is detected
1640  */
1641 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1642 {
1643 	if (di->opts & BQ27XXX_O_ZERO)
1644 		return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1645 	else if (di->opts & BQ27Z561_O_BITS)
1646 		return flags & BQ27Z561_FLAG_FDC;
1647 	else
1648 		return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1649 }
1650 
1651 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
1652 {
1653 	/* Unlikely but important to return first */
1654 	if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
1655 		return POWER_SUPPLY_HEALTH_OVERHEAT;
1656 	if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
1657 		return POWER_SUPPLY_HEALTH_COLD;
1658 	if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
1659 		return POWER_SUPPLY_HEALTH_DEAD;
1660 
1661 	return POWER_SUPPLY_HEALTH_GOOD;
1662 }
1663 
1664 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1665 {
1666 	struct bq27xxx_reg_cache cache = {0, };
1667 	bool has_ci_flag = di->opts & BQ27XXX_O_ZERO;
1668 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1669 
1670 	cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1671 	if ((cache.flags & 0xff) == 0xff)
1672 		cache.flags = -1; /* read error */
1673 	if (cache.flags >= 0) {
1674 		cache.temperature = bq27xxx_battery_read_temperature(di);
1675 		if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
1676 			dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
1677 			cache.capacity = -ENODATA;
1678 			cache.energy = -ENODATA;
1679 			cache.time_to_empty = -ENODATA;
1680 			cache.time_to_empty_avg = -ENODATA;
1681 			cache.time_to_full = -ENODATA;
1682 			cache.charge_full = -ENODATA;
1683 			cache.health = -ENODATA;
1684 		} else {
1685 			if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
1686 				cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
1687 			if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
1688 				cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
1689 			if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
1690 				cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
1691 
1692 			cache.charge_full = bq27xxx_battery_read_fcc(di);
1693 			cache.capacity = bq27xxx_battery_read_soc(di);
1694 			if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
1695 				cache.energy = bq27xxx_battery_read_energy(di);
1696 			di->cache.flags = cache.flags;
1697 			cache.health = bq27xxx_battery_read_health(di);
1698 		}
1699 		if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
1700 			cache.cycle_count = bq27xxx_battery_read_cyct(di);
1701 		if (di->regs[BQ27XXX_REG_AP] != INVALID_REG_ADDR)
1702 			cache.power_avg = bq27xxx_battery_read_pwr_avg(di);
1703 
1704 		/* We only have to read charge design full once */
1705 		if (di->charge_design_full <= 0)
1706 			di->charge_design_full = bq27xxx_battery_read_dcap(di);
1707 	}
1708 
1709 	if ((di->cache.capacity != cache.capacity) ||
1710 	    (di->cache.flags != cache.flags))
1711 		power_supply_changed(di->bat);
1712 
1713 	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1714 		di->cache = cache;
1715 
1716 	di->last_update = jiffies;
1717 }
1718 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1719 
1720 static void bq27xxx_battery_poll(struct work_struct *work)
1721 {
1722 	struct bq27xxx_device_info *di =
1723 			container_of(work, struct bq27xxx_device_info,
1724 				     work.work);
1725 
1726 	bq27xxx_battery_update(di);
1727 
1728 	if (poll_interval > 0)
1729 		schedule_delayed_work(&di->work, poll_interval * HZ);
1730 }
1731 
1732 /*
1733  * Return the battery average current in µA
1734  * Note that current can be negative signed as well
1735  * Or 0 if something fails.
