xref: /openbmc/linux/drivers/power/supply/ab8500_fg.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *	Johan Palsson <johan.palsson@stericsson.com>
14  *	Karl Komierowski <karl.komierowski@stericsson.com>
15  *	Arun R Murthy <arun.murthy@stericsson.com>
16  */
17 
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/iio/consumer.h>
35 #include <linux/kernel.h>
36 
37 #include "ab8500-bm.h"
38 
39 #define MILLI_TO_MICRO			1000
40 #define FG_LSB_IN_MA			1627
41 #define QLSB_NANO_AMP_HOURS_X10		1071
42 #define INS_CURR_TIMEOUT		(3 * HZ)
43 
44 #define SEC_TO_SAMPLE(S)		(S * 4)
45 
46 #define NBR_AVG_SAMPLES			20
47 
48 #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
49 
50 #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
51 #define BATT_OK_MIN			2360 /* mV */
52 #define BATT_OK_INCREMENT		50 /* mV */
53 #define BATT_OK_MAX_NR_INCREMENTS	0xE
54 
55 /* FG constants */
56 #define BATT_OVV			0x01
57 
58 #define interpolate(x, x1, y1, x2, y2) \
59 	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
60 
61 /**
62  * struct ab8500_fg_interrupts - ab8500 fg interupts
63  * @name:	name of the interrupt
64  * @isr		function pointer to the isr
65  */
66 struct ab8500_fg_interrupts {
67 	char *name;
68 	irqreturn_t (*isr)(int irq, void *data);
69 };
70 
71 enum ab8500_fg_discharge_state {
72 	AB8500_FG_DISCHARGE_INIT,
73 	AB8500_FG_DISCHARGE_INITMEASURING,
74 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
75 	AB8500_FG_DISCHARGE_RECOVERY,
76 	AB8500_FG_DISCHARGE_READOUT_INIT,
77 	AB8500_FG_DISCHARGE_READOUT,
78 	AB8500_FG_DISCHARGE_WAKEUP,
79 };
80 
81 static char *discharge_state[] = {
82 	"DISCHARGE_INIT",
83 	"DISCHARGE_INITMEASURING",
84 	"DISCHARGE_INIT_RECOVERY",
85 	"DISCHARGE_RECOVERY",
86 	"DISCHARGE_READOUT_INIT",
87 	"DISCHARGE_READOUT",
88 	"DISCHARGE_WAKEUP",
89 };
90 
91 enum ab8500_fg_charge_state {
92 	AB8500_FG_CHARGE_INIT,
93 	AB8500_FG_CHARGE_READOUT,
94 };
95 
96 static char *charge_state[] = {
97 	"CHARGE_INIT",
98 	"CHARGE_READOUT",
99 };
100 
101 enum ab8500_fg_calibration_state {
102 	AB8500_FG_CALIB_INIT,
103 	AB8500_FG_CALIB_WAIT,
104 	AB8500_FG_CALIB_END,
105 };
106 
107 struct ab8500_fg_avg_cap {
108 	int avg;
109 	int samples[NBR_AVG_SAMPLES];
110 	time64_t time_stamps[NBR_AVG_SAMPLES];
111 	int pos;
112 	int nbr_samples;
113 	int sum;
114 };
115 
116 struct ab8500_fg_cap_scaling {
117 	bool enable;
118 	int cap_to_scale[2];
119 	int disable_cap_level;
120 	int scaled_cap;
121 };
122 
123 struct ab8500_fg_battery_capacity {
124 	int max_mah_design;
125 	int max_mah;
126 	int mah;
127 	int permille;
128 	int level;
129 	int prev_mah;
130 	int prev_percent;
131 	int prev_level;
132 	int user_mah;
133 	struct ab8500_fg_cap_scaling cap_scale;
134 };
135 
136 struct ab8500_fg_flags {
137 	bool fg_enabled;
138 	bool conv_done;
139 	bool charging;
140 	bool fully_charged;
141 	bool force_full;
142 	bool low_bat_delay;
143 	bool low_bat;
144 	bool bat_ovv;
145 	bool batt_unknown;
146 	bool calibrate;
147 	bool user_cap;
148 	bool batt_id_received;
149 };
150 
151 struct inst_curr_result_list {
152 	struct list_head list;
153 	int *result;
154 };
155 
156 /**
157  * struct ab8500_fg - ab8500 FG device information
158  * @dev:		Pointer to the structure device
159  * @node:		a list of AB8500 FGs, hence prepared for reentrance
160  * @irq			holds the CCEOC interrupt number
161  * @vbat:		Battery voltage in mV
162  * @vbat_nom:		Nominal battery voltage in mV
163  * @inst_curr:		Instantenous battery current in mA
164  * @avg_curr:		Average battery current in mA
165  * @bat_temp		battery temperature
166  * @fg_samples:		Number of samples used in the FG accumulation
167  * @accu_charge:	Accumulated charge from the last conversion
168  * @recovery_cnt:	Counter for recovery mode
169  * @high_curr_cnt:	Counter for high current mode
170  * @init_cnt:		Counter for init mode
171  * @low_bat_cnt		Counter for number of consecutive low battery measures
172  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
173  * @recovery_needed:	Indicate if recovery is needed
174  * @high_curr_mode:	Indicate if we're in high current mode
175  * @init_capacity:	Indicate if initial capacity measuring should be done
176  * @turn_off_fg:	True if fg was off before current measurement
177  * @calib_state		State during offset calibration
178  * @discharge_state:	Current discharge state
179  * @charge_state:	Current charge state
180  * @ab8500_fg_started	Completion struct used for the instant current start
181  * @ab8500_fg_complete	Completion struct used for the instant current reading
182  * @flags:		Structure for information about events triggered
183  * @bat_cap:		Structure for battery capacity specific parameters
184  * @avg_cap:		Average capacity filter
185  * @parent:		Pointer to the struct ab8500
186  * @main_bat_v:		ADC channel for the main battery voltage
187  * @bm:           	Platform specific battery management information
188  * @fg_psy:		Structure that holds the FG specific battery properties
189  * @fg_wq:		Work queue for running the FG algorithm
190  * @fg_periodic_work:	Work to run the FG algorithm periodically
191  * @fg_low_bat_work:	Work to check low bat condition
192  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
193  * @fg_work:		Work to run the FG algorithm instantly
194  * @fg_acc_cur_work:	Work to read the FG accumulator
195  * @fg_check_hw_failure_work:	Work for checking HW state
196  * @cc_lock:		Mutex for locking the CC
197  * @fg_kobject:		Structure of type kobject
198  */
199 struct ab8500_fg {
200 	struct device *dev;
201 	struct list_head node;
202 	int irq;
203 	int vbat;
204 	int vbat_nom;
205 	int inst_curr;
206 	int avg_curr;
207 	int bat_temp;
208 	int fg_samples;
209 	int accu_charge;
210 	int recovery_cnt;
211 	int high_curr_cnt;
212 	int init_cnt;
213 	int low_bat_cnt;
214 	int nbr_cceoc_irq_cnt;
215 	bool recovery_needed;
216 	bool high_curr_mode;
217 	bool init_capacity;
218 	bool turn_off_fg;
219 	enum ab8500_fg_calibration_state calib_state;
220 	enum ab8500_fg_discharge_state discharge_state;
221 	enum ab8500_fg_charge_state charge_state;
222 	struct completion ab8500_fg_started;
223 	struct completion ab8500_fg_complete;
224 	struct ab8500_fg_flags flags;
225 	struct ab8500_fg_battery_capacity bat_cap;
226 	struct ab8500_fg_avg_cap avg_cap;
227 	struct ab8500 *parent;
228 	struct iio_channel *main_bat_v;
229 	struct abx500_bm_data *bm;
230 	struct power_supply *fg_psy;
231 	struct workqueue_struct *fg_wq;
232 	struct delayed_work fg_periodic_work;
233 	struct delayed_work fg_low_bat_work;
234 	struct delayed_work fg_reinit_work;
235 	struct work_struct fg_work;
236 	struct work_struct fg_acc_cur_work;
237 	struct delayed_work fg_check_hw_failure_work;
238 	struct mutex cc_lock;
239 	struct kobject fg_kobject;
240 };
241 static LIST_HEAD(ab8500_fg_list);
242 
243 /**
244  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
245  * (i.e. the first fuel gauge in the instance list)
246  */
247 struct ab8500_fg *ab8500_fg_get(void)
248 {
249 	return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
250 					node);
251 }
252 
253 /* Main battery properties */
254 static enum power_supply_property ab8500_fg_props[] = {
255 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
256 	POWER_SUPPLY_PROP_CURRENT_NOW,
257 	POWER_SUPPLY_PROP_CURRENT_AVG,
258 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
259 	POWER_SUPPLY_PROP_ENERGY_FULL,
260 	POWER_SUPPLY_PROP_ENERGY_NOW,
261 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
262 	POWER_SUPPLY_PROP_CHARGE_FULL,
263 	POWER_SUPPLY_PROP_CHARGE_NOW,
264 	POWER_SUPPLY_PROP_CAPACITY,
265 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
266 };
267 
268 /*
269  * This array maps the raw hex value to lowbat voltage used by the AB8500
270  * Values taken from the UM0836
271  */
272 static int ab8500_fg_lowbat_voltage_map[] = {
273 	2300 ,
274 	2325 ,
275 	2350 ,
276 	2375 ,
277 	2400 ,
278 	2425 ,
279 	2450 ,
280 	2475 ,
281 	2500 ,
282 	2525 ,
283 	2550 ,
284 	2575 ,
285 	2600 ,
286 	2625 ,
287 	2650 ,
288 	2675 ,
289 	2700 ,
290 	2725 ,
291 	2750 ,
292 	2775 ,
293 	2800 ,
294 	2825 ,
295 	2850 ,
296 	2875 ,
297 	2900 ,
298 	2925 ,
299 	2950 ,
300 	2975 ,
301 	3000 ,
302 	3025 ,
303 	3050 ,
304 	3075 ,
305 	3100 ,
306 	3125 ,
307 	3150 ,
308 	3175 ,
309 	3200 ,
310 	3225 ,
311 	3250 ,
312 	3275 ,
313 	3300 ,
314 	3325 ,
315 	3350 ,
316 	3375 ,
317 	3400 ,
318 	3425 ,
319 	3450 ,
320 	3475 ,
321 	3500 ,
322 	3525 ,
323 	3550 ,
324 	3575 ,
325 	3600 ,
326 	3625 ,
327 	3650 ,
328 	3675 ,
329 	3700 ,
330 	3725 ,
331 	3750 ,
332 	3775 ,
333 	3800 ,
334 	3825 ,
335 	3850 ,
336 	3850 ,
337 };
338 
339 static u8 ab8500_volt_to_regval(int voltage)
340 {
341 	int i;
342 
343 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
344 		return 0;
345 
346 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
347 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
348 			return (u8) i - 1;
349 	}
350 
351 	/* If not captured above, return index of last element */
352 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
353 }
354 
355 /**
356  * ab8500_fg_is_low_curr() - Low or high current mode
357  * @di:		pointer to the ab8500_fg structure
358  * @curr:	the current to base or our decision on
359  *
360  * Low current mode if the current consumption is below a certain threshold
361  */
362 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
363 {
364 	/*
365 	 * We want to know if we're in low current mode
366 	 */
367 	if (curr > -di->bm->fg_params->high_curr_threshold)
368 		return true;
369 	else
370 		return false;
371 }
372 
373 /**
374  * ab8500_fg_add_cap_sample() - Add capacity to average filter
375  * @di:		pointer to the ab8500_fg structure
376  * @sample:	the capacity in mAh to add to the filter
377  *
378  * A capacity is added to the filter and a new mean capacity is calculated and
379  * returned
380  */
381 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
382 {
383 	time64_t now = ktime_get_boottime_seconds();
384 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
385 
386 	do {
387 		avg->sum += sample - avg->samples[avg->pos];
388 		avg->samples[avg->pos] = sample;
389 		avg->time_stamps[avg->pos] = now;
390 		avg->pos++;
391 
392 		if (avg->pos == NBR_AVG_SAMPLES)
393 			avg->pos = 0;
394 
395 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
396 			avg->nbr_samples++;
397 
398 		/*
399 		 * Check the time stamp for each sample. If too old,
400 		 * replace with latest sample
401 		 */
402 	} while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
403 
404 	avg->avg = avg->sum / avg->nbr_samples;
405 
406 	return avg->avg;
407 }
408 
409 /**
410  * ab8500_fg_clear_cap_samples() - Clear average filter
411  * @di:		pointer to the ab8500_fg structure
412  *
413  * The capacity filter is is reset to zero.
