xref: /openbmc/linux/drivers/power/supply/ab8500_fg.c (revision a5d46d9a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *	Johan Palsson <johan.palsson@stericsson.com>
14  *	Karl Komierowski <karl.komierowski@stericsson.com>
15  *	Arun R Murthy <arun.murthy@stericsson.com>
16  */
17 
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/component.h>
21 #include <linux/device.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/power_supply.h>
25 #include <linux/kobject.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/time.h>
29 #include <linux/time64.h>
30 #include <linux/of.h>
31 #include <linux/completion.h>
32 #include <linux/mfd/core.h>
33 #include <linux/mfd/abx500.h>
34 #include <linux/mfd/abx500/ab8500.h>
35 #include <linux/iio/consumer.h>
36 #include <linux/kernel.h>
37 
38 #include "ab8500-bm.h"
39 
40 #define MILLI_TO_MICRO			1000
41 #define FG_LSB_IN_MA			1627
42 #define QLSB_NANO_AMP_HOURS_X10		1071
43 #define INS_CURR_TIMEOUT		(3 * HZ)
44 
45 #define SEC_TO_SAMPLE(S)		(S * 4)
46 
47 #define NBR_AVG_SAMPLES			20
48 
49 #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
50 
51 #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
52 #define BATT_OK_MIN			2360 /* mV */
53 #define BATT_OK_INCREMENT		50 /* mV */
54 #define BATT_OK_MAX_NR_INCREMENTS	0xE
55 
56 /* FG constants */
57 #define BATT_OVV			0x01
58 
59 #define interpolate(x, x1, y1, x2, y2) \
60 	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
61 
62 /**
63  * struct ab8500_fg_interrupts - ab8500 fg interrupts
64  * @name:	name of the interrupt
65  * @isr		function pointer to the isr
66  */
67 struct ab8500_fg_interrupts {
68 	char *name;
69 	irqreturn_t (*isr)(int irq, void *data);
70 };
71 
72 enum ab8500_fg_discharge_state {
73 	AB8500_FG_DISCHARGE_INIT,
74 	AB8500_FG_DISCHARGE_INITMEASURING,
75 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
76 	AB8500_FG_DISCHARGE_RECOVERY,
77 	AB8500_FG_DISCHARGE_READOUT_INIT,
78 	AB8500_FG_DISCHARGE_READOUT,
79 	AB8500_FG_DISCHARGE_WAKEUP,
80 };
81 
82 static char *discharge_state[] = {
83 	"DISCHARGE_INIT",
84 	"DISCHARGE_INITMEASURING",
85 	"DISCHARGE_INIT_RECOVERY",
86 	"DISCHARGE_RECOVERY",
87 	"DISCHARGE_READOUT_INIT",
88 	"DISCHARGE_READOUT",
89 	"DISCHARGE_WAKEUP",
90 };
91 
92 enum ab8500_fg_charge_state {
93 	AB8500_FG_CHARGE_INIT,
94 	AB8500_FG_CHARGE_READOUT,
95 };
96 
97 static char *charge_state[] = {
98 	"CHARGE_INIT",
99 	"CHARGE_READOUT",
100 };
101 
102 enum ab8500_fg_calibration_state {
103 	AB8500_FG_CALIB_INIT,
104 	AB8500_FG_CALIB_WAIT,
105 	AB8500_FG_CALIB_END,
106 };
107 
108 struct ab8500_fg_avg_cap {
109 	int avg;
110 	int samples[NBR_AVG_SAMPLES];
111 	time64_t time_stamps[NBR_AVG_SAMPLES];
112 	int pos;
113 	int nbr_samples;
114 	int sum;
115 };
116 
117 struct ab8500_fg_cap_scaling {
118 	bool enable;
119 	int cap_to_scale[2];
120 	int disable_cap_level;
121 	int scaled_cap;
122 };
123 
124 struct ab8500_fg_battery_capacity {
125 	int max_mah_design;
126 	int max_mah;
127 	int mah;
128 	int permille;
129 	int level;
130 	int prev_mah;
131 	int prev_percent;
132 	int prev_level;
133 	int user_mah;
134 	struct ab8500_fg_cap_scaling cap_scale;
135 };
136 
137 struct ab8500_fg_flags {
138 	bool fg_enabled;
139 	bool conv_done;
140 	bool charging;
141 	bool fully_charged;
142 	bool force_full;
143 	bool low_bat_delay;
144 	bool low_bat;
145 	bool bat_ovv;
146 	bool batt_unknown;
147 	bool calibrate;
148 	bool user_cap;
149 	bool batt_id_received;
150 };
151 
152 struct inst_curr_result_list {
153 	struct list_head list;
154 	int *result;
155 };
156 
157 /**
158  * struct ab8500_fg - ab8500 FG device information
159  * @dev:		Pointer to the structure device
160  * @node:		a list of AB8500 FGs, hence prepared for reentrance
161  * @irq			holds the CCEOC interrupt number
162  * @vbat:		Battery voltage in mV
163  * @vbat_nom:		Nominal battery voltage in mV
164  * @inst_curr:		Instantenous battery current in mA
165  * @avg_curr:		Average battery current in mA
166  * @bat_temp		battery temperature
167  * @fg_samples:		Number of samples used in the FG accumulation
168  * @accu_charge:	Accumulated charge from the last conversion
169  * @recovery_cnt:	Counter for recovery mode
170  * @high_curr_cnt:	Counter for high current mode
171  * @init_cnt:		Counter for init mode
172  * @low_bat_cnt		Counter for number of consecutive low battery measures
173  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
174  * @recovery_needed:	Indicate if recovery is needed
175  * @high_curr_mode:	Indicate if we're in high current mode
176  * @init_capacity:	Indicate if initial capacity measuring should be done
177  * @turn_off_fg:	True if fg was off before current measurement
178  * @calib_state		State during offset calibration
179  * @discharge_state:	Current discharge state
180  * @charge_state:	Current charge state
181  * @ab8500_fg_started	Completion struct used for the instant current start
182  * @ab8500_fg_complete	Completion struct used for the instant current reading
183  * @flags:		Structure for information about events triggered
184  * @bat_cap:		Structure for battery capacity specific parameters
185  * @avg_cap:		Average capacity filter
186  * @parent:		Pointer to the struct ab8500
187  * @main_bat_v:		ADC channel for the main battery voltage
188  * @bm:           	Platform specific battery management information
189  * @fg_psy:		Structure that holds the FG specific battery properties
190  * @fg_wq:		Work queue for running the FG algorithm
191  * @fg_periodic_work:	Work to run the FG algorithm periodically
192  * @fg_low_bat_work:	Work to check low bat condition
193  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
194  * @fg_work:		Work to run the FG algorithm instantly
195  * @fg_acc_cur_work:	Work to read the FG accumulator
196  * @fg_check_hw_failure_work:	Work for checking HW state
197  * @cc_lock:		Mutex for locking the CC
198  * @fg_kobject:		Structure of type kobject
199  */
200 struct ab8500_fg {
201 	struct device *dev;
202 	struct list_head node;
203 	int irq;
204 	int vbat;
205 	int vbat_nom;
206 	int inst_curr;
207 	int avg_curr;
208 	int bat_temp;
209 	int fg_samples;
210 	int accu_charge;
211 	int recovery_cnt;
212 	int high_curr_cnt;
213 	int init_cnt;
214 	int low_bat_cnt;
215 	int nbr_cceoc_irq_cnt;
216 	bool recovery_needed;
217 	bool high_curr_mode;
218 	bool init_capacity;
219 	bool turn_off_fg;
220 	enum ab8500_fg_calibration_state calib_state;
221 	enum ab8500_fg_discharge_state discharge_state;
222 	enum ab8500_fg_charge_state charge_state;
223 	struct completion ab8500_fg_started;
224 	struct completion ab8500_fg_complete;
225 	struct ab8500_fg_flags flags;
226 	struct ab8500_fg_battery_capacity bat_cap;
227 	struct ab8500_fg_avg_cap avg_cap;
228 	struct ab8500 *parent;
229 	struct iio_channel *main_bat_v;
230 	struct abx500_bm_data *bm;
231 	struct power_supply *fg_psy;
232 	struct workqueue_struct *fg_wq;
233 	struct delayed_work fg_periodic_work;
234 	struct delayed_work fg_low_bat_work;
235 	struct delayed_work fg_reinit_work;
236 	struct work_struct fg_work;
237 	struct work_struct fg_acc_cur_work;
238 	struct delayed_work fg_check_hw_failure_work;
239 	struct mutex cc_lock;
240 	struct kobject fg_kobject;
241 };
242 static LIST_HEAD(ab8500_fg_list);
243 
244 /**
245  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246  * (i.e. the first fuel gauge in the instance list)
247  */
248 struct ab8500_fg *ab8500_fg_get(void)
249 {
250 	return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
251 					node);
252 }
253 
254 /* Main battery properties */
255 static enum power_supply_property ab8500_fg_props[] = {
256 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
257 	POWER_SUPPLY_PROP_CURRENT_NOW,
258 	POWER_SUPPLY_PROP_CURRENT_AVG,
259 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
260 	POWER_SUPPLY_PROP_ENERGY_FULL,
261 	POWER_SUPPLY_PROP_ENERGY_NOW,
262 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
263 	POWER_SUPPLY_PROP_CHARGE_FULL,
264 	POWER_SUPPLY_PROP_CHARGE_NOW,
265 	POWER_SUPPLY_PROP_CAPACITY,
266 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
267 };
268 
269 /*
270  * This array maps the raw hex value to lowbat voltage used by the AB8500
271  * Values taken from the UM0836
272  */
273 static int ab8500_fg_lowbat_voltage_map[] = {
274 	2300 ,
275 	2325 ,
276 	2350 ,
277 	2375 ,
278 	2400 ,
279 	2425 ,
280 	2450 ,
281 	2475 ,
282 	2500 ,
283 	2525 ,
284 	2550 ,
285 	2575 ,
286 	2600 ,
287 	2625 ,
288 	2650 ,
289 	2675 ,
290 	2700 ,
291 	2725 ,
292 	2750 ,
293 	2775 ,
294 	2800 ,
295 	2825 ,
296 	2850 ,
297 	2875 ,
298 	2900 ,
299 	2925 ,
300 	2950 ,
301 	2975 ,
302 	3000 ,
303 	3025 ,
304 	3050 ,
305 	3075 ,
306 	3100 ,
307 	3125 ,
308 	3150 ,
309 	3175 ,
310 	3200 ,
311 	3225 ,
312 	3250 ,
313 	3275 ,
314 	3300 ,
315 	3325 ,
316 	3350 ,
317 	3375 ,
318 	3400 ,
319 	3425 ,
320 	3450 ,
321 	3475 ,
322 	3500 ,
323 	3525 ,
324 	3550 ,
325 	3575 ,
326 	3600 ,
327 	3625 ,
328 	3650 ,
329 	3675 ,
330 	3700 ,
331 	3725 ,
332 	3750 ,
333 	3775 ,
334 	3800 ,
335 	3825 ,
336 	3850 ,
337 	3850 ,
338 };
339 
340 static u8 ab8500_volt_to_regval(int voltage)
341 {
342 	int i;
343 
344 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
345 		return 0;
346 
347 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
348 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
349 			return (u8) i - 1;
350 	}
351 
352 	/* If not captured above, return index of last element */
353 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
354 }
355 
356 /**
357  * ab8500_fg_is_low_curr() - Low or high current mode
358  * @di:		pointer to the ab8500_fg structure
359  * @curr:	the current to base or our decision on
360  *
361  * Low current mode if the current consumption is below a certain threshold
362  */
363 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
364 {
365 	/*
366 	 * We want to know if we're in low current mode
367 	 */
368 	if (curr > -di->bm->fg_params->high_curr_threshold)
369 		return true;
370 	else
371 		return false;
372 }
373 
374 /**
375  * ab8500_fg_add_cap_sample() - Add capacity to average filter
376  * @di:		pointer to the ab8500_fg structure
377  * @sample:	the capacity in mAh to add to the filter
378  *
379  * A capacity is added to the filter and a new mean capacity is calculated and
380  * returned
381  */
382 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
383 {
384 	time64_t now = ktime_get_boottime_seconds();
385 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
386 
387 	do {
388 		avg->sum += sample - avg->samples[avg->pos];
389 		avg->samples[avg->pos] = sample;
390 		avg->time_stamps[avg->pos] = now;
391 		avg->pos++;
392 
393 		if (avg->pos == NBR_AVG_SAMPLES)
394 			avg->pos = 0;
395 
396 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
397 			avg->nbr_samples++;
398 
399 		/*
400 		 * Check the time stamp for each sample. If too old,
401 		 * replace with latest sample
402 		 */
403 	} while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
404 
405 	avg->avg = avg->sum / avg->nbr_samples;
406 
407 	return avg->avg;
408 }
409 
410 /**
411  * ab8500_fg_clear_cap_samples() - Clear average filter
412  * @di:		pointer to the ab8500_fg structure
413  *
414  * The capacity filter is is reset to zero.
