xref: /openbmc/linux/drivers/power/supply/ab8500_fg.c (revision 2a5f4183)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *	Johan Palsson <johan.palsson@stericsson.com>
14  *	Karl Komierowski <karl.komierowski@stericsson.com>
15  *	Arun R Murthy <arun.murthy@stericsson.com>
16  */
17 
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/component.h>
21 #include <linux/device.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/power_supply.h>
25 #include <linux/kobject.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/time.h>
29 #include <linux/time64.h>
30 #include <linux/of.h>
31 #include <linux/completion.h>
32 #include <linux/mfd/core.h>
33 #include <linux/mfd/abx500.h>
34 #include <linux/mfd/abx500/ab8500.h>
35 #include <linux/iio/consumer.h>
36 #include <linux/kernel.h>
37 #include <linux/fixp-arith.h>
38 
39 #include "ab8500-bm.h"
40 
41 #define FG_LSB_IN_MA			1627
42 #define QLSB_NANO_AMP_HOURS_X10		1071
43 #define INS_CURR_TIMEOUT		(3 * HZ)
44 
45 #define SEC_TO_SAMPLE(S)		(S * 4)
46 
47 #define NBR_AVG_SAMPLES			20
48 
49 #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
50 
51 #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
52 #define BATT_OK_MIN			2360 /* mV */
53 #define BATT_OK_INCREMENT		50 /* mV */
54 #define BATT_OK_MAX_NR_INCREMENTS	0xE
55 
56 /* FG constants */
57 #define BATT_OVV			0x01
58 
59 /**
60  * struct ab8500_fg_interrupts - ab8500 fg interrupts
61  * @name:	name of the interrupt
62  * @isr		function pointer to the isr
63  */
64 struct ab8500_fg_interrupts {
65 	char *name;
66 	irqreturn_t (*isr)(int irq, void *data);
67 };
68 
69 enum ab8500_fg_discharge_state {
70 	AB8500_FG_DISCHARGE_INIT,
71 	AB8500_FG_DISCHARGE_INITMEASURING,
72 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
73 	AB8500_FG_DISCHARGE_RECOVERY,
74 	AB8500_FG_DISCHARGE_READOUT_INIT,
75 	AB8500_FG_DISCHARGE_READOUT,
76 	AB8500_FG_DISCHARGE_WAKEUP,
77 };
78 
79 static char *discharge_state[] = {
80 	"DISCHARGE_INIT",
81 	"DISCHARGE_INITMEASURING",
82 	"DISCHARGE_INIT_RECOVERY",
83 	"DISCHARGE_RECOVERY",
84 	"DISCHARGE_READOUT_INIT",
85 	"DISCHARGE_READOUT",
86 	"DISCHARGE_WAKEUP",
87 };
88 
89 enum ab8500_fg_charge_state {
90 	AB8500_FG_CHARGE_INIT,
91 	AB8500_FG_CHARGE_READOUT,
92 };
93 
94 static char *charge_state[] = {
95 	"CHARGE_INIT",
96 	"CHARGE_READOUT",
97 };
98 
99 enum ab8500_fg_calibration_state {
100 	AB8500_FG_CALIB_INIT,
101 	AB8500_FG_CALIB_WAIT,
102 	AB8500_FG_CALIB_END,
103 };
104 
105 struct ab8500_fg_avg_cap {
106 	int avg;
107 	int samples[NBR_AVG_SAMPLES];
108 	time64_t time_stamps[NBR_AVG_SAMPLES];
109 	int pos;
110 	int nbr_samples;
111 	int sum;
112 };
113 
114 struct ab8500_fg_cap_scaling {
115 	bool enable;
116 	int cap_to_scale[2];
117 	int disable_cap_level;
118 	int scaled_cap;
119 };
120 
121 struct ab8500_fg_battery_capacity {
122 	int max_mah_design;
123 	int max_mah;
124 	int mah;
125 	int permille;
126 	int level;
127 	int prev_mah;
128 	int prev_percent;
129 	int prev_level;
130 	int user_mah;
131 	struct ab8500_fg_cap_scaling cap_scale;
132 };
133 
134 struct ab8500_fg_flags {
135 	bool fg_enabled;
136 	bool conv_done;
137 	bool charging;
138 	bool fully_charged;
139 	bool force_full;
140 	bool low_bat_delay;
141 	bool low_bat;
142 	bool bat_ovv;
143 	bool batt_unknown;
144 	bool calibrate;
145 	bool user_cap;
146 	bool batt_id_received;
147 };
148 
149 struct inst_curr_result_list {
150 	struct list_head list;
151 	int *result;
152 };
153 
154 /**
155  * struct ab8500_fg - ab8500 FG device information
156  * @dev:		Pointer to the structure device
157  * @node:		a list of AB8500 FGs, hence prepared for reentrance
158  * @irq			holds the CCEOC interrupt number
159  * @vbat:		Battery voltage in mV
160  * @vbat_nom_uv:	Nominal battery voltage in uV
161  * @inst_curr:		Instantenous battery current in mA
162  * @avg_curr:		Average battery current in mA
163  * @bat_temp		battery temperature
164  * @fg_samples:		Number of samples used in the FG accumulation
165  * @accu_charge:	Accumulated charge from the last conversion
166  * @recovery_cnt:	Counter for recovery mode
167  * @high_curr_cnt:	Counter for high current mode
168  * @init_cnt:		Counter for init mode
169  * @low_bat_cnt		Counter for number of consecutive low battery measures
170  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
171  * @recovery_needed:	Indicate if recovery is needed
172  * @high_curr_mode:	Indicate if we're in high current mode
173  * @init_capacity:	Indicate if initial capacity measuring should be done
174  * @turn_off_fg:	True if fg was off before current measurement
175  * @calib_state		State during offset calibration
176  * @discharge_state:	Current discharge state
177  * @charge_state:	Current charge state
178  * @ab8500_fg_started	Completion struct used for the instant current start
179  * @ab8500_fg_complete	Completion struct used for the instant current reading
180  * @flags:		Structure for information about events triggered
181  * @bat_cap:		Structure for battery capacity specific parameters
182  * @avg_cap:		Average capacity filter
183  * @parent:		Pointer to the struct ab8500
184  * @main_bat_v:		ADC channel for the main battery voltage
185  * @bm:           	Platform specific battery management information
186  * @fg_psy:		Structure that holds the FG specific battery properties
187  * @fg_wq:		Work queue for running the FG algorithm
188  * @fg_periodic_work:	Work to run the FG algorithm periodically
189  * @fg_low_bat_work:	Work to check low bat condition
190  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
191  * @fg_work:		Work to run the FG algorithm instantly
192  * @fg_acc_cur_work:	Work to read the FG accumulator
193  * @fg_check_hw_failure_work:	Work for checking HW state
194  * @cc_lock:		Mutex for locking the CC
195  * @fg_kobject:		Structure of type kobject
196  */
197 struct ab8500_fg {
198 	struct device *dev;
199 	struct list_head node;
200 	int irq;
201 	int vbat;
202 	int vbat_nom_uv;
203 	int inst_curr;
204 	int avg_curr;
205 	int bat_temp;
206 	int fg_samples;
207 	int accu_charge;
208 	int recovery_cnt;
209 	int high_curr_cnt;
210 	int init_cnt;
211 	int low_bat_cnt;
212 	int nbr_cceoc_irq_cnt;
213 	bool recovery_needed;
214 	bool high_curr_mode;
215 	bool init_capacity;
216 	bool turn_off_fg;
217 	enum ab8500_fg_calibration_state calib_state;
218 	enum ab8500_fg_discharge_state discharge_state;
219 	enum ab8500_fg_charge_state charge_state;
220 	struct completion ab8500_fg_started;
221 	struct completion ab8500_fg_complete;
222 	struct ab8500_fg_flags flags;
223 	struct ab8500_fg_battery_capacity bat_cap;
224 	struct ab8500_fg_avg_cap avg_cap;
225 	struct ab8500 *parent;
226 	struct iio_channel *main_bat_v;
227 	struct ab8500_bm_data *bm;
228 	struct power_supply *fg_psy;
229 	struct workqueue_struct *fg_wq;
230 	struct delayed_work fg_periodic_work;
231 	struct delayed_work fg_low_bat_work;
232 	struct delayed_work fg_reinit_work;
233 	struct work_struct fg_work;
234 	struct work_struct fg_acc_cur_work;
235 	struct delayed_work fg_check_hw_failure_work;
236 	struct mutex cc_lock;
237 	struct kobject fg_kobject;
238 };
239 static LIST_HEAD(ab8500_fg_list);
240 
241 /**
242  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
243  * (i.e. the first fuel gauge in the instance list)
244  */
245 struct ab8500_fg *ab8500_fg_get(void)
246 {
247 	return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
248 					node);
249 }
250 
251 /* Main battery properties */
252 static enum power_supply_property ab8500_fg_props[] = {
253 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
254 	POWER_SUPPLY_PROP_CURRENT_NOW,
255 	POWER_SUPPLY_PROP_CURRENT_AVG,
256 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
257 	POWER_SUPPLY_PROP_ENERGY_FULL,
258 	POWER_SUPPLY_PROP_ENERGY_NOW,
259 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
260 	POWER_SUPPLY_PROP_CHARGE_FULL,
261 	POWER_SUPPLY_PROP_CHARGE_NOW,
262 	POWER_SUPPLY_PROP_CAPACITY,
263 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
264 };
265 
266 /*
267  * This array maps the raw hex value to lowbat voltage used by the AB8500
268  * Values taken from the UM0836
269  */
270 static int ab8500_fg_lowbat_voltage_map[] = {
271 	2300 ,
272 	2325 ,
273 	2350 ,
274 	2375 ,
275 	2400 ,
276 	2425 ,
277 	2450 ,
278 	2475 ,
279 	2500 ,
280 	2525 ,
281 	2550 ,
282 	2575 ,