414  */
415 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
416 {
417 	int i;
418 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
419 
420 	avg->pos = 0;
421 	avg->nbr_samples = 0;
422 	avg->sum = 0;
423 	avg->avg = 0;
424 
425 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
426 		avg->samples[i] = 0;
427 		avg->time_stamps[i] = 0;
428 	}
429 }
430 
431 /**
432  * ab8500_fg_fill_cap_sample() - Fill average filter
433  * @di:		pointer to the ab8500_fg structure
434  * @sample:	the capacity in mAh to fill the filter with
435  *
436  * The capacity filter is filled with a capacity in mAh
437  */
438 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
439 {
440 	int i;
441 	time64_t now;
442 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
443 
444 	now = ktime_get_boottime_seconds();
445 
446 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
447 		avg->samples[i] = sample;
448 		avg->time_stamps[i] = now;
449 	}
450 
451 	avg->pos = 0;
452 	avg->nbr_samples = NBR_AVG_SAMPLES;
453 	avg->sum = sample * NBR_AVG_SAMPLES;
454 	avg->avg = sample;
455 }
456 
457 /**
458  * ab8500_fg_coulomb_counter() - enable coulomb counter
459  * @di:		pointer to the ab8500_fg structure
460  * @enable:	enable/disable
461  *
462  * Enable/Disable coulomb counter.
463  * On failure returns negative value.
464  */
465 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
466 {
467 	int ret = 0;
468 	mutex_lock(&di->cc_lock);
469 	if (enable) {
470 		/* To be able to reprogram the number of samples, we have to
471 		 * first stop the CC and then enable it again */
472 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
473 			AB8500_RTC_CC_CONF_REG, 0x00);
474 		if (ret)
475 			goto cc_err;
476 
477 		/* Program the samples */
478 		ret = abx500_set_register_interruptible(di->dev,
479 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
480 			di->fg_samples);
481 		if (ret)
482 			goto cc_err;
483 
484 		/* Start the CC */
485 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
486 			AB8500_RTC_CC_CONF_REG,
487 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
488 		if (ret)
489 			goto cc_err;
490 
491 		di->flags.fg_enabled = true;
492 	} else {
493 		/* Clear any pending read requests */
494 		ret = abx500_mask_and_set_register_interruptible(di->dev,
495 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
496 			(RESET_ACCU | READ_REQ), 0);
497 		if (ret)
498 			goto cc_err;
499 
500 		ret = abx500_set_register_interruptible(di->dev,
501 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
502 		if (ret)
503 			goto cc_err;
504 
505 		/* Stop the CC */
506 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
507 			AB8500_RTC_CC_CONF_REG, 0);
508 		if (ret)
509 			goto cc_err;
510 
511 		di->flags.fg_enabled = false;
512 
513 	}
514 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
515 		enable, di->fg_samples);
516 
517 	mutex_unlock(&di->cc_lock);
518 
519 	return ret;
520 cc_err:
521 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
522 	mutex_unlock(&di->cc_lock);
523 	return ret;
524 }
525 
526 /**
527  * ab8500_fg_inst_curr_start() - start battery instantaneous current
528  * @di:         pointer to the ab8500_fg structure
529  *
530  * Returns 0 or error code
531  * Note: This is part "one" and has to be called before
532  * ab8500_fg_inst_curr_finalize()
533  */
534 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
535 {
536 	u8 reg_val;
537 	int ret;
538 
539 	mutex_lock(&di->cc_lock);
540 
541 	di->nbr_cceoc_irq_cnt = 0;
542 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
543 		AB8500_RTC_CC_CONF_REG, &reg_val);
544 	if (ret < 0)
545 		goto fail;
546 
547 	if (!(reg_val & CC_PWR_UP_ENA)) {
548 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
549 		di->turn_off_fg = true;
550 
551 		/* Program the samples */
552 		ret = abx500_set_register_interruptible(di->dev,
553 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
554 			SEC_TO_SAMPLE(10));
555 		if (ret)
556 			goto fail;
557 
558 		/* Start the CC */
559 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
560 			AB8500_RTC_CC_CONF_REG,
561 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
562 		if (ret)
563 			goto fail;
564 	} else {
565 		di->turn_off_fg = false;
566 	}
567 
568 	/* Return and WFI */
569 	reinit_completion(&di->ab8500_fg_started);
570 	reinit_completion(&di->ab8500_fg_complete);
571 	enable_irq(di->irq);
572 
573 	/* Note: cc_lock is still locked */
574 	return 0;
575 fail:
576 	mutex_unlock(&di->cc_lock);
577 	return ret;
578 }
579 
580 /**
581  * ab8500_fg_inst_curr_started() - check if fg conversion has started
582  * @di:         pointer to the ab8500_fg structure
583  *
584  * Returns 1 if conversion started, 0 if still waiting
585  */
586 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
587 {
588 	return completion_done(&di->ab8500_fg_started);
589 }
590 
591 /**
592  * ab8500_fg_inst_curr_done() - check if fg conversion is done
593  * @di:         pointer to the ab8500_fg structure
594  *
595  * Returns 1 if conversion done, 0 if still waiting
596  */
597 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
598 {
599 	return completion_done(&di->ab8500_fg_complete);
600 }
601 
602 /**
603  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
604  * @di:         pointer to the ab8500_fg structure
605  * @res:	battery instantenous current(on success)
606  *
607  * Returns 0 or an error code
608  * Note: This is part "two" and has to be called at earliest 250 ms
609  * after ab8500_fg_inst_curr_start()
610  */
611 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
612 {
613 	u8 low, high;
614 	int val;
615 	int ret;
616 	unsigned long timeout;
617 
618 	if (!completion_done(&di->ab8500_fg_complete)) {
619 		timeout = wait_for_completion_timeout(
620 			&di->ab8500_fg_complete,
621 			INS_CURR_TIMEOUT);
622 		dev_dbg(di->dev, "Finalize time: %d ms\n",
623 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
624 		if (!timeout) {
625 			ret = -ETIME;
626 			disable_irq(di->irq);
627 			di->nbr_cceoc_irq_cnt = 0;
628 			dev_err(di->dev, "completion timed out [%d]\n",
629 				__LINE__);
630 			goto fail;
631 		}
632 	}
633 
634 	disable_irq(di->irq);
635 	di->nbr_cceoc_irq_cnt = 0;
636 
637 	ret = abx500_mask_and_set_register_interruptible(di->dev,
638 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
639 			READ_REQ, READ_REQ);
640 
641 	/* 100uS between read request and read is needed */
642 	usleep_range(100, 100);
643 
644 	/* Read CC Sample conversion value Low and high */
645 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
646 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
647 	if (ret < 0)
648 		goto fail;
649 
650 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
651 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
652 	if (ret < 0)
653 		goto fail;
654 
655 	/*
656 	 * negative value for Discharging
657 	 * convert 2's complement into decimal
658 	 */
659 	if (high & 0x10)
660 		val = (low | (high << 8) | 0xFFFFE000);
661 	else
662 		val = (low | (high << 8));
663 
664 	/*
665 	 * Convert to unit value in mA
666 	 * Full scale input voltage is
667 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
668 	 * Given a 250ms conversion cycle time the LSB corresponds
669 	 * to 107.1 nAh. Convert to current by dividing by the conversion
670 	 * time in hours (250ms = 1 / (3600 * 4)h)
671 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
672 	 */
673 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
674 		(1000 * di->bm->fg_res);
675 
676 	if (di->turn_off_fg) {
677 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
678 
679 		/* Clear any pending read requests */
680 		ret = abx500_set_register_interruptible(di->dev,
681 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
682 		if (ret)
683 			goto fail;
684 
685 		/* Stop the CC */
686 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
687 			AB8500_RTC_CC_CONF_REG, 0);
688 		if (ret)
689 			goto fail;
690 	}
691 	mutex_unlock(&di->cc_lock);
692 	(*res) = val;
693 
694 	return 0;
695 fail:
696 	mutex_unlock(&di->cc_lock);
697 	return ret;
698 }
699 
700 /**
701  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
702  * @di:         pointer to the ab8500_fg structure
703  * @res:	battery instantenous current(on success)
704  *
705  * Returns 0 else error code
706  */
707 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
708 {
709 	int ret;
710 	unsigned long timeout;
711 	int res = 0;
712 
713 	ret = ab8500_fg_inst_curr_start(di);
714 	if (ret) {
715 		dev_err(di->dev, "Failed to initialize fg_inst\n");
716 		return 0;
717 	}
718 
719 	/* Wait for CC to actually start */
720 	if (!completion_done(&di->ab8500_fg_started)) {
721 		timeout = wait_for_completion_timeout(
722 			&di->ab8500_fg_started,
723 			INS_CURR_TIMEOUT);
724 		dev_dbg(di->dev, "Start time: %d ms\n",
725 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
726 		if (!timeout) {
727 			ret = -ETIME;
728 			dev_err(di->dev, "completion timed out [%d]\n",
729 				__LINE__);
730 			goto fail;
731 		}
732 	}
733 
734 	ret = ab8500_fg_inst_curr_finalize(di, &res);
735 	if (ret) {
736 		dev_err(di->dev, "Failed to finalize fg_inst\n");
737 		return 0;
738 	}
739 
740 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
741 	return res;
742 fail:
743 	disable_irq(di->irq);
744 	mutex_unlock(&di->cc_lock);
745 	return ret;
746 }
747 
748 /**
749  * ab8500_fg_acc_cur_work() - average battery current
750  * @work:	pointer to the work_struct structure
751  *
752  * Updated the average battery current obtained from the
753  * coulomb counter.
754  */
755 static void ab8500_fg_acc_cur_work(struct work_struct *work)
756 {
757 	int val;
758 	int ret;
759 	u8 low, med, high;
760 
761 	struct ab8500_fg *di = container_of(work,
762 		struct ab8500_fg, fg_acc_cur_work);
763 
764 	mutex_lock(&di->cc_lock);
765 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
766 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
767 	if (ret)
768 		goto exit;
769 
770 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
771 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
772 	if (ret < 0)
773 		goto exit;
774 
775 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
776 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
777 	if (ret < 0)
778 		goto exit;
779 
780 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
781 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
782 	if (ret < 0)
783 		goto exit;
784 
785 	/* Check for sign bit in case of negative value, 2's complement */
786 	if (high & 0x10)
787 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
788 	else
789 		val = (low | (med << 8) | (high << 16));
790 
791 	/*
792 	 * Convert to uAh
793 	 * Given a 250ms conversion cycle time the LSB corresponds
794 	 * to 112.9 nAh.