1736  */
1737 static int bq27xxx_battery_current(struct bq27xxx_device_info *di,
1738 				   union power_supply_propval *val)
1739 {
1740 	int curr;
1741 	int flags;
1742 
1743 	curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1744 	if (curr < 0) {
1745 		dev_err(di->dev, "error reading current\n");
1746 		return curr;
1747 	}
1748 
1749 	if (di->opts & BQ27XXX_O_ZERO) {
1750 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1751 		if (flags & BQ27000_FLAG_CHGS) {
1752 			dev_dbg(di->dev, "negative current!\n");
1753 			curr = -curr;
1754 		}
1755 
1756 		val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1757 	} else {
1758 		/* Other gauges return signed value */
1759 		val->intval = (int)((s16)curr) * 1000;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static int bq27xxx_battery_status(struct bq27xxx_device_info *di,
1766 				  union power_supply_propval *val)
1767 {
1768 	int status;
1769 
1770 	if (di->opts & BQ27XXX_O_ZERO) {
1771 		if (di->cache.flags & BQ27000_FLAG_FC)
1772 			status = POWER_SUPPLY_STATUS_FULL;
1773 		else if (di->cache.flags & BQ27000_FLAG_CHGS)
1774 			status = POWER_SUPPLY_STATUS_CHARGING;
1775 		else if (power_supply_am_i_supplied(di->bat) > 0)
1776 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1777 		else
1778 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1779 	} else if (di->opts & BQ27Z561_O_BITS) {
1780 		if (di->cache.flags & BQ27Z561_FLAG_FC)
1781 			status = POWER_SUPPLY_STATUS_FULL;
1782 		else if (di->cache.flags & BQ27Z561_FLAG_DIS_CH)
1783 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1784 		else
1785 			status = POWER_SUPPLY_STATUS_CHARGING;
1786 	} else {
1787 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1788 			status = POWER_SUPPLY_STATUS_FULL;
1789 		else if (di->cache.flags & BQ27XXX_FLAG_DSC)
1790 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1791 		else
1792 			status = POWER_SUPPLY_STATUS_CHARGING;
1793 	}
1794 
1795 	val->intval = status;
1796 
1797 	return 0;
1798 }
1799 
1800 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1801 					  union power_supply_propval *val)
1802 {
1803 	int level;
1804 
1805 	if (di->opts & BQ27XXX_O_ZERO) {
1806 		if (di->cache.flags & BQ27000_FLAG_FC)
1807 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1808 		else if (di->cache.flags & BQ27000_FLAG_EDV1)
1809 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1810 		else if (di->cache.flags & BQ27000_FLAG_EDVF)
1811 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1812 		else
1813 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1814 	} else if (di->opts & BQ27Z561_O_BITS) {
1815 		if (di->cache.flags & BQ27Z561_FLAG_FC)
1816 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1817 		else if (di->cache.flags & BQ27Z561_FLAG_FDC)
1818 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1819 		else
1820 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1821 	} else {
1822 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1823 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1824 		else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
1825 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1826 		else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
1827 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1828 		else
1829 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1830 	}
1831 
1832 	val->intval = level;
1833 
1834 	return 0;
1835 }
1836 
1837 /*
1838  * Return the battery Voltage in millivolts
1839  * Or < 0 if something fails.
1840  */
1841 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
1842 				   union power_supply_propval *val)
1843 {
1844 	int volt;
1845 
1846 	volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
1847 	if (volt < 0) {
1848 		dev_err(di->dev, "error reading voltage\n");
1849 		return volt;
1850 	}
1851 
1852 	val->intval = volt * 1000;
1853 
1854 	return 0;
1855 }
1856 
1857 static int bq27xxx_simple_value(int value,
1858 				union power_supply_propval *val)
1859 {
1860 	if (value < 0)
1861 		return value;
1862 
1863 	val->intval = value;
1864 
1865 	return 0;
1866 }
1867 
1868 static int bq27xxx_battery_get_property(struct power_supply *psy,
1869 					enum power_supply_property psp,
1870 					union power_supply_propval *val)
1871 {
1872 	int ret = 0;
1873 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1874 
1875 	mutex_lock(&di->lock);
1876 	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
1877 		cancel_delayed_work_sync(&di->work);
1878 		bq27xxx_battery_poll(&di->work.work);
1879 	}
1880 	mutex_unlock(&di->lock);
1881 
1882 	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
1883 		return -ENODEV;
1884 
1885 	switch (psp) {
1886 	case POWER_SUPPLY_PROP_STATUS:
1887 		ret = bq27xxx_battery_status(di, val);
1888 		break;
1889 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1890 		ret = bq27xxx_battery_voltage(di, val);
1891 		break;
1892 	case POWER_SUPPLY_PROP_PRESENT:
1893 		val->intval = di->cache.flags < 0 ? 0 : 1;
1894 		break;
1895 	case POWER_SUPPLY_PROP_CURRENT_NOW:
1896 		ret = bq27xxx_battery_current(di, val);
1897 		break;
1898 	case POWER_SUPPLY_PROP_CAPACITY:
1899 		ret = bq27xxx_simple_value(di->cache.capacity, val);
1900 		break;
1901 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1902 		ret = bq27xxx_battery_capacity_level(di, val);
1903 		break;
1904 	case POWER_SUPPLY_PROP_TEMP:
1905 		ret = bq27xxx_simple_value(di->cache.temperature, val);
1906 		if (ret == 0)
1907 			val->intval -= 2731; /* convert decidegree k to c */
1908 		break;
1909 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
1910 		ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
1911 		break;
1912 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
1913 		ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
1914 		break;
1915 	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
1916 		ret = bq27xxx_simple_value(di->cache.time_to_full, val);
1917 		break;
1918 	case POWER_SUPPLY_PROP_TECHNOLOGY:
1919 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
1920 		break;
1921 	case POWER_SUPPLY_PROP_CHARGE_NOW:
1922 		ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
1923 		break;
1924 	case POWER_SUPPLY_PROP_CHARGE_FULL:
1925 		ret = bq27xxx_simple_value(di->cache.charge_full, val);
1926 		break;
1927 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1928 		ret = bq27xxx_simple_value(di->charge_design_full, val);
1929 		break;
1930 	/*
1931 	 * TODO: Implement these to make registers set from
1932 	 * power_supply_battery_info visible in sysfs.