283 	2600 ,
284 	2625 ,
285 	2650 ,
286 	2675 ,
287 	2700 ,
288 	2725 ,
289 	2750 ,
290 	2775 ,
291 	2800 ,
292 	2825 ,
293 	2850 ,
294 	2875 ,
295 	2900 ,
296 	2925 ,
297 	2950 ,
298 	2975 ,
299 	3000 ,
300 	3025 ,
301 	3050 ,
302 	3075 ,
303 	3100 ,
304 	3125 ,
305 	3150 ,
306 	3175 ,
307 	3200 ,
308 	3225 ,
309 	3250 ,
310 	3275 ,
311 	3300 ,
312 	3325 ,
313 	3350 ,
314 	3375 ,
315 	3400 ,
316 	3425 ,
317 	3450 ,
318 	3475 ,
319 	3500 ,
320 	3525 ,
321 	3550 ,
322 	3575 ,
323 	3600 ,
324 	3625 ,
325 	3650 ,
326 	3675 ,
327 	3700 ,
328 	3725 ,
329 	3750 ,
330 	3775 ,
331 	3800 ,
332 	3825 ,
333 	3850 ,
334 	3850 ,
335 };
336 
337 static u8 ab8500_volt_to_regval(int voltage)
338 {
339 	int i;
340 
341 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
342 		return 0;
343 
344 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
345 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
346 			return (u8) i - 1;
347 	}
348 
349 	/* If not captured above, return index of last element */
350 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
351 }
352 
353 /**
354  * ab8500_fg_is_low_curr() - Low or high current mode
355  * @di:		pointer to the ab8500_fg structure
356  * @curr:	the current to base or our decision on
357  *
358  * Low current mode if the current consumption is below a certain threshold
359  */
360 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
361 {
362 	/*
363 	 * We want to know if we're in low current mode
364 	 */
365 	if (curr > -di->bm->fg_params->high_curr_threshold)
366 		return true;
367 	else
368 		return false;
369 }
370 
371 /**
372  * ab8500_fg_add_cap_sample() - Add capacity to average filter
373  * @di:		pointer to the ab8500_fg structure
374  * @sample:	the capacity in mAh to add to the filter
375  *
376  * A capacity is added to the filter and a new mean capacity is calculated and
377  * returned
378  */
379 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
380 {
381 	time64_t now = ktime_get_boottime_seconds();
382 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
383 
384 	do {
385 		avg->sum += sample - avg->samples[avg->pos];
386 		avg->samples[avg->pos] = sample;
387 		avg->time_stamps[avg->pos] = now;
388 		avg->pos++;
389 
390 		if (avg->pos == NBR_AVG_SAMPLES)
391 			avg->pos = 0;
392 
393 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
394 			avg->nbr_samples++;
395 
396 		/*
397 		 * Check the time stamp for each sample. If too old,
398 		 * replace with latest sample
399 		 */
400 	} while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
401 
402 	avg->avg = avg->sum / avg->nbr_samples;
403 
404 	return avg->avg;
405 }
406 
407 /**
408  * ab8500_fg_clear_cap_samples() - Clear average filter
409  * @di:		pointer to the ab8500_fg structure
410  *
411  * The capacity filter is is reset to zero.
412  */
413 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
414 {
415 	int i;
416 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
417 
418 	avg->pos = 0;
419 	avg->nbr_samples = 0;
420 	avg->sum = 0;
421 	avg->avg = 0;
422 
423 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
424 		avg->samples[i] = 0;
425 		avg->time_stamps[i] = 0;
426 	}
427 }
428 
429 /**
430  * ab8500_fg_fill_cap_sample() - Fill average filter
431  * @di:		pointer to the ab8500_fg structure
432  * @sample:	the capacity in mAh to fill the filter with
433  *
434  * The capacity filter is filled with a capacity in mAh
435  */
436 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
437 {
438 	int i;
439 	time64_t now;
440 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
441 
442 	now = ktime_get_boottime_seconds();
443 
444 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
445 		avg->samples[i] = sample;
446 		avg->time_stamps[i] = now;
447 	}
448 
449 	avg->pos = 0;
450 	avg->nbr_samples = NBR_AVG_SAMPLES;
451 	avg->sum = sample * NBR_AVG_SAMPLES;
452 	avg->avg = sample;
453 }
454 
455 /**
456  * ab8500_fg_coulomb_counter() - enable coulomb counter
457  * @di:		pointer to the ab8500_fg structure
458  * @enable:	enable/disable
459  *
460  * Enable/Disable coulomb counter.
461  * On failure returns negative value.
462  */
463 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
464 {
465 	int ret = 0;
466 	mutex_lock(&di->cc_lock);
467 	if (enable) {
468 		/* To be able to reprogram the number of samples, we have to
469 		 * first stop the CC and then enable it again */
470 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
471 			AB8500_RTC_CC_CONF_REG, 0x00);
472 		if (ret)
473 			goto cc_err;
474 
475 		/* Program the samples */
476 		ret = abx500_set_register_interruptible(di->dev,
477 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
478 			di->fg_samples);
479 		if (ret)
480 			goto cc_err;
481 
482 		/* Start the CC */
483 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
484 			AB8500_RTC_CC_CONF_REG,
485 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
486 		if (ret)
487 			goto cc_err;
488 
489 		di->flags.fg_enabled = true;
490 	} else {
491 		/* Clear any pending read requests */
492 		ret = abx500_mask_and_set_register_interruptible(di->dev,
493 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
494 			(RESET_ACCU | READ_REQ), 0);
495 		if (ret)
496 			goto cc_err;
497 
498 		ret = abx500_set_register_interruptible(di->dev,
499 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
500 		if (ret)
501 			goto cc_err;
502 
503 		/* Stop the CC */
504 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
505 			AB8500_RTC_CC_CONF_REG, 0);
506 		if (ret)
507 			goto cc_err;
508 
509 		di->flags.fg_enabled = false;
510 
511 	}
512 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
513 		enable, di->fg_samples);
514 
515 	mutex_unlock(&di->cc_lock);
516 
517 	return ret;
518 cc_err:
519 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
520 	mutex_unlock(&di->cc_lock);
521 	return ret;
522 }
523 
524 /**
525  * ab8500_fg_inst_curr_start() - start battery instantaneous current
526  * @di:         pointer to the ab8500_fg structure
527  *
528  * Returns 0 or error code
529  * Note: This is part "one" and has to be called before
530  * ab8500_fg_inst_curr_finalize()
531  */
532 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
533 {
534 	u8 reg_val;
535 	int ret;
536 
537 	mutex_lock(&di->cc_lock);
538 
539 	di->nbr_cceoc_irq_cnt = 0;
540 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
541 		AB8500_RTC_CC_CONF_REG, &reg_val);
542 	if (ret < 0)
543 		goto fail;
544 
545 	if (!(reg_val & CC_PWR_UP_ENA)) {
546 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
547 		di->turn_off_fg = true;
548 
549 		/* Program the samples */
550 		ret = abx500_set_register_interruptible(di->dev,
551 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
552 			SEC_TO_SAMPLE(10));
553 		if (ret)
554 			goto fail;
555 
556 		/* Start the CC */
557 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
558 			AB8500_RTC_CC_CONF_REG,
559 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
560 		if (ret)
561 			goto fail;
562 	} else {
563 		di->turn_off_fg = false;
564 	}
565 
566 	/* Return and WFI */
567 	reinit_completion(&di->ab8500_fg_started);
568 	reinit_completion(&di->ab8500_fg_complete);
569 	enable_irq(di->irq);
570 
571 	/* Note: cc_lock is still locked */
572 	return 0;
573 fail:
574 	mutex_unlock(&di->cc_lock);
575 	return ret;
576 }
577 
578 /**
579  * ab8500_fg_inst_curr_started() - check if fg conversion has started
580  * @di:         pointer to the ab8500_fg structure
581  *
582  * Returns 1 if conversion started, 0 if still waiting
583  */
584 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
585 {
586 	return completion_done(&di->ab8500_fg_started);
587 }
588 
589 /**
590  * ab8500_fg_inst_curr_done() - check if fg conversion is done
591  * @di:         pointer to the ab8500_fg structure
592  *
593  * Returns 1 if conversion done, 0 if still waiting
594  */
595 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
596 {
597 	return completion_done(&di->ab8500_fg_complete);
598 }
599 
600 /**
601  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
602  * @di:         pointer to the ab8500_fg structure
603  * @res:	battery instantenous current(on success)
604  *
605  * Returns 0 or an error code
606  * Note: This is part "two" and has to be called at earliest 250 ms