415  */
416 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
417 {
418 	int i;
419 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
420 
421 	avg->pos = 0;
422 	avg->nbr_samples = 0;
423 	avg->sum = 0;
424 	avg->avg = 0;
425 
426 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
427 		avg->samples[i] = 0;
428 		avg->time_stamps[i] = 0;
429 	}
430 }
431 
432 /**
433  * ab8500_fg_fill_cap_sample() - Fill average filter
434  * @di:		pointer to the ab8500_fg structure
435  * @sample:	the capacity in mAh to fill the filter with
436  *
437  * The capacity filter is filled with a capacity in mAh
438  */
439 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
440 {
441 	int i;
442 	time64_t now;
443 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
444 
445 	now = ktime_get_boottime_seconds();
446 
447 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
448 		avg->samples[i] = sample;
449 		avg->time_stamps[i] = now;
450 	}
451 
452 	avg->pos = 0;
453 	avg->nbr_samples = NBR_AVG_SAMPLES;
454 	avg->sum = sample * NBR_AVG_SAMPLES;
455 	avg->avg = sample;
456 }
457 
458 /**
459  * ab8500_fg_coulomb_counter() - enable coulomb counter
460  * @di:		pointer to the ab8500_fg structure
461  * @enable:	enable/disable
462  *
463  * Enable/Disable coulomb counter.
464  * On failure returns negative value.
465  */
466 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
467 {
468 	int ret = 0;
469 	mutex_lock(&di->cc_lock);
470 	if (enable) {
471 		/* To be able to reprogram the number of samples, we have to
472 		 * first stop the CC and then enable it again */
473 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
474 			AB8500_RTC_CC_CONF_REG, 0x00);
475 		if (ret)
476 			goto cc_err;
477 
478 		/* Program the samples */
479 		ret = abx500_set_register_interruptible(di->dev,
480 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
481 			di->fg_samples);
482 		if (ret)
483 			goto cc_err;
484 
485 		/* Start the CC */
486 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
487 			AB8500_RTC_CC_CONF_REG,
488 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
489 		if (ret)
490 			goto cc_err;
491 
492 		di->flags.fg_enabled = true;
493 	} else {
494 		/* Clear any pending read requests */
495 		ret = abx500_mask_and_set_register_interruptible(di->dev,
496 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
497 			(RESET_ACCU | READ_REQ), 0);
498 		if (ret)
499 			goto cc_err;
500 
501 		ret = abx500_set_register_interruptible(di->dev,
502 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
503 		if (ret)
504 			goto cc_err;
505 
506 		/* Stop the CC */
507 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
508 			AB8500_RTC_CC_CONF_REG, 0);
509 		if (ret)
510 			goto cc_err;
511 
512 		di->flags.fg_enabled = false;
513 
514 	}
515 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
516 		enable, di->fg_samples);
517 
518 	mutex_unlock(&di->cc_lock);
519 
520 	return ret;
521 cc_err:
522 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
523 	mutex_unlock(&di->cc_lock);
524 	return ret;
525 }
526 
527 /**
528  * ab8500_fg_inst_curr_start() - start battery instantaneous current
529  * @di:         pointer to the ab8500_fg structure
530  *
531  * Returns 0 or error code
532  * Note: This is part "one" and has to be called before
533  * ab8500_fg_inst_curr_finalize()
534  */
535 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
536 {
537 	u8 reg_val;
538 	int ret;
539 
540 	mutex_lock(&di->cc_lock);
541 
542 	di->nbr_cceoc_irq_cnt = 0;
543 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
544 		AB8500_RTC_CC_CONF_REG, &reg_val);
545 	if (ret < 0)
546 		goto fail;
547 
548 	if (!(reg_val & CC_PWR_UP_ENA)) {
549 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
550 		di->turn_off_fg = true;
551 
552 		/* Program the samples */
553 		ret = abx500_set_register_interruptible(di->dev,
554 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
555 			SEC_TO_SAMPLE(10));
556 		if (ret)
557 			goto fail;
558 
559 		/* Start the CC */
560 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
561 			AB8500_RTC_CC_CONF_REG,
562 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
563 		if (ret)
564 			goto fail;
565 	} else {
566 		di->turn_off_fg = false;
567 	}
568 
569 	/* Return and WFI */
570 	reinit_completion(&di->ab8500_fg_started);
571 	reinit_completion(&di->ab8500_fg_complete);
572 	enable_irq(di->irq);
573 
574 	/* Note: cc_lock is still locked */
575 	return 0;
576 fail:
577 	mutex_unlock(&di->cc_lock);
578 	return ret;
579 }
580 
581 /**
582  * ab8500_fg_inst_curr_started() - check if fg conversion has started
583  * @di:         pointer to the ab8500_fg structure
584  *
585  * Returns 1 if conversion started, 0 if still waiting
586  */
587 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
588 {
589 	return completion_done(&di->ab8500_fg_started);
590 }
591 
592 /**
593  * ab8500_fg_inst_curr_done() - check if fg conversion is done
594  * @di:         pointer to the ab8500_fg structure
595  *
596  * Returns 1 if conversion done, 0 if still waiting
597  */
598 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
599 {
600 	return completion_done(&di->ab8500_fg_complete);
601 }
602 
603 /**
604  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
605  * @di:         pointer to the ab8500_fg structure
606  * @res:	battery instantenous current(on success)
607  *
608  * Returns 0 or an error code
609  * Note: This is part "two" and has to be called at earliest 250 ms
610  * after ab8500_fg_inst_curr_start()
611  */
612 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
613 {
614 	u8 low, high;
615 	int val;
616 	int ret;
617 	unsigned long timeout;
618 
619 	if (!completion_done(&di->ab8500_fg_complete)) {
620 		timeout = wait_for_completion_timeout(
621 			&di->ab8500_fg_complete,
622 			INS_CURR_TIMEOUT);
623 		dev_dbg(di->dev, "Finalize time: %d ms\n",
624 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
625 		if (!timeout) {
626 			ret = -ETIME;
627 			disable_irq(di->irq);
628 			di->nbr_cceoc_irq_cnt = 0;
629 			dev_err(di->dev, "completion timed out [%d]\n",
630 				__LINE__);
631 			goto fail;
632 		}
633 	}
634 
635 	disable_irq(di->irq);
636 	di->nbr_cceoc_irq_cnt = 0;
637 
638 	ret = abx500_mask_and_set_register_interruptible(di->dev,
639 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
640 			READ_REQ, READ_REQ);
641 
642 	/* 100uS between read request and read is needed */
643 	usleep_range(100, 100);
644 
645 	/* Read CC Sample conversion value Low and high */
646 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
647 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
648 	if (ret < 0)
649 		goto fail;
650 
651 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
652 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
653 	if (ret < 0)
654 		goto fail;
655 
656 	/*
657 	 * negative value for Discharging
658 	 * convert 2's complement into decimal
659 	 */
660 	if (high & 0x10)
661 		val = (low | (high << 8) | 0xFFFFE000);
662 	else
663 		val = (low | (high << 8));
664 
665 	/*
666 	 * Convert to unit value in mA
667 	 * Full scale input voltage is
668 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
669 	 * Given a 250ms conversion cycle time the LSB corresponds
670 	 * to 107.1 nAh. Convert to current by dividing by the conversion
671 	 * time in hours (250ms = 1 / (3600 * 4)h)
672 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
673 	 */
674 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
675 		(1000 * di->bm->fg_res);
676 
677 	if (di->turn_off_fg) {
678 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
679 
680 		/* Clear any pending read requests */
681 		ret = abx500_set_register_interruptible(di->dev,
682 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
683 		if (ret)
684 			goto fail;
685 
686 		/* Stop the CC */
687 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
688 			AB8500_RTC_CC_CONF_REG, 0);
689 		if (ret)
690 			goto fail;
691 	}
692 	mutex_unlock(&di->cc_lock);
693 	(*res) = val;
694 
695 	return 0;
696 fail:
697 	mutex_unlock(&di->cc_lock);
698 	return ret;
699 }
700 
701 /**
702  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
703  * @di:         pointer to the ab8500_fg structure
704  * @res:	battery instantenous current(on success)
705  *
706  * Returns 0 else error code
707  */
708 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
709 {
710 	int ret;
711 	unsigned long timeout;
712 	int res = 0;
713 
714 	ret = ab8500_fg_inst_curr_start(di);
715 	if (ret) {
716 		dev_err(di->dev, "Failed to initialize fg_inst\n");
717 		return 0;
718 	}
719 
720 	/* Wait for CC to actually start */
721 	if (!completion_done(&di->ab8500_fg_started)) {
722 		timeout = wait_for_completion_timeout(
723 			&di->ab8500_fg_started,
724 			INS_CURR_TIMEOUT);
725 		dev_dbg(di->dev, "Start time: %d ms\n",
726 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
727 		if (!timeout) {
728 			ret = -ETIME;
729 			dev_err(di->dev, "completion timed out [%d]\n",
730 				__LINE__);
731 			goto fail;
732 		}
733 	}
734 
735 	ret = ab8500_fg_inst_curr_finalize(di, &res);
736 	if (ret) {
737 		dev_err(di->dev, "Failed to finalize fg_inst\n");
738 		return 0;
739 	}
740 
741 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
742 	return res;
743 fail:
744 	disable_irq(di->irq);
745 	mutex_unlock(&di->cc_lock);
746 	return ret;
747 }
748 
749 /**
750  * ab8500_fg_acc_cur_work() - average battery current
751  * @work:	pointer to the work_struct structure
752  *
753  * Updated the average battery current obtained from the
754  * coulomb counter.
755  */
756 static void ab8500_fg_acc_cur_work(struct work_struct *work)
757 {
758 	int val;
759 	int ret;
760 	u8 low, med, high;
761 
762 	struct ab8500_fg *di = container_of(work,
763 		struct ab8500_fg, fg_acc_cur_work);
764 
765 	mutex_lock(&di->cc_lock);
766 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
767 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
768 	if (ret)
769 		goto exit;
770 
771 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
773 	if (ret < 0)
774 		goto exit;
775 
776 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
778 	if (ret < 0)
779 		goto exit;
780 
781 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
782 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
783 	if (ret < 0)
784 		goto exit;
785 
786 	/* Check for sign bit in case of negative value, 2's complement */
787 	if (high & 0x10)
788 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
789 	else
790 		val = (low | (med << 8) | (high << 16));
791 
792 	/*
793 	 * Convert to uAh
794 	 * Given a 250ms conversion cycle time the LSB corresponds
795 	 * to 112.9 nAh.
