xref: /openbmc/linux/drivers/power/supply/ab8500_fg.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *	Johan Palsson <johan.palsson@stericsson.com>
14  *	Karl Komierowski <karl.komierowski@stericsson.com>
15  *	Arun R Murthy <arun.murthy@stericsson.com>
16  */
17 
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
37 
38 #define MILLI_TO_MICRO			1000
39 #define FG_LSB_IN_MA			1627
40 #define QLSB_NANO_AMP_HOURS_X10		1071
41 #define INS_CURR_TIMEOUT		(3 * HZ)
42 
43 #define SEC_TO_SAMPLE(S)		(S * 4)
44 
45 #define NBR_AVG_SAMPLES			20
46 
47 #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
48 
49 #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN			2360 /* mV */
51 #define BATT_OK_INCREMENT		50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS	0xE
53 
54 /* FG constants */
55 #define BATT_OVV			0x01
56 
57 #define interpolate(x, x1, y1, x2, y2) \
58 	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59 
60 /**
61  * struct ab8500_fg_interrupts - ab8500 fg interupts
62  * @name:	name of the interrupt
63  * @isr		function pointer to the isr
64  */
65 struct ab8500_fg_interrupts {
66 	char *name;
67 	irqreturn_t (*isr)(int irq, void *data);
68 };
69 
70 enum ab8500_fg_discharge_state {
71 	AB8500_FG_DISCHARGE_INIT,
72 	AB8500_FG_DISCHARGE_INITMEASURING,
73 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
74 	AB8500_FG_DISCHARGE_RECOVERY,
75 	AB8500_FG_DISCHARGE_READOUT_INIT,
76 	AB8500_FG_DISCHARGE_READOUT,
77 	AB8500_FG_DISCHARGE_WAKEUP,
78 };
79 
80 static char *discharge_state[] = {
81 	"DISCHARGE_INIT",
82 	"DISCHARGE_INITMEASURING",
83 	"DISCHARGE_INIT_RECOVERY",
84 	"DISCHARGE_RECOVERY",
85 	"DISCHARGE_READOUT_INIT",
86 	"DISCHARGE_READOUT",
87 	"DISCHARGE_WAKEUP",
88 };
89 
90 enum ab8500_fg_charge_state {
91 	AB8500_FG_CHARGE_INIT,
92 	AB8500_FG_CHARGE_READOUT,
93 };
94 
95 static char *charge_state[] = {
96 	"CHARGE_INIT",
97 	"CHARGE_READOUT",
98 };
99 
100 enum ab8500_fg_calibration_state {
101 	AB8500_FG_CALIB_INIT,
102 	AB8500_FG_CALIB_WAIT,
103 	AB8500_FG_CALIB_END,
104 };
105 
106 struct ab8500_fg_avg_cap {
107 	int avg;
108 	int samples[NBR_AVG_SAMPLES];
109 	time64_t time_stamps[NBR_AVG_SAMPLES];
110 	int pos;
111 	int nbr_samples;
112 	int sum;
113 };
114 
115 struct ab8500_fg_cap_scaling {
116 	bool enable;
117 	int cap_to_scale[2];
118 	int disable_cap_level;
119 	int scaled_cap;
120 };
121 
122 struct ab8500_fg_battery_capacity {
123 	int max_mah_design;
124 	int max_mah;
125 	int mah;
126 	int permille;
127 	int level;
128 	int prev_mah;
129 	int prev_percent;
130 	int prev_level;
131 	int user_mah;
132 	struct ab8500_fg_cap_scaling cap_scale;
133 };
134 
135 struct ab8500_fg_flags {
136 	bool fg_enabled;
137 	bool conv_done;
138 	bool charging;
139 	bool fully_charged;
140 	bool force_full;
141 	bool low_bat_delay;
142 	bool low_bat;
143 	bool bat_ovv;
144 	bool batt_unknown;
145 	bool calibrate;
146 	bool user_cap;
147 	bool batt_id_received;
148 };
149 
150 struct inst_curr_result_list {
151 	struct list_head list;
152 	int *result;
153 };
154 
155 /**
156  * struct ab8500_fg - ab8500 FG device information
157  * @dev:		Pointer to the structure device
158  * @node:		a list of AB8500 FGs, hence prepared for reentrance
159  * @irq			holds the CCEOC interrupt number
160  * @vbat:		Battery voltage in mV
161  * @vbat_nom:		Nominal battery voltage in mV
162  * @inst_curr:		Instantenous battery current in mA
163  * @avg_curr:		Average battery current in mA
164  * @bat_temp		battery temperature
165  * @fg_samples:		Number of samples used in the FG accumulation
166  * @accu_charge:	Accumulated charge from the last conversion
167  * @recovery_cnt:	Counter for recovery mode
168  * @high_curr_cnt:	Counter for high current mode
169  * @init_cnt:		Counter for init mode
170  * @low_bat_cnt		Counter for number of consecutive low battery measures
171  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
172  * @recovery_needed:	Indicate if recovery is needed
173  * @high_curr_mode:	Indicate if we're in high current mode
174  * @init_capacity:	Indicate if initial capacity measuring should be done
175  * @turn_off_fg:	True if fg was off before current measurement
176  * @calib_state		State during offset calibration
177  * @discharge_state:	Current discharge state
178  * @charge_state:	Current charge state
179  * @ab8500_fg_started	Completion struct used for the instant current start
180  * @ab8500_fg_complete	Completion struct used for the instant current reading
181  * @flags:		Structure for information about events triggered
182  * @bat_cap:		Structure for battery capacity specific parameters
183  * @avg_cap:		Average capacity filter
184  * @parent:		Pointer to the struct ab8500
185  * @gpadc:		Pointer to the struct gpadc
186  * @bm:           	Platform specific battery management information
187  * @fg_psy:		Structure that holds the FG specific battery properties
188  * @fg_wq:		Work queue for running the FG algorithm
189  * @fg_periodic_work:	Work to run the FG algorithm periodically
190  * @fg_low_bat_work:	Work to check low bat condition
191  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
192  * @fg_work:		Work to run the FG algorithm instantly
193  * @fg_acc_cur_work:	Work to read the FG accumulator
194  * @fg_check_hw_failure_work:	Work for checking HW state
195  * @cc_lock:		Mutex for locking the CC
196  * @fg_kobject:		Structure of type kobject
197  */
198 struct ab8500_fg {
199 	struct device *dev;
200 	struct list_head node;
201 	int irq;
202 	int vbat;
203 	int vbat_nom;
204 	int inst_curr;
205 	int avg_curr;
206 	int bat_temp;
207 	int fg_samples;
208 	int accu_charge;
209 	int recovery_cnt;
210 	int high_curr_cnt;
211 	int init_cnt;
212 	int low_bat_cnt;
213 	int nbr_cceoc_irq_cnt;
214 	bool recovery_needed;
215 	bool high_curr_mode;
216 	bool init_capacity;
217 	bool turn_off_fg;
218 	enum ab8500_fg_calibration_state calib_state;
219 	enum ab8500_fg_discharge_state discharge_state;
220 	enum ab8500_fg_charge_state charge_state;
221 	struct completion ab8500_fg_started;
222 	struct completion ab8500_fg_complete;
223 	struct ab8500_fg_flags flags;
224 	struct ab8500_fg_battery_capacity bat_cap;
225 	struct ab8500_fg_avg_cap avg_cap;
226 	struct ab8500 *parent;
227 	struct ab8500_gpadc *gpadc;
228 	struct abx500_bm_data *bm;
229 	struct power_supply *fg_psy;
230 	struct workqueue_struct *fg_wq;
231 	struct delayed_work fg_periodic_work;
232 	struct delayed_work fg_low_bat_work;
233 	struct delayed_work fg_reinit_work;
234 	struct work_struct fg_work;
235 	struct work_struct fg_acc_cur_work;
236 	struct delayed_work fg_check_hw_failure_work;
237 	struct mutex cc_lock;
238 	struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241 
242 /**
243  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244  * (i.e. the first fuel gauge in the instance list)
245  */
246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248 	return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
249 					node);
250 }
251 
252 /* Main battery properties */
253 static enum power_supply_property ab8500_fg_props[] = {
254 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
255 	POWER_SUPPLY_PROP_CURRENT_NOW,
256 	POWER_SUPPLY_PROP_CURRENT_AVG,
257 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
258 	POWER_SUPPLY_PROP_ENERGY_FULL,
259 	POWER_SUPPLY_PROP_ENERGY_NOW,
260 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
261 	POWER_SUPPLY_PROP_CHARGE_FULL,
262 	POWER_SUPPLY_PROP_CHARGE_NOW,
263 	POWER_SUPPLY_PROP_CAPACITY,
264 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
265 };
266 
267 /*
268  * This array maps the raw hex value to lowbat voltage used by the AB8500
269  * Values taken from the UM0836
270  */
271 static int ab8500_fg_lowbat_voltage_map[] = {
272 	2300 ,
273 	2325 ,
274 	2350 ,
275 	2375 ,
276 	2400 ,
277 	2425 ,
278 	2450 ,
279 	2475 ,
280 	2500 ,
281 	2525 ,
282 	2550 ,
283 	2575 ,
284 	2600 ,
285 	2625 ,
286 	2650 ,
287 	2675 ,
288 	2700 ,
289 	2725 ,
290 	2750 ,
291 	2775 ,
292 	2800 ,
293 	2825 ,
294 	2850 ,
295 	2875 ,
296 	2900 ,
297 	2925 ,
298 	2950 ,
299 	2975 ,
300 	3000 ,
301 	3025 ,
302 	3050 ,
303 	3075 ,
304 	3100 ,
305 	3125 ,
306 	3150 ,
307 	3175 ,
308 	3200 ,
309 	3225 ,
310 	3250 ,
311 	3275 ,
312 	3300 ,
313 	3325 ,
314 	3350 ,
315 	3375 ,
316 	3400 ,
317 	3425 ,
318 	3450 ,
319 	3475 ,
320 	3500 ,
321 	3525 ,
322 	3550 ,
323 	3575 ,
324 	3600 ,
325 	3625 ,
326 	3650 ,
327 	3675 ,
328 	3700 ,
329 	3725 ,
330 	3750 ,
331 	3775 ,
332 	3800 ,
333 	3825 ,
334 	3850 ,
335 	3850 ,
336 };
337 
338 static u8 ab8500_volt_to_regval(int voltage)
339 {
340 	int i;
341 
342 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
343 		return 0;
344 
345 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
346 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
347 			return (u8) i - 1;
348 	}
349 
350 	/* If not captured above, return index of last element */
351 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
352 }
353 
354 /**
355  * ab8500_fg_is_low_curr() - Low or high current mode
356  * @di:		pointer to the ab8500_fg structure
357  * @curr:	the current to base or our decision on
358  *
359  * Low current mode if the current consumption is below a certain threshold
360  */
361 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
362 {
363 	/*
364 	 * We want to know if we're in low current mode
365 	 */
366 	if (curr > -di->bm->fg_params->high_curr_threshold)
367 		return true;
368 	else
369 		return false;
370 }
371 
372 /**
373  * ab8500_fg_add_cap_sample() - Add capacity to average filter
374  * @di:		pointer to the ab8500_fg structure
375  * @sample:	the capacity in mAh to add to the filter
376  *
377  * A capacity is added to the filter and a new mean capacity is calculated and
378  * returned
379  */
380 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
381 {
382 	time64_t now = ktime_get_boottime_seconds();
383 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
384 
385 	do {
386 		avg->sum += sample - avg->samples[avg->pos];
387 		avg->samples[avg->pos] = sample;
388 		avg->time_stamps[avg->pos] = now;
389 		avg->pos++;
390 
391 		if (avg->pos == NBR_AVG_SAMPLES)
392 			avg->pos = 0;
393 
394 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
395 			avg->nbr_samples++;
396 
397 		/*
398 		 * Check the time stamp for each sample. If too old,
399 		 * replace with latest sample
400 		 */
401 	} while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
402 
403 	avg->avg = avg->sum / avg->nbr_samples;
404 
405 	return avg->avg;
406 }
407 
408 /**
409  * ab8500_fg_clear_cap_samples() - Clear average filter
410  * @di:		pointer to the ab8500_fg structure
411  *
412  * The capacity filter is is reset to zero.
