1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ROHM BD99954 charger driver
4  *
5  * Copyright (C) 2020 Rohm Semiconductors
6  *	Originally written by:
7  *		Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
8  *		Markus Laine <markus.laine@fi.rohmeurope.com>
9  *	Bugs added by:
10  *		Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
11  */
12 
13 /*
14  *   The battery charging profile of BD99954.
15  *
16  *   Curve (1) represents charging current.
17  *   Curve (2) represents battery voltage.
18  *
19  *   The BD99954 data sheet divides charging to three phases.
20  *   a) Trickle-charge with constant current (8).
21  *   b) pre-charge with constant current (6)
22  *   c) fast-charge, first with constant current (5) phase. After
23  *      the battery voltage has reached target level (4) we have constant
24  *      voltage phase until charging current has dropped to termination
25  *      level (7)
26  *
27  *    V ^                                                        ^ I
28  *      .                                                        .
29  *      .                                                        .
30  *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
31  *      .                           :/                           .
32  *      .                     o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
33  *      .                     +   ::  +                          .
34  *      .                     +  /-   --                         .
35  *      .                     +`/-     +                         .
36  *      .                     o/-      -:                        .
37  *      .                    .s.        +`                       .
38  *      .                  .--+         `/                       .
39  *      .               ..``  +          .:                      .
40  *      .             -`      +           --                     .
41  *      .    (2)  ...``       +            :-                    .
42  *      .    ...``            +             -:                   .
43  *(3)` `.`.""  ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
44  *      .             +                       `:.                .
45  *      .             +                         -:               .
46  *      .             +                           -:.            .
47  *      .             +                             .--.         .
48  *      .   (1)       +                                `.+` ` ` `.` ` (7)
49  *      -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
50  *      .                                                +       -
51  *      -------------------------------------------------+++++++++-->
52  *      |   trickle   |  pre  |          fast            |
53  *
54  * Details of DT properties for different limits can be found from BD99954
55  * device tree binding documentation.
56  */
57 
58 #include <linux/delay.h>
59 #include <linux/gpio/consumer.h>
60 #include <linux/interrupt.h>
61 #include <linux/i2c.h>
62 #include <linux/kernel.h>
63 #include <linux/linear_range.h>
64 #include <linux/module.h>
65 #include <linux/mod_devicetable.h>
66 #include <linux/power_supply.h>
67 #include <linux/property.h>
68 #include <linux/regmap.h>
69 #include <linux/types.h>
70 
71 #include "bd99954-charger.h"
72 
73 struct battery_data {
74 	u16 precharge_current;	/* Trickle-charge Current */
75 	u16 fc_reg_voltage;	/* Fast Charging Regulation Voltage */
76 	u16 voltage_min;
77 	u16 voltage_max;
78 };
79 
80 /* Initial field values, converted to initial register values */
81 struct bd9995x_init_data {
82 	u16 vsysreg_set;	/* VSYS Regulation Setting */
83 	u16 ibus_lim_set;	/* VBUS input current limitation */
84 	u16 icc_lim_set;	/* VCC/VACP Input Current Limit Setting */
85 	u16 itrich_set;		/* Trickle-charge Current Setting */
86 	u16 iprech_set;		/* Pre-Charge Current Setting */
87 	u16 ichg_set;		/* Fast-Charge constant current */
88 	u16 vfastchg_reg_set1;	/* Fast Charging Regulation Voltage */
89 	u16 vprechg_th_set;	/* Pre-charge Voltage Threshold Setting */
90 	u16 vrechg_set;		/* Re-charge Battery Voltage Setting */
91 	u16 vbatovp_set;	/* Battery Over Voltage Threshold Setting */
92 	u16 iterm_set;		/* Charging termination current */
93 };
94 
95 struct bd9995x_state {
96 	u8 online;
97 	u16 chgstm_status;
98 	u16 vbat_vsys_status;
99 	u16 vbus_vcc_status;
100 };
101 
102 struct bd9995x_device {
103 	struct i2c_client *client;
104 	struct device *dev;
105 	struct power_supply *charger;
106 
107 	struct regmap *rmap;
108 	struct regmap_field *rmap_fields[F_MAX_FIELDS];
109 
110 	int chip_id;
111 	int chip_rev;
112 	struct bd9995x_init_data init_data;
113 	struct bd9995x_state state;
114 
115 	struct mutex lock; /* Protect state data */
116 };
117 
118 static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
119 	regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
120 	regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
121 	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
122 	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