795 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
796 	 */
797 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
798 		(100 * di->bm->fg_res);
799 
800 	/*
801 	 * Convert to unit value in mA
802 	 * by dividing by the conversion
803 	 * time in hours (= samples / (3600 * 4)h)
804 	 * and multiply with 1000
805 	 */
806 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
807 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
808 
809 	di->flags.conv_done = true;
810 
811 	mutex_unlock(&di->cc_lock);
812 
813 	queue_work(di->fg_wq, &di->fg_work);
814 
815 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
816 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
817 	return;
818 exit:
819 	dev_err(di->dev,
820 		"Failed to read or write gas gauge registers\n");
821 	mutex_unlock(&di->cc_lock);
822 	queue_work(di->fg_wq, &di->fg_work);
823 }
824 
825 /**
826  * ab8500_fg_bat_voltage() - get battery voltage
827  * @di:		pointer to the ab8500_fg structure
828  *
829  * Returns battery voltage(on success) else error code
830  */
831 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
832 {
833 	int vbat, ret;
834 	static int prev;
835 
836 	ret = iio_read_channel_processed(di->main_bat_v, &vbat);
837 	if (ret < 0) {
838 		dev_err(di->dev,
839 			"%s ADC conversion failed, using previous value\n",
840 			__func__);
841 		return prev;
842 	}
843 
844 	prev = vbat;
845 	return vbat;
846 }
847 
848 /**
849  * ab8500_fg_volt_to_capacity() - Voltage based capacity
850  * @di:		pointer to the ab8500_fg structure
851  * @voltage:	The voltage to convert to a capacity
852  *
853  * Returns battery capacity in per mille based on voltage
854  */
855 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
856 {
857 	int i, tbl_size;
858 	const struct abx500_v_to_cap *tbl;
859 	int cap = 0;
860 
861 	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl;
862 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
863 
864 	for (i = 0; i < tbl_size; ++i) {
865 		if (voltage > tbl[i].voltage)
866 			break;
867 	}
868 
869 	if ((i > 0) && (i < tbl_size)) {
870 		cap = interpolate(voltage,
871 			tbl[i].voltage,
872 			tbl[i].capacity * 10,
873 			tbl[i-1].voltage,
874 			tbl[i-1].capacity * 10);
875 	} else if (i == 0) {
876 		cap = 1000;
877 	} else {
878 		cap = 0;
879 	}
880 
881 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
882 		__func__, voltage, cap);
883 
884 	return cap;
885 }
886 
887 /**
888  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
889  * @di:		pointer to the ab8500_fg structure
890  *
891  * Returns battery capacity based on battery voltage that is not compensated
892  * for the voltage drop due to the load
893  */
894 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
895 {
896 	di->vbat = ab8500_fg_bat_voltage(di);
897 	return ab8500_fg_volt_to_capacity(di, di->vbat);
898 }
899 
900 /**
901  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
902  * @di:		pointer to the ab8500_fg structure
903  *
904  * Returns battery inner resistance added with the fuel gauge resistor value
905  * to get the total resistance in the whole link from gnd to bat+ node.
906  */
907 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
908 {
909 	int i, tbl_size;
910 	const struct batres_vs_temp *tbl;
911 	int resist = 0;
912 
913 	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
914 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
915 
916 	for (i = 0; i < tbl_size; ++i) {
917 		if (di->bat_temp / 10 > tbl[i].temp)
918 			break;
919 	}
920 
921 	if ((i > 0) && (i < tbl_size)) {
922 		resist = interpolate(di->bat_temp / 10,
923 			tbl[i].temp,
924 			tbl[i].resist,
925 			tbl[i-1].temp,
926 			tbl[i-1].resist);
927 	} else if (i == 0) {
928 		resist = tbl[0].resist;
929 	} else {
930 		resist = tbl[tbl_size - 1].resist;
931 	}
932 
933 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
934 	    " fg resistance %d, total: %d (mOhm)\n",
935 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
936 		(di->bm->fg_res / 10) + resist);
937 
938 	/* fg_res variable is in 0.1mOhm */
939 	resist += di->bm->fg_res / 10;
940 
941 	return resist;
942 }
943 
944 /**
945  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
946  * @di:		pointer to the ab8500_fg structure
947  *
948  * Returns battery capacity based on battery voltage that is load compensated
949  * for the voltage drop
950  */
951 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
952 {
953 	int vbat_comp, res;
954 	int i = 0;
955 	int vbat = 0;
956 
957 	ab8500_fg_inst_curr_start(di);
958 
959 	do {
960 		vbat += ab8500_fg_bat_voltage(di);
961 		i++;
962 		usleep_range(5000, 6000);
963 	} while (!ab8500_fg_inst_curr_done(di));
964 
965 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
966 
967 	di->vbat = vbat / i;
968 	res = ab8500_fg_battery_resistance(di);
969 
970 	/* Use Ohms law to get the load compensated voltage */
971 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
972 
973 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
974 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
975 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
976 
977 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
978 }
979 
980 /**
981  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
982  * @di:		pointer to the ab8500_fg structure
983  * @cap_mah:	capacity in mAh
984  *
985  * Converts capacity in mAh to capacity in permille
986  */
987 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
988 {
989 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
990 }
991 
992 /**
993  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
994  * @di:		pointer to the ab8500_fg structure
995  * @cap_pm:	capacity in permille
996  *
997  * Converts capacity in permille to capacity in mAh
998  */
999 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1000 {
1001 	return cap_pm * di->bat_cap.max_mah_design / 1000;
1002 }
1003 
1004 /**
1005  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1006  * @di:		pointer to the ab8500_fg structure
1007  * @cap_mah:	capacity in mAh
1008  *
1009  * Converts capacity in mAh to capacity in uWh
1010  */
1011 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1012 {
1013 	u64 div_res;
1014 	u32 div_rem;
1015 
1016 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1017 	div_rem = do_div(div_res, 1000);
1018 
1019 	/* Make sure to round upwards if necessary */
1020 	if (div_rem >= 1000 / 2)
1021 		div_res++;
1022 
1023 	return (int) div_res;
1024 }
1025 
1026 /**
1027  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1028  * @di:		pointer to the ab8500_fg structure
1029  *
1030  * Return the capacity in mAh based on previous calculated capcity and the FG
1031  * accumulator register value. The filter is filled with this capacity
1032  */
1033 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1034 {
1035 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1036 		__func__,
1037 		di->bat_cap.mah,
1038 		di->accu_charge);
1039 
1040 	/* Capacity should not be less than 0 */
1041 	if (di->bat_cap.mah + di->accu_charge > 0)
1042 		di->bat_cap.mah += di->accu_charge;
1043 	else
1044 		di->bat_cap.mah = 0;
1045 	/*
1046 	 * We force capacity to 100% once when the algorithm
1047 	 * reports that it's full.
1048 	 */
1049 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1050 		di->flags.force_full) {
1051 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1052 	}
1053 
1054 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1055 	di->bat_cap.permille =
1056 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1057 
1058 	/* We need to update battery voltage and inst current when charging */
1059 	di->vbat = ab8500_fg_bat_voltage(di);
1060 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1061 
1062 	return di->bat_cap.mah;
1063 }
1064 
1065 /**
1066  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1067  * @di:		pointer to the ab8500_fg structure
1068  * @comp:	if voltage should be load compensated before capacity calc
1069  *
1070  * Return the capacity in mAh based on the battery voltage. The voltage can
1071  * either be load compensated or not. This value is added to the filter and a
1072  * new mean value is calculated and returned.
1073  */
1074 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1075 {
1076 	int permille, mah;
1077 
1078 	if (comp)
1079 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
1080 	else
1081 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
1082 
1083 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
1084 
1085 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1086 	di->bat_cap.permille =
1087 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1088 
1089 	return di->bat_cap.mah;
1090 }
1091 
1092 /**
1093  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1094  * @di:		pointer to the ab8500_fg structure
1095  *
1096  * Return the capacity in mAh based on previous calculated capcity and the FG
1097  * accumulator register value. This value is added to the filter and a
1098  * new mean value is calculated and returned.
1099  */
1100 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1101 {
1102 	int permille_volt, permille;
1103 
1104 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1105 		__func__,
1106 		di->bat_cap.mah,
1107 		di->accu_charge);
1108 
1109 	/* Capacity should not be less than 0 */
1110 	if (di->bat_cap.mah + di->accu_charge > 0)
1111 		di->bat_cap.mah += di->accu_charge;
1112 	else
1113 		di->bat_cap.mah = 0;
1114 
1115 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1116 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1117 
1118 	/*
1119 	 * Check against voltage based capacity. It can not be lower
1120 	 * than what the uncompensated voltage says
1121 	 */
1122 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1123 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1124 
1125 	if (permille < permille_volt) {
1126 		di->bat_cap.permille = permille_volt;
1127 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1128 			di->bat_cap.permille);
1129 
1130 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1131 			__func__,
1132 			permille,
1133 			permille_volt);
1134 
1135 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1136 	} else {
1137 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1138 		di->bat_cap.permille =
1139 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1140 	}
1141 
1142 	return di->bat_cap.mah;
1143 }
1144 
1145 /**
1146  * ab8500_fg_capacity_level() - Get the battery capacity level
1147  * @di:		pointer to the ab8500_fg structure
1148  *
1149  * Get the battery capacity level based on the capacity in percent
1150  */
1151 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1152 {
1153 	int ret, percent;
1154 
1155 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1156 
1157 	if (percent <= di->bm->cap_levels->critical ||
1158 		di->flags.low_bat)
1159 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1160 	else if (percent <= di->bm->cap_levels->low)
1161 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1162 	else if (percent <= di->bm->cap_levels->normal)
1163 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1164 	else if (percent <= di->bm->cap_levels->high)
1165 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1166 	else
1167 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1168 
1169 	return ret;
1170 }
1171 
1172 /**
1173  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1174  * @di:		pointer to the ab8500_fg structure
1175  *
1176  * Calculates the capacity to be shown to upper layers. Scales the capacity
1177  * to have 100% as a reference from the actual capacity upon removal of charger
1178  * when charging is in maintenance mode.
1179  */
1180 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1181 {
1182 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1183 	int capacity = di->bat_cap.prev_percent;
1184 
1185 	if (!cs->enable)
1186 		return capacity;
1187 
1188 	/*
1189 	 * As long as we are in fully charge mode scale the capacity
1190 	 * to show 100%.
1191 	 */
1192 	if (di->flags.fully_charged) {
1193 		cs->cap_to_scale[0] = 100;
1194 		cs->cap_to_scale[1] =
1195 			max(capacity, di->bm->fg_params->maint_thres);
1196 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
1197 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1198 	}
1199 
1200 	/* Calculates the scaled capacity. */
1201 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1202 					&& (cs->cap_to_scale[1] > 0))
1203 		capacity = min(100,
1204 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1205 						 cs->cap_to_scale[0],
1206 						 cs->cap_to_scale[1]));
1207 
1208 	if (di->flags.charging) {
1209 		if (capacity < cs->disable_cap_level) {
1210 			cs->disable_cap_level = capacity;
1211 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1212 				cs->disable_cap_level);
1213 		} else if (!di->flags.fully_charged) {
1214 			if (di->bat_cap.prev_percent >=
1215 			    cs->disable_cap_level) {
1216 				dev_dbg(di->dev, "Disabling scaled capacity\n");
1217 				cs->enable = false;
1218 				capacity = di->bat_cap.prev_percent;
1219 			} else {
1220 				dev_dbg(di->dev,
1221 					"Waiting in cap to level %d%%\n",
1222 					cs->disable_cap_level);
1223 				capacity = cs->disable_cap_level;
1224 			}
1225 		}
1226 	}
1227 
1228 	return capacity;
1229 }
1230 
1231 /**
1232  * ab8500_fg_update_cap_scalers() - Capacity scaling
1233  * @di:		pointer to the ab8500_fg structure
1234  *
1235  * To be called when state change from charge<->discharge to update
1236  * the capacity scalers.