413  */
414 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
415 {
416 	int i;
417 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
418 
419 	avg->pos = 0;
420 	avg->nbr_samples = 0;
421 	avg->sum = 0;
422 	avg->avg = 0;
423 
424 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
425 		avg->samples[i] = 0;
426 		avg->time_stamps[i] = 0;
427 	}
428 }
429 
430 /**
431  * ab8500_fg_fill_cap_sample() - Fill average filter
432  * @di:		pointer to the ab8500_fg structure
433  * @sample:	the capacity in mAh to fill the filter with
434  *
435  * The capacity filter is filled with a capacity in mAh
436  */
437 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
438 {
439 	int i;
440 	time64_t now;
441 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
442 
443 	now = ktime_get_boottime_seconds();
444 
445 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
446 		avg->samples[i] = sample;
447 		avg->time_stamps[i] = now;
448 	}
449 
450 	avg->pos = 0;
451 	avg->nbr_samples = NBR_AVG_SAMPLES;
452 	avg->sum = sample * NBR_AVG_SAMPLES;
453 	avg->avg = sample;
454 }
455 
456 /**
457  * ab8500_fg_coulomb_counter() - enable coulomb counter
458  * @di:		pointer to the ab8500_fg structure
459  * @enable:	enable/disable
460  *
461  * Enable/Disable coulomb counter.
462  * On failure returns negative value.
463  */
464 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
465 {
466 	int ret = 0;
467 	mutex_lock(&di->cc_lock);
468 	if (enable) {
469 		/* To be able to reprogram the number of samples, we have to
470 		 * first stop the CC and then enable it again */
471 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
472 			AB8500_RTC_CC_CONF_REG, 0x00);
473 		if (ret)
474 			goto cc_err;
475 
476 		/* Program the samples */
477 		ret = abx500_set_register_interruptible(di->dev,
478 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
479 			di->fg_samples);
480 		if (ret)
481 			goto cc_err;
482 
483 		/* Start the CC */
484 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
485 			AB8500_RTC_CC_CONF_REG,
486 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
487 		if (ret)
488 			goto cc_err;
489 
490 		di->flags.fg_enabled = true;
491 	} else {
492 		/* Clear any pending read requests */
493 		ret = abx500_mask_and_set_register_interruptible(di->dev,
494 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
495 			(RESET_ACCU | READ_REQ), 0);
496 		if (ret)
497 			goto cc_err;
498 
499 		ret = abx500_set_register_interruptible(di->dev,
500 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
501 		if (ret)
502 			goto cc_err;
503 
504 		/* Stop the CC */
505 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
506 			AB8500_RTC_CC_CONF_REG, 0);
507 		if (ret)
508 			goto cc_err;
509 
510 		di->flags.fg_enabled = false;
511 
512 	}
513 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
514 		enable, di->fg_samples);
515 
516 	mutex_unlock(&di->cc_lock);
517 
518 	return ret;
519 cc_err:
520 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
521 	mutex_unlock(&di->cc_lock);
522 	return ret;
523 }
524 
525 /**
526  * ab8500_fg_inst_curr_start() - start battery instantaneous current
527  * @di:         pointer to the ab8500_fg structure
528  *
529  * Returns 0 or error code
530  * Note: This is part "one" and has to be called before
531  * ab8500_fg_inst_curr_finalize()
532  */
533 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
534 {
535 	u8 reg_val;
536 	int ret;
537 
538 	mutex_lock(&di->cc_lock);
539 
540 	di->nbr_cceoc_irq_cnt = 0;
541 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
542 		AB8500_RTC_CC_CONF_REG, &reg_val);
543 	if (ret < 0)
544 		goto fail;
545 
546 	if (!(reg_val & CC_PWR_UP_ENA)) {
547 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
548 		di->turn_off_fg = true;
549 
550 		/* Program the samples */
551 		ret = abx500_set_register_interruptible(di->dev,
552 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
553 			SEC_TO_SAMPLE(10));
554 		if (ret)
555 			goto fail;
556 
557 		/* Start the CC */
558 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
559 			AB8500_RTC_CC_CONF_REG,
560 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
561 		if (ret)
562 			goto fail;
563 	} else {
564 		di->turn_off_fg = false;
565 	}
566 
567 	/* Return and WFI */
568 	reinit_completion(&di->ab8500_fg_started);
569 	reinit_completion(&di->ab8500_fg_complete);
570 	enable_irq(di->irq);
571 
572 	/* Note: cc_lock is still locked */
573 	return 0;
574 fail:
575 	mutex_unlock(&di->cc_lock);
576 	return ret;
577 }
578 
579 /**
580  * ab8500_fg_inst_curr_started() - check if fg conversion has started
581  * @di:         pointer to the ab8500_fg structure
582  *
583  * Returns 1 if conversion started, 0 if still waiting
584  */
585 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
586 {
587 	return completion_done(&di->ab8500_fg_started);
588 }
589 
590 /**
591  * ab8500_fg_inst_curr_done() - check if fg conversion is done
592  * @di:         pointer to the ab8500_fg structure
593  *
594  * Returns 1 if conversion done, 0 if still waiting
595  */
596 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
597 {
598 	return completion_done(&di->ab8500_fg_complete);
599 }
600 
601 /**
602  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
603  * @di:         pointer to the ab8500_fg structure
604  * @res:	battery instantenous current(on success)
605  *
606  * Returns 0 or an error code
607  * Note: This is part "two" and has to be called at earliest 250 ms
608  * after ab8500_fg_inst_curr_start()
609  */
610 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
611 {
612 	u8 low, high;
613 	int val;
614 	int ret;
615 	unsigned long timeout;
616 
617 	if (!completion_done(&di->ab8500_fg_complete)) {
618 		timeout = wait_for_completion_timeout(
619 			&di->ab8500_fg_complete,
620 			INS_CURR_TIMEOUT);
621 		dev_dbg(di->dev, "Finalize time: %d ms\n",
622 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
623 		if (!timeout) {
624 			ret = -ETIME;
625 			disable_irq(di->irq);
626 			di->nbr_cceoc_irq_cnt = 0;
627 			dev_err(di->dev, "completion timed out [%d]\n",
628 				__LINE__);
629 			goto fail;
630 		}
631 	}
632 
633 	disable_irq(di->irq);
634 	di->nbr_cceoc_irq_cnt = 0;
635 
636 	ret = abx500_mask_and_set_register_interruptible(di->dev,
637 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
638 			READ_REQ, READ_REQ);
639 
640 	/* 100uS between read request and read is needed */
641 	usleep_range(100, 100);
642 
643 	/* Read CC Sample conversion value Low and high */
644 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
645 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
646 	if (ret < 0)
647 		goto fail;
648 
649 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
650 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
651 	if (ret < 0)
652 		goto fail;
653 
654 	/*
655 	 * negative value for Discharging
656 	 * convert 2's compliment into decimal
657 	 */
658 	if (high & 0x10)
659 		val = (low | (high << 8) | 0xFFFFE000);
660 	else
661 		val = (low | (high << 8));
662 
663 	/*
664 	 * Convert to unit value in mA
665 	 * Full scale input voltage is
666 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
667 	 * Given a 250ms conversion cycle time the LSB corresponds
668 	 * to 107.1 nAh. Convert to current by dividing by the conversion
669 	 * time in hours (250ms = 1 / (3600 * 4)h)
670 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
671 	 */
672 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
673 		(1000 * di->bm->fg_res);
674 
675 	if (di->turn_off_fg) {
676 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
677 
678 		/* Clear any pending read requests */
679 		ret = abx500_set_register_interruptible(di->dev,
680 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
681 		if (ret)
682 			goto fail;
683 
684 		/* Stop the CC */
685 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
686 			AB8500_RTC_CC_CONF_REG, 0);
687 		if (ret)
688 			goto fail;
689 	}
690 	mutex_unlock(&di->cc_lock);
691 	(*res) = val;
692 
693 	return 0;
694 fail:
695 	mutex_unlock(&di->cc_lock);
696 	return ret;
697 }
698 
699 /**
700  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
701  * @di:         pointer to the ab8500_fg structure
702  * @res:	battery instantenous current(on success)
703  *
704  * Returns 0 else error code
705  */
706 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
707 {
708 	int ret;
709 	unsigned long timeout;
710 	int res = 0;
711 
712 	ret = ab8500_fg_inst_curr_start(di);
713 	if (ret) {
714 		dev_err(di->dev, "Failed to initialize fg_inst\n");
715 		return 0;
716 	}
717 
718 	/* Wait for CC to actually start */
719 	if (!completion_done(&di->ab8500_fg_started)) {
720 		timeout = wait_for_completion_timeout(
721 			&di->ab8500_fg_started,
722 			INS_CURR_TIMEOUT);
723 		dev_dbg(di->dev, "Start time: %d ms\n",
724 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
725 		if (!timeout) {
726 			ret = -ETIME;
727 			dev_err(di->dev, "completion timed out [%d]\n",
728 				__LINE__);
729 			goto fail;
730 		}
731 	}
732 
733 	ret = ab8500_fg_inst_curr_finalize(di, &res);
734 	if (ret) {
735 		dev_err(di->dev, "Failed to finalize fg_inst\n");
736 		return 0;
737 	}
738 
739 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
740 	return res;
741 fail:
742 	disable_irq(di->irq);
743 	mutex_unlock(&di->cc_lock);
744 	return ret;
745 }
746 
747 /**
748  * ab8500_fg_acc_cur_work() - average battery current
749  * @work:	pointer to the work_struct structure
750  *
751  * Updated the average battery current obtained from the
752  * coulomb counter.
753  */
754 static void ab8500_fg_acc_cur_work(struct work_struct *work)
755 {
756 	int val;
757 	int ret;
758 	u8 low, med, high;
759 
760 	struct ab8500_fg *di = container_of(work,
761 		struct ab8500_fg, fg_acc_cur_work);
762 
763 	mutex_lock(&di->cc_lock);
764 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
765 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
766 	if (ret)
767 		goto exit;
768 
769 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
770 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
771 	if (ret < 0)
772 		goto exit;
773 
774 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
775 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
776 	if (ret < 0)
777 		goto exit;
778 
779 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
780 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
781 	if (ret < 0)
782 		goto exit;
783 
784 	/* Check for sign bit in case of negative value, 2's compliment */
785 	if (high & 0x10)
786 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
787 	else
788 		val = (low | (med << 8) | (high << 16));
789 
790 	/*
791 	 * Convert to uAh
792 	 * Given a 250ms conversion cycle time the LSB corresponds
793 	 * to 112.9 nAh.