123 	regmap_reg_range(CHIP_ID, CHIP_REV),
124 	regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
125 	regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
126 	regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
127 };
128 
129 static const struct regmap_access_table bd9995x_writeable_regs = {
130 	.no_ranges = bd9995x_readonly_reg_ranges,
131 	.n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
132 };
133 
134 static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
135 	regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
136 	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
137 	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
138 	regmap_reg_range(INT0_STATUS, INT7_STATUS),
139 	regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
140 	regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
141 };
142 
143 static const struct regmap_access_table bd9995x_volatile_regs = {
144 	.yes_ranges = bd9995x_volatile_reg_ranges,
145 	.n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
146 };
147 
148 static const struct regmap_range_cfg regmap_range_cfg[] = {
149 	{
150 	.selector_reg     = MAP_SET,
151 	.selector_mask    = 0xFFFF,
152 	.selector_shift   = 0,
153 	.window_start     = 0,
154 	.window_len       = 0x100,
155 	.range_min        = 0 * 0x100,
156 	.range_max        = 3 * 0x100,
157 	},
158 };
159 
160 static const struct regmap_config bd9995x_regmap_config = {
161 	.reg_bits = 8,
162 	.val_bits = 16,
163 	.reg_stride = 1,
164 
165 	.max_register = 3 * 0x100,
166 	.cache_type = REGCACHE_RBTREE,
167 
168 	.ranges = regmap_range_cfg,
169 	.num_ranges = ARRAY_SIZE(regmap_range_cfg),
170 	.val_format_endian = REGMAP_ENDIAN_LITTLE,
171 	.wr_table = &bd9995x_writeable_regs,
172 	.volatile_table = &bd9995x_volatile_regs,
173 };
174 
175 enum bd9995x_chrg_fault {
176 	CHRG_FAULT_NORMAL,
177 	CHRG_FAULT_INPUT,
178 	CHRG_FAULT_THERMAL_SHUTDOWN,
179 	CHRG_FAULT_TIMER_EXPIRED,
180 };
181 
182 static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
183 {
184 	int ret, tmp;
185 
186 	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
187 	if (ret)
188 		return POWER_SUPPLY_HEALTH_UNKNOWN;
189 
190 	/* TODO: Check these against datasheet page 34 */
191 
192 	switch (tmp) {
193 	case ROOM:
194 		return POWER_SUPPLY_HEALTH_GOOD;
195 	case HOT1:
196 	case HOT2:
197 	case HOT3:
198 		return POWER_SUPPLY_HEALTH_OVERHEAT;
199 	case COLD1:
200 	case COLD2:
201 		return POWER_SUPPLY_HEALTH_COLD;
202 	case TEMP_DIS:
203 	case BATT_OPEN:
204 	default:
205 		return POWER_SUPPLY_HEALTH_UNKNOWN;
206 	}
207 }
208 
209 static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
210 {
211 	int ret, tmp;
212 
213 	ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
214 	if (ret)
215 		return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
216 
217 	switch (tmp) {
218 	case CHGSTM_TRICKLE_CHARGE:
219 	case CHGSTM_PRE_CHARGE:
220 		return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
221 	case CHGSTM_FAST_CHARGE:
222 		return POWER_SUPPLY_CHARGE_TYPE_FAST;
223 	case CHGSTM_TOP_OFF:
224 	case CHGSTM_DONE:
225 	case CHGSTM_SUSPEND:
226 		return POWER_SUPPLY_CHARGE_TYPE_NONE;
227 	default: /* Rest of the states are error related, no charging */
228 		return POWER_SUPPLY_CHARGE_TYPE_NONE;
229 	}
230 }
231 
232 static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
233 {
234 	int ret, tmp;
235 
236 	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
237 	if (ret)
238 		return false;
239 
240 	return tmp != BATT_OPEN;
241 }
242 
243 static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
244 {
245 	int ret, tmp;
246 
247 	ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
248 	if (ret)
249 		return 0;
250 
251 	tmp = min(tmp, 19200);
252 
253 	return tmp * 1000;
254 }
255 
256 static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
257 {
258 	int ret, tmp;
259 
260 	ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
261 	if (ret)
262 		return 0;
263 
264 	return tmp * 1000;
265 }
266 
267 #define DEFAULT_BATTERY_TEMPERATURE 250
268 
269 static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
270 {
271 	int ret, tmp;
272 
273 	ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
274 	if (ret)
275 		return DEFAULT_BATTERY_TEMPERATURE;
276 
277 	return (200 - tmp) * 10;
278 }
279 
280 static int bd9995x_power_supply_get_property(struct power_supply *psy,
281 					     enum power_supply_property psp,
282 					     union power_supply_propval *val)
283 {
284 	int ret, tmp;
285 	struct bd9995x_device *bd = power_supply_get_drvdata(psy);
286 	struct bd9995x_state state;
287 
288 	mutex_lock(&bd->lock);
289 	state = bd->state;
290 	mutex_unlock(&bd->lock);
291 
292 	switch (psp) {
293 	case POWER_SUPPLY_PROP_STATUS:
294 		switch (state.chgstm_status) {
295 		case CHGSTM_TRICKLE_CHARGE:
296 		case CHGSTM_PRE_CHARGE:
297 		case CHGSTM_FAST_CHARGE:
298 		case CHGSTM_TOP_OFF:
299 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
300 			break;
301 
302 		case CHGSTM_DONE:
303 			val->intval = POWER_SUPPLY_STATUS_FULL;