1237  */
1238 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1239 {
1240 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1241 
1242 	if (!cs->enable)
1243 		return;
1244 	if (di->flags.charging) {
1245 		di->bat_cap.cap_scale.disable_cap_level =
1246 			di->bat_cap.cap_scale.scaled_cap;
1247 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1248 				di->bat_cap.cap_scale.disable_cap_level);
1249 	} else {
1250 		if (cs->scaled_cap != 100) {
1251 			cs->cap_to_scale[0] = cs->scaled_cap;
1252 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1253 		} else {
1254 			cs->cap_to_scale[0] = 100;
1255 			cs->cap_to_scale[1] =
1256 				max(di->bat_cap.prev_percent,
1257 				    di->bm->fg_params->maint_thres);
1258 		}
1259 
1260 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1261 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
1262 	}
1263 }
1264 
1265 /**
1266  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1267  * @di:		pointer to the ab8500_fg structure
1268  * @init:	capacity is allowed to go up in init mode
1269  *
1270  * Check if capacity or capacity limit has changed and notify the system
1271  * about it using the power_supply framework
1272  */
1273 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1274 {
1275 	bool changed = false;
1276 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1277 
1278 	di->bat_cap.level = ab8500_fg_capacity_level(di);
1279 
1280 	if (di->bat_cap.level != di->bat_cap.prev_level) {
1281 		/*
1282 		 * We do not allow reported capacity level to go up
1283 		 * unless we're charging or if we're in init
1284 		 */
1285 		if (!(!di->flags.charging && di->bat_cap.level >
1286 			di->bat_cap.prev_level) || init) {
1287 			dev_dbg(di->dev, "level changed from %d to %d\n",
1288 				di->bat_cap.prev_level,
1289 				di->bat_cap.level);
1290 			di->bat_cap.prev_level = di->bat_cap.level;
1291 			changed = true;
1292 		} else {
1293 			dev_dbg(di->dev, "level not allowed to go up "
1294 				"since no charger is connected: %d to %d\n",
1295 				di->bat_cap.prev_level,
1296 				di->bat_cap.level);
1297 		}
1298 	}
1299 
1300 	/*
1301 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1302 	 * shutdown
1303 	 */
1304 	if (di->flags.low_bat) {
1305 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1306 		di->bat_cap.prev_percent = 0;
1307 		di->bat_cap.permille = 0;
1308 		percent = 0;
1309 		di->bat_cap.prev_mah = 0;
1310 		di->bat_cap.mah = 0;
1311 		changed = true;
1312 	} else if (di->flags.fully_charged) {
1313 		/*
1314 		 * We report 100% if algorithm reported fully charged
1315 		 * and show 100% during maintenance charging (scaling).
1316 		 */
1317 		if (di->flags.force_full) {
1318 			di->bat_cap.prev_percent = percent;
1319 			di->bat_cap.prev_mah = di->bat_cap.mah;
1320 
1321 			changed = true;
1322 
1323 			if (!di->bat_cap.cap_scale.enable &&
1324 						di->bm->capacity_scaling) {
1325 				di->bat_cap.cap_scale.enable = true;
1326 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1327 				di->bat_cap.cap_scale.cap_to_scale[1] =
1328 						di->bat_cap.prev_percent;
1329 				di->bat_cap.cap_scale.disable_cap_level = 100;
1330 			}
1331 		} else if (di->bat_cap.prev_percent != percent) {
1332 			dev_dbg(di->dev,
1333 				"battery reported full "
1334 				"but capacity dropping: %d\n",
1335 				percent);
1336 			di->bat_cap.prev_percent = percent;
1337 			di->bat_cap.prev_mah = di->bat_cap.mah;
1338 
1339 			changed = true;
1340 		}
1341 	} else if (di->bat_cap.prev_percent != percent) {
1342 		if (percent == 0) {
1343 			/*
1344 			 * We will not report 0% unless we've got
1345 			 * the LOW_BAT IRQ, no matter what the FG
1346 			 * algorithm says.
1347 			 */
1348 			di->bat_cap.prev_percent = 1;
1349 			percent = 1;
1350 
1351 			changed = true;
1352 		} else if (!(!di->flags.charging &&
1353 			percent > di->bat_cap.prev_percent) || init) {
1354 			/*
1355 			 * We do not allow reported capacity to go up
1356 			 * unless we're charging or if we're in init
1357 			 */
1358 			dev_dbg(di->dev,
1359 				"capacity changed from %d to %d (%d)\n",
1360 				di->bat_cap.prev_percent,
1361 				percent,
1362 				di->bat_cap.permille);
1363 			di->bat_cap.prev_percent = percent;
1364 			di->bat_cap.prev_mah = di->bat_cap.mah;
1365 
1366 			changed = true;
1367 		} else {
1368 			dev_dbg(di->dev, "capacity not allowed to go up since "
1369 				"no charger is connected: %d to %d (%d)\n",
1370 				di->bat_cap.prev_percent,
1371 				percent,
1372 				di->bat_cap.permille);
1373 		}
1374 	}
1375 
1376 	if (changed) {
1377 		if (di->bm->capacity_scaling) {
1378 			di->bat_cap.cap_scale.scaled_cap =
1379 				ab8500_fg_calculate_scaled_capacity(di);
1380 
1381 			dev_info(di->dev, "capacity=%d (%d)\n",
1382 				di->bat_cap.prev_percent,
1383 				di->bat_cap.cap_scale.scaled_cap);
1384 		}
1385 		power_supply_changed(di->fg_psy);
1386 		if (di->flags.fully_charged && di->flags.force_full) {
1387 			dev_dbg(di->dev, "Battery full, notifying.\n");
1388 			di->flags.force_full = false;
1389 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1390 		}
1391 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1392 	}
1393 }
1394 
1395 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1396 	enum ab8500_fg_charge_state new_state)
1397 {
1398 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1399 		di->charge_state,
1400 		charge_state[di->charge_state],
1401 		new_state,
1402 		charge_state[new_state]);
1403 
1404 	di->charge_state = new_state;
1405 }
1406 
1407 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1408 	enum ab8500_fg_discharge_state new_state)
1409 {
1410 	dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1411 		di->discharge_state,
1412 		discharge_state[di->discharge_state],
1413 		new_state,
1414 		discharge_state[new_state]);
1415 
1416 	di->discharge_state = new_state;
1417 }
1418 
1419 /**
1420  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1421  * @di:		pointer to the ab8500_fg structure
1422  *
1423  * Battery capacity calculation state machine for when we're charging
1424  */
1425 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1426 {
1427 	/*
1428 	 * If we change to discharge mode
1429 	 * we should start with recovery
1430 	 */
1431 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1432 		ab8500_fg_discharge_state_to(di,
1433 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
1434 
1435 	switch (di->charge_state) {
1436 	case AB8500_FG_CHARGE_INIT:
1437 		di->fg_samples = SEC_TO_SAMPLE(
1438 			di->bm->fg_params->accu_charging);
1439 
1440 		ab8500_fg_coulomb_counter(di, true);
1441 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1442 
1443 		break;
1444 
1445 	case AB8500_FG_CHARGE_READOUT:
1446 		/*
1447 		 * Read the FG and calculate the new capacity
1448 		 */
1449 		mutex_lock(&di->cc_lock);
1450 		if (!di->flags.conv_done && !di->flags.force_full) {
1451 			/* Wasn't the CC IRQ that got us here */
1452 			mutex_unlock(&di->cc_lock);
1453 			dev_dbg(di->dev, "%s CC conv not done\n",
1454 				__func__);
1455 
1456 			break;
1457 		}
1458 		di->flags.conv_done = false;
1459 		mutex_unlock(&di->cc_lock);
1460 
1461 		ab8500_fg_calc_cap_charging(di);
1462 
1463 		break;
1464 
1465 	default:
1466 		break;
1467 	}
1468 
1469 	/* Check capacity limits */
1470 	ab8500_fg_check_capacity_limits(di, false);
1471 }
1472 
1473 static void force_capacity(struct ab8500_fg *di)
1474 {
1475 	int cap;
1476 
1477 	ab8500_fg_clear_cap_samples(di);
1478 	cap = di->bat_cap.user_mah;
1479 	if (cap > di->bat_cap.max_mah_design) {
1480 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1481 			" %d\n", cap, di->bat_cap.max_mah_design);
1482 		cap = di->bat_cap.max_mah_design;
1483 	}
1484 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1485 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1486 	di->bat_cap.mah = cap;
1487 	ab8500_fg_check_capacity_limits(di, true);
1488 }
1489 
1490 static bool check_sysfs_capacity(struct ab8500_fg *di)
1491 {
1492 	int cap, lower, upper;
1493 	int cap_permille;
1494 
1495 	cap = di->bat_cap.user_mah;
1496 
1497 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
1498 		di->bat_cap.user_mah);
1499 
1500 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1501 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1502 
1503 	if (lower < 0)
1504 		lower = 0;
1505 	/* 1000 is permille, -> 100 percent */
1506 	if (upper > 1000)
1507 		upper = 1000;
1508 
1509 	dev_dbg(di->dev, "Capacity limits:"
1510 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1511 		lower, cap_permille, upper, cap, di->bat_cap.mah);
1512 
1513 	/* If within limits, use the saved capacity and exit estimation...*/
1514 	if (cap_permille > lower && cap_permille < upper) {
1515 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1516 		force_capacity(di);
1517 		return true;
1518 	}
1519 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1520 	return false;
1521 }
1522 
1523 /**
1524  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1525  * @di:		pointer to the ab8500_fg structure
1526  *
1527  * Battery capacity calculation state machine for when we're discharging
1528  */
1529 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1530 {
1531 	int sleep_time;
1532 
1533 	/* If we change to charge mode we should start with init */
1534 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
1535 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1536 
1537 	switch (di->discharge_state) {
1538 	case AB8500_FG_DISCHARGE_INIT:
1539 		/* We use the FG IRQ to work on */
1540 		di->init_cnt = 0;
1541 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1542 		ab8500_fg_coulomb_counter(di, true);
1543 		ab8500_fg_discharge_state_to(di,
1544 			AB8500_FG_DISCHARGE_INITMEASURING);
1545 
1546 		fallthrough;
1547 	case AB8500_FG_DISCHARGE_INITMEASURING:
1548 		/*
1549 		 * Discard a number of samples during startup.
1550 		 * After that, use compensated voltage for a few
1551 		 * samples to get an initial capacity.
1552 		 * Then go to READOUT
1553 		 */
1554 		sleep_time = di->bm->fg_params->init_timer;
1555 
1556 		/* Discard the first [x] seconds */
1557 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1558 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1559 
1560 			ab8500_fg_check_capacity_limits(di, true);
1561 		}
1562 
1563 		di->init_cnt += sleep_time;
1564 		if (di->init_cnt > di->bm->fg_params->init_total_time)
1565 			ab8500_fg_discharge_state_to(di,
1566 				AB8500_FG_DISCHARGE_READOUT_INIT);
1567 
1568 		break;
1569 
1570 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1571 		di->recovery_cnt = 0;
1572 		di->recovery_needed = true;
1573 		ab8500_fg_discharge_state_to(di,
1574 			AB8500_FG_DISCHARGE_RECOVERY);
1575 
1576 		fallthrough;
1577 
1578 	case AB8500_FG_DISCHARGE_RECOVERY:
1579 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
1580 
1581 		/*
1582 		 * We should check the power consumption
1583 		 * If low, go to READOUT (after x min) or
1584 		 * RECOVERY_SLEEP if time left.