794 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
795 	 */
796 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
797 		(100 * di->bm->fg_res);
798 
799 	/*
800 	 * Convert to unit value in mA
801 	 * by dividing by the conversion
802 	 * time in hours (= samples / (3600 * 4)h)
803 	 * and multiply with 1000
804 	 */
805 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
806 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
807 
808 	di->flags.conv_done = true;
809 
810 	mutex_unlock(&di->cc_lock);
811 
812 	queue_work(di->fg_wq, &di->fg_work);
813 
814 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
815 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
816 	return;
817 exit:
818 	dev_err(di->dev,
819 		"Failed to read or write gas gauge registers\n");
820 	mutex_unlock(&di->cc_lock);
821 	queue_work(di->fg_wq, &di->fg_work);
822 }
823 
824 /**
825  * ab8500_fg_bat_voltage() - get battery voltage
826  * @di:		pointer to the ab8500_fg structure
827  *
828  * Returns battery voltage(on success) else error code
829  */
830 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
831 {
832 	int vbat;
833 	static int prev;
834 
835 	vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
836 	if (vbat < 0) {
837 		dev_err(di->dev,
838 			"%s gpadc conversion failed, using previous value\n",
839 			__func__);
840 		return prev;
841 	}
842 
843 	prev = vbat;
844 	return vbat;
845 }
846 
847 /**
848  * ab8500_fg_volt_to_capacity() - Voltage based capacity
849  * @di:		pointer to the ab8500_fg structure
850  * @voltage:	The voltage to convert to a capacity
851  *
852  * Returns battery capacity in per mille based on voltage
853  */
854 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
855 {
856 	int i, tbl_size;
857 	const struct abx500_v_to_cap *tbl;
858 	int cap = 0;
859 
860 	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
861 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
862 
863 	for (i = 0; i < tbl_size; ++i) {
864 		if (voltage > tbl[i].voltage)
865 			break;
866 	}
867 
868 	if ((i > 0) && (i < tbl_size)) {
869 		cap = interpolate(voltage,
870 			tbl[i].voltage,
871 			tbl[i].capacity * 10,
872 			tbl[i-1].voltage,
873 			tbl[i-1].capacity * 10);
874 	} else if (i == 0) {
875 		cap = 1000;
876 	} else {
877 		cap = 0;
878 	}
879 
880 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
881 		__func__, voltage, cap);
882 
883 	return cap;
884 }
885 
886 /**
887  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
888  * @di:		pointer to the ab8500_fg structure
889  *
890  * Returns battery capacity based on battery voltage that is not compensated
891  * for the voltage drop due to the load
892  */
893 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
894 {
895 	di->vbat = ab8500_fg_bat_voltage(di);
896 	return ab8500_fg_volt_to_capacity(di, di->vbat);
897 }
898 
899 /**
900  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
901  * @di:		pointer to the ab8500_fg structure
902  *
903  * Returns battery inner resistance added with the fuel gauge resistor value
904  * to get the total resistance in the whole link from gnd to bat+ node.
905  */
906 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
907 {
908 	int i, tbl_size;
909 	const struct batres_vs_temp *tbl;
910 	int resist = 0;
911 
912 	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
913 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
914 
915 	for (i = 0; i < tbl_size; ++i) {
916 		if (di->bat_temp / 10 > tbl[i].temp)
917 			break;
918 	}
919 
920 	if ((i > 0) && (i < tbl_size)) {
921 		resist = interpolate(di->bat_temp / 10,
922 			tbl[i].temp,
923 			tbl[i].resist,
924 			tbl[i-1].temp,
925 			tbl[i-1].resist);
926 	} else if (i == 0) {
927 		resist = tbl[0].resist;
928 	} else {
929 		resist = tbl[tbl_size - 1].resist;
930 	}
931 
932 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
933 	    " fg resistance %d, total: %d (mOhm)\n",
934 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
935 		(di->bm->fg_res / 10) + resist);
936 
937 	/* fg_res variable is in 0.1mOhm */
938 	resist += di->bm->fg_res / 10;
939 
940 	return resist;
941 }
942 
943 /**
944  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
945  * @di:		pointer to the ab8500_fg structure
946  *
947  * Returns battery capacity based on battery voltage that is load compensated
948  * for the voltage drop
949  */
950 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
951 {
952 	int vbat_comp, res;
953 	int i = 0;
954 	int vbat = 0;
955 
956 	ab8500_fg_inst_curr_start(di);
957 
958 	do {
959 		vbat += ab8500_fg_bat_voltage(di);
960 		i++;
961 		usleep_range(5000, 6000);
962 	} while (!ab8500_fg_inst_curr_done(di));
963 
964 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
965 
966 	di->vbat = vbat / i;
967 	res = ab8500_fg_battery_resistance(di);
968 
969 	/* Use Ohms law to get the load compensated voltage */
970 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
971 
972 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
973 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
974 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
975 
976 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
977 }
978 
979 /**
980  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
981  * @di:		pointer to the ab8500_fg structure
982  * @cap_mah:	capacity in mAh
983  *
984  * Converts capacity in mAh to capacity in permille
985  */
986 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
987 {
988 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
989 }
990 
991 /**
992  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
993  * @di:		pointer to the ab8500_fg structure
994  * @cap_pm:	capacity in permille
995  *
996  * Converts capacity in permille to capacity in mAh
997  */
998 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
999 {
1000 	return cap_pm * di->bat_cap.max_mah_design / 1000;
1001 }
1002 
1003 /**
1004  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1005  * @di:		pointer to the ab8500_fg structure
1006  * @cap_mah:	capacity in mAh
1007  *
1008  * Converts capacity in mAh to capacity in uWh
1009  */
1010 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1011 {
1012 	u64 div_res;
1013 	u32 div_rem;
1014 
1015 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1016 	div_rem = do_div(div_res, 1000);
1017 
1018 	/* Make sure to round upwards if necessary */
1019 	if (div_rem >= 1000 / 2)
1020 		div_res++;
1021 
1022 	return (int) div_res;
1023 }
1024 
1025 /**
1026  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1027  * @di:		pointer to the ab8500_fg structure
1028  *
1029  * Return the capacity in mAh based on previous calculated capcity and the FG
1030  * accumulator register value. The filter is filled with this capacity
1031  */
1032 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1033 {
1034 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1035 		__func__,
1036 		di->bat_cap.mah,
1037 		di->accu_charge);
1038 
1039 	/* Capacity should not be less than 0 */
1040 	if (di->bat_cap.mah + di->accu_charge > 0)
1041 		di->bat_cap.mah += di->accu_charge;
1042 	else
1043 		di->bat_cap.mah = 0;
1044 	/*
1045 	 * We force capacity to 100% once when the algorithm
1046 	 * reports that it's full.
1047 	 */
1048 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1049 		di->flags.force_full) {
1050 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1051 	}
1052 
1053 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1054 	di->bat_cap.permille =
1055 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1056 
1057 	/* We need to update battery voltage and inst current when charging */
1058 	di->vbat = ab8500_fg_bat_voltage(di);
1059 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1060 
1061 	return di->bat_cap.mah;
1062 }
1063 
1064 /**
1065  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1066  * @di:		pointer to the ab8500_fg structure
1067  * @comp:	if voltage should be load compensated before capacity calc
1068  *
1069  * Return the capacity in mAh based on the battery voltage. The voltage can
1070  * either be load compensated or not. This value is added to the filter and a
1071  * new mean value is calculated and returned.
1072  */
1073 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1074 {
1075 	int permille, mah;
1076 
1077 	if (comp)
1078 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
1079 	else
1080 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
1081 
1082 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
1083 
1084 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1085 	di->bat_cap.permille =
1086 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1087 
1088 	return di->bat_cap.mah;
1089 }
1090 
1091 /**
1092  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1093  * @di:		pointer to the ab8500_fg structure
1094  *
1095  * Return the capacity in mAh based on previous calculated capcity and the FG
1096  * accumulator register value. This value is added to the filter and a
1097  * new mean value is calculated and returned.
1098  */
1099 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1100 {
1101 	int permille_volt, permille;
1102 
1103 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1104 		__func__,
1105 		di->bat_cap.mah,
1106 		di->accu_charge);
1107 
1108 	/* Capacity should not be less than 0 */
1109 	if (di->bat_cap.mah + di->accu_charge > 0)
1110 		di->bat_cap.mah += di->accu_charge;
1111 	else
1112 		di->bat_cap.mah = 0;
1113 
1114 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1115 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1116 
1117 	/*
1118 	 * Check against voltage based capacity. It can not be lower
1119 	 * than what the uncompensated voltage says
1120 	 */
1121 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1122 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1123 
1124 	if (permille < permille_volt) {
1125 		di->bat_cap.permille = permille_volt;
1126 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1127 			di->bat_cap.permille);
1128 
1129 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1130 			__func__,
1131 			permille,
1132 			permille_volt);
1133 
1134 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1135 	} else {
1136 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137 		di->bat_cap.permille =
1138 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1139 	}
1140 
1141 	return di->bat_cap.mah;
1142 }
1143 
1144 /**
1145  * ab8500_fg_capacity_level() - Get the battery capacity level
1146  * @di:		pointer to the ab8500_fg structure
1147  *
1148  * Get the battery capacity level based on the capacity in percent
1149  */
1150 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1151 {
1152 	int ret, percent;
1153 
1154 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1155 
1156 	if (percent <= di->bm->cap_levels->critical ||
1157 		di->flags.low_bat)
1158 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1159 	else if (percent <= di->bm->cap_levels->low)
1160 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1161 	else if (percent <= di->bm->cap_levels->normal)
1162 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1163 	else if (percent <= di->bm->cap_levels->high)
1164 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1165 	else
1166 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1167 
1168 	return ret;
1169 }
1170 
1171 /**
1172  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1173  * @di:		pointer to the ab8500_fg structure
1174  *
1175  * Calculates the capacity to be shown to upper layers. Scales the capacity
1176  * to have 100% as a reference from the actual capacity upon removal of charger
1177  * when charging is in maintenance mode.
1178  */
1179 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1180 {
1181 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1182 	int capacity = di->bat_cap.prev_percent;
1183 
1184 	if (!cs->enable)
1185 		return capacity;
1186 
1187 	/*
1188 	 * As long as we are in fully charge mode scale the capacity
1189 	 * to show 100%.
1190 	 */
1191 	if (di->flags.fully_charged) {
1192 		cs->cap_to_scale[0] = 100;
1193 		cs->cap_to_scale[1] =
1194 			max(capacity, di->bm->fg_params->maint_thres);
1195 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
1196 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1197 	}
1198 
1199 	/* Calculates the scaled capacity. */
1200 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1201 					&& (cs->cap_to_scale[1] > 0))
1202 		capacity = min(100,
1203 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1204 						 cs->cap_to_scale[0],
1205 						 cs->cap_to_scale[1]));
1206 
1207 	if (di->flags.charging) {
1208 		if (capacity < cs->disable_cap_level) {
1209 			cs->disable_cap_level = capacity;
1210 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1211 				cs->disable_cap_level);
1212 		} else if (!di->flags.fully_charged) {
1213 			if (di->bat_cap.prev_percent >=
1214 			    cs->disable_cap_level) {
1215 				dev_dbg(di->dev, "Disabling scaled capacity\n");
1216 				cs->enable = false;
1217 				capacity = di->bat_cap.prev_percent;
1218 			} else {
1219 				dev_dbg(di->dev,
1220 					"Waiting in cap to level %d%%\n",
1221 					cs->disable_cap_level);
1222 				capacity = cs->disable_cap_level;
1223 			}
1224 		}
1225 	}
1226 
1227 	return capacity;
1228 }
1229 
1230 /**
1231  * ab8500_fg_update_cap_scalers() - Capacity scaling
1232  * @di:		pointer to the ab8500_fg structure
1233  *
1234  * To be called when state change from charge<->discharge to update
1235  * the capacity scalers.