304 			break;
305 
306 		case CHGSTM_SUSPEND:
307 		case CHGSTM_TEMPERATURE_ERROR_1:
308 		case CHGSTM_TEMPERATURE_ERROR_2:
309 		case CHGSTM_TEMPERATURE_ERROR_3:
310 		case CHGSTM_TEMPERATURE_ERROR_4:
311 		case CHGSTM_TEMPERATURE_ERROR_5:
312 		case CHGSTM_TEMPERATURE_ERROR_6:
313 		case CHGSTM_TEMPERATURE_ERROR_7:
314 		case CHGSTM_THERMAL_SHUT_DOWN_1:
315 		case CHGSTM_THERMAL_SHUT_DOWN_2:
316 		case CHGSTM_THERMAL_SHUT_DOWN_3:
317 		case CHGSTM_THERMAL_SHUT_DOWN_4:
318 		case CHGSTM_THERMAL_SHUT_DOWN_5:
319 		case CHGSTM_THERMAL_SHUT_DOWN_6:
320 		case CHGSTM_THERMAL_SHUT_DOWN_7:
321 		case CHGSTM_BATTERY_ERROR:
322 			val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
323 			break;
324 
325 		default:
326 			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
327 			break;
328 		}
329 		break;
330 
331 	case POWER_SUPPLY_PROP_MANUFACTURER:
332 		val->strval = BD9995X_MANUFACTURER;
333 		break;
334 
335 	case POWER_SUPPLY_PROP_ONLINE:
336 		val->intval = state.online;
337 		break;
338 
339 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
340 		ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
341 		if (ret)
342 			return ret;
343 		val->intval = tmp * 1000;
344 		break;
345 
346 	case POWER_SUPPLY_PROP_CHARGE_AVG:
347 		ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
348 		if (ret)
349 			return ret;
350 		val->intval = tmp * 1000;
351 		break;
352 
353 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
354 		/*
355 		 * Currently the DT uses this property to give the
356 		 * target current for fast-charging constant current phase.
357 		 * I think it is correct in a sense.
358 		 *
359 		 * Yet, this prop we read and return here is the programmed
360 		 * safety limit for combined input currents. This feels
361 		 * also correct in a sense.
362 		 *
363 		 * However, this results a mismatch to DT value and value
364 		 * read from sysfs.
365 		 */
366 		ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
367 		if (ret)
368 			return ret;
369 		val->intval = tmp * 1000;
370 		break;
371 
372 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
373 		if (!state.online) {
374 			val->intval = 0;
375 			break;
376 		}
377 
378 		ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
379 					&tmp);
380 		if (ret)
381 			return ret;
382 
383 		/*
384 		 * The actual range : 2560 to 19200 mV. No matter what the
385 		 * register says
386 		 */
387 		val->intval = clamp_val(tmp << 4, 2560, 19200);
388 		val->intval *= 1000;
389 		break;
390 
391 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
392 		ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
393 		if (ret)
394 			return ret;
395 		/* Start step is 64 mA */
396 		val->intval = tmp << 6;
397 		/* Maximum is 1024 mA - no matter what register says */
398 		val->intval = min(val->intval, 1024);
399 		val->intval *= 1000;
400 		break;
401 
402 	/* Battery properties which we access through charger */
403 	case POWER_SUPPLY_PROP_PRESENT:
404 		val->intval = bd9995x_get_prop_batt_present(bd);
405 		break;
406 
407 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
408 		val->intval = bd9995x_get_prop_batt_voltage(bd);
409 		break;
410 
411 	case POWER_SUPPLY_PROP_CURRENT_NOW:
412 		val->intval = bd9995x_get_prop_batt_current(bd);
413 		break;
414 
415 	case POWER_SUPPLY_PROP_CHARGE_TYPE:
416 		val->intval = bd9995x_get_prop_charge_type(bd);
417 		break;
418 
419 	case POWER_SUPPLY_PROP_HEALTH:
420 		val->intval = bd9995x_get_prop_batt_health(bd);
421 		break;
422 
423 	case POWER_SUPPLY_PROP_TEMP:
424 		val->intval = bd9995x_get_prop_batt_temp(bd);
425 		break;
426 
427 	case POWER_SUPPLY_PROP_TECHNOLOGY:
428 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
429 		break;
430 
431 	case POWER_SUPPLY_PROP_MODEL_NAME:
432 		val->strval = "bd99954";
433 		break;
434 
435 	default:
436 		return -EINVAL;
437 
438 	}
439 
440 	return 0;
441 }
442 
443 static int bd9995x_get_chip_state(struct bd9995x_device *bd,
444 				  struct bd9995x_state *state)
445 {
446 	int i, ret, tmp;
447 	struct {
448 		struct regmap_field *id;
449 		u16 *data;
450 	} state_fields[] = {
451 		{
452 			bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
453 		}, {
454 			bd->rmap_fields[F_VBAT_VSYS_STATUS],
455 			&state->vbat_vsys_status,
456 		}, {
457 			bd->rmap_fields[F_VBUS_VCC_STATUS],
458 			&state->vbus_vcc_status,
459 		},
460 	};
461 
462 
463 	for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
464 		ret = regmap_field_read(state_fields[i].id, &tmp);
465 		if (ret)
466 			return ret;
467 
468 		*state_fields[i].data = tmp;
469 	}
470 
471 	if (state->vbus_vcc_status & STATUS_VCC_DET ||
472 	    state->vbus_vcc_status & STATUS_VBUS_DET)
473 		state->online = 1;
474 	else
475 		state->online = 0;
476 
477 	return 0;
478 }
479 
480 static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
481 {
482 	struct bd9995x_device *bd = private;
483 	int ret, status, mask, i;
484 	unsigned long tmp;
485 	struct bd9995x_state state;
486 
487 	/*
488 	 * The bd9995x does not seem to generate big amount of interrupts.