1585 		 * If high, go to READOUT
1586 		 */
1587 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1588 
1589 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1590 			if (di->recovery_cnt >
1591 				di->bm->fg_params->recovery_total_time) {
1592 				di->fg_samples = SEC_TO_SAMPLE(
1593 					di->bm->fg_params->accu_high_curr);
1594 				ab8500_fg_coulomb_counter(di, true);
1595 				ab8500_fg_discharge_state_to(di,
1596 					AB8500_FG_DISCHARGE_READOUT);
1597 				di->recovery_needed = false;
1598 			} else {
1599 				queue_delayed_work(di->fg_wq,
1600 					&di->fg_periodic_work,
1601 					sleep_time * HZ);
1602 			}
1603 			di->recovery_cnt += sleep_time;
1604 		} else {
1605 			di->fg_samples = SEC_TO_SAMPLE(
1606 				di->bm->fg_params->accu_high_curr);
1607 			ab8500_fg_coulomb_counter(di, true);
1608 			ab8500_fg_discharge_state_to(di,
1609 				AB8500_FG_DISCHARGE_READOUT);
1610 		}
1611 		break;
1612 
1613 	case AB8500_FG_DISCHARGE_READOUT_INIT:
1614 		di->fg_samples = SEC_TO_SAMPLE(
1615 			di->bm->fg_params->accu_high_curr);
1616 		ab8500_fg_coulomb_counter(di, true);
1617 		ab8500_fg_discharge_state_to(di,
1618 				AB8500_FG_DISCHARGE_READOUT);
1619 		break;
1620 
1621 	case AB8500_FG_DISCHARGE_READOUT:
1622 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1623 
1624 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1625 			/* Detect mode change */
1626 			if (di->high_curr_mode) {
1627 				di->high_curr_mode = false;
1628 				di->high_curr_cnt = 0;
1629 			}
1630 
1631 			if (di->recovery_needed) {
1632 				ab8500_fg_discharge_state_to(di,
1633 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
1634 
1635 				queue_delayed_work(di->fg_wq,
1636 					&di->fg_periodic_work, 0);
1637 
1638 				break;
1639 			}
1640 
1641 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1642 		} else {
1643 			mutex_lock(&di->cc_lock);
1644 			if (!di->flags.conv_done) {
1645 				/* Wasn't the CC IRQ that got us here */
1646 				mutex_unlock(&di->cc_lock);
1647 				dev_dbg(di->dev, "%s CC conv not done\n",
1648 					__func__);
1649 
1650 				break;
1651 			}
1652 			di->flags.conv_done = false;
1653 			mutex_unlock(&di->cc_lock);
1654 
1655 			/* Detect mode change */
1656 			if (!di->high_curr_mode) {
1657 				di->high_curr_mode = true;
1658 				di->high_curr_cnt = 0;
1659 			}
1660 
1661 			di->high_curr_cnt +=
1662 				di->bm->fg_params->accu_high_curr;
1663 			if (di->high_curr_cnt >
1664 				di->bm->fg_params->high_curr_time)
1665 				di->recovery_needed = true;
1666 
1667 			ab8500_fg_calc_cap_discharge_fg(di);
1668 		}
1669 
1670 		ab8500_fg_check_capacity_limits(di, false);
1671 
1672 		break;
1673 
1674 	case AB8500_FG_DISCHARGE_WAKEUP:
1675 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1676 
1677 		di->fg_samples = SEC_TO_SAMPLE(
1678 			di->bm->fg_params->accu_high_curr);
1679 		ab8500_fg_coulomb_counter(di, true);
1680 		ab8500_fg_discharge_state_to(di,
1681 				AB8500_FG_DISCHARGE_READOUT);
1682 
1683 		ab8500_fg_check_capacity_limits(di, false);
1684 
1685 		break;
1686 
1687 	default:
1688 		break;
1689 	}
1690 }
1691 
1692 /**
1693  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1694  * @di:		pointer to the ab8500_fg structure
1695  *
1696  */
1697 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1698 {
1699 	int ret;
1700 
1701 	switch (di->calib_state) {
1702 	case AB8500_FG_CALIB_INIT:
1703 		dev_dbg(di->dev, "Calibration ongoing...\n");
1704 
1705 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1706 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1707 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1708 		if (ret < 0)
1709 			goto err;
1710 
1711 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1712 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1714 		if (ret < 0)
1715 			goto err;
1716 		di->calib_state = AB8500_FG_CALIB_WAIT;
1717 		break;
1718 	case AB8500_FG_CALIB_END:
1719 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1720 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1721 			CC_MUXOFFSET, CC_MUXOFFSET);
1722 		if (ret < 0)
1723 			goto err;
1724 		di->flags.calibrate = false;
1725 		dev_dbg(di->dev, "Calibration done...\n");
1726 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1727 		break;
1728 	case AB8500_FG_CALIB_WAIT:
1729 		dev_dbg(di->dev, "Calibration WFI\n");
1730 	default:
1731 		break;
1732 	}
1733 	return;
1734 err:
1735 	/* Something went wrong, don't calibrate then */
1736 	dev_err(di->dev, "failed to calibrate the CC\n");
1737 	di->flags.calibrate = false;
1738 	di->calib_state = AB8500_FG_CALIB_INIT;
1739 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1740 }
1741 
1742 /**
1743  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1744  * @di:		pointer to the ab8500_fg structure
1745  *
1746  * Entry point for the battery capacity calculation state machine
1747  */
1748 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1749 {
1750 	if (di->flags.calibrate)
1751 		ab8500_fg_algorithm_calibrate(di);
1752 	else {
1753 		if (di->flags.charging)
1754 			ab8500_fg_algorithm_charging(di);
1755 		else
1756 			ab8500_fg_algorithm_discharging(di);
1757 	}
1758 
1759 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1760 		"%d %d %d %d %d %d %d\n",
1761 		di->bat_cap.max_mah_design,
1762 		di->bat_cap.max_mah,
1763 		di->bat_cap.mah,
1764 		di->bat_cap.permille,
1765 		di->bat_cap.level,
1766 		di->bat_cap.prev_mah,
1767 		di->bat_cap.prev_percent,
1768 		di->bat_cap.prev_level,
1769 		di->vbat,
1770 		di->inst_curr,
1771 		di->avg_curr,
1772 		di->accu_charge,
1773 		di->flags.charging,
1774 		di->charge_state,
1775 		di->discharge_state,
1776 		di->high_curr_mode,
1777 		di->recovery_needed);
1778 }
1779 
1780 /**
1781  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1782  * @work:	pointer to the work_struct structure
1783  *
1784  * Work queue function for periodic work
1785  */
1786 static void ab8500_fg_periodic_work(struct work_struct *work)
1787 {
1788 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1789 		fg_periodic_work.work);
1790 
1791 	if (di->init_capacity) {
1792 		/* Get an initial capacity calculation */
1793 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1794 		ab8500_fg_check_capacity_limits(di, true);
1795 		di->init_capacity = false;
1796 
1797 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1798 	} else if (di->flags.user_cap) {
1799 		if (check_sysfs_capacity(di)) {
1800 			ab8500_fg_check_capacity_limits(di, true);
1801 			if (di->flags.charging)
1802 				ab8500_fg_charge_state_to(di,
1803 					AB8500_FG_CHARGE_INIT);
1804 			else
1805 				ab8500_fg_discharge_state_to(di,
1806 					AB8500_FG_DISCHARGE_READOUT_INIT);
1807 		}
1808 		di->flags.user_cap = false;
1809 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1810 	} else
1811 		ab8500_fg_algorithm(di);
1812 
1813 }
1814 
1815 /**
1816  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1817  * @work:	pointer to the work_struct structure
1818  *
1819  * Work queue function for checking the OVV_BAT condition
1820  */
1821 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1822 {
1823 	int ret;
1824 	u8 reg_value;
1825 
1826 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1827 		fg_check_hw_failure_work.work);
1828 
1829 	/*
1830 	 * If we have had a battery over-voltage situation,
1831 	 * check ovv-bit to see if it should be reset.
1832 	 */
1833 	ret = abx500_get_register_interruptible(di->dev,
1834 		AB8500_CHARGER, AB8500_CH_STAT_REG,
1835 		&reg_value);
1836 	if (ret < 0) {
1837 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1838 		return;
1839 	}
1840 	if ((reg_value & BATT_OVV) == BATT_OVV) {
1841 		if (!di->flags.bat_ovv) {
1842 			dev_dbg(di->dev, "Battery OVV\n");
1843 			di->flags.bat_ovv = true;
1844 			power_supply_changed(di->fg_psy);
1845 		}
1846 		/* Not yet recovered from ovv, reschedule this test */
1847 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1848 				   HZ);
1849 		} else {
1850 			dev_dbg(di->dev, "Battery recovered from OVV\n");
1851 			di->flags.bat_ovv = false;
1852 			power_supply_changed(di->fg_psy);
1853 	}
1854 }
1855 
1856 /**
1857  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1858  * @work:	pointer to the work_struct structure
1859  *
1860  * Work queue function for checking the LOW_BAT condition
1861  */
1862 static void ab8500_fg_low_bat_work(struct work_struct *work)
1863 {
1864 	int vbat;
1865 
1866 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1867 		fg_low_bat_work.work);
1868 
1869 	vbat = ab8500_fg_bat_voltage(di);
1870 
1871 	/* Check if LOW_BAT still fulfilled */
1872 	if (vbat < di->bm->fg_params->lowbat_threshold) {
1873 		/* Is it time to shut down? */
1874 		if (di->low_bat_cnt < 1) {
1875 			di->flags.low_bat = true;
1876 			dev_warn(di->dev, "Shut down pending...\n");
1877 		} else {
1878 			/*
1879 			* Else we need to re-schedule this check to be able to detect
1880 			* if the voltage increases again during charging or
1881 			* due to decreasing load.
1882 			*/
1883 			di->low_bat_cnt--;
1884 			dev_warn(di->dev, "Battery voltage still LOW\n");
1885 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1886 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
1887 		}
1888 	} else {
1889 		di->flags.low_bat_delay = false;
1890 		di->low_bat_cnt = 10;
1891 		dev_warn(di->dev, "Battery voltage OK again\n");
1892 	}
1893 
1894 	/* This is needed to dispatch LOW_BAT */
1895 	ab8500_fg_check_capacity_limits(di, false);
1896 }
1897 
1898 /**
1899  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1900  * to the target voltage.