1236  */
1237 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1238 {
1239 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1240 
1241 	if (!cs->enable)
1242 		return;
1243 	if (di->flags.charging) {
1244 		di->bat_cap.cap_scale.disable_cap_level =
1245 			di->bat_cap.cap_scale.scaled_cap;
1246 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1247 				di->bat_cap.cap_scale.disable_cap_level);
1248 	} else {
1249 		if (cs->scaled_cap != 100) {
1250 			cs->cap_to_scale[0] = cs->scaled_cap;
1251 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1252 		} else {
1253 			cs->cap_to_scale[0] = 100;
1254 			cs->cap_to_scale[1] =
1255 				max(di->bat_cap.prev_percent,
1256 				    di->bm->fg_params->maint_thres);
1257 		}
1258 
1259 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1260 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
1261 	}
1262 }
1263 
1264 /**
1265  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1266  * @di:		pointer to the ab8500_fg structure
1267  * @init:	capacity is allowed to go up in init mode
1268  *
1269  * Check if capacity or capacity limit has changed and notify the system
1270  * about it using the power_supply framework
1271  */
1272 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1273 {
1274 	bool changed = false;
1275 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1276 
1277 	di->bat_cap.level = ab8500_fg_capacity_level(di);
1278 
1279 	if (di->bat_cap.level != di->bat_cap.prev_level) {
1280 		/*
1281 		 * We do not allow reported capacity level to go up
1282 		 * unless we're charging or if we're in init
1283 		 */
1284 		if (!(!di->flags.charging && di->bat_cap.level >
1285 			di->bat_cap.prev_level) || init) {
1286 			dev_dbg(di->dev, "level changed from %d to %d\n",
1287 				di->bat_cap.prev_level,
1288 				di->bat_cap.level);
1289 			di->bat_cap.prev_level = di->bat_cap.level;
1290 			changed = true;
1291 		} else {
1292 			dev_dbg(di->dev, "level not allowed to go up "
1293 				"since no charger is connected: %d to %d\n",
1294 				di->bat_cap.prev_level,
1295 				di->bat_cap.level);
1296 		}
1297 	}
1298 
1299 	/*
1300 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1301 	 * shutdown
1302 	 */
1303 	if (di->flags.low_bat) {
1304 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1305 		di->bat_cap.prev_percent = 0;
1306 		di->bat_cap.permille = 0;
1307 		percent = 0;
1308 		di->bat_cap.prev_mah = 0;
1309 		di->bat_cap.mah = 0;
1310 		changed = true;
1311 	} else if (di->flags.fully_charged) {
1312 		/*
1313 		 * We report 100% if algorithm reported fully charged
1314 		 * and show 100% during maintenance charging (scaling).
1315 		 */
1316 		if (di->flags.force_full) {
1317 			di->bat_cap.prev_percent = percent;
1318 			di->bat_cap.prev_mah = di->bat_cap.mah;
1319 
1320 			changed = true;
1321 
1322 			if (!di->bat_cap.cap_scale.enable &&
1323 						di->bm->capacity_scaling) {
1324 				di->bat_cap.cap_scale.enable = true;
1325 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1326 				di->bat_cap.cap_scale.cap_to_scale[1] =
1327 						di->bat_cap.prev_percent;
1328 				di->bat_cap.cap_scale.disable_cap_level = 100;
1329 			}
1330 		} else if (di->bat_cap.prev_percent != percent) {
1331 			dev_dbg(di->dev,
1332 				"battery reported full "
1333 				"but capacity dropping: %d\n",
1334 				percent);
1335 			di->bat_cap.prev_percent = percent;
1336 			di->bat_cap.prev_mah = di->bat_cap.mah;
1337 
1338 			changed = true;
1339 		}
1340 	} else if (di->bat_cap.prev_percent != percent) {
1341 		if (percent == 0) {
1342 			/*
1343 			 * We will not report 0% unless we've got
1344 			 * the LOW_BAT IRQ, no matter what the FG
1345 			 * algorithm says.
1346 			 */
1347 			di->bat_cap.prev_percent = 1;
1348 			percent = 1;
1349 
1350 			changed = true;
1351 		} else if (!(!di->flags.charging &&
1352 			percent > di->bat_cap.prev_percent) || init) {
1353 			/*
1354 			 * We do not allow reported capacity to go up
1355 			 * unless we're charging or if we're in init
1356 			 */
1357 			dev_dbg(di->dev,
1358 				"capacity changed from %d to %d (%d)\n",
1359 				di->bat_cap.prev_percent,
1360 				percent,
1361 				di->bat_cap.permille);
1362 			di->bat_cap.prev_percent = percent;
1363 			di->bat_cap.prev_mah = di->bat_cap.mah;
1364 
1365 			changed = true;
1366 		} else {
1367 			dev_dbg(di->dev, "capacity not allowed to go up since "
1368 				"no charger is connected: %d to %d (%d)\n",
1369 				di->bat_cap.prev_percent,
1370 				percent,
1371 				di->bat_cap.permille);
1372 		}
1373 	}
1374 
1375 	if (changed) {
1376 		if (di->bm->capacity_scaling) {
1377 			di->bat_cap.cap_scale.scaled_cap =
1378 				ab8500_fg_calculate_scaled_capacity(di);
1379 
1380 			dev_info(di->dev, "capacity=%d (%d)\n",
1381 				di->bat_cap.prev_percent,
1382 				di->bat_cap.cap_scale.scaled_cap);
1383 		}
1384 		power_supply_changed(di->fg_psy);
1385 		if (di->flags.fully_charged && di->flags.force_full) {
1386 			dev_dbg(di->dev, "Battery full, notifying.\n");
1387 			di->flags.force_full = false;
1388 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1389 		}
1390 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1391 	}
1392 }
1393 
1394 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1395 	enum ab8500_fg_charge_state new_state)
1396 {
1397 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1398 		di->charge_state,
1399 		charge_state[di->charge_state],
1400 		new_state,
1401 		charge_state[new_state]);
1402 
1403 	di->charge_state = new_state;
1404 }
1405 
1406 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1407 	enum ab8500_fg_discharge_state new_state)
1408 {
1409 	dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1410 		di->discharge_state,
1411 		discharge_state[di->discharge_state],
1412 		new_state,
1413 		discharge_state[new_state]);
1414 
1415 	di->discharge_state = new_state;
1416 }
1417 
1418 /**
1419  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1420  * @di:		pointer to the ab8500_fg structure
1421  *
1422  * Battery capacity calculation state machine for when we're charging
1423  */
1424 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1425 {
1426 	/*
1427 	 * If we change to discharge mode
1428 	 * we should start with recovery
1429 	 */
1430 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1431 		ab8500_fg_discharge_state_to(di,
1432 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
1433 
1434 	switch (di->charge_state) {
1435 	case AB8500_FG_CHARGE_INIT:
1436 		di->fg_samples = SEC_TO_SAMPLE(
1437 			di->bm->fg_params->accu_charging);
1438 
1439 		ab8500_fg_coulomb_counter(di, true);
1440 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1441 
1442 		break;
1443 
1444 	case AB8500_FG_CHARGE_READOUT:
1445 		/*
1446 		 * Read the FG and calculate the new capacity
1447 		 */
1448 		mutex_lock(&di->cc_lock);
1449 		if (!di->flags.conv_done && !di->flags.force_full) {
1450 			/* Wasn't the CC IRQ that got us here */
1451 			mutex_unlock(&di->cc_lock);
1452 			dev_dbg(di->dev, "%s CC conv not done\n",
1453 				__func__);
1454 
1455 			break;
1456 		}
1457 		di->flags.conv_done = false;
1458 		mutex_unlock(&di->cc_lock);
1459 
1460 		ab8500_fg_calc_cap_charging(di);
1461 
1462 		break;
1463 
1464 	default:
1465 		break;
1466 	}
1467 
1468 	/* Check capacity limits */
1469 	ab8500_fg_check_capacity_limits(di, false);
1470 }
1471 
1472 static void force_capacity(struct ab8500_fg *di)
1473 {
1474 	int cap;
1475 
1476 	ab8500_fg_clear_cap_samples(di);
1477 	cap = di->bat_cap.user_mah;
1478 	if (cap > di->bat_cap.max_mah_design) {
1479 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1480 			" %d\n", cap, di->bat_cap.max_mah_design);
1481 		cap = di->bat_cap.max_mah_design;
1482 	}
1483 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1484 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1485 	di->bat_cap.mah = cap;
1486 	ab8500_fg_check_capacity_limits(di, true);
1487 }
1488 
1489 static bool check_sysfs_capacity(struct ab8500_fg *di)
1490 {
1491 	int cap, lower, upper;
1492 	int cap_permille;
1493 
1494 	cap = di->bat_cap.user_mah;
1495 
1496 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
1497 		di->bat_cap.user_mah);
1498 
1499 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1500 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1501 
1502 	if (lower < 0)
1503 		lower = 0;
1504 	/* 1000 is permille, -> 100 percent */
1505 	if (upper > 1000)
1506 		upper = 1000;
1507 
1508 	dev_dbg(di->dev, "Capacity limits:"
1509 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1510 		lower, cap_permille, upper, cap, di->bat_cap.mah);
1511 
1512 	/* If within limits, use the saved capacity and exit estimation...*/
1513 	if (cap_permille > lower && cap_permille < upper) {
1514 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1515 		force_capacity(di);
1516 		return true;
1517 	}
1518 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1519 	return false;
1520 }
1521 
1522 /**
1523  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1524  * @di:		pointer to the ab8500_fg structure
1525  *
1526  * Battery capacity calculation state machine for when we're discharging
1527  */
1528 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1529 {
1530 	int sleep_time;
1531 
1532 	/* If we change to charge mode we should start with init */
1533 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
1534 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1535 
1536 	switch (di->discharge_state) {
1537 	case AB8500_FG_DISCHARGE_INIT:
1538 		/* We use the FG IRQ to work on */
1539 		di->init_cnt = 0;
1540 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1541 		ab8500_fg_coulomb_counter(di, true);
1542 		ab8500_fg_discharge_state_to(di,
1543 			AB8500_FG_DISCHARGE_INITMEASURING);
1544 
1545 		/* Intentional fallthrough */
1546 	case AB8500_FG_DISCHARGE_INITMEASURING:
1547 		/*
1548 		 * Discard a number of samples during startup.
1549 		 * After that, use compensated voltage for a few
1550 		 * samples to get an initial capacity.
1551 		 * Then go to READOUT
1552 		 */
1553 		sleep_time = di->bm->fg_params->init_timer;
1554 
1555 		/* Discard the first [x] seconds */
1556 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1557 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1558 
1559 			ab8500_fg_check_capacity_limits(di, true);
1560 		}
1561 
1562 		di->init_cnt += sleep_time;
1563 		if (di->init_cnt > di->bm->fg_params->init_total_time)
1564 			ab8500_fg_discharge_state_to(di,
1565 				AB8500_FG_DISCHARGE_READOUT_INIT);
1566 
1567 		break;
1568 
1569 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1570 		di->recovery_cnt = 0;
1571 		di->recovery_needed = true;
1572 		ab8500_fg_discharge_state_to(di,
1573 			AB8500_FG_DISCHARGE_RECOVERY);
1574 
1575 		/* Intentional fallthrough */
1576 
1577 	case AB8500_FG_DISCHARGE_RECOVERY:
1578 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
1579 
1580 		/*
1581 		 * We should check the power consumption
1582 		 * If low, go to READOUT (after x min) or
1583 		 * RECOVERY_SLEEP if time left.