607  * after ab8500_fg_inst_curr_start()
608  */
609 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
610 {
611 	u8 low, high;
612 	int val;
613 	int ret;
614 	unsigned long timeout;
615 
616 	if (!completion_done(&di->ab8500_fg_complete)) {
617 		timeout = wait_for_completion_timeout(
618 			&di->ab8500_fg_complete,
619 			INS_CURR_TIMEOUT);
620 		dev_dbg(di->dev, "Finalize time: %d ms\n",
621 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
622 		if (!timeout) {
623 			ret = -ETIME;
624 			disable_irq(di->irq);
625 			di->nbr_cceoc_irq_cnt = 0;
626 			dev_err(di->dev, "completion timed out [%d]\n",
627 				__LINE__);
628 			goto fail;
629 		}
630 	}
631 
632 	disable_irq(di->irq);
633 	di->nbr_cceoc_irq_cnt = 0;
634 
635 	ret = abx500_mask_and_set_register_interruptible(di->dev,
636 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
637 			READ_REQ, READ_REQ);
638 
639 	/* 100uS between read request and read is needed */
640 	usleep_range(100, 100);
641 
642 	/* Read CC Sample conversion value Low and high */
643 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
644 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
645 	if (ret < 0)
646 		goto fail;
647 
648 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
649 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
650 	if (ret < 0)
651 		goto fail;
652 
653 	/*
654 	 * negative value for Discharging
655 	 * convert 2's complement into decimal
656 	 */
657 	if (high & 0x10)
658 		val = (low | (high << 8) | 0xFFFFE000);
659 	else
660 		val = (low | (high << 8));
661 
662 	/*
663 	 * Convert to unit value in mA
664 	 * Full scale input voltage is
665 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
666 	 * Given a 250ms conversion cycle time the LSB corresponds
667 	 * to 107.1 nAh. Convert to current by dividing by the conversion
668 	 * time in hours (250ms = 1 / (3600 * 4)h)
669 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
670 	 */
671 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
672 		(1000 * di->bm->fg_res);
673 
674 	if (di->turn_off_fg) {
675 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
676 
677 		/* Clear any pending read requests */
678 		ret = abx500_set_register_interruptible(di->dev,
679 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
680 		if (ret)
681 			goto fail;
682 
683 		/* Stop the CC */
684 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
685 			AB8500_RTC_CC_CONF_REG, 0);
686 		if (ret)
687 			goto fail;
688 	}
689 	mutex_unlock(&di->cc_lock);
690 	(*res) = val;
691 
692 	return 0;
693 fail:
694 	mutex_unlock(&di->cc_lock);
695 	return ret;
696 }
697 
698 /**
699  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
700  * @di:         pointer to the ab8500_fg structure
701  * @res:	battery instantenous current(on success)
702  *
703  * Returns 0 else error code
704  */
705 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
706 {
707 	int ret;
708 	unsigned long timeout;
709 	int res = 0;
710 
711 	ret = ab8500_fg_inst_curr_start(di);
712 	if (ret) {
713 		dev_err(di->dev, "Failed to initialize fg_inst\n");
714 		return 0;
715 	}
716 
717 	/* Wait for CC to actually start */
718 	if (!completion_done(&di->ab8500_fg_started)) {
719 		timeout = wait_for_completion_timeout(
720 			&di->ab8500_fg_started,
721 			INS_CURR_TIMEOUT);
722 		dev_dbg(di->dev, "Start time: %d ms\n",
723 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
724 		if (!timeout) {
725 			ret = -ETIME;
726 			dev_err(di->dev, "completion timed out [%d]\n",
727 				__LINE__);
728 			goto fail;
729 		}
730 	}
731 
732 	ret = ab8500_fg_inst_curr_finalize(di, &res);
733 	if (ret) {
734 		dev_err(di->dev, "Failed to finalize fg_inst\n");
735 		return 0;
736 	}
737 
738 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
739 	return res;
740 fail:
741 	disable_irq(di->irq);
742 	mutex_unlock(&di->cc_lock);
743 	return ret;
744 }
745 
746 /**
747  * ab8500_fg_acc_cur_work() - average battery current
748  * @work:	pointer to the work_struct structure
749  *
750  * Updated the average battery current obtained from the
751  * coulomb counter.
752  */
753 static void ab8500_fg_acc_cur_work(struct work_struct *work)
754 {
755 	int val;
756 	int ret;
757 	u8 low, med, high;
758 
759 	struct ab8500_fg *di = container_of(work,
760 		struct ab8500_fg, fg_acc_cur_work);
761 
762 	mutex_lock(&di->cc_lock);
763 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
764 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
765 	if (ret)
766 		goto exit;
767 
768 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
769 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
770 	if (ret < 0)
771 		goto exit;
772 
773 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
775 	if (ret < 0)
776 		goto exit;
777 
778 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
780 	if (ret < 0)
781 		goto exit;
782 
783 	/* Check for sign bit in case of negative value, 2's complement */
784 	if (high & 0x10)
785 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
786 	else
787 		val = (low | (med << 8) | (high << 16));
788 
789 	/*
790 	 * Convert to uAh
791 	 * Given a 250ms conversion cycle time the LSB corresponds
792 	 * to 112.9 nAh.
793 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
794 	 */
795 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
796 		(100 * di->bm->fg_res);
797 
798 	/*
799 	 * Convert to unit value in mA
800 	 * by dividing by the conversion
801 	 * time in hours (= samples / (3600 * 4)h)
802 	 * and multiply with 1000
803 	 */
804 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
805 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
806 
807 	di->flags.conv_done = true;
808 
809 	mutex_unlock(&di->cc_lock);
810 
811 	queue_work(di->fg_wq, &di->fg_work);
812 
813 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
814 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
815 	return;
816 exit:
817 	dev_err(di->dev,
818 		"Failed to read or write gas gauge registers\n");
819 	mutex_unlock(&di->cc_lock);
820 	queue_work(di->fg_wq, &di->fg_work);
821 }
822 
823 /**
824  * ab8500_fg_bat_voltage() - get battery voltage
825  * @di:		pointer to the ab8500_fg structure
826  *
827  * Returns battery voltage(on success) else error code
828  */
829 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
830 {
831 	int vbat, ret;
832 	static int prev;
833 
834 	ret = iio_read_channel_processed(di->main_bat_v, &vbat);
835 	if (ret < 0) {
836 		dev_err(di->dev,
837 			"%s ADC conversion failed, using previous value\n",
838 			__func__);
839 		return prev;
840 	}
841 
842 	prev = vbat;
843 	return vbat;
844 }
845 
846 /**
847  * ab8500_fg_volt_to_capacity() - Voltage based capacity
848  * @di:		pointer to the ab8500_fg structure
849  * @voltage:	The voltage to convert to a capacity
850  *
851  * Returns battery capacity in per mille based on voltage
852  */
853 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
854 {
855 	int i, tbl_size;
856 	const struct ab8500_v_to_cap *tbl;
857 	int cap = 0;
858 
859 	tbl = di->bm->bat_type->v_to_cap_tbl;
860 	tbl_size = di->bm->bat_type->n_v_cap_tbl_elements;
861 
862 	for (i = 0; i < tbl_size; ++i) {
863 		if (voltage > tbl[i].voltage)
864 			break;
865 	}
866 
867 	if ((i > 0) && (i < tbl_size)) {
868 		cap = fixp_linear_interpolate(
869 			tbl[i].voltage,
870 			tbl[i].capacity * 10,
871 			tbl[i-1].voltage,
872 			tbl[i-1].capacity * 10,
873 			voltage);
874 	} else if (i == 0) {
875 		cap = 1000;
876 	} else {
877 		cap = 0;
878 	}
879 
880 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
881 		__func__, voltage, cap);
882 
883 	return cap;
884 }
885 
886 /**
887  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
888  * @di:		pointer to the ab8500_fg structure
889  *
890  * Returns battery capacity based on battery voltage that is not compensated
891  * for the voltage drop due to the load
892  */
893 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
894 {
895 	di->vbat = ab8500_fg_bat_voltage(di);
896 	return ab8500_fg_volt_to_capacity(di, di->vbat);
897 }
898 
899 /**
900  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
901  * @di:		pointer to the ab8500_fg structure
902  *
903  * Returns battery inner resistance added with the fuel gauge resistor value
904  * to get the total resistance in the whole link from gnd to bat+ node.