1933 	 */
1934 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1935 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
1936 		return -EINVAL;
1937 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
1938 		ret = bq27xxx_simple_value(di->cache.cycle_count, val);
1939 		break;
1940 	case POWER_SUPPLY_PROP_ENERGY_NOW:
1941 		ret = bq27xxx_simple_value(di->cache.energy, val);
1942 		break;
1943 	case POWER_SUPPLY_PROP_POWER_AVG:
1944 		ret = bq27xxx_simple_value(di->cache.power_avg, val);
1945 		break;
1946 	case POWER_SUPPLY_PROP_HEALTH:
1947 		ret = bq27xxx_simple_value(di->cache.health, val);
1948 		break;
1949 	case POWER_SUPPLY_PROP_MANUFACTURER:
1950 		val->strval = BQ27XXX_MANUFACTURER;
1951 		break;
1952 	default:
1953 		return -EINVAL;
1954 	}
1955 
1956 	return ret;
1957 }
1958 
1959 static void bq27xxx_external_power_changed(struct power_supply *psy)
1960 {
1961 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1962 
1963 	cancel_delayed_work_sync(&di->work);
1964 	schedule_delayed_work(&di->work, 0);
1965 }
1966 
1967 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
1968 {
1969 	struct power_supply_desc *psy_desc;
1970 	struct power_supply_config psy_cfg = {
1971 		.of_node = di->dev->of_node,
1972 		.drv_data = di,
1973 	};
1974 
1975 	INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
1976 	mutex_init(&di->lock);
1977 
1978 	di->regs       = bq27xxx_chip_data[di->chip].regs;
1979 	di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
1980 	di->dm_regs    = bq27xxx_chip_data[di->chip].dm_regs;
1981 	di->opts       = bq27xxx_chip_data[di->chip].opts;
1982 
1983 	psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
1984 	if (!psy_desc)
1985 		return -ENOMEM;
1986 
1987 	psy_desc->name = di->name;
1988 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
1989 	psy_desc->properties = bq27xxx_chip_data[di->chip].props;
1990 	psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
1991 	psy_desc->get_property = bq27xxx_battery_get_property;
1992 	psy_desc->external_power_changed = bq27xxx_external_power_changed;
1993 
1994 	di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
1995 	if (IS_ERR(di->bat)) {
1996 		if (PTR_ERR(di->bat) == -EPROBE_DEFER)
1997 			dev_dbg(di->dev, "failed to register battery, deferring probe\n");
1998 		else
1999 			dev_err(di->dev, "failed to register battery\n");
2000 		return PTR_ERR(di->bat);
2001 	}
2002 
2003 	bq27xxx_battery_settings(di);
2004 	bq27xxx_battery_update(di);
2005 
2006 	mutex_lock(&bq27xxx_list_lock);
2007 	list_add(&di->list, &bq27xxx_battery_devices);
2008 	mutex_unlock(&bq27xxx_list_lock);
2009 
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
2013 
2014 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
2015 {
2016 	/*
2017 	 * power_supply_unregister call bq27xxx_battery_get_property which
2018 	 * call bq27xxx_battery_poll.
2019 	 * Make sure that bq27xxx_battery_poll will not call
2020 	 * schedule_delayed_work again after unregister (which cause OOPS).
2021 	 */
2022 	poll_interval = 0;
2023 
2024 	cancel_delayed_work_sync(&di->work);
2025 
2026 	power_supply_unregister(di->bat);
2027 
2028 	mutex_lock(&bq27xxx_list_lock);
2029 	list_del(&di->list);
2030 	mutex_unlock(&bq27xxx_list_lock);
2031 
2032 	mutex_destroy(&di->lock);
2033 }
2034 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
2035 
2036 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
2037 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
2038 MODULE_LICENSE("GPL");
2039