1584 		 * If high, go to READOUT
1585 		 */
1586 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1587 
1588 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1589 			if (di->recovery_cnt >
1590 				di->bm->fg_params->recovery_total_time) {
1591 				di->fg_samples = SEC_TO_SAMPLE(
1592 					di->bm->fg_params->accu_high_curr);
1593 				ab8500_fg_coulomb_counter(di, true);
1594 				ab8500_fg_discharge_state_to(di,
1595 					AB8500_FG_DISCHARGE_READOUT);
1596 				di->recovery_needed = false;
1597 			} else {
1598 				queue_delayed_work(di->fg_wq,
1599 					&di->fg_periodic_work,
1600 					sleep_time * HZ);
1601 			}
1602 			di->recovery_cnt += sleep_time;
1603 		} else {
1604 			di->fg_samples = SEC_TO_SAMPLE(
1605 				di->bm->fg_params->accu_high_curr);
1606 			ab8500_fg_coulomb_counter(di, true);
1607 			ab8500_fg_discharge_state_to(di,
1608 				AB8500_FG_DISCHARGE_READOUT);
1609 		}
1610 		break;
1611 
1612 	case AB8500_FG_DISCHARGE_READOUT_INIT:
1613 		di->fg_samples = SEC_TO_SAMPLE(
1614 			di->bm->fg_params->accu_high_curr);
1615 		ab8500_fg_coulomb_counter(di, true);
1616 		ab8500_fg_discharge_state_to(di,
1617 				AB8500_FG_DISCHARGE_READOUT);
1618 		break;
1619 
1620 	case AB8500_FG_DISCHARGE_READOUT:
1621 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1622 
1623 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1624 			/* Detect mode change */
1625 			if (di->high_curr_mode) {
1626 				di->high_curr_mode = false;
1627 				di->high_curr_cnt = 0;
1628 			}
1629 
1630 			if (di->recovery_needed) {
1631 				ab8500_fg_discharge_state_to(di,
1632 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
1633 
1634 				queue_delayed_work(di->fg_wq,
1635 					&di->fg_periodic_work, 0);
1636 
1637 				break;
1638 			}
1639 
1640 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1641 		} else {
1642 			mutex_lock(&di->cc_lock);
1643 			if (!di->flags.conv_done) {
1644 				/* Wasn't the CC IRQ that got us here */
1645 				mutex_unlock(&di->cc_lock);
1646 				dev_dbg(di->dev, "%s CC conv not done\n",
1647 					__func__);
1648 
1649 				break;
1650 			}
1651 			di->flags.conv_done = false;
1652 			mutex_unlock(&di->cc_lock);
1653 
1654 			/* Detect mode change */
1655 			if (!di->high_curr_mode) {
1656 				di->high_curr_mode = true;
1657 				di->high_curr_cnt = 0;
1658 			}
1659 
1660 			di->high_curr_cnt +=
1661 				di->bm->fg_params->accu_high_curr;
1662 			if (di->high_curr_cnt >
1663 				di->bm->fg_params->high_curr_time)
1664 				di->recovery_needed = true;
1665 
1666 			ab8500_fg_calc_cap_discharge_fg(di);
1667 		}
1668 
1669 		ab8500_fg_check_capacity_limits(di, false);
1670 
1671 		break;
1672 
1673 	case AB8500_FG_DISCHARGE_WAKEUP:
1674 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1675 
1676 		di->fg_samples = SEC_TO_SAMPLE(
1677 			di->bm->fg_params->accu_high_curr);
1678 		ab8500_fg_coulomb_counter(di, true);
1679 		ab8500_fg_discharge_state_to(di,
1680 				AB8500_FG_DISCHARGE_READOUT);
1681 
1682 		ab8500_fg_check_capacity_limits(di, false);
1683 
1684 		break;
1685 
1686 	default:
1687 		break;
1688 	}
1689 }
1690 
1691 /**
1692  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1693  * @di:		pointer to the ab8500_fg structure
1694  *
1695  */
1696 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1697 {
1698 	int ret;
1699 
1700 	switch (di->calib_state) {
1701 	case AB8500_FG_CALIB_INIT:
1702 		dev_dbg(di->dev, "Calibration ongoing...\n");
1703 
1704 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1705 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1706 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1707 		if (ret < 0)
1708 			goto err;
1709 
1710 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1711 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1712 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1713 		if (ret < 0)
1714 			goto err;
1715 		di->calib_state = AB8500_FG_CALIB_WAIT;
1716 		break;
1717 	case AB8500_FG_CALIB_END:
1718 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1719 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1720 			CC_MUXOFFSET, CC_MUXOFFSET);
1721 		if (ret < 0)
1722 			goto err;
1723 		di->flags.calibrate = false;
1724 		dev_dbg(di->dev, "Calibration done...\n");
1725 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1726 		break;
1727 	case AB8500_FG_CALIB_WAIT:
1728 		dev_dbg(di->dev, "Calibration WFI\n");
1729 	default:
1730 		break;
1731 	}
1732 	return;
1733 err:
1734 	/* Something went wrong, don't calibrate then */
1735 	dev_err(di->dev, "failed to calibrate the CC\n");
1736 	di->flags.calibrate = false;
1737 	di->calib_state = AB8500_FG_CALIB_INIT;
1738 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1739 }
1740 
1741 /**
1742  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1743  * @di:		pointer to the ab8500_fg structure
1744  *
1745  * Entry point for the battery capacity calculation state machine
1746  */
1747 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1748 {
1749 	if (di->flags.calibrate)
1750 		ab8500_fg_algorithm_calibrate(di);
1751 	else {
1752 		if (di->flags.charging)
1753 			ab8500_fg_algorithm_charging(di);
1754 		else
1755 			ab8500_fg_algorithm_discharging(di);
1756 	}
1757 
1758 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1759 		"%d %d %d %d %d %d %d\n",
1760 		di->bat_cap.max_mah_design,
1761 		di->bat_cap.max_mah,
1762 		di->bat_cap.mah,
1763 		di->bat_cap.permille,
1764 		di->bat_cap.level,
1765 		di->bat_cap.prev_mah,
1766 		di->bat_cap.prev_percent,
1767 		di->bat_cap.prev_level,
1768 		di->vbat,
1769 		di->inst_curr,
1770 		di->avg_curr,
1771 		di->accu_charge,
1772 		di->flags.charging,
1773 		di->charge_state,
1774 		di->discharge_state,
1775 		di->high_curr_mode,
1776 		di->recovery_needed);
1777 }
1778 
1779 /**
1780  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1781  * @work:	pointer to the work_struct structure
1782  *
1783  * Work queue function for periodic work
1784  */
1785 static void ab8500_fg_periodic_work(struct work_struct *work)
1786 {
1787 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1788 		fg_periodic_work.work);
1789 
1790 	if (di->init_capacity) {
1791 		/* Get an initial capacity calculation */
1792 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1793 		ab8500_fg_check_capacity_limits(di, true);
1794 		di->init_capacity = false;
1795 
1796 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1797 	} else if (di->flags.user_cap) {
1798 		if (check_sysfs_capacity(di)) {
1799 			ab8500_fg_check_capacity_limits(di, true);
1800 			if (di->flags.charging)
1801 				ab8500_fg_charge_state_to(di,
1802 					AB8500_FG_CHARGE_INIT);
1803 			else
1804 				ab8500_fg_discharge_state_to(di,
1805 					AB8500_FG_DISCHARGE_READOUT_INIT);
1806 		}
1807 		di->flags.user_cap = false;
1808 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1809 	} else
1810 		ab8500_fg_algorithm(di);
1811 
1812 }
1813 
1814 /**
1815  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1816  * @work:	pointer to the work_struct structure
1817  *
1818  * Work queue function for checking the OVV_BAT condition
1819  */
1820 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1821 {
1822 	int ret;
1823 	u8 reg_value;
1824 
1825 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1826 		fg_check_hw_failure_work.work);
1827 
1828 	/*
1829 	 * If we have had a battery over-voltage situation,
1830 	 * check ovv-bit to see if it should be reset.
1831 	 */
1832 	ret = abx500_get_register_interruptible(di->dev,
1833 		AB8500_CHARGER, AB8500_CH_STAT_REG,
1834 		&reg_value);
1835 	if (ret < 0) {
1836 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1837 		return;
1838 	}
1839 	if ((reg_value & BATT_OVV) == BATT_OVV) {
1840 		if (!di->flags.bat_ovv) {
1841 			dev_dbg(di->dev, "Battery OVV\n");
1842 			di->flags.bat_ovv = true;
1843 			power_supply_changed(di->fg_psy);
1844 		}
1845 		/* Not yet recovered from ovv, reschedule this test */
1846 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1847 				   HZ);
1848 		} else {
1849 			dev_dbg(di->dev, "Battery recovered from OVV\n");
1850 			di->flags.bat_ovv = false;
1851 			power_supply_changed(di->fg_psy);
1852 	}
1853 }
1854 
1855 /**
1856  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1857  * @work:	pointer to the work_struct structure
1858  *
1859  * Work queue function for checking the LOW_BAT condition
1860  */
1861 static void ab8500_fg_low_bat_work(struct work_struct *work)
1862 {
1863 	int vbat;
1864 
1865 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1866 		fg_low_bat_work.work);
1867 
1868 	vbat = ab8500_fg_bat_voltage(di);
1869 
1870 	/* Check if LOW_BAT still fulfilled */
1871 	if (vbat < di->bm->fg_params->lowbat_threshold) {
1872 		/* Is it time to shut down? */
1873 		if (di->low_bat_cnt < 1) {
1874 			di->flags.low_bat = true;
1875 			dev_warn(di->dev, "Shut down pending...\n");
1876 		} else {
1877 			/*
1878 			* Else we need to re-schedule this check to be able to detect
1879 			* if the voltage increases again during charging or
1880 			* due to decreasing load.
1881 			*/
1882 			di->low_bat_cnt--;
1883 			dev_warn(di->dev, "Battery voltage still LOW\n");
1884 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1885 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
1886 		}
1887 	} else {
1888 		di->flags.low_bat_delay = false;
1889 		di->low_bat_cnt = 10;
1890 		dev_warn(di->dev, "Battery voltage OK again\n");
1891 	}
1892 
1893 	/* This is needed to dispatch LOW_BAT */
1894 	ab8500_fg_check_capacity_limits(di, false);
1895 }
1896 
1897 /**
1898  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1899  * to the target voltage.