905  */
906 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
907 {
908 	int i, tbl_size;
909 	const struct batres_vs_temp *tbl;
910 	int resist = 0;
911 
912 	tbl = di->bm->bat_type->batres_tbl;
913 	tbl_size = di->bm->bat_type->n_batres_tbl_elements;
914 
915 	for (i = 0; i < tbl_size; ++i) {
916 		if (di->bat_temp / 10 > tbl[i].temp)
917 			break;
918 	}
919 
920 	if ((i > 0) && (i < tbl_size)) {
921 		resist = fixp_linear_interpolate(
922 			tbl[i].temp,
923 			tbl[i].resist,
924 			tbl[i-1].temp,
925 			tbl[i-1].resist,
926 			di->bat_temp / 10);
927 	} else if (i == 0) {
928 		resist = tbl[0].resist;
929 	} else {
930 		resist = tbl[tbl_size - 1].resist;
931 	}
932 
933 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
934 	    " fg resistance %d, total: %d (mOhm)\n",
935 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
936 		(di->bm->fg_res / 10) + resist);
937 
938 	/* fg_res variable is in 0.1mOhm */
939 	resist += di->bm->fg_res / 10;
940 
941 	return resist;
942 }
943 
944 /**
945  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
946  * @di:		pointer to the ab8500_fg structure
947  *
948  * Returns battery capacity based on battery voltage that is load compensated
949  * for the voltage drop
950  */
951 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
952 {
953 	int vbat_comp, res;
954 	int i = 0;
955 	int vbat = 0;
956 
957 	ab8500_fg_inst_curr_start(di);
958 
959 	do {
960 		vbat += ab8500_fg_bat_voltage(di);
961 		i++;
962 		usleep_range(5000, 6000);
963 	} while (!ab8500_fg_inst_curr_done(di));
964 
965 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
966 
967 	di->vbat = vbat / i;
968 	res = ab8500_fg_battery_resistance(di);
969 
970 	/* Use Ohms law to get the load compensated voltage */
971 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
972 
973 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
974 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
975 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
976 
977 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
978 }
979 
980 /**
981  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
982  * @di:		pointer to the ab8500_fg structure
983  * @cap_mah:	capacity in mAh
984  *
985  * Converts capacity in mAh to capacity in permille
986  */
987 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
988 {
989 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
990 }
991 
992 /**
993  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
994  * @di:		pointer to the ab8500_fg structure
995  * @cap_pm:	capacity in permille
996  *
997  * Converts capacity in permille to capacity in mAh
998  */
999 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1000 {
1001 	return cap_pm * di->bat_cap.max_mah_design / 1000;
1002 }
1003 
1004 /**
1005  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1006  * @di:		pointer to the ab8500_fg structure
1007  * @cap_mah:	capacity in mAh
1008  *
1009  * Converts capacity in mAh to capacity in uWh
1010  */
1011 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1012 {
1013 	u64 div_res;
1014 	u32 div_rem;
1015 
1016 	/*
1017 	 * Capacity is in milli ampere hours (10^-3)Ah
1018 	 * Nominal voltage is in microvolts (10^-6)V
1019 	 * divide by 1000000 after multiplication to get to mWh
1020 	 */
1021 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv);
1022 	div_rem = do_div(div_res, 1000000);
1023 
1024 	/* Make sure to round upwards if necessary */
1025 	if (div_rem >= 1000000 / 2)
1026 		div_res++;
1027 
1028 	return (int) div_res;
1029 }
1030 
1031 /**
1032  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1033  * @di:		pointer to the ab8500_fg structure
1034  *
1035  * Return the capacity in mAh based on previous calculated capcity and the FG
1036  * accumulator register value. The filter is filled with this capacity
1037  */
1038 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1039 {
1040 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1041 		__func__,
1042 		di->bat_cap.mah,
1043 		di->accu_charge);
1044 
1045 	/* Capacity should not be less than 0 */
1046 	if (di->bat_cap.mah + di->accu_charge > 0)
1047 		di->bat_cap.mah += di->accu_charge;
1048 	else
1049 		di->bat_cap.mah = 0;
1050 	/*
1051 	 * We force capacity to 100% once when the algorithm
1052 	 * reports that it's full.
1053 	 */
1054 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1055 		di->flags.force_full) {
1056 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1057 	}
1058 
1059 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1060 	di->bat_cap.permille =
1061 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1062 
1063 	/* We need to update battery voltage and inst current when charging */
1064 	di->vbat = ab8500_fg_bat_voltage(di);
1065 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1066 
1067 	return di->bat_cap.mah;
1068 }
1069 
1070 /**
1071  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1072  * @di:		pointer to the ab8500_fg structure
1073  * @comp:	if voltage should be load compensated before capacity calc
1074  *
1075  * Return the capacity in mAh based on the battery voltage. The voltage can
1076  * either be load compensated or not. This value is added to the filter and a
1077  * new mean value is calculated and returned.
1078  */
1079 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1080 {
1081 	int permille, mah;
1082 
1083 	if (comp)
1084 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
1085 	else
1086 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
1087 
1088 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
1089 
1090 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1091 	di->bat_cap.permille =
1092 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1093 
1094 	return di->bat_cap.mah;
1095 }
1096 
1097 /**
1098  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1099  * @di:		pointer to the ab8500_fg structure
1100  *
1101  * Return the capacity in mAh based on previous calculated capcity and the FG
1102  * accumulator register value. This value is added to the filter and a
1103  * new mean value is calculated and returned.
1104  */
1105 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1106 {
1107 	int permille_volt, permille;
1108 
1109 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1110 		__func__,
1111 		di->bat_cap.mah,
1112 		di->accu_charge);
1113 
1114 	/* Capacity should not be less than 0 */
1115 	if (di->bat_cap.mah + di->accu_charge > 0)
1116 		di->bat_cap.mah += di->accu_charge;
1117 	else
1118 		di->bat_cap.mah = 0;
1119 
1120 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1121 		di->bat_cap.mah = di->bat_cap.max_mah_design;
1122 
1123 	/*
1124 	 * Check against voltage based capacity. It can not be lower
1125 	 * than what the uncompensated voltage says
1126 	 */
1127 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1128 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1129 
1130 	if (permille < permille_volt) {
1131 		di->bat_cap.permille = permille_volt;
1132 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1133 			di->bat_cap.permille);
1134 
1135 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1136 			__func__,
1137 			permille,
1138 			permille_volt);
1139 
1140 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1141 	} else {
1142 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1143 		di->bat_cap.permille =
1144 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1145 	}
1146 
1147 	return di->bat_cap.mah;
1148 }
1149 
1150 /**
1151  * ab8500_fg_capacity_level() - Get the battery capacity level
1152  * @di:		pointer to the ab8500_fg structure
1153  *
1154  * Get the battery capacity level based on the capacity in percent
1155  */
1156 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1157 {
1158 	int ret, percent;
1159 
1160 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1161 
1162 	if (percent <= di->bm->cap_levels->critical ||
1163 		di->flags.low_bat)
1164 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1165 	else if (percent <= di->bm->cap_levels->low)
1166 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1167 	else if (percent <= di->bm->cap_levels->normal)
1168 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1169 	else if (percent <= di->bm->cap_levels->high)
1170 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1171 	else
1172 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1173 
1174 	return ret;
1175 }
1176 
1177 /**
1178  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1179  * @di:		pointer to the ab8500_fg structure
1180  *
1181  * Calculates the capacity to be shown to upper layers. Scales the capacity
1182  * to have 100% as a reference from the actual capacity upon removal of charger
1183  * when charging is in maintenance mode.
1184  */
1185 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1186 {
1187 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1188 	int capacity = di->bat_cap.prev_percent;
1189 
1190 	if (!cs->enable)
1191 		return capacity;
1192 
1193 	/*
1194 	 * As long as we are in fully charge mode scale the capacity
1195 	 * to show 100%.