796 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
797 	 */
798 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
799 		(100 * di->bm->fg_res);
800 
801 	/*
802 	 * Convert to unit value in mA
803 	 * by dividing by the conversion
804 	 * time in hours (= samples / (3600 * 4)h)
805 	 * and multiply with 1000
806 	 */
807 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
808 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
809 
810 	di->flags.conv_done = true;
811 
812 	mutex_unlock(&di->cc_lock);
813 
814 	queue_work(di->fg_wq, &di->fg_work);
815 
816 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
817 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
818 	return;
819 exit:
820 	dev_err(di->dev,
821 		"Failed to read or write gas gauge registers\n");
822 	mutex_unlock(&di->cc_lock);
823 	queue_work(di->fg_wq, &di->fg_work);
824 }
825 
826 /**
827  * ab8500_fg_bat_voltage() - get battery voltage
828  * @di:		pointer to the ab8500_fg structure
829  *
830  * Returns battery voltage(on success) else error code
831  */
832 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
833 {
834 	int vbat, ret;
835 	static int prev;
836 
837 	ret = iio_read_channel_processed(di->main_bat_v, &vbat);
838 	if (ret < 0) {
839 		dev_err(di->dev,
840 			"%s ADC conversion failed, using previous value\n",
841 			__func__);
842 		return prev;
843 	}
844 
845 	prev = vbat;
846 	return vbat;
847 }
848 
849 /**
850  * ab8500_fg_volt_to_capacity() - Voltage based capacity
851  * @di:		pointer to the ab8500_fg structure
852  * @voltage:	The voltage to convert to a capacity
853  *
854  * Returns battery capacity in per mille based on voltage
855  */
856 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
857 {
858 	int i, tbl_size;
859 	const struct abx500_v_to_cap *tbl;
860 	int cap = 0;
861 
862 	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl;
863 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
864 
865 	for (i = 0; i < tbl_size; ++i) {
866 		if (voltage > tbl[i].voltage)
867 			break;
868 	}
869 
870 	if ((i > 0) && (i < tbl_size)) {
871 		cap = interpolate(voltage,
872 			tbl[i].voltage,
873 			tbl[i].capacity * 10,
874 			tbl[i-1].voltage,
875 			tbl[i-1].capacity * 10);
876 	} else if (i == 0) {
877 		cap = 1000;
878 	} else {
879 		cap = 0;
880 	}
881 
882 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
883 		__func__, voltage, cap);
884 
885 	return cap;
886 }
887 
888 /**
889  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
890  * @di:		pointer to the ab8500_fg structure
891  *
892  * Returns battery capacity based on battery voltage that is not compensated
893  * for the voltage drop due to the load
894  */
895 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
896 {
897 	di->vbat = ab8500_fg_bat_voltage(di);
898 	return ab8500_fg_volt_to_capacity(di, di->vbat);
899 }
900 
901 /**
902  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
903  * @di:		pointer to the ab8500_fg structure
904  *
905  * Returns battery inner resistance added with the fuel gauge resistor value
906  * to get the total resistance in the whole link from gnd to bat+ node.
907  */
908 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
909 {
910 	int i, tbl_size;
911 	const struct batres_vs_temp *tbl;
912 	int resist = 0;
913 
914 	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
915 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
916 
917 	for (i = 0; i < tbl_size; ++i) {
918 		if (di->bat_temp / 10 > tbl[i].temp)
919 			break;
920 	}
921 
922 	if ((i > 0) && (i < tbl_size)) {
923 		resist = interpolate(di->bat_temp / 10,
924 			tbl[i].temp,
925 			tbl[i].resist,
926 			tbl[i-1].temp,
927 			tbl[i-1].resist);
928 	} else if (i == 0) {
929 		resist = tbl[0].resist;
930 	} else {
931 		resist = tbl[tbl_size - 1].resist;
932 	}
933 
934 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
935 	    " fg resistance %d, total: %d (mOhm)\n",
936 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
937 		(di->bm->fg_res / 10) + resist);
938 
939 	/* fg_res variable is in 0.1mOhm */
940 	resist += di->bm->fg_res / 10;
941 
942 	return resist;
943 }
944 
945 /**
946  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
947  * @di:		pointer to the ab8500_fg structure
948  *
949  * Returns battery capacity based on battery voltage that is load compensated
950  * for the voltage drop
951  */
952 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
953 {
954 	int vbat_comp, res;
955 	int i = 0;
956 	int vbat = 0;
957 
958 	ab8500_fg_inst_curr_start(di);
959 
960 	do {
961 		vbat += ab8500_fg_bat_voltage(di);
962 		i++;
963 		usleep_range(5000, 6000);
964 	} while (!ab8500_fg_inst_curr_done(di));
965 
966 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
967 
968 	di->vbat = vbat / i;
969 	res = ab8500_fg_battery_resistance(di);
970 
971 	/* Use Ohms law to get the load compensated voltage */
972 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
973 
974 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
975 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
976 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
977 
978 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
979 }
980 
981 /**
982  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
983  * @di:		pointer to the ab8500_fg structure
984  * @cap_mah:	capacity in mAh
985  *
986  * Converts capacity in mAh to capacity in permille
987  */
988 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
989 {
990 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
991 }
992 
993 /**
994  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
995  * @di:		pointer to the ab8500_fg structure
996  * @cap_pm:	capacity in permille
997  *
998  * Converts capacity in permille to capacity in mAh
999  */
1000 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1001 {
1002 	return cap_pm * di->bat_cap.max_mah_design / 1000;
1003 }
1004 
1005 /**
1006  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007  * @di:		pointer to the ab8500_fg structure
1008  * @cap_mah:	capacity in mAh
1009  *
1010  * Converts capacity in mAh to capacity in uWh
1011  */
1012 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1013 {
1014 	u64 div_res;
1015 	u32 div_rem;
1016 
1017 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1018 	div_rem = do_div(div_res, 1000);
1019 
1020 	/* Make sure to round upwards if necessary */
1021 	if (div_rem >= 1000 / 2)
1022 		div_res++;
1023 
1024 	return (int) div_res;
1025 }
1026 
1027 /**
1028  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029  * @di:		pointer to the ab8500_fg structure
1030  *
1031  * Return the capacity in mAh based on previous calculated capcity and the FG
1032  * accumulator register value. The filter is filled with this capacity
1033  */
1034 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1035 {
1036 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1037 		__func__,
1038 		di->bat_cap.mah,
1039 		di->accu_charge);
1040 
1041 	/* Capacity should not be less than 0 */
1042 	if (di->bat_cap.mah + di->accu_charge > 0)
1043 		di->bat_cap.mah += di->accu_charge;
1044 	else
1045 		di->bat_cap.mah = 0;
1046 	/*
1047 	 * We force capacity to 100% once when the algorithm
1048 	 * reports that it's full.
1049 	 */
1050 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1051 		di->flags.force_full) {
1052 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1053 	}
1054 
1055 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1056 	di->bat_cap.permille =
1057 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1058 
1059 	/* We need to update battery voltage and inst current when charging */
1060 	di->vbat = ab8500_fg_bat_voltage(di);
1061 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1062 
1063 	return di->bat_cap.mah;
1064 }
1065 
1066 /**
1067  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068  * @di:		pointer to the ab8500_fg structure
1069  * @comp:	if voltage should be load compensated before capacity calc
1070  *
1071  * Return the capacity in mAh based on the battery voltage. The voltage can
1072  * either be load compensated or not. This value is added to the filter and a
1073  * new mean value is calculated and returned.
1074  */
1075 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1076 {
1077 	int permille, mah;
1078 
1079 	if (comp)
1080 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
1081 	else
1082 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
1083 
1084 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
1085 
1086 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1087 	di->bat_cap.permille =
1088 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1089 
1090 	return di->bat_cap.mah;
1091 }
1092 
1093 /**
1094  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095  * @di:		pointer to the ab8500_fg structure
1096  *
1097  * Return the capacity in mAh based on previous calculated capcity and the FG
1098  * accumulator register value. This value is added to the filter and a
1099  * new mean value is calculated and returned.
1100  */
1101 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1102 {
1103 	int permille_volt, permille;
1104 
1105 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1106 		__func__,
1107 		di->bat_cap.mah,
1108 		di->accu_charge);
1109 
1110 	/* Capacity should not be less than 0 */
1111 	if (di->bat_cap.mah + di->accu_charge > 0)
1112 		di->bat_cap.mah += di->accu_charge;
1113 	else
1114 		di->bat_cap.mah = 0;
1115 
1116 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1117 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1118 
1119 	/*
1120 	 * Check against voltage based capacity. It can not be lower
1121 	 * than what the uncompensated voltage says
1122 	 */
1123 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1124 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1125 
1126 	if (permille < permille_volt) {
1127 		di->bat_cap.permille = permille_volt;
1128 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1129 			di->bat_cap.permille);
1130 
1131 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1132 			__func__,
1133 			permille,
1134 			permille_volt);
1135 
1136 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137 	} else {
1138 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1139 		di->bat_cap.permille =
1140 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1141 	}
1142 
1143 	return di->bat_cap.mah;
1144 }
1145 
1146 /**
1147  * ab8500_fg_capacity_level() - Get the battery capacity level
1148  * @di:		pointer to the ab8500_fg structure
1149  *
1150  * Get the battery capacity level based on the capacity in percent
1151  */
1152 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1153 {
1154 	int ret, percent;
1155 
1156 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1157 
1158 	if (percent <= di->bm->cap_levels->critical ||
1159 		di->flags.low_bat)
1160 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1161 	else if (percent <= di->bm->cap_levels->low)
1162 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1163 	else if (percent <= di->bm->cap_levels->normal)
1164 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1165 	else if (percent <= di->bm->cap_levels->high)
1166 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1167 	else
1168 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1169 
1170 	return ret;
1171 }
1172 
1173 /**
1174  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175  * @di:		pointer to the ab8500_fg structure
1176  *
1177  * Calculates the capacity to be shown to upper layers. Scales the capacity
1178  * to have 100% as a reference from the actual capacity upon removal of charger
1179  * when charging is in maintenance mode.
1180  */
1181 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1182 {
1183 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1184 	int capacity = di->bat_cap.prev_percent;
1185 
1186 	if (!cs->enable)
1187 		return capacity;
1188 
1189 	/*
1190 	 * As long as we are in fully charge mode scale the capacity
1191 	 * to show 100%.
1192 	 */
1193 	if (di->flags.fully_charged) {
1194 		cs->cap_to_scale[0] = 100;
1195 		cs->cap_to_scale[1] =
1196 			max(capacity, di->bm->fg_params->maint_thres);
1197 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
1198 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1199 	}
1200 
1201 	/* Calculates the scaled capacity. */
1202 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1203 					&& (cs->cap_to_scale[1] > 0))
1204 		capacity = min(100,
1205 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1206 						 cs->cap_to_scale[0],
1207 						 cs->cap_to_scale[1]));
1208 
1209 	if (di->flags.charging) {
1210 		if (capacity < cs->disable_cap_level) {
1211 			cs->disable_cap_level = capacity;
1212 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1213 				cs->disable_cap_level);
1214 		} else if (!di->flags.fully_charged) {
1215 			if (di->bat_cap.prev_percent >=
1216 			    cs->disable_cap_level) {
1217 				dev_dbg(di->dev, "Disabling scaled capacity\n");
1218 				cs->enable = false;
1219 				capacity = di->bat_cap.prev_percent;
1220 			} else {
1221 				dev_dbg(di->dev,
1222 					"Waiting in cap to level %d%%\n",
1223 					cs->disable_cap_level);
1224 				capacity = cs->disable_cap_level;
1225 			}
1226 		}
1227 	}
1228 
1229 	return capacity;
1230 }
1231 
1232 /**
1233  * ab8500_fg_update_cap_scalers() - Capacity scaling
1234  * @di:		pointer to the ab8500_fg structure
1235  *
1236  * To be called when state change from charge<->discharge to update
1237  * the capacity scalers.