1901  * @di:       pointer to the ab8500_fg structure
1902  * @target:   target voltage
1903  *
1904  * Returns bit pattern closest to the target voltage
1905  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1906  */
1907 
1908 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1909 {
1910 	if (target > BATT_OK_MIN +
1911 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1912 		return BATT_OK_MAX_NR_INCREMENTS;
1913 	if (target < BATT_OK_MIN)
1914 		return 0;
1915 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1916 }
1917 
1918 /**
1919  * ab8500_fg_battok_init_hw_register - init battok levels
1920  * @di:       pointer to the ab8500_fg structure
1921  *
1922  */
1923 
1924 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1925 {
1926 	int selected;
1927 	int sel0;
1928 	int sel1;
1929 	int cbp_sel0;
1930 	int cbp_sel1;
1931 	int ret;
1932 	int new_val;
1933 
1934 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
1935 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
1936 
1937 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1938 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1939 
1940 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1941 
1942 	if (selected != sel0)
1943 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1944 			sel0, selected, cbp_sel0);
1945 
1946 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1947 
1948 	if (selected != sel1)
1949 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950 			sel1, selected, cbp_sel1);
1951 
1952 	new_val = cbp_sel0 | (cbp_sel1 << 4);
1953 
1954 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1955 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1956 		AB8500_BATT_OK_REG, new_val);
1957 	return ret;
1958 }
1959 
1960 /**
1961  * ab8500_fg_instant_work() - Run the FG state machine instantly
1962  * @work:	pointer to the work_struct structure
1963  *
1964  * Work queue function for instant work
1965  */
1966 static void ab8500_fg_instant_work(struct work_struct *work)
1967 {
1968 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1969 
1970 	ab8500_fg_algorithm(di);
1971 }
1972 
1973 /**
1974  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1975  * @irq:       interrupt number
1976  * @_di:       pointer to the ab8500_fg structure
1977  *
1978  * Returns IRQ status(IRQ_HANDLED)
1979  */
1980 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1981 {
1982 	struct ab8500_fg *di = _di;
1983 	if (!di->nbr_cceoc_irq_cnt) {
1984 		di->nbr_cceoc_irq_cnt++;
1985 		complete(&di->ab8500_fg_started);
1986 	} else {
1987 		di->nbr_cceoc_irq_cnt = 0;
1988 		complete(&di->ab8500_fg_complete);
1989 	}
1990 	return IRQ_HANDLED;
1991 }
1992 
1993 /**
1994  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1995  * @irq:       interrupt number
1996  * @_di:       pointer to the ab8500_fg structure
1997  *
1998  * Returns IRQ status(IRQ_HANDLED)
1999  */
2000 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2001 {
2002 	struct ab8500_fg *di = _di;
2003 	di->calib_state = AB8500_FG_CALIB_END;
2004 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2005 	return IRQ_HANDLED;
2006 }
2007 
2008 /**
2009  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2010  * @irq:       interrupt number
2011  * @_di:       pointer to the ab8500_fg structure
2012  *
2013  * Returns IRQ status(IRQ_HANDLED)
2014  */
2015 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2016 {
2017 	struct ab8500_fg *di = _di;
2018 
2019 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
2020 
2021 	return IRQ_HANDLED;
2022 }
2023 
2024 /**
2025  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2026  * @irq:       interrupt number
2027  * @_di:       pointer to the ab8500_fg structure
2028  *
2029  * Returns IRQ status(IRQ_HANDLED)
2030  */
2031 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2032 {
2033 	struct ab8500_fg *di = _di;
2034 
2035 	dev_dbg(di->dev, "Battery OVV\n");
2036 
2037 	/* Schedule a new HW failure check */
2038 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2039 
2040 	return IRQ_HANDLED;
2041 }
2042 
2043 /**
2044  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2045  * @irq:       interrupt number
2046  * @_di:       pointer to the ab8500_fg structure
2047  *
2048  * Returns IRQ status(IRQ_HANDLED)
2049  */
2050 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2051 {
2052 	struct ab8500_fg *di = _di;
2053 
2054 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2055 	if (!di->flags.low_bat_delay) {
2056 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2057 		di->flags.low_bat_delay = true;
2058 		/*
2059 		 * Start a timer to check LOW_BAT again after some time
2060 		 * This is done to avoid shutdown on single voltage dips
2061 		 */
2062 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2063 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
2064 	}
2065 	return IRQ_HANDLED;
2066 }
2067 
2068 /**
2069  * ab8500_fg_get_property() - get the fg properties
2070  * @psy:	pointer to the power_supply structure
2071  * @psp:	pointer to the power_supply_property structure
2072  * @val:	pointer to the power_supply_propval union
2073  *
2074  * This function gets called when an application tries to get the
2075  * fg properties by reading the sysfs files.
2076  * voltage_now:		battery voltage
2077  * current_now:		battery instant current
2078  * current_avg:		battery average current
2079  * charge_full_design:	capacity where battery is considered full
2080  * charge_now:		battery capacity in nAh
2081  * capacity:		capacity in percent
2082  * capacity_level:	capacity level
2083  *
2084  * Returns error code in case of failure else 0 on success
2085  */
2086 static int ab8500_fg_get_property(struct power_supply *psy,
2087 	enum power_supply_property psp,
2088 	union power_supply_propval *val)
2089 {
2090 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2091 
2092 	/*
2093 	 * If battery is identified as unknown and charging of unknown
2094 	 * batteries is disabled, we always report 100% capacity and
2095 	 * capacity level UNKNOWN, since we can't calculate
2096 	 * remaining capacity
2097 	 */
2098 
2099 	switch (psp) {
2100 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2101 		if (di->flags.bat_ovv)
2102 			val->intval = BATT_OVV_VALUE * 1000;
2103 		else
2104 			val->intval = di->vbat * 1000;
2105 		break;
2106 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2107 		val->intval = di->inst_curr * 1000;
2108 		break;
2109 	case POWER_SUPPLY_PROP_CURRENT_AVG:
2110 		val->intval = di->avg_curr * 1000;
2111 		break;
2112 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2113 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2114 				di->bat_cap.max_mah_design);
2115 		break;
2116 	case POWER_SUPPLY_PROP_ENERGY_FULL:
2117 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2118 				di->bat_cap.max_mah);
2119 		break;
2120 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2121 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2122 				di->flags.batt_id_received)
2123 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124 					di->bat_cap.max_mah);
2125 		else
2126 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2127 					di->bat_cap.prev_mah);
2128 		break;
2129 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2130 		val->intval = di->bat_cap.max_mah_design;
2131 		break;
2132 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2133 		val->intval = di->bat_cap.max_mah;
2134 		break;
2135 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2136 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2137 				di->flags.batt_id_received)
2138 			val->intval = di->bat_cap.max_mah;
2139 		else
2140 			val->intval = di->bat_cap.prev_mah;
2141 		break;
2142 	case POWER_SUPPLY_PROP_CAPACITY:
2143 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2144 				di->flags.batt_id_received)
2145 			val->intval = 100;
2146 		else
2147 			val->intval = di->bat_cap.prev_percent;
2148 		break;
2149 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2150 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2151 				di->flags.batt_id_received)
2152 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2153 		else
2154 			val->intval = di->bat_cap.prev_level;
2155 		break;
2156 	default:
2157 		return -EINVAL;
2158 	}
2159 	return 0;
2160 }
2161 
2162 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2163 {
2164 	struct power_supply *psy;
2165 	struct power_supply *ext = dev_get_drvdata(dev);
2166 	const char **supplicants = (const char **)ext->supplied_to;
2167 	struct ab8500_fg *di;
2168 	union power_supply_propval ret;
2169 	int j;
2170 
2171 	psy = (struct power_supply *)data;
2172 	di = power_supply_get_drvdata(psy);
2173 
2174 	/*
2175 	 * For all psy where the name of your driver
2176 	 * appears in any supplied_to
2177 	 */
2178 	j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2179 	if (j < 0)
2180 		return 0;
2181 
2182 	/* Go through all properties for the psy */
2183 	for (j = 0; j < ext->desc->num_properties; j++) {
2184 		enum power_supply_property prop;
2185 		prop = ext->desc->properties[j];
2186 
2187 		if (power_supply_get_property(ext, prop, &ret))
2188 			continue;
2189 
2190 		switch (prop) {
2191 		case POWER_SUPPLY_PROP_STATUS:
2192 			switch (ext->desc->type) {
2193 			case POWER_SUPPLY_TYPE_BATTERY:
2194 				switch (ret.intval) {
2195 				case POWER_SUPPLY_STATUS_UNKNOWN:
2196 				case POWER_SUPPLY_STATUS_DISCHARGING:
2197 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
2198 					if (!di->flags.charging)
2199 						break;
2200 					di->flags.charging = false;
2201 					di->flags.fully_charged = false;
2202 					if (di->bm->capacity_scaling)
2203 						ab8500_fg_update_cap_scalers(di);
2204 					queue_work(di->fg_wq, &di->fg_work);
2205 					break;
2206 				case POWER_SUPPLY_STATUS_FULL:
2207 					if (di->flags.fully_charged)
2208 						break;
2209 					di->flags.fully_charged = true;
2210 					di->flags.force_full = true;
2211 					/* Save current capacity as maximum */
2212 					di->bat_cap.max_mah = di->bat_cap.mah;
2213 					queue_work(di->fg_wq, &di->fg_work);
2214 					break;
2215 				case POWER_SUPPLY_STATUS_CHARGING:
2216 					if (di->flags.charging &&
2217 						!di->flags.fully_charged)
2218 						break;
2219 					di->flags.charging = true;
2220 					di->flags.fully_charged = false;
2221 					if (di->bm->capacity_scaling)
2222 						ab8500_fg_update_cap_scalers(di);
2223 					queue_work(di->fg_wq, &di->fg_work);
2224 					break;
2225 				}
2226 			default:
2227 				break;
2228 			}
2229 			break;
2230 		case POWER_SUPPLY_PROP_TECHNOLOGY:
2231 			switch (ext->desc->type) {
2232 			case POWER_SUPPLY_TYPE_BATTERY:
2233 				if (!di->flags.batt_id_received &&
2234 				    di->bm->batt_id != BATTERY_UNKNOWN) {
2235 					const struct abx500_battery_type *b;
2236 
2237 					b = &(di->bm->bat_type[di->bm->batt_id]);
2238 
2239 					di->flags.batt_id_received = true;
2240 
2241 					di->bat_cap.max_mah_design =
2242 						MILLI_TO_MICRO *
2243 						b->charge_full_design;
2244 
2245 					di->bat_cap.max_mah =
2246 						di->bat_cap.max_mah_design;
2247 
2248 					di->vbat_nom = b->nominal_voltage;
2249 				}
2250 
2251 				if (ret.intval)
2252 					di->flags.batt_unknown = false;
2253 				else
2254 					di->flags.batt_unknown = true;
2255 				break;
2256 			default:
2257 				break;
2258 			}
2259 			break;
2260 		case POWER_SUPPLY_PROP_TEMP:
2261 			switch (ext->desc->type) {
2262 			case POWER_SUPPLY_TYPE_BATTERY:
2263 				if (di->flags.batt_id_received)
2264 					di->bat_temp = ret.intval;
2265 				break;
2266 			default:
2267 				break;
2268 			}
2269 			break;
2270 		default:
2271 			break;
2272 		}
2273 	}
2274 	return 0;
2275 }
2276 
2277 /**
2278  * ab8500_fg_init_hw_registers() - Set up FG related registers
2279  * @di:		pointer to the ab8500_fg structure
2280  *
2281  * Set up battery OVV, low battery voltage registers
2282  */
2283 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2284 {
2285 	int ret;
2286 
2287 	/* Set VBAT OVV threshold */
2288 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2289 		AB8500_CHARGER,
2290 		AB8500_BATT_OVV,
2291 		BATT_OVV_TH_4P75,
2292 		BATT_OVV_TH_4P75);
2293 	if (ret) {
2294 		dev_err(di->dev, "failed to set BATT_OVV\n");
2295 		goto out;
2296 	}
2297 
2298 	/* Enable VBAT OVV detection */
2299 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2300 		AB8500_CHARGER,
2301 		AB8500_BATT_OVV,
2302 		BATT_OVV_ENA,
2303 		BATT_OVV_ENA);
2304 	if (ret) {
2305 		dev_err(di->dev, "failed to enable BATT_OVV\n");
2306 		goto out;
2307 	}
2308 
2309 	/* Low Battery Voltage */
2310 	ret = abx500_set_register_interruptible(di->dev,
2311 		AB8500_SYS_CTRL2_BLOCK,
2312 		AB8500_LOW_BAT_REG,
2313 		ab8500_volt_to_regval(
2314 			di->bm->fg_params->lowbat_threshold) << 1 |
2315 		LOW_BAT_ENABLE);
2316 	if (ret) {
2317 		dev_err(di->dev, "%s write failed\n", __func__);
2318 		goto out;
2319 	}
2320 
2321 	/* Battery OK threshold */
2322 	ret = ab8500_fg_battok_init_hw_register(di);
2323 	if (ret) {
2324 		dev_err(di->dev, "BattOk init write failed.\n");
2325 		goto out;
2326 	}
2327 
2328 	if (is_ab8505(di->parent)) {
2329 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2330 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2331 
2332 		if (ret) {
2333 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2334 			goto out;
2335 		}
2336 
2337 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2339 
2340 		if (ret) {
2341 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2342 			goto out;
2343 		}
2344 
2345 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2347 
2348 		if (ret) {
2349 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2350 			goto out;
2351 		}
2352 
2353 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2355 
2356 		if (ret) {
2357 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2358 			goto out;
2359 		}
2360 
2361 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2363 
2364 		if (ret) {
2365 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2366 			goto out;
2367 		}
2368 	}
2369 out:
2370 	return ret;
2371 }
2372 
2373 /**
2374  * ab8500_fg_external_power_changed() - callback for power supply changes
2375  * @psy:       pointer to the structure power_supply
2376  *
2377  * This function is the entry point of the pointer external_power_changed
2378  * of the structure power_supply.