1196 	 */
1197 	if (di->flags.fully_charged) {
1198 		cs->cap_to_scale[0] = 100;
1199 		cs->cap_to_scale[1] =
1200 			max(capacity, di->bm->fg_params->maint_thres);
1201 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
1202 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1203 	}
1204 
1205 	/* Calculates the scaled capacity. */
1206 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1207 					&& (cs->cap_to_scale[1] > 0))
1208 		capacity = min(100,
1209 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1210 						 cs->cap_to_scale[0],
1211 						 cs->cap_to_scale[1]));
1212 
1213 	if (di->flags.charging) {
1214 		if (capacity < cs->disable_cap_level) {
1215 			cs->disable_cap_level = capacity;
1216 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1217 				cs->disable_cap_level);
1218 		} else if (!di->flags.fully_charged) {
1219 			if (di->bat_cap.prev_percent >=
1220 			    cs->disable_cap_level) {
1221 				dev_dbg(di->dev, "Disabling scaled capacity\n");
1222 				cs->enable = false;
1223 				capacity = di->bat_cap.prev_percent;
1224 			} else {
1225 				dev_dbg(di->dev,
1226 					"Waiting in cap to level %d%%\n",
1227 					cs->disable_cap_level);
1228 				capacity = cs->disable_cap_level;
1229 			}
1230 		}
1231 	}
1232 
1233 	return capacity;
1234 }
1235 
1236 /**
1237  * ab8500_fg_update_cap_scalers() - Capacity scaling
1238  * @di:		pointer to the ab8500_fg structure
1239  *
1240  * To be called when state change from charge<->discharge to update
1241  * the capacity scalers.
1242  */
1243 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1244 {
1245 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1246 
1247 	if (!cs->enable)
1248 		return;
1249 	if (di->flags.charging) {
1250 		di->bat_cap.cap_scale.disable_cap_level =
1251 			di->bat_cap.cap_scale.scaled_cap;
1252 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1253 				di->bat_cap.cap_scale.disable_cap_level);
1254 	} else {
1255 		if (cs->scaled_cap != 100) {
1256 			cs->cap_to_scale[0] = cs->scaled_cap;
1257 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1258 		} else {
1259 			cs->cap_to_scale[0] = 100;
1260 			cs->cap_to_scale[1] =
1261 				max(di->bat_cap.prev_percent,
1262 				    di->bm->fg_params->maint_thres);
1263 		}
1264 
1265 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1266 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
1267 	}
1268 }
1269 
1270 /**
1271  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1272  * @di:		pointer to the ab8500_fg structure
1273  * @init:	capacity is allowed to go up in init mode
1274  *
1275  * Check if capacity or capacity limit has changed and notify the system
1276  * about it using the power_supply framework
1277  */
1278 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1279 {
1280 	bool changed = false;
1281 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1282 
1283 	di->bat_cap.level = ab8500_fg_capacity_level(di);
1284 
1285 	if (di->bat_cap.level != di->bat_cap.prev_level) {
1286 		/*
1287 		 * We do not allow reported capacity level to go up
1288 		 * unless we're charging or if we're in init
1289 		 */
1290 		if (!(!di->flags.charging && di->bat_cap.level >
1291 			di->bat_cap.prev_level) || init) {
1292 			dev_dbg(di->dev, "level changed from %d to %d\n",
1293 				di->bat_cap.prev_level,
1294 				di->bat_cap.level);
1295 			di->bat_cap.prev_level = di->bat_cap.level;
1296 			changed = true;
1297 		} else {
1298 			dev_dbg(di->dev, "level not allowed to go up "
1299 				"since no charger is connected: %d to %d\n",
1300 				di->bat_cap.prev_level,
1301 				di->bat_cap.level);
1302 		}
1303 	}
1304 
1305 	/*
1306 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1307 	 * shutdown
1308 	 */
1309 	if (di->flags.low_bat) {
1310 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1311 		di->bat_cap.prev_percent = 0;
1312 		di->bat_cap.permille = 0;
1313 		percent = 0;
1314 		di->bat_cap.prev_mah = 0;
1315 		di->bat_cap.mah = 0;
1316 		changed = true;
1317 	} else if (di->flags.fully_charged) {
1318 		/*
1319 		 * We report 100% if algorithm reported fully charged
1320 		 * and show 100% during maintenance charging (scaling).
1321 		 */
1322 		if (di->flags.force_full) {
1323 			di->bat_cap.prev_percent = percent;
1324 			di->bat_cap.prev_mah = di->bat_cap.mah;
1325 
1326 			changed = true;
1327 
1328 			if (!di->bat_cap.cap_scale.enable &&
1329 						di->bm->capacity_scaling) {
1330 				di->bat_cap.cap_scale.enable = true;
1331 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1332 				di->bat_cap.cap_scale.cap_to_scale[1] =
1333 						di->bat_cap.prev_percent;
1334 				di->bat_cap.cap_scale.disable_cap_level = 100;
1335 			}
1336 		} else if (di->bat_cap.prev_percent != percent) {
1337 			dev_dbg(di->dev,
1338 				"battery reported full "
1339 				"but capacity dropping: %d\n",
1340 				percent);
1341 			di->bat_cap.prev_percent = percent;
1342 			di->bat_cap.prev_mah = di->bat_cap.mah;
1343 
1344 			changed = true;
1345 		}
1346 	} else if (di->bat_cap.prev_percent != percent) {
1347 		if (percent == 0) {
1348 			/*
1349 			 * We will not report 0% unless we've got
1350 			 * the LOW_BAT IRQ, no matter what the FG
1351 			 * algorithm says.
1352 			 */
1353 			di->bat_cap.prev_percent = 1;
1354 			percent = 1;
1355 
1356 			changed = true;
1357 		} else if (!(!di->flags.charging &&
1358 			percent > di->bat_cap.prev_percent) || init) {
1359 			/*
1360 			 * We do not allow reported capacity to go up
1361 			 * unless we're charging or if we're in init
1362 			 */
1363 			dev_dbg(di->dev,
1364 				"capacity changed from %d to %d (%d)\n",
1365 				di->bat_cap.prev_percent,
1366 				percent,
1367 				di->bat_cap.permille);
1368 			di->bat_cap.prev_percent = percent;
1369 			di->bat_cap.prev_mah = di->bat_cap.mah;
1370 
1371 			changed = true;
1372 		} else {
1373 			dev_dbg(di->dev, "capacity not allowed to go up since "
1374 				"no charger is connected: %d to %d (%d)\n",
1375 				di->bat_cap.prev_percent,
1376 				percent,
1377 				di->bat_cap.permille);
1378 		}
1379 	}
1380 
1381 	if (changed) {
1382 		if (di->bm->capacity_scaling) {
1383 			di->bat_cap.cap_scale.scaled_cap =
1384 				ab8500_fg_calculate_scaled_capacity(di);
1385 
1386 			dev_info(di->dev, "capacity=%d (%d)\n",
1387 				di->bat_cap.prev_percent,
1388 				di->bat_cap.cap_scale.scaled_cap);
1389 		}
1390 		power_supply_changed(di->fg_psy);
1391 		if (di->flags.fully_charged && di->flags.force_full) {
1392 			dev_dbg(di->dev, "Battery full, notifying.\n");
1393 			di->flags.force_full = false;
1394 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1395 		}
1396 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1397 	}
1398 }
1399 
1400 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1401 	enum ab8500_fg_charge_state new_state)
1402 {
1403 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1404 		di->charge_state,
1405 		charge_state[di->charge_state],
1406 		new_state,
1407 		charge_state[new_state]);
1408 
1409 	di->charge_state = new_state;
1410 }
1411 
1412 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1413 	enum ab8500_fg_discharge_state new_state)
1414 {
1415 	dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1416 		di->discharge_state,
1417 		discharge_state[di->discharge_state],
1418 		new_state,
1419 		discharge_state[new_state]);
1420 
1421 	di->discharge_state = new_state;
1422 }
1423 
1424 /**
1425  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1426  * @di:		pointer to the ab8500_fg structure
1427  *
1428  * Battery capacity calculation state machine for when we're charging
1429  */
1430 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1431 {
1432 	/*
1433 	 * If we change to discharge mode
1434 	 * we should start with recovery
1435 	 */
1436 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1437 		ab8500_fg_discharge_state_to(di,
1438 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
1439 
1440 	switch (di->charge_state) {
1441 	case AB8500_FG_CHARGE_INIT:
1442 		di->fg_samples = SEC_TO_SAMPLE(
1443 			di->bm->fg_params->accu_charging);
1444 
1445 		ab8500_fg_coulomb_counter(di, true);
1446 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1447 
1448 		break;
1449 
1450 	case AB8500_FG_CHARGE_READOUT:
1451 		/*
1452 		 * Read the FG and calculate the new capacity
1453 		 */
1454 		mutex_lock(&di->cc_lock);
1455 		if (!di->flags.conv_done && !di->flags.force_full) {
1456 			/* Wasn't the CC IRQ that got us here */
1457 			mutex_unlock(&di->cc_lock);
1458 			dev_dbg(di->dev, "%s CC conv not done\n",
1459 				__func__);
1460 
1461 			break;
1462 		}
1463 		di->flags.conv_done = false;
1464 		mutex_unlock(&di->cc_lock);
1465 
1466 		ab8500_fg_calc_cap_charging(di);
1467 
1468 		break;
1469 
1470 	default:
1471 		break;
1472 	}
1473 
1474 	/* Check capacity limits */
1475 	ab8500_fg_check_capacity_limits(di, false);
1476 }
1477 
1478 static void force_capacity(struct ab8500_fg *di)
1479 {
1480 	int cap;
1481 
1482 	ab8500_fg_clear_cap_samples(di);
1483 	cap = di->bat_cap.user_mah;