1238  */
1239 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1240 {
1241 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1242 
1243 	if (!cs->enable)
1244 		return;
1245 	if (di->flags.charging) {
1246 		di->bat_cap.cap_scale.disable_cap_level =
1247 			di->bat_cap.cap_scale.scaled_cap;
1248 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1249 				di->bat_cap.cap_scale.disable_cap_level);
1250 	} else {
1251 		if (cs->scaled_cap != 100) {
1252 			cs->cap_to_scale[0] = cs->scaled_cap;
1253 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1254 		} else {
1255 			cs->cap_to_scale[0] = 100;
1256 			cs->cap_to_scale[1] =
1257 				max(di->bat_cap.prev_percent,
1258 				    di->bm->fg_params->maint_thres);
1259 		}
1260 
1261 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1262 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
1263 	}
1264 }
1265 
1266 /**
1267  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268  * @di:		pointer to the ab8500_fg structure
1269  * @init:	capacity is allowed to go up in init mode
1270  *
1271  * Check if capacity or capacity limit has changed and notify the system
1272  * about it using the power_supply framework
1273  */
1274 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1275 {
1276 	bool changed = false;
1277 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1278 
1279 	di->bat_cap.level = ab8500_fg_capacity_level(di);
1280 
1281 	if (di->bat_cap.level != di->bat_cap.prev_level) {
1282 		/*
1283 		 * We do not allow reported capacity level to go up
1284 		 * unless we're charging or if we're in init
1285 		 */
1286 		if (!(!di->flags.charging && di->bat_cap.level >
1287 			di->bat_cap.prev_level) || init) {
1288 			dev_dbg(di->dev, "level changed from %d to %d\n",
1289 				di->bat_cap.prev_level,
1290 				di->bat_cap.level);
1291 			di->bat_cap.prev_level = di->bat_cap.level;
1292 			changed = true;
1293 		} else {
1294 			dev_dbg(di->dev, "level not allowed to go up "
1295 				"since no charger is connected: %d to %d\n",
1296 				di->bat_cap.prev_level,
1297 				di->bat_cap.level);
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1303 	 * shutdown
1304 	 */
1305 	if (di->flags.low_bat) {
1306 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1307 		di->bat_cap.prev_percent = 0;
1308 		di->bat_cap.permille = 0;
1309 		percent = 0;
1310 		di->bat_cap.prev_mah = 0;
1311 		di->bat_cap.mah = 0;
1312 		changed = true;
1313 	} else if (di->flags.fully_charged) {
1314 		/*
1315 		 * We report 100% if algorithm reported fully charged
1316 		 * and show 100% during maintenance charging (scaling).
1317 		 */
1318 		if (di->flags.force_full) {
1319 			di->bat_cap.prev_percent = percent;
1320 			di->bat_cap.prev_mah = di->bat_cap.mah;
1321 
1322 			changed = true;
1323 
1324 			if (!di->bat_cap.cap_scale.enable &&
1325 						di->bm->capacity_scaling) {
1326 				di->bat_cap.cap_scale.enable = true;
1327 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1328 				di->bat_cap.cap_scale.cap_to_scale[1] =
1329 						di->bat_cap.prev_percent;
1330 				di->bat_cap.cap_scale.disable_cap_level = 100;
1331 			}
1332 		} else if (di->bat_cap.prev_percent != percent) {
1333 			dev_dbg(di->dev,
1334 				"battery reported full "
1335 				"but capacity dropping: %d\n",
1336 				percent);
1337 			di->bat_cap.prev_percent = percent;
1338 			di->bat_cap.prev_mah = di->bat_cap.mah;
1339 
1340 			changed = true;
1341 		}
1342 	} else if (di->bat_cap.prev_percent != percent) {
1343 		if (percent == 0) {
1344 			/*
1345 			 * We will not report 0% unless we've got
1346 			 * the LOW_BAT IRQ, no matter what the FG
1347 			 * algorithm says.
1348 			 */
1349 			di->bat_cap.prev_percent = 1;
1350 			percent = 1;
1351 
1352 			changed = true;
1353 		} else if (!(!di->flags.charging &&
1354 			percent > di->bat_cap.prev_percent) || init) {
1355 			/*
1356 			 * We do not allow reported capacity to go up
1357 			 * unless we're charging or if we're in init
1358 			 */
1359 			dev_dbg(di->dev,
1360 				"capacity changed from %d to %d (%d)\n",
1361 				di->bat_cap.prev_percent,
1362 				percent,
1363 				di->bat_cap.permille);
1364 			di->bat_cap.prev_percent = percent;
1365 			di->bat_cap.prev_mah = di->bat_cap.mah;
1366 
1367 			changed = true;
1368 		} else {
1369 			dev_dbg(di->dev, "capacity not allowed to go up since "
1370 				"no charger is connected: %d to %d (%d)\n",
1371 				di->bat_cap.prev_percent,
1372 				percent,
1373 				di->bat_cap.permille);
1374 		}
1375 	}
1376 
1377 	if (changed) {
1378 		if (di->bm->capacity_scaling) {
1379 			di->bat_cap.cap_scale.scaled_cap =
1380 				ab8500_fg_calculate_scaled_capacity(di);
1381 
1382 			dev_info(di->dev, "capacity=%d (%d)\n",
1383 				di->bat_cap.prev_percent,
1384 				di->bat_cap.cap_scale.scaled_cap);
1385 		}
1386 		power_supply_changed(di->fg_psy);
1387 		if (di->flags.fully_charged && di->flags.force_full) {
1388 			dev_dbg(di->dev, "Battery full, notifying.\n");
1389 			di->flags.force_full = false;
1390 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1391 		}
1392 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1393 	}
1394 }
1395 
1396 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1397 	enum ab8500_fg_charge_state new_state)
1398 {
1399 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1400 		di->charge_state,
1401 		charge_state[di->charge_state],
1402 		new_state,
1403 		charge_state[new_state]);
1404 
1405 	di->charge_state = new_state;
1406 }
1407 
1408 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1409 	enum ab8500_fg_discharge_state new_state)
1410 {
1411 	dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1412 		di->discharge_state,
1413 		discharge_state[di->discharge_state],
1414 		new_state,
1415 		discharge_state[new_state]);
1416 
1417 	di->discharge_state = new_state;
1418 }
1419 
1420 /**
1421  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422  * @di:		pointer to the ab8500_fg structure
1423  *
1424  * Battery capacity calculation state machine for when we're charging
1425  */
1426 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1427 {
1428 	/*
1429 	 * If we change to discharge mode
1430 	 * we should start with recovery
1431 	 */
1432 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1433 		ab8500_fg_discharge_state_to(di,
1434 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
1435 
1436 	switch (di->charge_state) {
1437 	case AB8500_FG_CHARGE_INIT:
1438 		di->fg_samples = SEC_TO_SAMPLE(
1439 			di->bm->fg_params->accu_charging);
1440 
1441 		ab8500_fg_coulomb_counter(di, true);
1442 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1443 
1444 		break;
1445 
1446 	case AB8500_FG_CHARGE_READOUT:
1447 		/*
1448 		 * Read the FG and calculate the new capacity
1449 		 */
1450 		mutex_lock(&di->cc_lock);
1451 		if (!di->flags.conv_done && !di->flags.force_full) {
1452 			/* Wasn't the CC IRQ that got us here */
1453 			mutex_unlock(&di->cc_lock);
1454 			dev_dbg(di->dev, "%s CC conv not done\n",
1455 				__func__);
1456 
1457 			break;
1458 		}
1459 		di->flags.conv_done = false;
1460 		mutex_unlock(&di->cc_lock);
1461 
1462 		ab8500_fg_calc_cap_charging(di);
1463 
1464 		break;
1465 
1466 	default:
1467 		break;
1468 	}
1469 
1470 	/* Check capacity limits */
1471 	ab8500_fg_check_capacity_limits(di, false);
1472 }
1473 
1474 static void force_capacity(struct ab8500_fg *di)
1475 {
1476 	int cap;
1477 
1478 	ab8500_fg_clear_cap_samples(di);
1479 	cap = di->bat_cap.user_mah;
1480 	if (cap > di->bat_cap.max_mah_design) {
1481 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1482 			" %d\n", cap, di->bat_cap.max_mah_design);
1483 		cap = di->bat_cap.max_mah_design;
1484 	}
1485 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1486 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1487 	di->bat_cap.mah = cap;
1488 	ab8500_fg_check_capacity_limits(di, true);
1489 }
1490 
1491 static bool check_sysfs_capacity(struct ab8500_fg *di)
1492 {
1493 	int cap, lower, upper;
1494 	int cap_permille;
1495 
1496 	cap = di->bat_cap.user_mah;
1497 
1498 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
1499 		di->bat_cap.user_mah);
1500 
1501 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1502 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1503 
1504 	if (lower < 0)
1505 		lower = 0;
1506 	/* 1000 is permille, -> 100 percent */
1507 	if (upper > 1000)
1508 		upper = 1000;
1509 
1510 	dev_dbg(di->dev, "Capacity limits:"
1511 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512 		lower, cap_permille, upper, cap, di->bat_cap.mah);
1513 
1514 	/* If within limits, use the saved capacity and exit estimation...*/
1515 	if (cap_permille > lower && cap_permille < upper) {
1516 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1517 		force_capacity(di);
1518 		return true;
1519 	}
1520 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1521 	return false;
1522 }
1523 
1524 /**
1525  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526  * @di:		pointer to the ab8500_fg structure
1527  *
1528  * Battery capacity calculation state machine for when we're discharging
1529  */
1530 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1531 {
1532 	int sleep_time;
1533 
1534 	/* If we change to charge mode we should start with init */
1535 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
1536 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1537 
1538 	switch (di->discharge_state) {
1539 	case AB8500_FG_DISCHARGE_INIT:
1540 		/* We use the FG IRQ to work on */
1541 		di->init_cnt = 0;
1542 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1543 		ab8500_fg_coulomb_counter(di, true);
1544 		ab8500_fg_discharge_state_to(di,
1545 			AB8500_FG_DISCHARGE_INITMEASURING);
1546 
1547 		fallthrough;
1548 	case AB8500_FG_DISCHARGE_INITMEASURING:
1549 		/*
1550 		 * Discard a number of samples during startup.
1551 		 * After that, use compensated voltage for a few
1552 		 * samples to get an initial capacity.
1553 		 * Then go to READOUT
1554 		 */
1555 		sleep_time = di->bm->fg_params->init_timer;
1556 
1557 		/* Discard the first [x] seconds */
1558 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1559 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1560 
1561 			ab8500_fg_check_capacity_limits(di, true);
1562 		}
1563 
1564 		di->init_cnt += sleep_time;
1565 		if (di->init_cnt > di->bm->fg_params->init_total_time)
1566 			ab8500_fg_discharge_state_to(di,
1567 				AB8500_FG_DISCHARGE_READOUT_INIT);
1568 
1569 		break;
1570 
1571 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1572 		di->recovery_cnt = 0;
1573 		di->recovery_needed = true;
1574 		ab8500_fg_discharge_state_to(di,
1575 			AB8500_FG_DISCHARGE_RECOVERY);
1576 
1577 		fallthrough;
1578 
1579 	case AB8500_FG_DISCHARGE_RECOVERY:
1580 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
1581 
1582 		/*
1583 		 * We should check the power consumption
1584 		 * If low, go to READOUT (after x min) or
1585 		 * RECOVERY_SLEEP if time left.