489 	 * The logic regarding which interrupts can cause relevant
490 	 * status changes seem to be pretty complex.
491 	 *
492 	 * So lets implement really simple and hopefully bullet-proof handler:
493 	 * It does not really matter which IRQ we handle, we just go and
494 	 * re-read all interesting statuses + give the framework a nudge.
495 	 *
496 	 * Other option would be building a _complex_ and error prone logic
497 	 * trying to decide what could have been changed (resulting this IRQ
498 	 * we are now handling). During the normal operation the BD99954 does
499 	 * not seem to be generating much of interrupts so benefit from such
500 	 * logic would probably be minimal.
501 	 */
502 
503 	ret = regmap_read(bd->rmap, INT0_STATUS, &status);
504 	if (ret) {
505 		dev_err(bd->dev, "Failed to read IRQ status\n");
506 		return IRQ_NONE;
507 	}
508 
509 	ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
510 	if (ret) {
511 		dev_err(bd->dev, "Failed to read IRQ mask\n");
512 		return IRQ_NONE;
513 	}
514 
515 	/* Handle only IRQs that are not masked */
516 	status &= mask;
517 	tmp = status;
518 
519 	/* Lowest bit does not represent any sub-registers */
520 	tmp >>= 1;
521 
522 	/*
523 	 * Mask and ack IRQs we will handle (+ the idiot bit)
524 	 */
525 	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
526 	if (ret) {
527 		dev_err(bd->dev, "Failed to mask F_INT0\n");
528 		return IRQ_NONE;
529 	}
530 
531 	ret = regmap_write(bd->rmap, INT0_STATUS, status);
532 	if (ret) {
533 		dev_err(bd->dev, "Failed to ack F_INT0\n");
534 		goto err_umask;
535 	}
536 
537 	for_each_set_bit(i, &tmp, 7) {
538 		int sub_status, sub_mask;
539 		int sub_status_reg[] = {
540 			INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
541 			INT5_STATUS, INT6_STATUS, INT7_STATUS,
542 		};
543 		struct regmap_field *sub_mask_f[] = {
544 			bd->rmap_fields[F_INT1_SET],
545 			bd->rmap_fields[F_INT2_SET],
546 			bd->rmap_fields[F_INT3_SET],
547 			bd->rmap_fields[F_INT4_SET],
548 			bd->rmap_fields[F_INT5_SET],
549 			bd->rmap_fields[F_INT6_SET],
550 			bd->rmap_fields[F_INT7_SET],
551 		};
552 
553 		/* Clear sub IRQs */
554 		ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
555 		if (ret) {
556 			dev_err(bd->dev, "Failed to read IRQ sub-status\n");
557 			goto err_umask;
558 		}
559 
560 		ret = regmap_field_read(sub_mask_f[i], &sub_mask);
561 		if (ret) {
562 			dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
563 			goto err_umask;
564 		}
565 
566 		/* Ack active sub-statuses */
567 		sub_status &= sub_mask;
568 
569 		ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
570 		if (ret) {
571 			dev_err(bd->dev, "Failed to ack sub-IRQ\n");
572 			goto err_umask;
573 		}
574 	}
575 
576 	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
577 	if (ret)
578 		/* May as well retry once */
579 		goto err_umask;
580 
581 	/* Read whole chip state */
582 	ret = bd9995x_get_chip_state(bd, &state);
583 	if (ret < 0) {
584 		dev_err(bd->dev, "Failed to read chip state\n");
585 	} else {
586 		mutex_lock(&bd->lock);
587 		bd->state = state;
588 		mutex_unlock(&bd->lock);
589 
590 		power_supply_changed(bd->charger);
591 	}
592 
593 	return IRQ_HANDLED;
594 
595 err_umask:
596 	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
597 	if (ret)
598 		dev_err(bd->dev,
599 		"Failed to un-mask F_INT0 - IRQ permanently disabled\n");
600 