1484 	if (cap > di->bat_cap.max_mah_design) {
1485 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1486 			" %d\n", cap, di->bat_cap.max_mah_design);
1487 		cap = di->bat_cap.max_mah_design;
1488 	}
1489 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1490 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1491 	di->bat_cap.mah = cap;
1492 	ab8500_fg_check_capacity_limits(di, true);
1493 }
1494 
1495 static bool check_sysfs_capacity(struct ab8500_fg *di)
1496 {
1497 	int cap, lower, upper;
1498 	int cap_permille;
1499 
1500 	cap = di->bat_cap.user_mah;
1501 
1502 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
1503 		di->bat_cap.user_mah);
1504 
1505 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1506 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1507 
1508 	if (lower < 0)
1509 		lower = 0;
1510 	/* 1000 is permille, -> 100 percent */
1511 	if (upper > 1000)
1512 		upper = 1000;
1513 
1514 	dev_dbg(di->dev, "Capacity limits:"
1515 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1516 		lower, cap_permille, upper, cap, di->bat_cap.mah);
1517 
1518 	/* If within limits, use the saved capacity and exit estimation...*/
1519 	if (cap_permille > lower && cap_permille < upper) {
1520 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1521 		force_capacity(di);
1522 		return true;
1523 	}
1524 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1525 	return false;
1526 }
1527 
1528 /**
1529  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1530  * @di:		pointer to the ab8500_fg structure
1531  *
1532  * Battery capacity calculation state machine for when we're discharging
1533  */
1534 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1535 {
1536 	int sleep_time;
1537 
1538 	/* If we change to charge mode we should start with init */
1539 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
1540 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1541 
1542 	switch (di->discharge_state) {
1543 	case AB8500_FG_DISCHARGE_INIT:
1544 		/* We use the FG IRQ to work on */
1545 		di->init_cnt = 0;
1546 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1547 		ab8500_fg_coulomb_counter(di, true);
1548 		ab8500_fg_discharge_state_to(di,
1549 			AB8500_FG_DISCHARGE_INITMEASURING);
1550 
1551 		fallthrough;
1552 	case AB8500_FG_DISCHARGE_INITMEASURING:
1553 		/*
1554 		 * Discard a number of samples during startup.
1555 		 * After that, use compensated voltage for a few
1556 		 * samples to get an initial capacity.
1557 		 * Then go to READOUT
1558 		 */
1559 		sleep_time = di->bm->fg_params->init_timer;
1560 
1561 		/* Discard the first [x] seconds */
1562 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1563 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1564 
1565 			ab8500_fg_check_capacity_limits(di, true);
1566 		}
1567 
1568 		di->init_cnt += sleep_time;
1569 		if (di->init_cnt > di->bm->fg_params->init_total_time)
1570 			ab8500_fg_discharge_state_to(di,
1571 				AB8500_FG_DISCHARGE_READOUT_INIT);
1572 
1573 		break;
1574 
1575 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1576 		di->recovery_cnt = 0;
1577 		di->recovery_needed = true;
1578 		ab8500_fg_discharge_state_to(di,
1579 			AB8500_FG_DISCHARGE_RECOVERY);
1580 
1581 		fallthrough;
1582 
1583 	case AB8500_FG_DISCHARGE_RECOVERY:
1584 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
1585 
1586 		/*
1587 		 * We should check the power consumption
1588 		 * If low, go to READOUT (after x min) or
1589 		 * RECOVERY_SLEEP if time left.
1590 		 * If high, go to READOUT
1591 		 */
1592 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1593 
1594 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1595 			if (di->recovery_cnt >
1596 				di->bm->fg_params->recovery_total_time) {
1597 				di->fg_samples = SEC_TO_SAMPLE(
1598 					di->bm->fg_params->accu_high_curr);
1599 				ab8500_fg_coulomb_counter(di, true);
1600 				ab8500_fg_discharge_state_to(di,
1601 					AB8500_FG_DISCHARGE_READOUT);
1602 				di->recovery_needed = false;
1603 			} else {
1604 				queue_delayed_work(di->fg_wq,
1605 					&di->fg_periodic_work,
1606 					sleep_time * HZ);
1607 			}
1608 			di->recovery_cnt += sleep_time;
1609 		} else {
1610 			di->fg_samples = SEC_TO_SAMPLE(
1611 				di->bm->fg_params->accu_high_curr);
1612 			ab8500_fg_coulomb_counter(di, true);
1613 			ab8500_fg_discharge_state_to(di,
1614 				AB8500_FG_DISCHARGE_READOUT);
1615 		}
1616 		break;
1617 
1618 	case AB8500_FG_DISCHARGE_READOUT_INIT:
1619 		di->fg_samples = SEC_TO_SAMPLE(
1620 			di->bm->fg_params->accu_high_curr);
1621 		ab8500_fg_coulomb_counter(di, true);
1622 		ab8500_fg_discharge_state_to(di,
1623 				AB8500_FG_DISCHARGE_READOUT);
1624 		break;
1625 
1626 	case AB8500_FG_DISCHARGE_READOUT:
1627 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1628 
1629 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1630 			/* Detect mode change */
1631 			if (di->high_curr_mode) {
1632 				di->high_curr_mode = false;
1633 				di->high_curr_cnt = 0;
1634 			}
1635 
1636 			if (di->recovery_needed) {
1637 				ab8500_fg_discharge_state_to(di,
1638 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
1639 
1640 				queue_delayed_work(di->fg_wq,
1641 					&di->fg_periodic_work, 0);
1642 
1643 				break;
1644 			}
1645 
1646 			ab8500_fg_calc_cap_discharge_voltage(di, true);
1647 		} else {
1648 			mutex_lock(&di->cc_lock);
1649 			if (!di->flags.conv_done) {
1650 				/* Wasn't the CC IRQ that got us here */
1651 				mutex_unlock(&di->cc_lock);
1652 				dev_dbg(di->dev, "%s CC conv not done\n",
1653 					__func__);
1654 
1655 				break;
1656 			}
1657 			di->flags.conv_done = false;
1658 			mutex_unlock(&di->cc_lock);
1659 
1660 			/* Detect mode change */
1661 			if (!di->high_curr_mode) {
1662 				di->high_curr_mode = true;
1663 				di->high_curr_cnt = 0;
1664 			}
1665 
1666 			di->high_curr_cnt +=
1667 				di->bm->fg_params->accu_high_curr;
1668 			if (di->high_curr_cnt >
1669 				di->bm->fg_params->high_curr_time)
1670 				di->recovery_needed = true;
1671 
1672 			ab8500_fg_calc_cap_discharge_fg(di);
1673 		}
1674 
1675 		ab8500_fg_check_capacity_limits(di, false);
1676 
1677 		break;
1678 
1679 	case AB8500_FG_DISCHARGE_WAKEUP:
1680 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1681 
1682 		di->fg_samples = SEC_TO_SAMPLE(
1683 			di->bm->fg_params->accu_high_curr);
1684 		ab8500_fg_coulomb_counter(di, true);
1685 		ab8500_fg_discharge_state_to(di,
1686 				AB8500_FG_DISCHARGE_READOUT);
1687 
1688 		ab8500_fg_check_capacity_limits(di, false);
1689 
1690 		break;
1691 
1692 	default:
1693 		break;
1694 	}
1695 }
1696 
1697 /**
1698  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1699  * @di:		pointer to the ab8500_fg structure
1700  *
1701  */
1702 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1703 {
1704 	int ret;
1705 
1706 	switch (di->calib_state) {
1707 	case AB8500_FG_CALIB_INIT:
1708 		dev_dbg(di->dev, "Calibration ongoing...\n");
1709 
1710 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1711 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1712 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1713 		if (ret < 0)
1714 			goto err;
1715 
1716 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1717 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1718 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1719 		if (ret < 0)
1720 			goto err;
1721 		di->calib_state = AB8500_FG_CALIB_WAIT;
1722 		break;
1723 	case AB8500_FG_CALIB_END:
1724 		ret = abx500_mask_and_set_register_interruptible(di->dev,
1725 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1726 			CC_MUXOFFSET, CC_MUXOFFSET);
1727 		if (ret < 0)
1728 			goto err;
1729 		di->flags.calibrate = false;
1730 		dev_dbg(di->dev, "Calibration done...\n");
1731 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1732 		break;
1733 	case AB8500_FG_CALIB_WAIT:
1734 		dev_dbg(di->dev, "Calibration WFI\n");
1735 		break;
1736 	default:
1737 		break;
1738 	}
1739 	return;
1740 err:
1741 	/* Something went wrong, don't calibrate then */
1742 	dev_err(di->dev, "failed to calibrate the CC\n");
1743 	di->flags.calibrate = false;
1744 	di->calib_state = AB8500_FG_CALIB_INIT;
1745 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1746 }
1747 
1748 /**
1749  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750  * @di:		pointer to the ab8500_fg structure
1751  *
1752  * Entry point for the battery capacity calculation state machine
1753  */
1754 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1755 {
1756 	if (di->flags.calibrate)
1757 		ab8500_fg_algorithm_calibrate(di);
1758 	else {
1759 		if (di->flags.charging)
1760 			ab8500_fg_algorithm_charging(di);
1761 		else
1762 			ab8500_fg_algorithm_discharging(di);
1763 	}
1764 
1765 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766 		"%d %d %d %d %d %d %d\n",
1767 		di->bat_cap.max_mah_design,
1768 		di->bat_cap.max_mah,
1769 		di->bat_cap.mah,
1770 		di->bat_cap.permille,
1771 		di->bat_cap.level,
1772 		di->bat_cap.prev_mah,
1773 		di->bat_cap.prev_percent,
1774 		di->bat_cap.prev_level,