1586 		 * If high, go to READOUT
1587 		 */
1588 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1589 
1590 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1591 			if (di->recovery_cnt >
1592 				di->bm->fg_params->recovery_total_time) {
1593 				di->fg_samples = SEC_TO_SAMPLE(
1594 					di->bm->fg_params->accu_high_curr);
1595 				ab8500_fg_coulomb_counter(di, true);
1596 				ab8500_fg_discharge_state_to(di,
1597 					AB8500_FG_DISCHARGE_READOUT);
1598 				di->recovery_needed = false;
1599 			} else {
1600 				queue_delayed_work(di->fg_wq,
1601 					&di->fg_periodic_work,
1602 					sleep_time * HZ);
1603 			}
1604 			di->recovery_cnt += sleep_time;
1605 		} else {
1606 			di->fg_samples = SEC_TO_SAMPLE(
1607 				di->bm->fg_params->accu_high_curr);
1608 			ab8500_fg_coulomb_counter(di, true);
1609 			ab8500_fg_discharge_state_to(di,
1610 				AB8500_FG_DISCHARGE_READOUT);
1611 		}
1612 		break;
1613 
1614 	case AB8500_FG_DISCHARGE_READOUT_INIT:
1615 		di->fg_samples = SEC_TO_SAMPLE(
1616 			di->bm->fg_params->accu_high_curr);
1617 		ab8500_fg_coulomb_counter(di, true);
1618 		ab8500_fg_discharge_state_to(di,
1619 				AB8500_FG_DISCHARGE_READOUT);
1620 		break;
1621 
1622 	case AB8500_FG_DISCHARGE_READOUT:
1623 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1624 
1625 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1626 			/* Detect mode change */
1627 			if (di->high_curr_mode) {
1628 				di->high_curr_mode = false;
1629 				di->high_curr_cnt = 0;
1630 			}
1631 
1632 			if (di->recovery_needed) {
1633 				ab8500_fg_discharge_state_to(di,
1634 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
1635 
1636 				queue_delayed_work(di->fg_wq,
1637 					&di->fg_periodic_work, 0);
1638 
1639 				break;
1640 			}
1641 
1642 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1643 		} else {
1644 			mutex_lock(&di->cc_lock);
1645 			if (!di->flags.conv_done) {
1646 				/* Wasn't the CC IRQ that got us here */
1647 				mutex_unlock(&di->cc_lock);
1648 				dev_dbg(di->dev, "%s CC conv not done\n",
1649 					__func__);
1650 
1651 				break;
1652 			}
1653 			di->flags.conv_done = false;
1654 			mutex_unlock(&di->cc_lock);
1655 
1656 			/* Detect mode change */
1657 			if (!di->high_curr_mode) {
1658 				di->high_curr_mode = true;
1659 				di->high_curr_cnt = 0;
1660 			}
1661 
1662 			di->high_curr_cnt +=
1663 				di->bm->fg_params->accu_high_curr;
1664 			if (di->high_curr_cnt >
1665 				di->bm->fg_params->high_curr_time)
1666 				di->recovery_needed = true;
1667 
1668 			ab8500_fg_calc_cap_discharge_fg(di);
1669 		}
1670 
1671 		ab8500_fg_check_capacity_limits(di, false);
1672 
1673 		break;
1674 
1675 	case AB8500_FG_DISCHARGE_WAKEUP:
1676 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1677 
1678 		di->fg_samples = SEC_TO_SAMPLE(
1679 			di->bm->fg_params->accu_high_curr);
1680 		ab8500_fg_coulomb_counter(di, true);
1681 		ab8500_fg_discharge_state_to(di,
1682 				AB8500_FG_DISCHARGE_READOUT);
1683 
1684 		ab8500_fg_check_capacity_limits(di, false);
1685 
1686 		break;
1687 
1688 	default:
1689 		break;
1690 	}
1691 }
1692 
1693 /**
1694  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695  * @di:		pointer to the ab8500_fg structure
1696  *
1697  */
1698 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1699 {
1700 	int ret;
1701 
1702 	switch (di->calib_state) {
1703 	case AB8500_FG_CALIB_INIT:
1704 		dev_dbg(di->dev, "Calibration ongoing...\n");
1705 
1706 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1707 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1708 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1709 		if (ret < 0)
1710 			goto err;
1711 
1712 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1713 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1714 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1715 		if (ret < 0)
1716 			goto err;
1717 		di->calib_state = AB8500_FG_CALIB_WAIT;
1718 		break;
1719 	case AB8500_FG_CALIB_END:
1720 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1721 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722 			CC_MUXOFFSET, CC_MUXOFFSET);
1723 		if (ret < 0)
1724 			goto err;
1725 		di->flags.calibrate = false;
1726 		dev_dbg(di->dev, "Calibration done...\n");
1727 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1728 		break;
1729 	case AB8500_FG_CALIB_WAIT:
1730 		dev_dbg(di->dev, "Calibration WFI\n");
1731 	default:
1732 		break;
1733 	}
1734 	return;
1735 err:
1736 	/* Something went wrong, don't calibrate then */
1737 	dev_err(di->dev, "failed to calibrate the CC\n");
1738 	di->flags.calibrate = false;
1739 	di->calib_state = AB8500_FG_CALIB_INIT;
1740 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1741 }
1742 
1743 /**
1744  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1745  * @di:		pointer to the ab8500_fg structure
1746  *
1747  * Entry point for the battery capacity calculation state machine
1748  */
1749 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1750 {
1751 	if (di->flags.calibrate)
1752 		ab8500_fg_algorithm_calibrate(di);
1753 	else {
1754 		if (di->flags.charging)
1755 			ab8500_fg_algorithm_charging(di);
1756 		else
1757 			ab8500_fg_algorithm_discharging(di);
1758 	}
1759 
1760 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1761 		"%d %d %d %d %d %d %d\n",
1762 		di->bat_cap.max_mah_design,
1763 		di->bat_cap.max_mah,
1764 		di->bat_cap.mah,
1765 		di->bat_cap.permille,
1766 		di->bat_cap.level,
1767 		di->bat_cap.prev_mah,
1768 		di->bat_cap.prev_percent,
1769 		di->bat_cap.prev_level,
1770 		di->vbat,
1771 		di->inst_curr,
1772 		di->avg_curr,
1773 		di->accu_charge,
1774 		di->flags.charging,
1775 		di->charge_state,
1776 		di->discharge_state,
1777 		di->high_curr_mode,
1778 		di->recovery_needed);
1779 }
1780 
1781 /**
1782  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1783  * @work:	pointer to the work_struct structure
1784  *
1785  * Work queue function for periodic work
1786  */
1787 static void ab8500_fg_periodic_work(struct work_struct *work)
1788 {
1789 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1790 		fg_periodic_work.work);
1791 
1792 	if (di->init_capacity) {
1793 		/* Get an initial capacity calculation */
1794 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1795 		ab8500_fg_check_capacity_limits(di, true);
1796 		di->init_capacity = false;
1797 
1798 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1799 	} else if (di->flags.user_cap) {
1800 		if (check_sysfs_capacity(di)) {
1801 			ab8500_fg_check_capacity_limits(di, true);
1802 			if (di->flags.charging)
1803 				ab8500_fg_charge_state_to(di,
1804 					AB8500_FG_CHARGE_INIT);
1805 			else
1806 				ab8500_fg_discharge_state_to(di,
1807 					AB8500_FG_DISCHARGE_READOUT_INIT);
1808 		}
1809 		di->flags.user_cap = false;
1810 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1811 	} else
1812 		ab8500_fg_algorithm(di);
1813 
1814 }
1815 
1816 /**
1817  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1818  * @work:	pointer to the work_struct structure
1819  *
1820  * Work queue function for checking the OVV_BAT condition
1821  */
1822 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1823 {
1824 	int ret;
1825 	u8 reg_value;
1826 
1827 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1828 		fg_check_hw_failure_work.work);
1829 
1830 	/*
1831 	 * If we have had a battery over-voltage situation,
1832 	 * check ovv-bit to see if it should be reset.
1833 	 */
1834 	ret = abx500_get_register_interruptible(di->dev,
1835 		AB8500_CHARGER, AB8500_CH_STAT_REG,
1836 		&reg_value);
1837 	if (ret < 0) {
1838 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1839 		return;
1840 	}
1841 	if ((reg_value & BATT_OVV) == BATT_OVV) {
1842 		if (!di->flags.bat_ovv) {
1843 			dev_dbg(di->dev, "Battery OVV\n");
1844 			di->flags.bat_ovv = true;
1845 			power_supply_changed(di->fg_psy);
1846 		}
1847 		/* Not yet recovered from ovv, reschedule this test */
1848 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1849 				   HZ);
1850 		} else {
1851 			dev_dbg(di->dev, "Battery recovered from OVV\n");
1852 			di->flags.bat_ovv = false;
1853 			power_supply_changed(di->fg_psy);
1854 	}
1855 }
1856 
1857 /**
1858  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1859  * @work:	pointer to the work_struct structure
1860  *
1861  * Work queue function for checking the LOW_BAT condition
1862  */
1863 static void ab8500_fg_low_bat_work(struct work_struct *work)
1864 {
1865 	int vbat;
1866 
1867 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1868 		fg_low_bat_work.work);
1869 
1870 	vbat = ab8500_fg_bat_voltage(di);
1871 
1872 	/* Check if LOW_BAT still fulfilled */
1873 	if (vbat < di->bm->fg_params->lowbat_threshold) {
1874 		/* Is it time to shut down? */
1875 		if (di->low_bat_cnt < 1) {
1876 			di->flags.low_bat = true;
1877 			dev_warn(di->dev, "Shut down pending...\n");
1878 		} else {
1879 			/*
1880 			* Else we need to re-schedule this check to be able to detect
1881 			* if the voltage increases again during charging or
1882 			* due to decreasing load.
1883 			*/
1884 			di->low_bat_cnt--;
1885 			dev_warn(di->dev, "Battery voltage still LOW\n");
1886 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1887 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
1888 		}
1889 	} else {
1890 		di->flags.low_bat_delay = false;
1891 		di->low_bat_cnt = 10;
1892 		dev_warn(di->dev, "Battery voltage OK again\n");
1893 	}
1894 
1895 	/* This is needed to dispatch LOW_BAT */
1896 	ab8500_fg_check_capacity_limits(di, false);
1897 }
1898 
1899 /**
1900  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1901  * to the target voltage.