601 	return IRQ_NONE;
602 }
603 
604 static int __bd9995x_chip_reset(struct bd9995x_device *bd)
605 {
606 	int ret, state;
607 	int rst_check_counter = 10;
608 	u16 tmp = ALLRST | OTPLD;
609 
610 	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
611 	if (ret < 0)
612 		return ret;
613 
614 	do {
615 		ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
616 		if (ret)
617 			return ret;
618 
619 		msleep(10);
620 	} while (state == 0 && --rst_check_counter);
621 
622 	if (!rst_check_counter) {
623 		dev_err(bd->dev, "chip reset not completed\n");
624 		return -ETIMEDOUT;
625 	}
626 
627 	tmp = 0;
628 	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
629 
630 	return ret;
631 }
632 
633 static int bd9995x_hw_init(struct bd9995x_device *bd)
634 {
635 	int ret;
636 	int i;
637 	struct bd9995x_state state;
638 	struct bd9995x_init_data *id = &bd->init_data;
639 
640 	const struct {
641 		enum bd9995x_fields id;
642 		u16 value;
643 	} init_data[] = {
644 		/* Enable the charging trigger after SDP charger attached */
645 		{F_SDP_CHG_TRIG_EN,	1},
646 		/* Enable charging trigger after SDP charger attached */
647 		{F_SDP_CHG_TRIG,	1},
648 		/* Disable charging trigger by BC1.2 detection */
649 		{F_VBUS_BC_DISEN,	1},
650 		/* Disable charging trigger by BC1.2 detection */
651 		{F_VCC_BC_DISEN,	1},
652 		/* Disable automatic limitation of the input current */
653 		{F_ILIM_AUTO_DISEN,	1},
654 		/* Select current limitation when SDP charger attached*/
655 		{F_SDP_500_SEL,		1},
656 		/* Select current limitation when DCP charger attached */
657 		{F_DCP_2500_SEL,	1},
658 		{F_VSYSREG_SET,		id->vsysreg_set},
659 		/* Activate USB charging and DC/DC converter */
660 		{F_USB_SUS,		0},
661 		/* DCDC clock: 1200 kHz*/
662 		{F_DCDC_CLK_SEL,	3},
663 		/* Enable charging */
664 		{F_CHG_EN,		1},
665 		/* Disable Input current Limit setting voltage measurement */
666 		{F_EXTIADPEN,		0},
667 		/* Disable input current limiting */
668 		{F_VSYS_PRIORITY,	1},
669 		{F_IBUS_LIM_SET,	id->ibus_lim_set},
670 		{F_ICC_LIM_SET,		id->icc_lim_set},
671 		/* Charge Termination Current Setting to 0*/
672 		{F_ITERM_SET,		id->iterm_set},
673 		/* Trickle-charge Current Setting */
674 		{F_ITRICH_SET,		id->itrich_set},
675 		/* Pre-charge Current setting */
676 		{F_IPRECH_SET,		id->iprech_set},
677 		/* Fast Charge Current for constant current phase */
678 		{F_ICHG_SET,		id->ichg_set},
679 		/* Fast Charge Voltage Regulation Setting */
680 		{F_VFASTCHG_REG_SET1,	id->vfastchg_reg_set1},
681 		/* Set Pre-charge Voltage Threshold for trickle charging. */
682 		{F_VPRECHG_TH_SET,	id->vprechg_th_set},
683 		{F_VRECHG_SET,		id->vrechg_set},
684 		{F_VBATOVP_SET,		id->vbatovp_set},
685 		/* Reverse buck boost voltage Setting */
686 		{F_VRBOOST_SET,		0},
687 		/* Disable fast-charging watchdog */
688 		{F_WDT_FST,		0},
689 		/* Disable pre-charging watchdog */
690 		{F_WDT_PRE,		0},
691 		/* Power save off */
692 		{F_POWER_SAVE_MODE,	0},
693 		{F_INT1_SET,		INT1_ALL},
694 		{F_INT2_SET,		INT2_ALL},
695 		{F_INT3_SET,		INT3_ALL},
696 		{F_INT4_SET,		INT4_ALL},
697 		{F_INT5_SET,		INT5_ALL},
698 		{F_INT6_SET,		INT6_ALL},
699 		{F_INT7_SET,		INT7_ALL},
700 	};
701 
702 	/*
703 	 * Currently we initialize charger to a known state at startup.
704 	 * If we want to allow for example the boot code to initialize
705 	 * charger we should get rid of this.