1775 		di->vbat,
1776 		di->inst_curr,
1777 		di->avg_curr,
1778 		di->accu_charge,
1779 		di->flags.charging,
1780 		di->charge_state,
1781 		di->discharge_state,
1782 		di->high_curr_mode,
1783 		di->recovery_needed);
1784 }
1785 
1786 /**
1787  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788  * @work:	pointer to the work_struct structure
1789  *
1790  * Work queue function for periodic work
1791  */
1792 static void ab8500_fg_periodic_work(struct work_struct *work)
1793 {
1794 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795 		fg_periodic_work.work);
1796 
1797 	if (di->init_capacity) {
1798 		/* Get an initial capacity calculation */
1799 		ab8500_fg_calc_cap_discharge_voltage(di, true);
1800 		ab8500_fg_check_capacity_limits(di, true);
1801 		di->init_capacity = false;
1802 
1803 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804 	} else if (di->flags.user_cap) {
1805 		if (check_sysfs_capacity(di)) {
1806 			ab8500_fg_check_capacity_limits(di, true);
1807 			if (di->flags.charging)
1808 				ab8500_fg_charge_state_to(di,
1809 					AB8500_FG_CHARGE_INIT);
1810 			else
1811 				ab8500_fg_discharge_state_to(di,
1812 					AB8500_FG_DISCHARGE_READOUT_INIT);
1813 		}
1814 		di->flags.user_cap = false;
1815 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816 	} else
1817 		ab8500_fg_algorithm(di);
1818 
1819 }
1820 
1821 /**
1822  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823  * @work:	pointer to the work_struct structure
1824  *
1825  * Work queue function for checking the OVV_BAT condition
1826  */
1827 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1828 {
1829 	int ret;
1830 	u8 reg_value;
1831 
1832 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833 		fg_check_hw_failure_work.work);
1834 
1835 	/*
1836 	 * If we have had a battery over-voltage situation,
1837 	 * check ovv-bit to see if it should be reset.
1838 	 */
1839 	ret = abx500_get_register_interruptible(di->dev,
1840 		AB8500_CHARGER, AB8500_CH_STAT_REG,
1841 		&reg_value);
1842 	if (ret < 0) {
1843 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844 		return;
1845 	}
1846 	if ((reg_value & BATT_OVV) == BATT_OVV) {
1847 		if (!di->flags.bat_ovv) {
1848 			dev_dbg(di->dev, "Battery OVV\n");
1849 			di->flags.bat_ovv = true;
1850 			power_supply_changed(di->fg_psy);
1851 		}
1852 		/* Not yet recovered from ovv, reschedule this test */
1853 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854 				   HZ);
1855 		} else {
1856 			dev_dbg(di->dev, "Battery recovered from OVV\n");
1857 			di->flags.bat_ovv = false;
1858 			power_supply_changed(di->fg_psy);
1859 	}
1860 }
1861 
1862 /**
1863  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864  * @work:	pointer to the work_struct structure
1865  *
1866  * Work queue function for checking the LOW_BAT condition
1867  */
1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1869 {
1870 	int vbat;
1871 
1872 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873 		fg_low_bat_work.work);
1874 
1875 	vbat = ab8500_fg_bat_voltage(di);
1876 
1877 	/* Check if LOW_BAT still fulfilled */
1878 	if (vbat < di->bm->fg_params->lowbat_threshold) {
1879 		/* Is it time to shut down? */
1880 		if (di->low_bat_cnt < 1) {
1881 			di->flags.low_bat = true;
1882 			dev_warn(di->dev, "Shut down pending...\n");
1883 		} else {
1884 			/*
1885 			* Else we need to re-schedule this check to be able to detect
1886 			* if the voltage increases again during charging or
1887 			* due to decreasing load.
1888 			*/
1889 			di->low_bat_cnt--;
1890 			dev_warn(di->dev, "Battery voltage still LOW\n");
1891 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
1893 		}
1894 	} else {
1895 		di->flags.low_bat_delay = false;
1896 		di->low_bat_cnt = 10;
1897 		dev_warn(di->dev, "Battery voltage OK again\n");
1898 	}
1899 
1900 	/* This is needed to dispatch LOW_BAT */
1901 	ab8500_fg_check_capacity_limits(di, false);
1902 }
1903 
1904 /**
1905  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906  * to the target voltage.
1907  * @di:       pointer to the ab8500_fg structure
1908  * @target:   target voltage
1909  *
1910  * Returns bit pattern closest to the target voltage
1911  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1912  */
1913 
1914 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1915 {
1916 	if (target > BATT_OK_MIN +
1917 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918 		return BATT_OK_MAX_NR_INCREMENTS;
1919 	if (target < BATT_OK_MIN)
1920 		return 0;
1921 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1922 }
1923 
1924 /**
1925  * ab8500_fg_battok_init_hw_register - init battok levels
1926  * @di:       pointer to the ab8500_fg structure
1927  *
1928  */
1929 
1930 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1931 {
1932 	int selected;
1933 	int sel0;
1934 	int sel1;
1935 	int cbp_sel0;
1936 	int cbp_sel1;
1937 	int ret;
1938 	int new_val;
1939 
1940 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
1942 
1943 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1945 
1946 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1947 
1948 	if (selected != sel0)
1949 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950 			sel0, selected, cbp_sel0);
1951 
1952 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1953 
1954 	if (selected != sel1)
1955 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956 			sel1, selected, cbp_sel1);
1957 
1958 	new_val = cbp_sel0 | (cbp_sel1 << 4);
1959 
1960 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962 		AB8500_BATT_OK_REG, new_val);
1963 	return ret;
1964 }
1965 
1966 /**
1967  * ab8500_fg_instant_work() - Run the FG state machine instantly
1968  * @work:	pointer to the work_struct structure
1969  *
1970  * Work queue function for instant work
1971  */
1972 static void ab8500_fg_instant_work(struct work_struct *work)
1973 {
1974 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1975 
1976 	ab8500_fg_algorithm(di);
1977 }
1978 
1979 /**
1980  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981  * @irq:       interrupt number
1982  * @_di:       pointer to the ab8500_fg structure
1983  *
1984  * Returns IRQ status(IRQ_HANDLED)
1985  */
1986 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1987 {
1988 	struct ab8500_fg *di = _di;
1989 	if (!di->nbr_cceoc_irq_cnt) {
1990 		di->nbr_cceoc_irq_cnt++;
1991 		complete(&di->ab8500_fg_started);
1992 	} else {
1993 		di->nbr_cceoc_irq_cnt = 0;
1994 		complete(&di->ab8500_fg_complete);
1995 	}
1996 	return IRQ_HANDLED;
1997 }
1998 
1999 /**
2000  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001  * @irq:       interrupt number
2002  * @_di:       pointer to the ab8500_fg structure
2003  *
2004  * Returns IRQ status(IRQ_HANDLED)
2005  */
2006 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2007 {
2008 	struct ab8500_fg *di = _di;
2009 	di->calib_state = AB8500_FG_CALIB_END;
2010 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011 	return IRQ_HANDLED;
2012 }
2013 
2014 /**
2015  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016  * @irq:       interrupt number
2017  * @_di:       pointer to the ab8500_fg structure
2018  *
2019  * Returns IRQ status(IRQ_HANDLED)
2020  */
2021 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2022 {
2023 	struct ab8500_fg *di = _di;
2024 
2025 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
2026 
2027 	return IRQ_HANDLED;
2028 }
2029 
2030 /**
2031  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032  * @irq:       interrupt number
2033  * @_di:       pointer to the ab8500_fg structure
2034  *
2035  * Returns IRQ status(IRQ_HANDLED)
2036  */
2037 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2038 {
2039 	struct ab8500_fg *di = _di;
2040 
2041 	dev_dbg(di->dev, "Battery OVV\n");
2042 
2043 	/* Schedule a new HW failure check */
2044 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2045 
2046 	return IRQ_HANDLED;
2047 }
2048 
2049 /**
2050  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051  * @irq:       interrupt number
2052  * @_di:       pointer to the ab8500_fg structure
2053  *
2054  * Returns IRQ status(IRQ_HANDLED)
2055  */
2056 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2057 {
2058 	struct ab8500_fg *di = _di;
2059 
2060 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061 	if (!di->flags.low_bat_delay) {
2062 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063 		di->flags.low_bat_delay = true;
2064 		/*
2065 		 * Start a timer to check LOW_BAT again after some time
2066 		 * This is done to avoid shutdown on single voltage dips
2067 		 */
2068 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
2070 	}
2071 	return IRQ_HANDLED;
2072 }
2073 
2074 /**
2075  * ab8500_fg_get_property() - get the fg properties
2076  * @psy:	pointer to the power_supply structure
2077  * @psp:	pointer to the power_supply_property structure
2078  * @val:	pointer to the power_supply_propval union
2079  *
2080  * This function gets called when an application tries to get the
2081  * fg properties by reading the sysfs files.