1900  * @di:       pointer to the ab8500_fg structure
1901  * @target:   target voltage
1902  *
1903  * Returns bit pattern closest to the target voltage
1904  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1905  */
1906 
1907 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1908 {
1909 	if (target > BATT_OK_MIN +
1910 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1911 		return BATT_OK_MAX_NR_INCREMENTS;
1912 	if (target < BATT_OK_MIN)
1913 		return 0;
1914 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1915 }
1916 
1917 /**
1918  * ab8500_fg_battok_init_hw_register - init battok levels
1919  * @di:       pointer to the ab8500_fg structure
1920  *
1921  */
1922 
1923 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1924 {
1925 	int selected;
1926 	int sel0;
1927 	int sel1;
1928 	int cbp_sel0;
1929 	int cbp_sel1;
1930 	int ret;
1931 	int new_val;
1932 
1933 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
1934 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
1935 
1936 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1937 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1938 
1939 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1940 
1941 	if (selected != sel0)
1942 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1943 			sel0, selected, cbp_sel0);
1944 
1945 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1946 
1947 	if (selected != sel1)
1948 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1949 			sel1, selected, cbp_sel1);
1950 
1951 	new_val = cbp_sel0 | (cbp_sel1 << 4);
1952 
1953 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1954 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1955 		AB8500_BATT_OK_REG, new_val);
1956 	return ret;
1957 }
1958 
1959 /**
1960  * ab8500_fg_instant_work() - Run the FG state machine instantly
1961  * @work:	pointer to the work_struct structure
1962  *
1963  * Work queue function for instant work
1964  */
1965 static void ab8500_fg_instant_work(struct work_struct *work)
1966 {
1967 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1968 
1969 	ab8500_fg_algorithm(di);
1970 }
1971 
1972 /**
1973  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1974  * @irq:       interrupt number
1975  * @_di:       pointer to the ab8500_fg structure
1976  *
1977  * Returns IRQ status(IRQ_HANDLED)
1978  */
1979 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1980 {
1981 	struct ab8500_fg *di = _di;
1982 	if (!di->nbr_cceoc_irq_cnt) {
1983 		di->nbr_cceoc_irq_cnt++;
1984 		complete(&di->ab8500_fg_started);
1985 	} else {
1986 		di->nbr_cceoc_irq_cnt = 0;
1987 		complete(&di->ab8500_fg_complete);
1988 	}
1989 	return IRQ_HANDLED;
1990 }
1991 
1992 /**
1993  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1994  * @irq:       interrupt number
1995  * @_di:       pointer to the ab8500_fg structure
1996  *
1997  * Returns IRQ status(IRQ_HANDLED)
1998  */
1999 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2000 {
2001 	struct ab8500_fg *di = _di;
2002 	di->calib_state = AB8500_FG_CALIB_END;
2003 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2004 	return IRQ_HANDLED;
2005 }
2006 
2007 /**
2008  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2009  * @irq:       interrupt number
2010  * @_di:       pointer to the ab8500_fg structure
2011  *
2012  * Returns IRQ status(IRQ_HANDLED)
2013  */
2014 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2015 {
2016 	struct ab8500_fg *di = _di;
2017 
2018 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
2019 
2020 	return IRQ_HANDLED;
2021 }
2022 
2023 /**
2024  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2025  * @irq:       interrupt number
2026  * @_di:       pointer to the ab8500_fg structure
2027  *
2028  * Returns IRQ status(IRQ_HANDLED)
2029  */
2030 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2031 {
2032 	struct ab8500_fg *di = _di;
2033 
2034 	dev_dbg(di->dev, "Battery OVV\n");
2035 
2036 	/* Schedule a new HW failure check */
2037 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2038 
2039 	return IRQ_HANDLED;
2040 }
2041 
2042 /**
2043  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2044  * @irq:       interrupt number
2045  * @_di:       pointer to the ab8500_fg structure
2046  *
2047  * Returns IRQ status(IRQ_HANDLED)
2048  */
2049 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2050 {
2051 	struct ab8500_fg *di = _di;
2052 
2053 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2054 	if (!di->flags.low_bat_delay) {
2055 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2056 		di->flags.low_bat_delay = true;
2057 		/*
2058 		 * Start a timer to check LOW_BAT again after some time
2059 		 * This is done to avoid shutdown on single voltage dips
2060 		 */
2061 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2062 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
2063 	}
2064 	return IRQ_HANDLED;
2065 }
2066 
2067 /**
2068  * ab8500_fg_get_property() - get the fg properties
2069  * @psy:	pointer to the power_supply structure
2070  * @psp:	pointer to the power_supply_property structure
2071  * @val:	pointer to the power_supply_propval union
2072  *
2073  * This function gets called when an application tries to get the
2074  * fg properties by reading the sysfs files.
2075  * voltage_now:		battery voltage
2076  * current_now:		battery instant current
2077  * current_avg:		battery average current
2078  * charge_full_design:	capacity where battery is considered full
2079  * charge_now:		battery capacity in nAh
2080  * capacity:		capacity in percent
2081  * capacity_level:	capacity level
2082  *
2083  * Returns error code in case of failure else 0 on success
2084  */
2085 static int ab8500_fg_get_property(struct power_supply *psy,
2086 	enum power_supply_property psp,
2087 	union power_supply_propval *val)
2088 {
2089 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2090 
2091 	/*
2092 	 * If battery is identified as unknown and charging of unknown
2093 	 * batteries is disabled, we always report 100% capacity and
2094 	 * capacity level UNKNOWN, since we can't calculate
2095 	 * remaining capacity
2096 	 */
2097 
2098 	switch (psp) {
2099 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2100 		if (di->flags.bat_ovv)
2101 			val->intval = BATT_OVV_VALUE * 1000;
2102 		else
2103 			val->intval = di->vbat * 1000;
2104 		break;
2105 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2106 		val->intval = di->inst_curr * 1000;
2107 		break;
2108 	case POWER_SUPPLY_PROP_CURRENT_AVG:
2109 		val->intval = di->avg_curr * 1000;
2110 		break;
2111 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2112 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2113 				di->bat_cap.max_mah_design);
2114 		break;
2115 	case POWER_SUPPLY_PROP_ENERGY_FULL:
2116 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2117 				di->bat_cap.max_mah);
2118 		break;
2119 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2120 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2121 				di->flags.batt_id_received)
2122 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2123 					di->bat_cap.max_mah);
2124 		else
2125 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2126 					di->bat_cap.prev_mah);
2127 		break;
2128 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2129 		val->intval = di->bat_cap.max_mah_design;
2130 		break;
2131 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2132 		val->intval = di->bat_cap.max_mah;
2133 		break;
2134 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2135 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2136 				di->flags.batt_id_received)
2137 			val->intval = di->bat_cap.max_mah;
2138 		else
2139 			val->intval = di->bat_cap.prev_mah;
2140 		break;
2141 	case POWER_SUPPLY_PROP_CAPACITY:
2142 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143 				di->flags.batt_id_received)
2144 			val->intval = 100;
2145 		else
2146 			val->intval = di->bat_cap.prev_percent;
2147 		break;
2148 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2149 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 				di->flags.batt_id_received)
2151 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2152 		else
2153 			val->intval = di->bat_cap.prev_level;
2154 		break;
2155 	default:
2156 		return -EINVAL;
2157 	}
2158 	return 0;
2159 }
2160 
2161 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2162 {
2163 	struct power_supply *psy;
2164 	struct power_supply *ext = dev_get_drvdata(dev);
2165 	const char **supplicants = (const char **)ext->supplied_to;
2166 	struct ab8500_fg *di;
2167 	union power_supply_propval ret;
2168 	int j;
2169 
2170 	psy = (struct power_supply *)data;
2171 	di = power_supply_get_drvdata(psy);
2172 
2173 	/*
2174 	 * For all psy where the name of your driver
2175 	 * appears in any supplied_to
2176 	 */
2177 	j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2178 	if (j < 0)
2179 		return 0;
2180 
2181 	/* Go through all properties for the psy */
2182 	for (j = 0; j < ext->desc->num_properties; j++) {
2183 		enum power_supply_property prop;
2184 		prop = ext->desc->properties[j];
2185 
2186 		if (power_supply_get_property(ext, prop, &ret))
2187 			continue;
2188 
2189 		switch (prop) {
2190 		case POWER_SUPPLY_PROP_STATUS:
2191 			switch (ext->desc->type) {
2192 			case POWER_SUPPLY_TYPE_BATTERY:
2193 				switch (ret.intval) {
2194 				case POWER_SUPPLY_STATUS_UNKNOWN:
2195 				case POWER_SUPPLY_STATUS_DISCHARGING:
2196 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
2197 					if (!di->flags.charging)
2198 						break;
2199 					di->flags.charging = false;
2200 					di->flags.fully_charged = false;
2201 					if (di->bm->capacity_scaling)
2202 						ab8500_fg_update_cap_scalers(di);
2203 					queue_work(di->fg_wq, &di->fg_work);
2204 					break;
2205 				case POWER_SUPPLY_STATUS_FULL:
2206 					if (di->flags.fully_charged)
2207 						break;
2208 					di->flags.fully_charged = true;
2209 					di->flags.force_full = true;
2210 					/* Save current capacity as maximum */
2211 					di->bat_cap.max_mah = di->bat_cap.mah;
2212 					queue_work(di->fg_wq, &di->fg_work);
2213 					break;
2214 				case POWER_SUPPLY_STATUS_CHARGING:
2215 					if (di->flags.charging &&
2216 						!di->flags.fully_charged)
2217 						break;
2218 					di->flags.charging = true;
2219 					di->flags.fully_charged = false;
2220 					if (di->bm->capacity_scaling)
2221 						ab8500_fg_update_cap_scalers(di);
2222 					queue_work(di->fg_wq, &di->fg_work);
2223 					break;
2224 				};
2225 			default:
2226 				break;
2227 			};
2228 			break;
2229 		case POWER_SUPPLY_PROP_TECHNOLOGY:
2230 			switch (ext->desc->type) {
2231 			case POWER_SUPPLY_TYPE_BATTERY:
2232 				if (!di->flags.batt_id_received &&
2233 				    di->bm->batt_id != BATTERY_UNKNOWN) {
2234 					const struct abx500_battery_type *b;
2235 
2236 					b = &(di->bm->bat_type[di->bm->batt_id]);
2237 
2238 					di->flags.batt_id_received = true;
2239 
2240 					di->bat_cap.max_mah_design =
2241 						MILLI_TO_MICRO *
2242 						b->charge_full_design;
2243 
2244 					di->bat_cap.max_mah =
2245 						di->bat_cap.max_mah_design;
2246 
2247 					di->vbat_nom = b->nominal_voltage;
2248 				}
2249 
2250 				if (ret.intval)
2251 					di->flags.batt_unknown = false;
2252 				else
2253 					di->flags.batt_unknown = true;
2254 				break;
2255 			default:
2256 				break;
2257 			}
2258 			break;
2259 		case POWER_SUPPLY_PROP_TEMP:
2260 			switch (ext->desc->type) {
2261 			case POWER_SUPPLY_TYPE_BATTERY:
2262 				if (di->flags.batt_id_received)
2263 					di->bat_temp = ret.intval;
2264 				break;
2265 			default:
2266 				break;
2267 			}
2268 			break;
2269 		default:
2270 			break;
2271 		}
2272 	}
2273 	return 0;
2274 }
2275 
2276 /**
2277  * ab8500_fg_init_hw_registers() - Set up FG related registers
2278  * @di:		pointer to the ab8500_fg structure
2279  *
2280  * Set up battery OVV, low battery voltage registers
2281  */
2282 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2283 {
2284 	int ret;
2285 
2286 	/* Set VBAT OVV threshold */
2287 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2288 		AB8500_CHARGER,
2289 		AB8500_BATT_OVV,
2290 		BATT_OVV_TH_4P75,
2291 		BATT_OVV_TH_4P75);
2292 	if (ret) {
2293 		dev_err(di->dev, "failed to set BATT_OVV\n");
2294 		goto out;
2295 	}
2296 
2297 	/* Enable VBAT OVV detection */
2298 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2299 		AB8500_CHARGER,
2300 		AB8500_BATT_OVV,
2301 		BATT_OVV_ENA,
2302 		BATT_OVV_ENA);
2303 	if (ret) {
2304 		dev_err(di->dev, "failed to enable BATT_OVV\n");
2305 		goto out;
2306 	}
2307 
2308 	/* Low Battery Voltage */
2309 	ret = abx500_set_register_interruptible(di->dev,
2310 		AB8500_SYS_CTRL2_BLOCK,
2311 		AB8500_LOW_BAT_REG,
2312 		ab8500_volt_to_regval(
2313 			di->bm->fg_params->lowbat_threshold) << 1 |
2314 		LOW_BAT_ENABLE);
2315 	if (ret) {
2316 		dev_err(di->dev, "%s write failed\n", __func__);
2317 		goto out;
2318 	}
2319 
2320 	/* Battery OK threshold */
2321 	ret = ab8500_fg_battok_init_hw_register(di);
2322 	if (ret) {
2323 		dev_err(di->dev, "BattOk init write failed.\n");
2324 		goto out;
2325 	}
2326 
2327 	if (is_ab8505(di->parent)) {
2328 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2329 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2330 
2331 		if (ret) {
2332 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2333 			goto out;
2334 		};
2335 
2336 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2337 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2338 
2339 		if (ret) {
2340 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2341 			goto out;
2342 		};
2343 
2344 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2345 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2346 
2347 		if (ret) {
2348 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2349 			goto out;
2350 		};
2351 
2352 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2353 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2354 
2355 		if (ret) {
2356 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2357 			goto out;
2358 		};
2359 
2360 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2361 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2362 
2363 		if (ret) {
2364 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2365 			goto out;
2366 		};
2367 	}
2368 out:
2369 	return ret;
2370 }
2371 
2372 /**
2373  * ab8500_fg_external_power_changed() - callback for power supply changes
2374  * @psy:       pointer to the structure power_supply
2375  *
2376  * This function is the entry point of the pointer external_power_changed
2377  * of the structure power_supply.