706 	 */
707 	ret = __bd9995x_chip_reset(bd);
708 	if (ret < 0)
709 		return ret;
710 
711 	/* Initialize currents/voltages and other parameters */
712 	for (i = 0; i < ARRAY_SIZE(init_data); i++) {
713 		ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
714 					 init_data[i].value);
715 		if (ret) {
716 			dev_err(bd->dev, "failed to initialize charger (%d)\n",
717 				ret);
718 			return ret;
719 		}
720 	}
721 
722 	ret = bd9995x_get_chip_state(bd, &state);
723 	if (ret < 0)
724 		return ret;
725 
726 	mutex_lock(&bd->lock);
727 	bd->state = state;
728 	mutex_unlock(&bd->lock);
729 
730 	return 0;
731 }
732 
733 static enum power_supply_property bd9995x_power_supply_props[] = {
734 	POWER_SUPPLY_PROP_MANUFACTURER,
735 	POWER_SUPPLY_PROP_STATUS,
736 	POWER_SUPPLY_PROP_ONLINE,
737 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
738 	POWER_SUPPLY_PROP_CHARGE_AVG,
739 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
740 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
741 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
742 	/* Battery props we access through charger */
743 	POWER_SUPPLY_PROP_PRESENT,
744 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
745 	POWER_SUPPLY_PROP_CURRENT_NOW,
746 	POWER_SUPPLY_PROP_CHARGE_TYPE,
747 	POWER_SUPPLY_PROP_HEALTH,
748 	POWER_SUPPLY_PROP_TEMP,
749 	POWER_SUPPLY_PROP_TECHNOLOGY,
750 	POWER_SUPPLY_PROP_MODEL_NAME,
751 };
752 
753 static const struct power_supply_desc bd9995x_power_supply_desc = {
754 	.name = "bd9995x-charger",
755 	.type = POWER_SUPPLY_TYPE_USB,
756 	.properties = bd9995x_power_supply_props,
757 	.num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
758 	.get_property = bd9995x_power_supply_get_property,
759 };
760 
761 /*
762  * Limit configurations for vbus-input-current and vcc-vacp-input-current
763  * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
764  * configured by writing a register so that each increment in register
765  * value equals to 32000 uA limit increment.
766  *
767  * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
768  * Describe the setting in linear_range table.
769  */
770 static const struct linear_range input_current_limit_ranges[] = {
771 	{
772 		.min = 0,
773 		.step = 32000,
774 		.min_sel = 0x0,
775 		.max_sel = 0x1ff,
776 	},
777 };
778 
779 /* Possible trickle, pre-charging and termination current values */
780 static const struct linear_range charging_current_ranges[] = {
781 	{
782 		.min = 0,
783 		.step = 64000,
784 		.min_sel = 0x0,
785 		.max_sel = 0x10,
786 	}, {
787 		.min = 1024000,
788 		.step = 0,
789 		.min_sel = 0x11,
790 		.max_sel = 0x1f,
791 	},
792 };
793 
794 /*
795  * Fast charging voltage regulation, starting re-charging limit
796  * and battery over voltage protection have same possible values
797  */
798 static const struct linear_range charge_voltage_regulation_ranges[] = {
799 	{
800 		.min = 2560000,
801 		.step = 0,
802 		.min_sel = 0,
803 		.max_sel = 0xA0,
804 	}, {
805 		.min = 2560000,
806 		.step = 16000,
807 		.min_sel = 0xA0,
808 		.max_sel = 0x4B0,
809 	}, {
810 		.min = 19200000,
811 		.step = 0,
812 		.min_sel = 0x4B0,
813 		.max_sel = 0x7FF,
814 	},
815 };
816 
817 /* Possible VSYS voltage regulation values */
818 static const struct linear_range vsys_voltage_regulation_ranges[] = {
819 	{
820 		.min = 2560000,
821 		.step = 0,
822 		.min_sel = 0,
823 		.max_sel = 0x28,
824 	}, {
825 		.min = 2560000,
826 		.step = 64000,
827 		.min_sel = 0x28,
828 		.max_sel = 0x12C,
829 	}, {
830 		.min = 19200000,
831 		.step = 0,
832 		.min_sel = 0x12C,
833 		.max_sel = 0x1FF,
834 	},
835 };
836 
837 /* Possible settings for switching from trickle to pre-charging limits */
838 static const struct linear_range trickle_to_pre_threshold_ranges[] = {
839 	{
840 		.min = 2048000,
841 		.step = 0,
842 		.min_sel = 0,
843 		.max_sel = 0x20,
844 	}, {
845 		.min = 2048000,
846 		.step = 64000,
847 		.min_sel = 0x20,
848 		.max_sel = 0x12C,
849 	}, {
850 		.min = 19200000,
851 		.step = 0,
852 		.min_sel = 0x12C,
853 		.max_sel = 0x1FF
854 	}
855 };
856 
857 /* Possible current values for fast-charging constant current phase */