1902  * @di:       pointer to the ab8500_fg structure
1903  * @target:   target voltage
1904  *
1905  * Returns bit pattern closest to the target voltage
1906  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1907  */
1908 
1909 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1910 {
1911 	if (target > BATT_OK_MIN +
1912 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1913 		return BATT_OK_MAX_NR_INCREMENTS;
1914 	if (target < BATT_OK_MIN)
1915 		return 0;
1916 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1917 }
1918 
1919 /**
1920  * ab8500_fg_battok_init_hw_register - init battok levels
1921  * @di:       pointer to the ab8500_fg structure
1922  *
1923  */
1924 
1925 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1926 {
1927 	int selected;
1928 	int sel0;
1929 	int sel1;
1930 	int cbp_sel0;
1931 	int cbp_sel1;
1932 	int ret;
1933 	int new_val;
1934 
1935 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
1936 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
1937 
1938 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1939 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1940 
1941 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1942 
1943 	if (selected != sel0)
1944 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1945 			sel0, selected, cbp_sel0);
1946 
1947 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1948 
1949 	if (selected != sel1)
1950 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1951 			sel1, selected, cbp_sel1);
1952 
1953 	new_val = cbp_sel0 | (cbp_sel1 << 4);
1954 
1955 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1956 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1957 		AB8500_BATT_OK_REG, new_val);
1958 	return ret;
1959 }
1960 
1961 /**
1962  * ab8500_fg_instant_work() - Run the FG state machine instantly
1963  * @work:	pointer to the work_struct structure
1964  *
1965  * Work queue function for instant work
1966  */
1967 static void ab8500_fg_instant_work(struct work_struct *work)
1968 {
1969 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1970 
1971 	ab8500_fg_algorithm(di);
1972 }
1973 
1974 /**
1975  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1976  * @irq:       interrupt number
1977  * @_di:       pointer to the ab8500_fg structure
1978  *
1979  * Returns IRQ status(IRQ_HANDLED)
1980  */
1981 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1982 {
1983 	struct ab8500_fg *di = _di;
1984 	if (!di->nbr_cceoc_irq_cnt) {
1985 		di->nbr_cceoc_irq_cnt++;
1986 		complete(&di->ab8500_fg_started);
1987 	} else {
1988 		di->nbr_cceoc_irq_cnt = 0;
1989 		complete(&di->ab8500_fg_complete);
1990 	}
1991 	return IRQ_HANDLED;
1992 }
1993 
1994 /**
1995  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1996  * @irq:       interrupt number
1997  * @_di:       pointer to the ab8500_fg structure
1998  *
1999  * Returns IRQ status(IRQ_HANDLED)
2000  */
2001 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2002 {
2003 	struct ab8500_fg *di = _di;
2004 	di->calib_state = AB8500_FG_CALIB_END;
2005 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2006 	return IRQ_HANDLED;
2007 }
2008 
2009 /**
2010  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2011  * @irq:       interrupt number
2012  * @_di:       pointer to the ab8500_fg structure
2013  *
2014  * Returns IRQ status(IRQ_HANDLED)
2015  */
2016 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2017 {
2018 	struct ab8500_fg *di = _di;
2019 
2020 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
2021 
2022 	return IRQ_HANDLED;
2023 }
2024 
2025 /**
2026  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2027  * @irq:       interrupt number
2028  * @_di:       pointer to the ab8500_fg structure
2029  *
2030  * Returns IRQ status(IRQ_HANDLED)
2031  */
2032 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2033 {
2034 	struct ab8500_fg *di = _di;
2035 
2036 	dev_dbg(di->dev, "Battery OVV\n");
2037 
2038 	/* Schedule a new HW failure check */
2039 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2040 
2041 	return IRQ_HANDLED;
2042 }
2043 
2044 /**
2045  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2046  * @irq:       interrupt number
2047  * @_di:       pointer to the ab8500_fg structure
2048  *
2049  * Returns IRQ status(IRQ_HANDLED)
2050  */
2051 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2052 {
2053 	struct ab8500_fg *di = _di;
2054 
2055 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2056 	if (!di->flags.low_bat_delay) {
2057 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2058 		di->flags.low_bat_delay = true;
2059 		/*
2060 		 * Start a timer to check LOW_BAT again after some time
2061 		 * This is done to avoid shutdown on single voltage dips
2062 		 */
2063 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2064 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
2065 	}
2066 	return IRQ_HANDLED;
2067 }
2068 
2069 /**
2070  * ab8500_fg_get_property() - get the fg properties
2071  * @psy:	pointer to the power_supply structure
2072  * @psp:	pointer to the power_supply_property structure
2073  * @val:	pointer to the power_supply_propval union
2074  *
2075  * This function gets called when an application tries to get the
2076  * fg properties by reading the sysfs files.
2077  * voltage_now:		battery voltage
2078  * current_now:		battery instant current
2079  * current_avg:		battery average current
2080  * charge_full_design:	capacity where battery is considered full
2081  * charge_now:		battery capacity in nAh
2082  * capacity:		capacity in percent
2083  * capacity_level:	capacity level
2084  *
2085  * Returns error code in case of failure else 0 on success
2086  */
2087 static int ab8500_fg_get_property(struct power_supply *psy,
2088 	enum power_supply_property psp,
2089 	union power_supply_propval *val)
2090 {
2091 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2092 
2093 	/*
2094 	 * If battery is identified as unknown and charging of unknown
2095 	 * batteries is disabled, we always report 100% capacity and
2096 	 * capacity level UNKNOWN, since we can't calculate
2097 	 * remaining capacity
2098 	 */
2099 
2100 	switch (psp) {
2101 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2102 		if (di->flags.bat_ovv)
2103 			val->intval = BATT_OVV_VALUE * 1000;
2104 		else
2105 			val->intval = di->vbat * 1000;
2106 		break;
2107 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2108 		val->intval = di->inst_curr * 1000;
2109 		break;
2110 	case POWER_SUPPLY_PROP_CURRENT_AVG:
2111 		val->intval = di->avg_curr * 1000;
2112 		break;
2113 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2114 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2115 				di->bat_cap.max_mah_design);
2116 		break;
2117 	case POWER_SUPPLY_PROP_ENERGY_FULL:
2118 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2119 				di->bat_cap.max_mah);
2120 		break;
2121 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2122 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2123 				di->flags.batt_id_received)
2124 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2125 					di->bat_cap.max_mah);
2126 		else
2127 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128 					di->bat_cap.prev_mah);
2129 		break;
2130 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2131 		val->intval = di->bat_cap.max_mah_design;
2132 		break;
2133 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2134 		val->intval = di->bat_cap.max_mah;
2135 		break;
2136 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2137 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2138 				di->flags.batt_id_received)
2139 			val->intval = di->bat_cap.max_mah;
2140 		else
2141 			val->intval = di->bat_cap.prev_mah;
2142 		break;
2143 	case POWER_SUPPLY_PROP_CAPACITY:
2144 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2145 				di->flags.batt_id_received)
2146 			val->intval = 100;
2147 		else
2148 			val->intval = di->bat_cap.prev_percent;
2149 		break;
2150 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2151 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2152 				di->flags.batt_id_received)
2153 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2154 		else
2155 			val->intval = di->bat_cap.prev_level;
2156 		break;
2157 	default:
2158 		return -EINVAL;
2159 	}
2160 	return 0;
2161 }
2162 
2163 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2164 {
2165 	struct power_supply *psy;
2166 	struct power_supply *ext = dev_get_drvdata(dev);
2167 	const char **supplicants = (const char **)ext->supplied_to;
2168 	struct ab8500_fg *di;
2169 	union power_supply_propval ret;
2170 	int j;
2171 
2172 	psy = (struct power_supply *)data;
2173 	di = power_supply_get_drvdata(psy);
2174 
2175 	/*
2176 	 * For all psy where the name of your driver
2177 	 * appears in any supplied_to
2178 	 */
2179 	j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2180 	if (j < 0)
2181 		return 0;
2182 
2183 	/* Go through all properties for the psy */
2184 	for (j = 0; j < ext->desc->num_properties; j++) {
2185 		enum power_supply_property prop;
2186 		prop = ext->desc->properties[j];
2187 
2188 		if (power_supply_get_property(ext, prop, &ret))
2189 			continue;
2190 
2191 		switch (prop) {
2192 		case POWER_SUPPLY_PROP_STATUS:
2193 			switch (ext->desc->type) {
2194 			case POWER_SUPPLY_TYPE_BATTERY:
2195 				switch (ret.intval) {
2196 				case POWER_SUPPLY_STATUS_UNKNOWN:
2197 				case POWER_SUPPLY_STATUS_DISCHARGING:
2198 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
2199 					if (!di->flags.charging)
2200 						break;
2201 					di->flags.charging = false;
2202 					di->flags.fully_charged = false;
2203 					if (di->bm->capacity_scaling)
2204 						ab8500_fg_update_cap_scalers(di);
2205 					queue_work(di->fg_wq, &di->fg_work);
2206 					break;
2207 				case POWER_SUPPLY_STATUS_FULL:
2208 					if (di->flags.fully_charged)
2209 						break;
2210 					di->flags.fully_charged = true;
2211 					di->flags.force_full = true;
2212 					/* Save current capacity as maximum */
2213 					di->bat_cap.max_mah = di->bat_cap.mah;
2214 					queue_work(di->fg_wq, &di->fg_work);
2215 					break;
2216 				case POWER_SUPPLY_STATUS_CHARGING:
2217 					if (di->flags.charging &&
2218 						!di->flags.fully_charged)
2219 						break;
2220 					di->flags.charging = true;
2221 					di->flags.fully_charged = false;
2222 					if (di->bm->capacity_scaling)
2223 						ab8500_fg_update_cap_scalers(di);
2224 					queue_work(di->fg_wq, &di->fg_work);
2225 					break;
2226 				}
2227 			default:
2228 				break;
2229 			}
2230 			break;
2231 		case POWER_SUPPLY_PROP_TECHNOLOGY:
2232 			switch (ext->desc->type) {
2233 			case POWER_SUPPLY_TYPE_BATTERY:
2234 				if (!di->flags.batt_id_received &&
2235 				    di->bm->batt_id != BATTERY_UNKNOWN) {
2236 					const struct abx500_battery_type *b;
2237 
2238 					b = &(di->bm->bat_type[di->bm->batt_id]);
2239 
2240 					di->flags.batt_id_received = true;
2241 
2242 					di->bat_cap.max_mah_design =
2243 						MILLI_TO_MICRO *
2244 						b->charge_full_design;
2245 
2246 					di->bat_cap.max_mah =
2247 						di->bat_cap.max_mah_design;
2248 
2249 					di->vbat_nom = b->nominal_voltage;
2250 				}
2251 
2252 				if (ret.intval)
2253 					di->flags.batt_unknown = false;
2254 				else
2255 					di->flags.batt_unknown = true;
2256 				break;
2257 			default:
2258 				break;
2259 			}
2260 			break;
2261 		case POWER_SUPPLY_PROP_TEMP:
2262 			switch (ext->desc->type) {
2263 			case POWER_SUPPLY_TYPE_BATTERY:
2264 				if (di->flags.batt_id_received)
2265 					di->bat_temp = ret.intval;
2266 				break;
2267 			default:
2268 				break;
2269 			}
2270 			break;
2271 		default:
2272 			break;
2273 		}
2274 	}
2275 	return 0;
2276 }
2277 
2278 /**
2279  * ab8500_fg_init_hw_registers() - Set up FG related registers
2280  * @di:		pointer to the ab8500_fg structure
2281  *
2282  * Set up battery OVV, low battery voltage registers
2283  */
2284 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2285 {
2286 	int ret;
2287 
2288 	/* Set VBAT OVV threshold */
2289 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2290 		AB8500_CHARGER,
2291 		AB8500_BATT_OVV,
2292 		BATT_OVV_TH_4P75,
2293 		BATT_OVV_TH_4P75);
2294 	if (ret) {
2295 		dev_err(di->dev, "failed to set BATT_OVV\n");
2296 		goto out;
2297 	}
2298 
2299 	/* Enable VBAT OVV detection */
2300 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2301 		AB8500_CHARGER,
2302 		AB8500_BATT_OVV,
2303 		BATT_OVV_ENA,
2304 		BATT_OVV_ENA);
2305 	if (ret) {
2306 		dev_err(di->dev, "failed to enable BATT_OVV\n");
2307 		goto out;
2308 	}
2309 
2310 	/* Low Battery Voltage */
2311 	ret = abx500_set_register_interruptible(di->dev,
2312 		AB8500_SYS_CTRL2_BLOCK,
2313 		AB8500_LOW_BAT_REG,
2314 		ab8500_volt_to_regval(
2315 			di->bm->fg_params->lowbat_threshold) << 1 |
2316 		LOW_BAT_ENABLE);
2317 	if (ret) {
2318 		dev_err(di->dev, "%s write failed\n", __func__);
2319 		goto out;
2320 	}
2321 
2322 	/* Battery OK threshold */
2323 	ret = ab8500_fg_battok_init_hw_register(di);
2324 	if (ret) {
2325 		dev_err(di->dev, "BattOk init write failed.\n");
2326 		goto out;
2327 	}
2328 
2329 	if (is_ab8505(di->parent)) {
2330 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2331 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2332 
2333 		if (ret) {
2334 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2335 			goto out;
2336 		}
2337 
2338 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2339 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2340 
2341 		if (ret) {
2342 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2343 			goto out;
2344 		}
2345 
2346 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2347 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2348 
2349 		if (ret) {
2350 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2351 			goto out;
2352 		}
2353 
2354 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2355 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2356 
2357 		if (ret) {
2358 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2359 			goto out;
2360 		}
2361 
2362 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2363 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2364 
2365 		if (ret) {
2366 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2367 			goto out;
2368 		}
2369 	}
2370 out:
2371 	return ret;
2372 }
2373 
2374 /**
2375  * ab8500_fg_external_power_changed() - callback for power supply changes
2376  * @psy:       pointer to the structure power_supply
2377  *
2378  * This function is the entry point of the pointer external_power_changed
2379  * of the structure power_supply.