2378  * This function gets executed when there is a change in any external power
2379  * supply that this driver needs to be notified of.
2380  */
2381 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2382 {
2383 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2384 
2385 	class_for_each_device(power_supply_class, NULL,
2386 		di->fg_psy, ab8500_fg_get_ext_psy_data);
2387 }
2388 
2389 /**
2390  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2391  * @work:	pointer to the work_struct structure
2392  *
2393  * Used to reset the current battery capacity to be able to
2394  * retrigger a new voltage base capacity calculation. For
2395  * test and verification purpose.
2396  */
2397 static void ab8500_fg_reinit_work(struct work_struct *work)
2398 {
2399 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2400 		fg_reinit_work.work);
2401 
2402 	if (di->flags.calibrate == false) {
2403 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2404 		ab8500_fg_clear_cap_samples(di);
2405 		ab8500_fg_calc_cap_discharge_voltage(di, true);
2406 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2407 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2408 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2409 
2410 	} else {
2411 		dev_err(di->dev, "Residual offset calibration ongoing "
2412 			"retrying..\n");
2413 		/* Wait one second until next try*/
2414 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2415 			round_jiffies(1));
2416 	}
2417 }
2418 
2419 /* Exposure to the sysfs interface */
2420 
2421 struct ab8500_fg_sysfs_entry {
2422 	struct attribute attr;
2423 	ssize_t (*show)(struct ab8500_fg *, char *);
2424 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2425 };
2426 
2427 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2428 {
2429 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2430 }
2431 
2432 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2433 				 size_t count)
2434 {
2435 	unsigned long charge_full;
2436 	int ret;
2437 
2438 	ret = kstrtoul(buf, 10, &charge_full);
2439 	if (ret)
2440 		return ret;
2441 
2442 	di->bat_cap.max_mah = (int) charge_full;
2443 	return count;
2444 }
2445 
2446 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2447 {
2448 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2449 }
2450 
2451 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2452 				 size_t count)
2453 {
2454 	unsigned long charge_now;
2455 	int ret;
2456 
2457 	ret = kstrtoul(buf, 10, &charge_now);
2458 	if (ret)
2459 		return ret;
2460 
2461 	di->bat_cap.user_mah = (int) charge_now;
2462 	di->flags.user_cap = true;
2463 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2464 	return count;
2465 }
2466 
2467 static struct ab8500_fg_sysfs_entry charge_full_attr =
2468 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2469 
2470 static struct ab8500_fg_sysfs_entry charge_now_attr =
2471 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2472 
2473 static ssize_t
2474 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2475 {
2476 	struct ab8500_fg_sysfs_entry *entry;
2477 	struct ab8500_fg *di;
2478 
2479 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2480 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2481 
2482 	if (!entry->show)
2483 		return -EIO;
2484 
2485 	return entry->show(di, buf);
2486 }
2487 static ssize_t
2488 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2489 		size_t count)
2490 {
2491 	struct ab8500_fg_sysfs_entry *entry;
2492 	struct ab8500_fg *di;
2493 
2494 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2495 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2496 
2497 	if (!entry->store)
2498 		return -EIO;
2499 
2500 	return entry->store(di, buf, count);
2501 }
2502 
2503 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2504 	.show = ab8500_fg_show,
2505 	.store = ab8500_fg_store,
2506 };
2507 
2508 static struct attribute *ab8500_fg_attrs[] = {
2509 	&charge_full_attr.attr,
2510 	&charge_now_attr.attr,
2511 	NULL,
2512 };
2513 
2514 static struct kobj_type ab8500_fg_ktype = {
2515 	.sysfs_ops = &ab8500_fg_sysfs_ops,
2516 	.default_attrs = ab8500_fg_attrs,
2517 };
2518 
2519 /**
2520  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2521  * @di:                pointer to the struct ab8500_chargalg
2522  *
2523  * This function removes the entry in sysfs.
2524  */
2525 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2526 {
2527 	kobject_del(&di->fg_kobject);
2528 }
2529 
2530 /**
2531  * ab8500_fg_sysfs_init() - init of sysfs entry
2532  * @di:                pointer to the struct ab8500_chargalg
2533  *
2534  * This function adds an entry in sysfs.
2535  * Returns error code in case of failure else 0(on success)
2536  */
2537 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2538 {
2539 	int ret = 0;
2540 
2541 	ret = kobject_init_and_add(&di->fg_kobject,
2542 		&ab8500_fg_ktype,
2543 		NULL, "battery");
2544 	if (ret < 0)
2545 		dev_err(di->dev, "failed to create sysfs entry\n");
2546 
2547 	return ret;
2548 }
2549 
2550 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2551 			     struct device_attribute *attr,
2552 			     char *buf)
2553 {
2554 	int ret;
2555 	u8 reg_value;
2556 	struct power_supply *psy = dev_get_drvdata(dev);
2557 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2558 
2559 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2560 		AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2561 
2562 	if (ret < 0) {
2563 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2564 		goto fail;
2565 	}
2566 
2567 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2568 
2569 fail:
2570 	return ret;
2571 }
2572 
2573 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2574 				  struct device_attribute *attr,
2575 				  const char *buf, size_t count)
2576 {
2577 	int ret;
2578 	int reg_value;
2579 	struct power_supply *psy = dev_get_drvdata(dev);
2580 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2581 
2582 	if (kstrtoint(buf, 10, &reg_value))
2583 		goto fail;
2584 
2585 	if (reg_value > 0x7F) {
2586 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2587 		goto fail;
2588 	}
2589 
2590 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2591 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2592 
2593 	if (ret < 0)
2594 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2595 
2596 fail:
2597 	return count;
2598 }
2599 
2600 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2601 			     struct device_attribute *attr,
2602 			     char *buf)
2603 {
2604 	int ret;
2605 	u8 reg_value;
2606 	struct power_supply *psy = dev_get_drvdata(dev);
2607 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2608 
2609 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2610 		AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2611 
2612 	if (ret < 0) {
2613 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2614 		goto fail;
2615 	}
2616 
2617 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2618 
2619 fail:
2620 	return ret;
2621 
2622 }
2623 
2624 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2625 				  struct device_attribute *attr,
2626 				  const char *buf, size_t count)
2627 {
2628 	int ret;
2629 	int reg_value;
2630 	struct power_supply *psy = dev_get_drvdata(dev);
2631 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2632 
2633 	if (kstrtoint(buf, 10, &reg_value))
2634 		goto fail;
2635 
2636 	if (reg_value > 0x7F) {
2637 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2638 		goto fail;
2639 	}
2640 
2641 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2642 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2643 
2644 	if (ret < 0)
2645 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2646 
2647 fail:
2648 	return count;
2649 }
2650 
2651 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2652 			     struct device_attribute *attr,
2653 			     char *buf)
2654 {
2655 	int ret;
2656 	u8 reg_value;
2657 	struct power_supply *psy = dev_get_drvdata(dev);
2658 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2659 
2660 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2661 		AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2662 
2663 	if (ret < 0) {
2664 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2665 		goto fail;
2666 	}
2667 
2668 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2669 
2670 fail:
2671 	return ret;
2672 }
2673 
2674 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2675 					     struct device_attribute *attr,
2676 					     const char *buf, size_t count)
2677 {
2678 	int ret;
2679 	int reg_value;
2680 	struct power_supply *psy = dev_get_drvdata(dev);
2681 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2682 
2683 	if (kstrtoint(buf, 10, &reg_value))
2684 		goto fail;
2685 
2686 	if (reg_value > 0xF) {
2687 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2688 		goto fail;
2689 	}
2690 
2691 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2692 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2693 
2694 	if (ret < 0)
2695 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2696 
2697 fail:
2698 	return count;
2699 
2700 }
2701 
2702 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2703 					  struct device_attribute *attr,
2704 					  char *buf)
2705 {
2706 	int ret;
2707 	u8 reg_value;
2708 	struct power_supply *psy = dev_get_drvdata(dev);
2709 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2710 
2711 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2712 						AB8505_RTC_PCUT_TIME_REG, &reg_value);
2713 
2714 	if (ret < 0) {
2715 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2716 		goto fail;
2717 	}
2718 
2719 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2720 
2721 fail:
2722 	return ret;
2723 }
2724 
2725 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2726 						    struct device_attribute *attr,
2727 						    char *buf)
2728 {
2729 	int ret;
2730 	u8 reg_value;
2731 	struct power_supply *psy = dev_get_drvdata(dev);
2732 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2733 
2734 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2735 						AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2736 
2737 	if (ret < 0) {
2738 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2739 		goto fail;
2740 	}
2741 
2742 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2743 
2744 fail:
2745 	return ret;
2746 }
2747 
2748 static ssize_t ab8505_powercut_read(struct device *dev,
2749 				    struct device_attribute *attr,
2750 				    char *buf)
2751 {
2752 	int ret;
2753 	u8 reg_value;
2754 	struct power_supply *psy = dev_get_drvdata(dev);
2755 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2756 
2757 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2758 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2759 
2760 	if (ret < 0)
2761 		goto fail;
2762 
2763 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2764 
2765 fail:
2766 	return ret;
2767 }
2768 
2769 static ssize_t ab8505_powercut_write(struct device *dev,
2770 				     struct device_attribute *attr,
2771 				     const char *buf, size_t count)
2772 {
2773 	int ret;
2774 	int reg_value;
2775 	struct power_supply *psy = dev_get_drvdata(dev);
2776 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2777 
2778 	if (kstrtoint(buf, 10, &reg_value))
2779 		goto fail;
2780 
2781 	if (reg_value > 0x1) {
2782 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2783 		goto fail;
2784 	}
2785 
2786 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2787 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2788 
2789 	if (ret < 0)
2790 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2791 
2792 fail:
2793 	return count;
2794 }
2795 
2796 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2797 					 struct device_attribute *attr,
2798 					 char *buf)
2799 {
2800 
2801 	int ret;
2802 	u8 reg_value;
2803 	struct power_supply *psy = dev_get_drvdata(dev);
2804 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2805 
2806 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2807 						AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2808 
2809 	if (ret < 0) {
2810 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2811 		goto fail;
2812 	}
2813 
2814 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2815 
2816 fail:
2817 	return ret;
2818 }
2819 
2820 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2821 					     struct device_attribute *attr,
2822 					     char *buf)
2823 {
2824 	int ret;
2825 	u8 reg_value;
2826 	struct power_supply *psy = dev_get_drvdata(dev);
2827 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2828 
2829 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2830 						AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2831 
2832 	if (ret < 0) {
2833 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2834 		goto fail;
2835 	}
2836 
2837 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2838 
2839 fail:
2840 	return ret;
2841 }
2842 
2843 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2844 					      struct device_attribute *attr,
2845 					      const char *buf, size_t count)
2846 {
2847 	int ret;
2848 	int reg_value;