858 static const struct linear_range fast_charge_current_ranges[] = {
859 	{
860 		.min = 0,
861 		.step = 64000,
862 		.min_sel = 0,
863 		.max_sel = 0xFF,
864 	}
865 };
866 
867 struct battery_init {
868 	const char *name;
869 	int *info_data;
870 	const struct linear_range *range;
871 	int ranges;
872 	u16 *data;
873 };
874 
875 struct dt_init {
876 	char *prop;
877 	const struct linear_range *range;
878 	int ranges;
879 	u16 *data;
880 };
881 
882 static int bd9995x_fw_probe(struct bd9995x_device *bd)
883 {
884 	int ret;
885 	struct power_supply_battery_info *info;
886 	u32 property;
887 	int i;
888 	int regval;
889 	bool found;
890 	struct bd9995x_init_data *init = &bd->init_data;
891 	struct battery_init battery_inits[] = {
892 		{
893 			.name = "trickle-charging current",
894 			.range = &charging_current_ranges[0],
895 			.ranges = 2,
896 			.data = &init->itrich_set,
897 		}, {
898 			.name = "pre-charging current",
899 			.range = &charging_current_ranges[0],
900 			.ranges = 2,
901 			.data = &init->iprech_set,
902 		}, {
903 			.name = "pre-to-trickle charge voltage threshold",
904 			.range = &trickle_to_pre_threshold_ranges[0],
905 			.ranges = 2,
906 			.data = &init->vprechg_th_set,
907 		}, {
908 			.name = "charging termination current",
909 			.range = &charging_current_ranges[0],
910 			.ranges = 2,
911 			.data = &init->iterm_set,
912 		}, {
913 			.name = "charging re-start voltage",
914 			.range = &charge_voltage_regulation_ranges[0],
915 			.ranges = 2,
916 			.data = &init->vrechg_set,
917 		}, {
918 			.name = "battery overvoltage limit",
919 			.range = &charge_voltage_regulation_ranges[0],
920 			.ranges = 2,
921 			.data = &init->vbatovp_set,
922 		}, {
923 			.name = "fast-charging max current",
924 			.range = &fast_charge_current_ranges[0],
925 			.ranges = 1,
926 			.data = &init->ichg_set,
927 		}, {
928 			.name = "fast-charging voltage",
929 			.range = &charge_voltage_regulation_ranges[0],
930 			.ranges = 2,
931 			.data = &init->vfastchg_reg_set1,
932 		},
933 	};
934 	struct dt_init props[] = {
935 		{
936 			.prop = "rohm,vsys-regulation-microvolt",
937 			.range = &vsys_voltage_regulation_ranges[0],
938 			.ranges = 2,
939 			.data = &init->vsysreg_set,
940 		}, {
941 			.prop = "rohm,vbus-input-current-limit-microamp",
942 			.range = &input_current_limit_ranges[0],
943 			.ranges = 1,
944 			.data = &init->ibus_lim_set,
945 		}, {
946 			.prop = "rohm,vcc-input-current-limit-microamp",
947 			.range = &input_current_limit_ranges[0],
948 			.ranges = 1,
949 			.data = &init->icc_lim_set,
950 		},
951 	};
952 
953 	/*
954 	 * The power_supply_get_battery_info() does not support getting values
955 	 * from ACPI. Let's fix it if ACPI is required here.
956 	 */
957 	ret = power_supply_get_battery_info(bd->charger, &info);
958 	if (ret < 0)
959 		return ret;
960 
961 	/* Put pointers to the generic battery info */
962 	battery_inits[0].info_data = &info->tricklecharge_current_ua;
963 	battery_inits[1].info_data = &info->precharge_current_ua;
964 	battery_inits[2].info_data = &info->precharge_voltage_max_uv;
965 	battery_inits[3].info_data = &info->charge_term_current_ua;
966 	battery_inits[4].info_data = &info->charge_restart_voltage_uv;
967 	battery_inits[5].info_data = &info->overvoltage_limit_uv;
968 	battery_inits[6].info_data = &info->constant_charge_current_max_ua;
969 	battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
970 
971 	for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
972 		int val = *battery_inits[i].info_data;
973 		const struct linear_range *range = battery_inits[i].range;
974 		int ranges = battery_inits[i].ranges;
975 
976 		if (val == -EINVAL)
977 			continue;
978 
979 		ret = linear_range_get_selector_low_array(range, ranges, val,
980 							  &regval, &found);
981 		if (ret) {
982 			dev_err(bd->dev, "Unsupported value for %s\n",
983 				battery_inits[i].name);
984 
985 			power_supply_put_battery_info(bd->charger, info);
986 			return -EINVAL;
987 		}
988 		if (!found) {
989 			dev_warn(bd->dev,
990 				 "Unsupported value for %s - using smaller\n",
991 				 battery_inits[i].name);
992 		}
993 		*(battery_inits[i].data) = regval;