2380  * This function gets executed when there is a change in any external power
2381  * supply that this driver needs to be notified of.
2382  */
2383 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2384 {
2385 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2386 
2387 	class_for_each_device(power_supply_class, NULL,
2388 		di->fg_psy, ab8500_fg_get_ext_psy_data);
2389 }
2390 
2391 /**
2392  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2393  * @work:	pointer to the work_struct structure
2394  *
2395  * Used to reset the current battery capacity to be able to
2396  * retrigger a new voltage base capacity calculation. For
2397  * test and verification purpose.
2398  */
2399 static void ab8500_fg_reinit_work(struct work_struct *work)
2400 {
2401 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2402 		fg_reinit_work.work);
2403 
2404 	if (!di->flags.calibrate) {
2405 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2406 		ab8500_fg_clear_cap_samples(di);
2407 		ab8500_fg_calc_cap_discharge_voltage(di, true);
2408 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2409 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2410 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2411 
2412 	} else {
2413 		dev_err(di->dev, "Residual offset calibration ongoing "
2414 			"retrying..\n");
2415 		/* Wait one second until next try*/
2416 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2417 			round_jiffies(1));
2418 	}
2419 }
2420 
2421 /* Exposure to the sysfs interface */
2422 
2423 struct ab8500_fg_sysfs_entry {
2424 	struct attribute attr;
2425 	ssize_t (*show)(struct ab8500_fg *, char *);
2426 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2427 };
2428 
2429 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2430 {
2431 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2432 }
2433 
2434 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2435 				 size_t count)
2436 {
2437 	unsigned long charge_full;
2438 	int ret;
2439 
2440 	ret = kstrtoul(buf, 10, &charge_full);
2441 	if (ret)
2442 		return ret;
2443 
2444 	di->bat_cap.max_mah = (int) charge_full;
2445 	return count;
2446 }
2447 
2448 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2449 {
2450 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2451 }
2452 
2453 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2454 				 size_t count)
2455 {
2456 	unsigned long charge_now;
2457 	int ret;
2458 
2459 	ret = kstrtoul(buf, 10, &charge_now);
2460 	if (ret)
2461 		return ret;
2462 
2463 	di->bat_cap.user_mah = (int) charge_now;
2464 	di->flags.user_cap = true;
2465 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2466 	return count;
2467 }
2468 
2469 static struct ab8500_fg_sysfs_entry charge_full_attr =
2470 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2471 
2472 static struct ab8500_fg_sysfs_entry charge_now_attr =
2473 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2474 
2475 static ssize_t
2476 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2477 {
2478 	struct ab8500_fg_sysfs_entry *entry;
2479 	struct ab8500_fg *di;
2480 
2481 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2482 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2483 
2484 	if (!entry->show)
2485 		return -EIO;
2486 
2487 	return entry->show(di, buf);
2488 }
2489 static ssize_t
2490 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2491 		size_t count)
2492 {
2493 	struct ab8500_fg_sysfs_entry *entry;
2494 	struct ab8500_fg *di;
2495 
2496 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2497 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2498 
2499 	if (!entry->store)
2500 		return -EIO;
2501 
2502 	return entry->store(di, buf, count);
2503 }
2504 
2505 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2506 	.show = ab8500_fg_show,
2507 	.store = ab8500_fg_store,
2508 };
2509 
2510 static struct attribute *ab8500_fg_attrs[] = {
2511 	&charge_full_attr.attr,
2512 	&charge_now_attr.attr,
2513 	NULL,
2514 };
2515 
2516 static struct kobj_type ab8500_fg_ktype = {
2517 	.sysfs_ops = &ab8500_fg_sysfs_ops,
2518 	.default_attrs = ab8500_fg_attrs,
2519 };
2520 
2521 /**
2522  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2523  * @di:                pointer to the struct ab8500_chargalg
2524  *
2525  * This function removes the entry in sysfs.
2526  */
2527 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2528 {
2529 	kobject_del(&di->fg_kobject);
2530 }
2531 
2532 /**
2533  * ab8500_fg_sysfs_init() - init of sysfs entry
2534  * @di:                pointer to the struct ab8500_chargalg
2535  *
2536  * This function adds an entry in sysfs.
2537  * Returns error code in case of failure else 0(on success)
2538  */
2539 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2540 {
2541 	int ret = 0;
2542 
2543 	ret = kobject_init_and_add(&di->fg_kobject,
2544 		&ab8500_fg_ktype,
2545 		NULL, "battery");
2546 	if (ret < 0)
2547 		dev_err(di->dev, "failed to create sysfs entry\n");
2548 
2549 	return ret;
2550 }
2551 
2552 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2553 			     struct device_attribute *attr,
2554 			     char *buf)
2555 {
2556 	int ret;
2557 	u8 reg_value;
2558 	struct power_supply *psy = dev_get_drvdata(dev);
2559 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2560 
2561 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2562 		AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2563 
2564 	if (ret < 0) {
2565 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2566 		goto fail;
2567 	}
2568 
2569 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2570 
2571 fail:
2572 	return ret;
2573 }
2574 
2575 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2576 				  struct device_attribute *attr,
2577 				  const char *buf, size_t count)
2578 {
2579 	int ret;
2580 	int reg_value;
2581 	struct power_supply *psy = dev_get_drvdata(dev);
2582 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2583 
2584 	if (kstrtoint(buf, 10, &reg_value))
2585 		goto fail;
2586 
2587 	if (reg_value > 0x7F) {
2588 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2589 		goto fail;
2590 	}
2591 
2592 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2593 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2594 
2595 	if (ret < 0)
2596 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2597 
2598 fail:
2599 	return count;
2600 }
2601 
2602 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2603 			     struct device_attribute *attr,
2604 			     char *buf)
2605 {
2606 	int ret;
2607 	u8 reg_value;
2608 	struct power_supply *psy = dev_get_drvdata(dev);
2609 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2610 
2611 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2612 		AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2613 
2614 	if (ret < 0) {
2615 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2616 		goto fail;
2617 	}
2618 
2619 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2620 
2621 fail:
2622 	return ret;
2623 
2624 }
2625 
2626 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2627 				  struct device_attribute *attr,
2628 				  const char *buf, size_t count)
2629 {
2630 	int ret;
2631 	int reg_value;
2632 	struct power_supply *psy = dev_get_drvdata(dev);
2633 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2634 
2635 	if (kstrtoint(buf, 10, &reg_value))
2636 		goto fail;
2637 
2638 	if (reg_value > 0x7F) {
2639 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2640 		goto fail;
2641 	}
2642 
2643 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2644 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2645 
2646 	if (ret < 0)
2647 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2648 
2649 fail:
2650 	return count;
2651 }
2652 
2653 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2654 			     struct device_attribute *attr,
2655 			     char *buf)
2656 {
2657 	int ret;
2658 	u8 reg_value;
2659 	struct power_supply *psy = dev_get_drvdata(dev);
2660 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2661 
2662 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2663 		AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2664 
2665 	if (ret < 0) {
2666 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2667 		goto fail;
2668 	}
2669 
2670 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2671 
2672 fail:
2673 	return ret;
2674 }
2675 
2676 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2677 					     struct device_attribute *attr,
2678 					     const char *buf, size_t count)
2679 {
2680 	int ret;
2681 	int reg_value;
2682 	struct power_supply *psy = dev_get_drvdata(dev);
2683 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2684 
2685 	if (kstrtoint(buf, 10, &reg_value))
2686 		goto fail;
2687 
2688 	if (reg_value > 0xF) {
2689 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2690 		goto fail;
2691 	}
2692 
2693 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2694 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2695 
2696 	if (ret < 0)
2697 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2698 
2699 fail:
2700 	return count;
2701 
2702 }
2703 
2704 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2705 					  struct device_attribute *attr,
2706 					  char *buf)
2707 {
2708 	int ret;
2709 	u8 reg_value;
2710 	struct power_supply *psy = dev_get_drvdata(dev);
2711 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2712 
2713 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2714 						AB8505_RTC_PCUT_TIME_REG, &reg_value);
2715 
2716 	if (ret < 0) {
2717 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2718 		goto fail;
2719 	}
2720 
2721 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2722 
2723 fail:
2724 	return ret;
2725 }
2726 
2727 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2728 						    struct device_attribute *attr,
2729 						    char *buf)
2730 {
2731 	int ret;
2732 	u8 reg_value;
2733 	struct power_supply *psy = dev_get_drvdata(dev);
2734 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2735 
2736 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2737 						AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2738 
2739 	if (ret < 0) {
2740 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2741 		goto fail;
2742 	}
2743 
2744 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2745 
2746 fail:
2747 	return ret;
2748 }
2749 
2750 static ssize_t ab8505_powercut_read(struct device *dev,
2751 				    struct device_attribute *attr,
2752 				    char *buf)
2753 {
2754 	int ret;
2755 	u8 reg_value;
2756 	struct power_supply *psy = dev_get_drvdata(dev);
2757 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2758 
2759 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2760 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2761 
2762 	if (ret < 0)
2763 		goto fail;
2764 
2765 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2766 
2767 fail:
2768 	return ret;
2769 }
2770 
2771 static ssize_t ab8505_powercut_write(struct device *dev,
2772 				     struct device_attribute *attr,
2773 				     const char *buf, size_t count)
2774 {
2775 	int ret;
2776 	int reg_value;
2777 	struct power_supply *psy = dev_get_drvdata(dev);
2778 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2779 
2780 	if (kstrtoint(buf, 10, &reg_value))
2781 		goto fail;
2782 
2783 	if (reg_value > 0x1) {
2784 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2785 		goto fail;
2786 	}
2787 
2788 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2789 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2790 
2791 	if (ret < 0)
2792 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2793 
2794 fail:
2795 	return count;
2796 }
2797 
2798 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2799 					 struct device_attribute *attr,
2800 					 char *buf)
2801 {
2802 
2803 	int ret;
2804 	u8 reg_value;
2805 	struct power_supply *psy = dev_get_drvdata(dev);
2806 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2807 
2808 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2809 						AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2810 
2811 	if (ret < 0) {
2812 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2813 		goto fail;
2814 	}
2815 
2816 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2817 
2818 fail:
2819 	return ret;
2820 }
2821 
2822 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2823 					     struct device_attribute *attr,
2824 					     char *buf)
2825 {
2826 	int ret;
2827 	u8 reg_value;
2828 	struct power_supply *psy = dev_get_drvdata(dev);