2379  * This function gets executed when there is a change in any external power
2380  * supply that this driver needs to be notified of.
2381  */
2382 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2383 {
2384 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2385 
2386 	class_for_each_device(power_supply_class, NULL,
2387 		di->fg_psy, ab8500_fg_get_ext_psy_data);
2388 }
2389 
2390 /**
2391  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2392  * @work:	pointer to the work_struct structure
2393  *
2394  * Used to reset the current battery capacity to be able to
2395  * retrigger a new voltage base capacity calculation. For
2396  * test and verification purpose.
2397  */
2398 static void ab8500_fg_reinit_work(struct work_struct *work)
2399 {
2400 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2401 		fg_reinit_work.work);
2402 
2403 	if (!di->flags.calibrate) {
2404 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2405 		ab8500_fg_clear_cap_samples(di);
2406 		ab8500_fg_calc_cap_discharge_voltage(di, true);
2407 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2408 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2409 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2410 
2411 	} else {
2412 		dev_err(di->dev, "Residual offset calibration ongoing "
2413 			"retrying..\n");
2414 		/* Wait one second until next try*/
2415 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2416 			round_jiffies(1));
2417 	}
2418 }
2419 
2420 /* Exposure to the sysfs interface */
2421 
2422 struct ab8500_fg_sysfs_entry {
2423 	struct attribute attr;
2424 	ssize_t (*show)(struct ab8500_fg *, char *);
2425 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2426 };
2427 
2428 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2429 {
2430 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2431 }
2432 
2433 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2434 				 size_t count)
2435 {
2436 	unsigned long charge_full;
2437 	int ret;
2438 
2439 	ret = kstrtoul(buf, 10, &charge_full);
2440 	if (ret)
2441 		return ret;
2442 
2443 	di->bat_cap.max_mah = (int) charge_full;
2444 	return count;
2445 }
2446 
2447 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2448 {
2449 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2450 }
2451 
2452 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2453 				 size_t count)
2454 {
2455 	unsigned long charge_now;
2456 	int ret;
2457 
2458 	ret = kstrtoul(buf, 10, &charge_now);
2459 	if (ret)
2460 		return ret;
2461 
2462 	di->bat_cap.user_mah = (int) charge_now;
2463 	di->flags.user_cap = true;
2464 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2465 	return count;
2466 }
2467 
2468 static struct ab8500_fg_sysfs_entry charge_full_attr =
2469 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2470 
2471 static struct ab8500_fg_sysfs_entry charge_now_attr =
2472 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2473 
2474 static ssize_t
2475 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2476 {
2477 	struct ab8500_fg_sysfs_entry *entry;
2478 	struct ab8500_fg *di;
2479 
2480 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2481 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2482 
2483 	if (!entry->show)
2484 		return -EIO;
2485 
2486 	return entry->show(di, buf);
2487 }
2488 static ssize_t
2489 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2490 		size_t count)
2491 {
2492 	struct ab8500_fg_sysfs_entry *entry;
2493 	struct ab8500_fg *di;
2494 
2495 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2496 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2497 
2498 	if (!entry->store)
2499 		return -EIO;
2500 
2501 	return entry->store(di, buf, count);
2502 }
2503 
2504 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2505 	.show = ab8500_fg_show,
2506 	.store = ab8500_fg_store,
2507 };
2508 
2509 static struct attribute *ab8500_fg_attrs[] = {
2510 	&charge_full_attr.attr,
2511 	&charge_now_attr.attr,
2512 	NULL,
2513 };
2514 
2515 static struct kobj_type ab8500_fg_ktype = {
2516 	.sysfs_ops = &ab8500_fg_sysfs_ops,
2517 	.default_attrs = ab8500_fg_attrs,
2518 };
2519 
2520 /**
2521  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2522  * @di:                pointer to the struct ab8500_chargalg
2523  *
2524  * This function removes the entry in sysfs.
2525  */
2526 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2527 {
2528 	kobject_del(&di->fg_kobject);
2529 }
2530 
2531 /**
2532  * ab8500_fg_sysfs_init() - init of sysfs entry
2533  * @di:                pointer to the struct ab8500_chargalg
2534  *
2535  * This function adds an entry in sysfs.
2536  * Returns error code in case of failure else 0(on success)
2537  */
2538 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2539 {
2540 	int ret = 0;
2541 
2542 	ret = kobject_init_and_add(&di->fg_kobject,
2543 		&ab8500_fg_ktype,
2544 		NULL, "battery");
2545 	if (ret < 0)
2546 		dev_err(di->dev, "failed to create sysfs entry\n");
2547 
2548 	return ret;
2549 }
2550 
2551 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2552 			     struct device_attribute *attr,
2553 			     char *buf)
2554 {
2555 	int ret;
2556 	u8 reg_value;
2557 	struct power_supply *psy = dev_get_drvdata(dev);
2558 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2559 
2560 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2561 		AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2562 
2563 	if (ret < 0) {
2564 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2565 		goto fail;
2566 	}
2567 
2568 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2569 
2570 fail:
2571 	return ret;
2572 }
2573 
2574 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2575 				  struct device_attribute *attr,
2576 				  const char *buf, size_t count)
2577 {
2578 	int ret;
2579 	int reg_value;
2580 	struct power_supply *psy = dev_get_drvdata(dev);
2581 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2582 
2583 	if (kstrtoint(buf, 10, &reg_value))
2584 		goto fail;
2585 
2586 	if (reg_value > 0x7F) {
2587 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2588 		goto fail;
2589 	}
2590 
2591 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2592 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2593 
2594 	if (ret < 0)
2595 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2596 
2597 fail:
2598 	return count;
2599 }
2600 
2601 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2602 			     struct device_attribute *attr,
2603 			     char *buf)
2604 {
2605 	int ret;
2606 	u8 reg_value;
2607 	struct power_supply *psy = dev_get_drvdata(dev);
2608 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2609 
2610 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2611 		AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2612 
2613 	if (ret < 0) {
2614 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2615 		goto fail;
2616 	}
2617 
2618 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2619 
2620 fail:
2621 	return ret;
2622 
2623 }
2624 
2625 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2626 				  struct device_attribute *attr,
2627 				  const char *buf, size_t count)
2628 {
2629 	int ret;
2630 	int reg_value;
2631 	struct power_supply *psy = dev_get_drvdata(dev);
2632 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2633 
2634 	if (kstrtoint(buf, 10, &reg_value))
2635 		goto fail;
2636 
2637 	if (reg_value > 0x7F) {
2638 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2639 		goto fail;
2640 	}
2641 
2642 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2643 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2644 
2645 	if (ret < 0)
2646 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2647 
2648 fail:
2649 	return count;
2650 }
2651 
2652 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2653 			     struct device_attribute *attr,
2654 			     char *buf)
2655 {
2656 	int ret;
2657 	u8 reg_value;
2658 	struct power_supply *psy = dev_get_drvdata(dev);
2659 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2660 
2661 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2662 		AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2663 
2664 	if (ret < 0) {
2665 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2666 		goto fail;
2667 	}
2668 
2669 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2670 
2671 fail:
2672 	return ret;
2673 }
2674 
2675 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2676 					     struct device_attribute *attr,
2677 					     const char *buf, size_t count)
2678 {
2679 	int ret;
2680 	int reg_value;
2681 	struct power_supply *psy = dev_get_drvdata(dev);
2682 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2683 
2684 	if (kstrtoint(buf, 10, &reg_value))
2685 		goto fail;
2686 
2687 	if (reg_value > 0xF) {
2688 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2689 		goto fail;
2690 	}
2691 
2692 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2693 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2694 
2695 	if (ret < 0)
2696 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2697 
2698 fail:
2699 	return count;
2700 
2701 }
2702 
2703 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2704 					  struct device_attribute *attr,
2705 					  char *buf)
2706 {
2707 	int ret;
2708 	u8 reg_value;
2709 	struct power_supply *psy = dev_get_drvdata(dev);
2710 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2711 
2712 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2713 						AB8505_RTC_PCUT_TIME_REG, &reg_value);
2714 
2715 	if (ret < 0) {
2716 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2717 		goto fail;
2718 	}
2719 
2720 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2721 
2722 fail:
2723 	return ret;
2724 }
2725 
2726 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2727 						    struct device_attribute *attr,
2728 						    char *buf)
2729 {
2730 	int ret;
2731 	u8 reg_value;
2732 	struct power_supply *psy = dev_get_drvdata(dev);
2733 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2734 
2735 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2736 						AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2737 
2738 	if (ret < 0) {
2739 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2740 		goto fail;
2741 	}
2742 
2743 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2744 
2745 fail:
2746 	return ret;
2747 }
2748 
2749 static ssize_t ab8505_powercut_read(struct device *dev,
2750 				    struct device_attribute *attr,
2751 				    char *buf)
2752 {
2753 	int ret;
2754 	u8 reg_value;
2755 	struct power_supply *psy = dev_get_drvdata(dev);
2756 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2757 
2758 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2759 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2760 
2761 	if (ret < 0)
2762 		goto fail;
2763 
2764 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2765 
2766 fail:
2767 	return ret;
2768 }
2769 
2770 static ssize_t ab8505_powercut_write(struct device *dev,
2771 				     struct device_attribute *attr,
2772 				     const char *buf, size_t count)
2773 {
2774 	int ret;
2775 	int reg_value;
2776 	struct power_supply *psy = dev_get_drvdata(dev);
2777 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2778 
2779 	if (kstrtoint(buf, 10, &reg_value))
2780 		goto fail;
2781 
2782 	if (reg_value > 0x1) {
2783 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2784 		goto fail;
2785 	}
2786 
2787 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2788 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2789 
2790 	if (ret < 0)
2791 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2792 
2793 fail:
2794 	return count;
2795 }
2796 
2797 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2798 					 struct device_attribute *attr,
2799 					 char *buf)
2800 {
2801 
2802 	int ret;
2803 	u8 reg_value;
2804 	struct power_supply *psy = dev_get_drvdata(dev);
2805 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2806 
2807 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2808 						AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2809 
2810 	if (ret < 0) {
2811 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2812 		goto fail;
2813 	}
2814 
2815 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2816 
2817 fail:
2818 	return ret;
2819 }
2820 
2821 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2822 					     struct device_attribute *attr,
2823 					     char *buf)
2824 {
2825 	int ret;
2826 	u8 reg_value;
2827 	struct power_supply *psy = dev_get_drvdata(dev);
2828 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2829 
2830 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2831 						AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2832 