994 	}
995 
996 	power_supply_put_battery_info(bd->charger, info);
997 
998 	for (i = 0; i < ARRAY_SIZE(props); i++) {
999 		ret = device_property_read_u32(bd->dev, props[i].prop,
1000 					       &property);
1001 		if (ret < 0) {
1002 			dev_err(bd->dev, "failed to read %s", props[i].prop);
1003 
1004 			return ret;
1005 		}
1006 
1007 		ret = linear_range_get_selector_low_array(props[i].range,
1008 							  props[i].ranges,
1009 							  property, &regval,
1010 							  &found);
1011 		if (ret) {
1012 			dev_err(bd->dev, "Unsupported value for '%s'\n",
1013 				props[i].prop);
1014 
1015 			return -EINVAL;
1016 		}
1017 
1018 		if (!found) {
1019 			dev_warn(bd->dev,
1020 				 "Unsupported value for '%s' - using smaller\n",
1021 				 props[i].prop);
1022 		}
1023 
1024 		*(props[i].data) = regval;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static void bd9995x_chip_reset(void *bd)
1031 {
1032 	__bd9995x_chip_reset(bd);
1033 }
1034 
1035 static int bd9995x_probe(struct i2c_client *client)
1036 {
1037 	struct device *dev = &client->dev;
1038 	struct bd9995x_device *bd;
1039 	struct power_supply_config psy_cfg = {};
1040 	int ret;
1041 	int i;
1042 
1043 	bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
1044 	if (!bd)
1045 		return -ENOMEM;
1046 
1047 	bd->client = client;
1048 	bd->dev = dev;
1049 	psy_cfg.drv_data = bd;
1050 	psy_cfg.of_node = dev->of_node;
1051 
1052 	mutex_init(&bd->lock);
1053 
1054 	bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
1055 	if (IS_ERR(bd->rmap)) {
1056 		dev_err(dev, "Failed to setup register access via i2c\n");
1057 		return PTR_ERR(bd->rmap);
1058 	}
1059 
1060 	for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
1061 		const struct reg_field *reg_fields = bd9995x_reg_fields;
1062 
1063 		bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
1064 							     reg_fields[i]);
1065 		if (IS_ERR(bd->rmap_fields[i])) {
1066 			dev_err(dev, "cannot allocate regmap field\n");
1067 			return PTR_ERR(bd->rmap_fields[i]);
1068 		}
1069 	}
1070 
1071 	i2c_set_clientdata(client, bd);
1072 
1073 	ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
1074 	if (ret) {
1075 		dev_err(dev, "Cannot read chip ID.\n");
1076 		return ret;
1077 	}
1078 
1079 	if (bd->chip_id != BD99954_ID) {
1080 		dev_err(dev, "Chip with ID=0x%x, not supported!\n",
1081 			bd->chip_id);
1082 		return -ENODEV;
1083 	}
1084 
1085 	ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
1086 	if (ret) {
1087 		dev_err(dev, "Cannot read revision.\n");
1088 		return ret;
1089 	}
1090 
1091 	dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
1092 
1093 	/*
1094 	 * We need to init the psy before we can call
1095 	 * power_supply_get_battery_info() for it
1096 	 */
1097 	bd->charger = devm_power_supply_register(bd->dev,
1098 						 &bd9995x_power_supply_desc,
1099 						&psy_cfg);
1100 	if (IS_ERR(bd->charger)) {
1101 		dev_err(dev, "Failed to register power supply\n");
1102 		return PTR_ERR(bd->charger);
1103 	}
1104 
1105 	ret = bd9995x_fw_probe(bd);
1106 	if (ret < 0) {
1107 		dev_err(dev, "Cannot read device properties.\n");
1108 		return ret;
1109 	}
1110 
1111 	ret = bd9995x_hw_init(bd);
1112 	if (ret < 0) {
1113 		dev_err(dev, "Cannot initialize the chip.\n");
1114 		return ret;
1115 	}
1116 
1117 	ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
1118 	if (ret)
1119 		return ret;
1120 
1121 	return devm_request_threaded_irq(dev, client->irq, NULL,
1122 					 bd9995x_irq_handler_thread,
1123 					 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1124 					 BD9995X_IRQ_PIN, bd);
1125 }
1126 
1127 static const struct of_device_id bd9995x_of_match[] = {
1128 	{ .compatible = "rohm,bd99954", },
1129 	{ }
1130 };
1131 MODULE_DEVICE_TABLE(of, bd9995x_of_match);
1132 
1133 static struct i2c_driver bd9995x_driver = {
1134 	.driver = {
1135 		.name = "bd9995x-charger",
1136 		.of_match_table = bd9995x_of_match,
1137 	},
1138 	.probe_new = bd9995x_probe,
1139 };
1140 module_i2c_driver(bd9995x_driver);
1141 
1142 MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
1143 MODULE_DESCRIPTION("ROHM BD99954 charger driver");
1144 MODULE_LICENSE("GPL");
1145