2829 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2830 
2831 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2832 						AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2833 
2834 	if (ret < 0) {
2835 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2836 		goto fail;
2837 	}
2838 
2839 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2840 
2841 fail:
2842 	return ret;
2843 }
2844 
2845 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2846 					      struct device_attribute *attr,
2847 					      const char *buf, size_t count)
2848 {
2849 	int ret;
2850 	int reg_value;
2851 	struct power_supply *psy = dev_get_drvdata(dev);
2852 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2853 
2854 	if (kstrtoint(buf, 10, &reg_value))
2855 		goto fail;
2856 
2857 	if (reg_value > 0x7) {
2858 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2859 		goto fail;
2860 	}
2861 
2862 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2863 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2864 
2865 	if (ret < 0)
2866 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2867 
2868 fail:
2869 	return count;
2870 }
2871 
2872 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2873 						  struct device_attribute *attr,
2874 						  char *buf)
2875 {
2876 	int ret;
2877 	u8 reg_value;
2878 	struct power_supply *psy = dev_get_drvdata(dev);
2879 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2880 
2881 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2882 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2883 
2884 	if (ret < 0) {
2885 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2886 		goto fail;
2887 	}
2888 
2889 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2890 
2891 fail:
2892 	return ret;
2893 }
2894 
2895 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2896 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2897 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2898 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2899 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2900 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2901 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2902 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2903 	__ATTR(powercut_restart_counter, S_IRUGO,
2904 		ab8505_powercut_restart_counter_read, NULL),
2905 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2906 		ab8505_powercut_read, ab8505_powercut_write),
2907 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2908 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2909 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2910 	__ATTR(powercut_enable_status, S_IRUGO,
2911 		ab8505_powercut_enable_status_read, NULL),
2912 };
2913 
2914 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2915 {
2916 	unsigned int i;
2917 
2918 	if (is_ab8505(di->parent)) {
2919 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2920 			if (device_create_file(&di->fg_psy->dev,
2921 					       &ab8505_fg_sysfs_psy_attrs[i]))
2922 				goto sysfs_psy_create_attrs_failed_ab8505;
2923 	}
2924 	return 0;
2925 sysfs_psy_create_attrs_failed_ab8505:
2926 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2927 	while (i--)
2928 		device_remove_file(&di->fg_psy->dev,
2929 				   &ab8505_fg_sysfs_psy_attrs[i]);
2930 
2931 	return -EIO;
2932 }
2933 
2934 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2935 {
2936 	unsigned int i;
2937 
2938 	if (is_ab8505(di->parent)) {
2939 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2940 			(void)device_remove_file(&di->fg_psy->dev,
2941 						 &ab8505_fg_sysfs_psy_attrs[i]);
2942 	}
2943 }
2944 
2945 /* Exposure to the sysfs interface <<END>> */
2946 
2947 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2948 {
2949 	struct ab8500_fg *di = dev_get_drvdata(dev);
2950 
2951 	/*
2952 	 * Change state if we're not charging. If we're charging we will wake
2953 	 * up on the FG IRQ
2954 	 */
2955 	if (!di->flags.charging) {
2956 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2957 		queue_work(di->fg_wq, &di->fg_work);
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2964 {
2965 	struct ab8500_fg *di = dev_get_drvdata(dev);
2966 
2967 	flush_delayed_work(&di->fg_periodic_work);
2968 	flush_work(&di->fg_work);
2969 	flush_work(&di->fg_acc_cur_work);
2970 	flush_delayed_work(&di->fg_reinit_work);
2971 	flush_delayed_work(&di->fg_low_bat_work);
2972 	flush_delayed_work(&di->fg_check_hw_failure_work);
2973 
2974 	/*
2975 	 * If the FG is enabled we will disable it before going to suspend
2976 	 * only if we're not charging
2977 	 */
2978 	if (di->flags.fg_enabled && !di->flags.charging)
2979 		ab8500_fg_coulomb_counter(di, false);
2980 
2981 	return 0;
2982 }
2983 
2984 /* ab8500 fg driver interrupts and their respective isr */
2985 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2986 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2987 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
2988 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2989 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2990 	{"CCEOC", ab8500_fg_cc_data_end_handler},
2991 };
2992 
2993 static char *supply_interface[] = {
2994 	"ab8500_chargalg",
2995 	"ab8500_usb",
2996 };
2997 
2998 static const struct power_supply_desc ab8500_fg_desc = {
2999 	.name			= "ab8500_fg",
3000 	.type			= POWER_SUPPLY_TYPE_BATTERY,
3001 	.properties		= ab8500_fg_props,
3002 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
3003 	.get_property		= ab8500_fg_get_property,
3004 	.external_power_changed	= ab8500_fg_external_power_changed,
3005 };
3006 
3007 static int ab8500_fg_bind(struct device *dev, struct device *master,
3008 			  void *data)
3009 {
3010 	struct ab8500_fg *di = dev_get_drvdata(dev);
3011 
3012 	/* Create a work queue for running the FG algorithm */
3013 	di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3014 	if (di->fg_wq == NULL) {
3015 		dev_err(dev, "failed to create work queue\n");
3016 		return -ENOMEM;
3017 	}
3018 
3019 	/* Start the coulomb counter */
3020 	ab8500_fg_coulomb_counter(di, true);
3021 	/* Run the FG algorithm */
3022 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3023 
3024 	return 0;
3025 }
3026 
3027 static void ab8500_fg_unbind(struct device *dev, struct device *master,
3028 			     void *data)
3029 {
3030 	struct ab8500_fg *di = dev_get_drvdata(dev);
3031 	int ret;
3032 
3033 	/* Disable coulomb counter */
3034 	ret = ab8500_fg_coulomb_counter(di, false);
3035 	if (ret)
3036 		dev_err(dev, "failed to disable coulomb counter\n");
3037 
3038 	destroy_workqueue(di->fg_wq);
3039 	flush_scheduled_work();
3040 }
3041 
3042 static const struct component_ops ab8500_fg_component_ops = {
3043 	.bind = ab8500_fg_bind,
3044 	.unbind = ab8500_fg_unbind,
3045 };
3046 
3047 static int ab8500_fg_probe(struct platform_device *pdev)
3048 {
3049 	struct device *dev = &pdev->dev;
3050 	struct power_supply_config psy_cfg = {};
3051 	struct ab8500_fg *di;
3052 	int i, irq;
3053 	int ret = 0;
3054 
3055 	di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3056 	if (!di)
3057 		return -ENOMEM;
3058 
3059 	di->bm = &ab8500_bm_data;
3060 
3061 	mutex_init(&di->cc_lock);
3062 
3063 	/* get parent data */
3064 	di->dev = dev;
3065 	di->parent = dev_get_drvdata(pdev->dev.parent);
3066 
3067 	di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3068 	if (IS_ERR(di->main_bat_v)) {
3069 		ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3070 				    "failed to get main battery ADC channel\n");
3071 		return ret;
3072 	}
3073 
3074 	psy_cfg.supplied_to = supply_interface;
3075 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3076 	psy_cfg.drv_data = di;
3077 
3078 	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3079 		di->bm->bat_type[di->bm->batt_id].charge_full_design;
3080 
3081 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3082 
3083 	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3084 
3085 	di->init_capacity = true;
3086 
3087 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3088 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3089 
3090 	/* Init work for running the fg algorithm instantly */
3091 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3092 
3093 	/* Init work for getting the battery accumulated current */
3094 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3095 
3096 	/* Init work for reinitialising the fg algorithm */
3097 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3098 		ab8500_fg_reinit_work);
3099 
3100 	/* Work delayed Queue to run the state machine */
3101 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3102 		ab8500_fg_periodic_work);
3103 
3104 	/* Work to check low battery condition */
3105 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3106 		ab8500_fg_low_bat_work);
3107 
3108 	/* Init work for HW failure check */
3109 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3110 		ab8500_fg_check_hw_failure_work);
3111 
3112 	/* Reset battery low voltage flag */
3113 	di->flags.low_bat = false;
3114 
3115 	/* Initialize low battery counter */
3116 	di->low_bat_cnt = 10;
3117 
3118 	/* Initialize OVV, and other registers */
3119 	ret = ab8500_fg_init_hw_registers(di);
3120 	if (ret) {
3121 		dev_err(dev, "failed to initialize registers\n");
3122 		return ret;
3123 	}
3124 
3125 	/* Consider battery unknown until we're informed otherwise */
3126 	di->flags.batt_unknown = true;
3127 	di->flags.batt_id_received = false;
3128 
3129 	/* Register FG power supply class */
3130 	di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3131 	if (IS_ERR(di->fg_psy)) {
3132 		dev_err(dev, "failed to register FG psy\n");
3133 		return PTR_ERR(di->fg_psy);
3134 	}
3135 
3136 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3137 
3138 	/*
3139 	 * Initialize completion used to notify completion and start
3140 	 * of inst current
3141 	 */
3142 	init_completion(&di->ab8500_fg_started);
3143 	init_completion(&di->ab8500_fg_complete);
3144 
3145 	/* Register primary interrupt handlers */
3146 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3147 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3148 		if (irq < 0)
3149 			return irq;
3150 
3151 		ret = devm_request_threaded_irq(dev, irq, NULL,
3152 				  ab8500_fg_irq[i].isr,
3153 				  IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3154 				  ab8500_fg_irq[i].name, di);
3155 
3156 		if (ret != 0) {
3157 			dev_err(dev, "failed to request %s IRQ %d: %d\n",
3158 				ab8500_fg_irq[i].name, irq, ret);
3159 			return ret;
3160 		}
3161 		dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3162 			ab8500_fg_irq[i].name, irq, ret);
3163 	}
3164 
3165 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
3166 	disable_irq(di->irq);
3167 	di->nbr_cceoc_irq_cnt = 0;
3168 
3169 	platform_set_drvdata(pdev, di);
3170 
3171 	ret = ab8500_fg_sysfs_init(di);
3172 	if (ret) {
3173 		dev_err(dev, "failed to create sysfs entry\n");
3174 		return ret;
3175 	}
3176 
3177 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
3178 	if (ret) {
3179 		dev_err(dev, "failed to create FG psy\n");
3180 		ab8500_fg_sysfs_exit(di);
3181 		return ret;
3182 	}
3183 
3184 	/* Calibrate the fg first time */
3185 	di->flags.calibrate = true;
3186 	di->calib_state = AB8500_FG_CALIB_INIT;
3187 
3188 	/* Use room temp as default value until we get an update from driver. */
3189 	di->bat_temp = 210;
3190 
3191 	list_add_tail(&di->node, &ab8500_fg_list);
3192 
3193 	return component_add(dev, &ab8500_fg_component_ops);
3194 }
3195 
3196 static int ab8500_fg_remove(struct platform_device *pdev)
3197 {
3198 	int ret = 0;
3199 	struct ab8500_fg *di = platform_get_drvdata(pdev);
3200 
3201 	component_del(&pdev->dev, &ab8500_fg_component_ops);
3202 	list_del(&di->node);
3203 	ab8500_fg_sysfs_exit(di);
3204 	ab8500_fg_sysfs_psy_remove_attrs(di);
3205 
3206 	return ret;
3207 }
3208 
3209 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3210 
3211 static const struct of_device_id ab8500_fg_match[] = {
3212 	{ .compatible = "stericsson,ab8500-fg", },
3213 	{ },
3214 };
3215 MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3216 
3217 struct platform_driver ab8500_fg_driver = {
3218 	.probe = ab8500_fg_probe,
3219 	.remove = ab8500_fg_remove,
3220 	.driver = {
3221 		.name = "ab8500-fg",
3222 		.of_match_table = ab8500_fg_match,
3223 		.pm = &ab8500_fg_pm_ops,
3224 	},
3225 };
3226 MODULE_LICENSE("GPL v2");
3227 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3228 MODULE_ALIAS("platform:ab8500-fg");
3229 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3230