2833 	if (ret < 0) {
2834 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2835 		goto fail;
2836 	}
2837 
2838 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2839 
2840 fail:
2841 	return ret;
2842 }
2843 
2844 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2845 					      struct device_attribute *attr,
2846 					      const char *buf, size_t count)
2847 {
2848 	int ret;
2849 	int reg_value;
2850 	struct power_supply *psy = dev_get_drvdata(dev);
2851 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2852 
2853 	if (kstrtoint(buf, 10, &reg_value))
2854 		goto fail;
2855 
2856 	if (reg_value > 0x7) {
2857 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2858 		goto fail;
2859 	}
2860 
2861 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2862 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2863 
2864 	if (ret < 0)
2865 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2866 
2867 fail:
2868 	return count;
2869 }
2870 
2871 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2872 						  struct device_attribute *attr,
2873 						  char *buf)
2874 {
2875 	int ret;
2876 	u8 reg_value;
2877 	struct power_supply *psy = dev_get_drvdata(dev);
2878 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2879 
2880 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2881 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2882 
2883 	if (ret < 0) {
2884 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2885 		goto fail;
2886 	}
2887 
2888 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2889 
2890 fail:
2891 	return ret;
2892 }
2893 
2894 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2895 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2896 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2897 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2898 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2899 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2900 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2901 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2902 	__ATTR(powercut_restart_counter, S_IRUGO,
2903 		ab8505_powercut_restart_counter_read, NULL),
2904 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2905 		ab8505_powercut_read, ab8505_powercut_write),
2906 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2907 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2908 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2909 	__ATTR(powercut_enable_status, S_IRUGO,
2910 		ab8505_powercut_enable_status_read, NULL),
2911 };
2912 
2913 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2914 {
2915 	unsigned int i;
2916 
2917 	if (is_ab8505(di->parent)) {
2918 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2919 			if (device_create_file(&di->fg_psy->dev,
2920 					       &ab8505_fg_sysfs_psy_attrs[i]))
2921 				goto sysfs_psy_create_attrs_failed_ab8505;
2922 	}
2923 	return 0;
2924 sysfs_psy_create_attrs_failed_ab8505:
2925 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2926 	while (i--)
2927 		device_remove_file(&di->fg_psy->dev,
2928 				   &ab8505_fg_sysfs_psy_attrs[i]);
2929 
2930 	return -EIO;
2931 }
2932 
2933 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2934 {
2935 	unsigned int i;
2936 
2937 	if (is_ab8505(di->parent)) {
2938 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2939 			(void)device_remove_file(&di->fg_psy->dev,
2940 						 &ab8505_fg_sysfs_psy_attrs[i]);
2941 	}
2942 }
2943 
2944 /* Exposure to the sysfs interface <<END>> */
2945 
2946 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2947 {
2948 	struct ab8500_fg *di = dev_get_drvdata(dev);
2949 
2950 	/*
2951 	 * Change state if we're not charging. If we're charging we will wake
2952 	 * up on the FG IRQ
2953 	 */
2954 	if (!di->flags.charging) {
2955 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2956 		queue_work(di->fg_wq, &di->fg_work);
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2963 {
2964 	struct ab8500_fg *di = dev_get_drvdata(dev);
2965 
2966 	flush_delayed_work(&di->fg_periodic_work);
2967 	flush_work(&di->fg_work);
2968 	flush_work(&di->fg_acc_cur_work);
2969 	flush_delayed_work(&di->fg_reinit_work);
2970 	flush_delayed_work(&di->fg_low_bat_work);
2971 	flush_delayed_work(&di->fg_check_hw_failure_work);
2972 
2973 	/*
2974 	 * If the FG is enabled we will disable it before going to suspend
2975 	 * only if we're not charging
2976 	 */
2977 	if (di->flags.fg_enabled && !di->flags.charging)
2978 		ab8500_fg_coulomb_counter(di, false);
2979 
2980 	return 0;
2981 }
2982 
2983 static int ab8500_fg_remove(struct platform_device *pdev)
2984 {
2985 	int ret = 0;
2986 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2987 
2988 	list_del(&di->node);
2989 
2990 	/* Disable coulomb counter */
2991 	ret = ab8500_fg_coulomb_counter(di, false);
2992 	if (ret)
2993 		dev_err(di->dev, "failed to disable coulomb counter\n");
2994 
2995 	destroy_workqueue(di->fg_wq);
2996 	ab8500_fg_sysfs_exit(di);
2997 
2998 	flush_scheduled_work();
2999 	ab8500_fg_sysfs_psy_remove_attrs(di);
3000 	power_supply_unregister(di->fg_psy);
3001 	return ret;
3002 }
3003 
3004 /* ab8500 fg driver interrupts and their respective isr */
3005 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3006 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3007 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
3008 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3009 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3010 	{"CCEOC", ab8500_fg_cc_data_end_handler},
3011 };
3012 
3013 static char *supply_interface[] = {
3014 	"ab8500_chargalg",
3015 	"ab8500_usb",
3016 };
3017 
3018 static const struct power_supply_desc ab8500_fg_desc = {
3019 	.name			= "ab8500_fg",
3020 	.type			= POWER_SUPPLY_TYPE_BATTERY,
3021 	.properties		= ab8500_fg_props,
3022 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
3023 	.get_property		= ab8500_fg_get_property,
3024 	.external_power_changed	= ab8500_fg_external_power_changed,
3025 };
3026 
3027 static int ab8500_fg_probe(struct platform_device *pdev)
3028 {
3029 	struct device_node *np = pdev->dev.of_node;
3030 	struct power_supply_config psy_cfg = {};
3031 	struct device *dev = &pdev->dev;
3032 	struct ab8500_fg *di;
3033 	int i, irq;
3034 	int ret = 0;
3035 
3036 	di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3037 	if (!di)
3038 		return -ENOMEM;
3039 
3040 	di->bm = &ab8500_bm_data;
3041 
3042 	ret = ab8500_bm_of_probe(dev, np, di->bm);
3043 	if (ret) {
3044 		dev_err(dev, "failed to get battery information\n");
3045 		return ret;
3046 	}
3047 
3048 	mutex_init(&di->cc_lock);
3049 
3050 	/* get parent data */
3051 	di->dev = dev;
3052 	di->parent = dev_get_drvdata(pdev->dev.parent);
3053 
3054 	di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3055 	if (IS_ERR(di->main_bat_v)) {
3056 		ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3057 				    "failed to get main battery ADC channel\n");
3058 		return ret;
3059 	}
3060 
3061 	psy_cfg.supplied_to = supply_interface;
3062 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3063 	psy_cfg.drv_data = di;
3064 
3065 	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3066 		di->bm->bat_type[di->bm->batt_id].charge_full_design;
3067 
3068 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3069 
3070 	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3071 
3072 	di->init_capacity = true;
3073 
3074 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3075 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3076 
3077 	/* Create a work queue for running the FG algorithm */
3078 	di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3079 	if (di->fg_wq == NULL) {
3080 		dev_err(dev, "failed to create work queue\n");
3081 		return -ENOMEM;
3082 	}
3083 
3084 	/* Init work for running the fg algorithm instantly */
3085 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3086 
3087 	/* Init work for getting the battery accumulated current */
3088 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3089 
3090 	/* Init work for reinitialising the fg algorithm */
3091 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3092 		ab8500_fg_reinit_work);
3093 
3094 	/* Work delayed Queue to run the state machine */
3095 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3096 		ab8500_fg_periodic_work);
3097 
3098 	/* Work to check low battery condition */
3099 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3100 		ab8500_fg_low_bat_work);
3101 
3102 	/* Init work for HW failure check */
3103 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3104 		ab8500_fg_check_hw_failure_work);
3105 
3106 	/* Reset battery low voltage flag */
3107 	di->flags.low_bat = false;
3108 
3109 	/* Initialize low battery counter */
3110 	di->low_bat_cnt = 10;
3111 
3112 	/* Initialize OVV, and other registers */
3113 	ret = ab8500_fg_init_hw_registers(di);
3114 	if (ret) {
3115 		dev_err(dev, "failed to initialize registers\n");
3116 		goto free_inst_curr_wq;
3117 	}
3118 
3119 	/* Consider battery unknown until we're informed otherwise */
3120 	di->flags.batt_unknown = true;
3121 	di->flags.batt_id_received = false;
3122 
3123 	/* Register FG power supply class */
3124 	di->fg_psy = power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3125 	if (IS_ERR(di->fg_psy)) {
3126 		dev_err(dev, "failed to register FG psy\n");
3127 		ret = PTR_ERR(di->fg_psy);
3128 		goto free_inst_curr_wq;
3129 	}
3130 
3131 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3132 	ab8500_fg_coulomb_counter(di, true);
3133 
3134 	/*
3135 	 * Initialize completion used to notify completion and start
3136 	 * of inst current
3137 	 */
3138 	init_completion(&di->ab8500_fg_started);
3139 	init_completion(&di->ab8500_fg_complete);
3140 
3141 	/* Register primary interrupt handlers */
3142 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3143 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3144 		if (irq < 0) {
3145 			ret = irq;
3146 			goto free_irq;
3147 		}
3148 
3149 		ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
3150 				  IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3151 				  ab8500_fg_irq[i].name, di);
3152 
3153 		if (ret != 0) {
3154 			dev_err(dev, "failed to request %s IRQ %d: %d\n",
3155 				ab8500_fg_irq[i].name, irq, ret);
3156 			goto free_irq;
3157 		}
3158 		dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3159 			ab8500_fg_irq[i].name, irq, ret);
3160 	}
3161 
3162 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
3163 	disable_irq(di->irq);
3164 	di->nbr_cceoc_irq_cnt = 0;
3165 
3166 	platform_set_drvdata(pdev, di);
3167 
3168 	ret = ab8500_fg_sysfs_init(di);
3169 	if (ret) {
3170 		dev_err(dev, "failed to create sysfs entry\n");
3171 		goto free_irq;
3172 	}
3173 
3174 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
3175 	if (ret) {
3176 		dev_err(dev, "failed to create FG psy\n");
3177 		ab8500_fg_sysfs_exit(di);
3178 		goto free_irq;
3179 	}
3180 
3181 	/* Calibrate the fg first time */
3182 	di->flags.calibrate = true;
3183 	di->calib_state = AB8500_FG_CALIB_INIT;
3184 
3185 	/* Use room temp as default value until we get an update from driver. */
3186 	di->bat_temp = 210;
3187 
3188 	/* Run the FG algorithm */
3189 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3190 
3191 	list_add_tail(&di->node, &ab8500_fg_list);
3192 
3193 	return ret;
3194 
3195 free_irq:
3196 	/* We also have to free all registered irqs */
3197 	while (--i >= 0) {
3198 		/* Last assignment of i from primary interrupt handlers */
3199 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3200 		free_irq(irq, di);
3201 	}
3202 
3203 	power_supply_unregister(di->fg_psy);
3204 free_inst_curr_wq:
3205 	destroy_workqueue(di->fg_wq);
3206 	return ret;
3207 }
3208 
3209 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3210 
3211 static const struct of_device_id ab8500_fg_match[] = {
3212 	{ .compatible = "stericsson,ab8500-fg", },
3213 	{ },
3214 };
3215 
3216 static struct platform_driver ab8500_fg_driver = {
3217 	.probe = ab8500_fg_probe,
3218 	.remove = ab8500_fg_remove,
3219 	.driver = {
3220 		.name = "ab8500-fg",
3221 		.of_match_table = ab8500_fg_match,
3222 		.pm = &ab8500_fg_pm_ops,
3223 	},
3224 };
3225 
3226 static int __init ab8500_fg_init(void)
3227 {
3228 	return platform_driver_register(&ab8500_fg_driver);
3229 }
3230 
3231 static void __exit ab8500_fg_exit(void)
3232 {
3233 	platform_driver_unregister(&ab8500_fg_driver);
3234 }
3235 
3236 subsys_initcall_sync(ab8500_fg_init);
3237 module_exit(ab8500_fg_exit);
3238 
3239 MODULE_LICENSE("GPL v2");
3240 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3241 MODULE_ALIAS("platform:ab8500-fg");
3242 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3243