2849 	struct power_supply *psy = dev_get_drvdata(dev);
2850 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2851 
2852 	if (kstrtoint(buf, 10, &reg_value))
2853 		goto fail;
2854 
2855 	if (reg_value > 0x7) {
2856 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2857 		goto fail;
2858 	}
2859 
2860 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2861 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2862 
2863 	if (ret < 0)
2864 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2865 
2866 fail:
2867 	return count;
2868 }
2869 
2870 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2871 						  struct device_attribute *attr,
2872 						  char *buf)
2873 {
2874 	int ret;
2875 	u8 reg_value;
2876 	struct power_supply *psy = dev_get_drvdata(dev);
2877 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2878 
2879 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2880 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2881 
2882 	if (ret < 0) {
2883 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2884 		goto fail;
2885 	}
2886 
2887 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2888 
2889 fail:
2890 	return ret;
2891 }
2892 
2893 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2894 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2895 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2896 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2897 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2898 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2899 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2900 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2901 	__ATTR(powercut_restart_counter, S_IRUGO,
2902 		ab8505_powercut_restart_counter_read, NULL),
2903 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2904 		ab8505_powercut_read, ab8505_powercut_write),
2905 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2906 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2907 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2908 	__ATTR(powercut_enable_status, S_IRUGO,
2909 		ab8505_powercut_enable_status_read, NULL),
2910 };
2911 
2912 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2913 {
2914 	unsigned int i;
2915 
2916 	if (is_ab8505(di->parent)) {
2917 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2918 			if (device_create_file(&di->fg_psy->dev,
2919 					       &ab8505_fg_sysfs_psy_attrs[i]))
2920 				goto sysfs_psy_create_attrs_failed_ab8505;
2921 	}
2922 	return 0;
2923 sysfs_psy_create_attrs_failed_ab8505:
2924 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2925 	while (i--)
2926 		device_remove_file(&di->fg_psy->dev,
2927 				   &ab8505_fg_sysfs_psy_attrs[i]);
2928 
2929 	return -EIO;
2930 }
2931 
2932 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2933 {
2934 	unsigned int i;
2935 
2936 	if (is_ab8505(di->parent)) {
2937 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2938 			(void)device_remove_file(&di->fg_psy->dev,
2939 						 &ab8505_fg_sysfs_psy_attrs[i]);
2940 	}
2941 }
2942 
2943 /* Exposure to the sysfs interface <<END>> */
2944 
2945 #if defined(CONFIG_PM)
2946 static int ab8500_fg_resume(struct platform_device *pdev)
2947 {
2948 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2949 
2950 	/*
2951 	 * Change state if we're not charging. If we're charging we will wake
2952 	 * up on the FG IRQ
2953 	 */
2954 	if (!di->flags.charging) {
2955 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2956 		queue_work(di->fg_wq, &di->fg_work);
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 static int ab8500_fg_suspend(struct platform_device *pdev,
2963 	pm_message_t state)
2964 {
2965 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2966 
2967 	flush_delayed_work(&di->fg_periodic_work);
2968 	flush_work(&di->fg_work);
2969 	flush_work(&di->fg_acc_cur_work);
2970 	flush_delayed_work(&di->fg_reinit_work);
2971 	flush_delayed_work(&di->fg_low_bat_work);
2972 	flush_delayed_work(&di->fg_check_hw_failure_work);
2973 
2974 	/*
2975 	 * If the FG is enabled we will disable it before going to suspend
2976 	 * only if we're not charging
2977 	 */
2978 	if (di->flags.fg_enabled && !di->flags.charging)
2979 		ab8500_fg_coulomb_counter(di, false);
2980 
2981 	return 0;
2982 }
2983 #else
2984 #define ab8500_fg_suspend      NULL
2985 #define ab8500_fg_resume       NULL
2986 #endif
2987 
2988 static int ab8500_fg_remove(struct platform_device *pdev)
2989 {
2990 	int ret = 0;
2991 	struct ab8500_fg *di = platform_get_drvdata(pdev);
2992 
2993 	list_del(&di->node);
2994 
2995 	/* Disable coulomb counter */
2996 	ret = ab8500_fg_coulomb_counter(di, false);
2997 	if (ret)
2998 		dev_err(di->dev, "failed to disable coulomb counter\n");
2999 
3000 	destroy_workqueue(di->fg_wq);
3001 	ab8500_fg_sysfs_exit(di);
3002 
3003 	flush_scheduled_work();
3004 	ab8500_fg_sysfs_psy_remove_attrs(di);
3005 	power_supply_unregister(di->fg_psy);
3006 	return ret;
3007 }
3008 
3009 /* ab8500 fg driver interrupts and their respective isr */
3010 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3011 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3012 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
3013 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3014 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3015 };
3016 
3017 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3018 	{"CCEOC", ab8500_fg_cc_data_end_handler},
3019 };
3020 
3021 static char *supply_interface[] = {
3022 	"ab8500_chargalg",
3023 	"ab8500_usb",
3024 };
3025 
3026 static const struct power_supply_desc ab8500_fg_desc = {
3027 	.name			= "ab8500_fg",
3028 	.type			= POWER_SUPPLY_TYPE_BATTERY,
3029 	.properties		= ab8500_fg_props,
3030 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
3031 	.get_property		= ab8500_fg_get_property,
3032 	.external_power_changed	= ab8500_fg_external_power_changed,
3033 };
3034 
3035 static int ab8500_fg_probe(struct platform_device *pdev)
3036 {
3037 	struct device_node *np = pdev->dev.of_node;
3038 	struct abx500_bm_data *plat = pdev->dev.platform_data;
3039 	struct power_supply_config psy_cfg = {};
3040 	struct ab8500_fg *di;
3041 	int i, irq;
3042 	int ret = 0;
3043 
3044 	di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3045 	if (!di) {
3046 		dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3047 		return -ENOMEM;
3048 	}
3049 
3050 	if (!plat) {
3051 		dev_err(&pdev->dev, "no battery management data supplied\n");
3052 		return -EINVAL;
3053 	}
3054 	di->bm = plat;
3055 
3056 	if (np) {
3057 		ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3058 		if (ret) {
3059 			dev_err(&pdev->dev, "failed to get battery information\n");
3060 			return ret;
3061 		}
3062 	}
3063 
3064 	mutex_init(&di->cc_lock);
3065 
3066 	/* get parent data */
3067 	di->dev = &pdev->dev;
3068 	di->parent = dev_get_drvdata(pdev->dev.parent);
3069 	di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3070 
3071 	psy_cfg.supplied_to = supply_interface;
3072 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3073 	psy_cfg.drv_data = di;
3074 
3075 	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3076 		di->bm->bat_type[di->bm->batt_id].charge_full_design;
3077 
3078 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3079 
3080 	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3081 
3082 	di->init_capacity = true;
3083 
3084 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3085 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3086 
3087 	/* Create a work queue for running the FG algorithm */
3088 	di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3089 	if (di->fg_wq == NULL) {
3090 		dev_err(di->dev, "failed to create work queue\n");
3091 		return -ENOMEM;
3092 	}
3093 
3094 	/* Init work for running the fg algorithm instantly */
3095 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3096 
3097 	/* Init work for getting the battery accumulated current */
3098 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3099 
3100 	/* Init work for reinitialising the fg algorithm */
3101 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3102 		ab8500_fg_reinit_work);
3103 
3104 	/* Work delayed Queue to run the state machine */
3105 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3106 		ab8500_fg_periodic_work);
3107 
3108 	/* Work to check low battery condition */
3109 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3110 		ab8500_fg_low_bat_work);
3111 
3112 	/* Init work for HW failure check */
3113 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3114 		ab8500_fg_check_hw_failure_work);
3115 
3116 	/* Reset battery low voltage flag */
3117 	di->flags.low_bat = false;
3118 
3119 	/* Initialize low battery counter */
3120 	di->low_bat_cnt = 10;
3121 
3122 	/* Initialize OVV, and other registers */
3123 	ret = ab8500_fg_init_hw_registers(di);
3124 	if (ret) {
3125 		dev_err(di->dev, "failed to initialize registers\n");
3126 		goto free_inst_curr_wq;
3127 	}
3128 
3129 	/* Consider battery unknown until we're informed otherwise */
3130 	di->flags.batt_unknown = true;
3131 	di->flags.batt_id_received = false;
3132 
3133 	/* Register FG power supply class */
3134 	di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3135 	if (IS_ERR(di->fg_psy)) {
3136 		dev_err(di->dev, "failed to register FG psy\n");
3137 		ret = PTR_ERR(di->fg_psy);
3138 		goto free_inst_curr_wq;
3139 	}
3140 
3141 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3142 	ab8500_fg_coulomb_counter(di, true);
3143 
3144 	/*
3145 	 * Initialize completion used to notify completion and start
3146 	 * of inst current
3147 	 */
3148 	init_completion(&di->ab8500_fg_started);
3149 	init_completion(&di->ab8500_fg_complete);
3150 
3151 	/* Register primary interrupt handlers */
3152 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3153 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3154 		ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3155 				  IRQF_SHARED | IRQF_NO_SUSPEND,
3156 				  ab8500_fg_irq_th[i].name, di);
3157 
3158 		if (ret != 0) {
3159 			dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3160 				ab8500_fg_irq_th[i].name, irq, ret);
3161 			goto free_irq;
3162 		}
3163 		dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3164 			ab8500_fg_irq_th[i].name, irq, ret);
3165 	}
3166 
3167 	/* Register threaded interrupt handler */
3168 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3169 	ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3170 				IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3171 			ab8500_fg_irq_bh[0].name, di);
3172 
3173 	if (ret != 0) {
3174 		dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3175 			ab8500_fg_irq_bh[0].name, irq, ret);
3176 		goto free_irq;
3177 	}
3178 	dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3179 		ab8500_fg_irq_bh[0].name, irq, ret);
3180 
3181 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
3182 	disable_irq(di->irq);
3183 	di->nbr_cceoc_irq_cnt = 0;
3184 
3185 	platform_set_drvdata(pdev, di);
3186 
3187 	ret = ab8500_fg_sysfs_init(di);
3188 	if (ret) {
3189 		dev_err(di->dev, "failed to create sysfs entry\n");
3190 		goto free_irq;
3191 	}
3192 
3193 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
3194 	if (ret) {
3195 		dev_err(di->dev, "failed to create FG psy\n");
3196 		ab8500_fg_sysfs_exit(di);
3197 		goto free_irq;
3198 	}
3199 
3200 	/* Calibrate the fg first time */
3201 	di->flags.calibrate = true;
3202 	di->calib_state = AB8500_FG_CALIB_INIT;
3203 
3204 	/* Use room temp as default value until we get an update from driver. */
3205 	di->bat_temp = 210;
3206 
3207 	/* Run the FG algorithm */
3208 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3209 
3210 	list_add_tail(&di->node, &ab8500_fg_list);
3211 
3212 	return ret;
3213 
3214 free_irq:
3215 	power_supply_unregister(di->fg_psy);
3216 
3217 	/* We also have to free all registered irqs */
3218 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3219 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3220 		free_irq(irq, di);
3221 	}
3222 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3223 	free_irq(irq, di);
3224 free_inst_curr_wq:
3225 	destroy_workqueue(di->fg_wq);
3226 	return ret;
3227 }
3228 
3229 static const struct of_device_id ab8500_fg_match[] = {
3230 	{ .compatible = "stericsson,ab8500-fg", },
3231 	{ },
3232 };
3233 
3234 static struct platform_driver ab8500_fg_driver = {
3235 	.probe = ab8500_fg_probe,
3236 	.remove = ab8500_fg_remove,
3237 	.suspend = ab8500_fg_suspend,
3238 	.resume = ab8500_fg_resume,
3239 	.driver = {
3240 		.name = "ab8500-fg",
3241 		.of_match_table = ab8500_fg_match,
3242 	},
3243 };
3244 
3245 static int __init ab8500_fg_init(void)
3246 {
3247 	return platform_driver_register(&ab8500_fg_driver);
3248 }
3249 
3250 static void __exit ab8500_fg_exit(void)
3251 {
3252 	platform_driver_unregister(&ab8500_fg_driver);
3253 }
3254 
3255 subsys_initcall_sync(ab8500_fg_init);
3256 module_exit(ab8500_fg_exit);
3257 
3258 MODULE_LICENSE("GPL v2");
3259 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3260 MODULE_ALIAS("platform:ab8500-fg");
3261 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3262