2082  * voltage_now:		battery voltage
2083  * current_now:		battery instant current
2084  * current_avg:		battery average current
2085  * charge_full_design:	capacity where battery is considered full
2086  * charge_now:		battery capacity in nAh
2087  * capacity:		capacity in percent
2088  * capacity_level:	capacity level
2089  *
2090  * Returns error code in case of failure else 0 on success
2091  */
2092 static int ab8500_fg_get_property(struct power_supply *psy,
2093 	enum power_supply_property psp,
2094 	union power_supply_propval *val)
2095 {
2096 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2097 
2098 	/*
2099 	 * If battery is identified as unknown and charging of unknown
2100 	 * batteries is disabled, we always report 100% capacity and
2101 	 * capacity level UNKNOWN, since we can't calculate
2102 	 * remaining capacity
2103 	 */
2104 
2105 	switch (psp) {
2106 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107 		if (di->flags.bat_ovv)
2108 			val->intval = BATT_OVV_VALUE * 1000;
2109 		else
2110 			val->intval = di->vbat * 1000;
2111 		break;
2112 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2113 		val->intval = di->inst_curr * 1000;
2114 		break;
2115 	case POWER_SUPPLY_PROP_CURRENT_AVG:
2116 		val->intval = di->avg_curr * 1000;
2117 		break;
2118 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120 				di->bat_cap.max_mah_design);
2121 		break;
2122 	case POWER_SUPPLY_PROP_ENERGY_FULL:
2123 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124 				di->bat_cap.max_mah);
2125 		break;
2126 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2127 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128 				di->flags.batt_id_received)
2129 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130 					di->bat_cap.max_mah);
2131 		else
2132 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133 					di->bat_cap.prev_mah);
2134 		break;
2135 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136 		val->intval = di->bat_cap.max_mah_design;
2137 		break;
2138 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2139 		val->intval = di->bat_cap.max_mah;
2140 		break;
2141 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2142 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143 				di->flags.batt_id_received)
2144 			val->intval = di->bat_cap.max_mah;
2145 		else
2146 			val->intval = di->bat_cap.prev_mah;
2147 		break;
2148 	case POWER_SUPPLY_PROP_CAPACITY:
2149 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 				di->flags.batt_id_received)
2151 			val->intval = 100;
2152 		else
2153 			val->intval = di->bat_cap.prev_percent;
2154 		break;
2155 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157 				di->flags.batt_id_received)
2158 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159 		else
2160 			val->intval = di->bat_cap.prev_level;
2161 		break;
2162 	default:
2163 		return -EINVAL;
2164 	}
2165 	return 0;
2166 }
2167 
2168 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169 {
2170 	struct power_supply *psy;
2171 	struct power_supply *ext = dev_get_drvdata(dev);
2172 	const char **supplicants = (const char **)ext->supplied_to;
2173 	struct ab8500_fg *di;
2174 	union power_supply_propval ret;
2175 	int j;
2176 
2177 	psy = (struct power_supply *)data;
2178 	di = power_supply_get_drvdata(psy);
2179 
2180 	/*
2181 	 * For all psy where the name of your driver
2182 	 * appears in any supplied_to
2183 	 */
2184 	j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2185 	if (j < 0)
2186 		return 0;
2187 
2188 	/* Go through all properties for the psy */
2189 	for (j = 0; j < ext->desc->num_properties; j++) {
2190 		enum power_supply_property prop;
2191 		prop = ext->desc->properties[j];
2192 
2193 		if (power_supply_get_property(ext, prop, &ret))
2194 			continue;
2195 
2196 		switch (prop) {
2197 		case POWER_SUPPLY_PROP_STATUS:
2198 			switch (ext->desc->type) {
2199 			case POWER_SUPPLY_TYPE_BATTERY:
2200 				switch (ret.intval) {
2201 				case POWER_SUPPLY_STATUS_UNKNOWN:
2202 				case POWER_SUPPLY_STATUS_DISCHARGING:
2203 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
2204 					if (!di->flags.charging)
2205 						break;
2206 					di->flags.charging = false;
2207 					di->flags.fully_charged = false;
2208 					if (di->bm->capacity_scaling)
2209 						ab8500_fg_update_cap_scalers(di);
2210 					queue_work(di->fg_wq, &di->fg_work);
2211 					break;
2212 				case POWER_SUPPLY_STATUS_FULL:
2213 					if (di->flags.fully_charged)
2214 						break;
2215 					di->flags.fully_charged = true;
2216 					di->flags.force_full = true;
2217 					/* Save current capacity as maximum */
2218 					di->bat_cap.max_mah = di->bat_cap.mah;
2219 					queue_work(di->fg_wq, &di->fg_work);
2220 					break;
2221 				case POWER_SUPPLY_STATUS_CHARGING:
2222 					if (di->flags.charging &&
2223 						!di->flags.fully_charged)
2224 						break;
2225 					di->flags.charging = true;
2226 					di->flags.fully_charged = false;
2227 					if (di->bm->capacity_scaling)
2228 						ab8500_fg_update_cap_scalers(di);
2229 					queue_work(di->fg_wq, &di->fg_work);
2230 					break;
2231 				}
2232 				break;
2233 			default:
2234 				break;
2235 			}
2236 			break;
2237 		case POWER_SUPPLY_PROP_TECHNOLOGY:
2238 			switch (ext->desc->type) {
2239 			case POWER_SUPPLY_TYPE_BATTERY:
2240 				if (!di->flags.batt_id_received &&
2241 				    (di->bm->bi.technology !=
2242 				     POWER_SUPPLY_TECHNOLOGY_UNKNOWN)) {
2243 					const struct ab8500_battery_type *b;
2244 
2245 					b = di->bm->bat_type;
2246 
2247 					di->flags.batt_id_received = true;
2248 
2249 					di->bat_cap.max_mah_design =
2250 						di->bm->bi.charge_full_design_uah;
2251 
2252 					di->bat_cap.max_mah =
2253 						di->bat_cap.max_mah_design;
2254 
2255 					di->vbat_nom_uv =
2256 						di->bm->bi.voltage_max_design_uv;
2257 				}
2258 
2259 				if (ret.intval)
2260 					di->flags.batt_unknown = false;
2261 				else
2262 					di->flags.batt_unknown = true;
2263 				break;
2264 			default:
2265 				break;
2266 			}
2267 			break;
2268 		case POWER_SUPPLY_PROP_TEMP:
2269 			switch (ext->desc->type) {
2270 			case POWER_SUPPLY_TYPE_BATTERY:
2271 				if (di->flags.batt_id_received)
2272 					di->bat_temp = ret.intval;
2273 				break;
2274 			default:
2275 				break;
2276 			}
2277 			break;
2278 		default:
2279 			break;
2280 		}
2281 	}
2282 	return 0;
2283 }
2284 
2285 /**
2286  * ab8500_fg_init_hw_registers() - Set up FG related registers
2287  * @di:		pointer to the ab8500_fg structure
2288  *
2289  * Set up battery OVV, low battery voltage registers
2290  */
2291 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2292 {
2293 	int ret;
2294 
2295 	/* Set VBAT OVV threshold */
2296 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2297 		AB8500_CHARGER,
2298 		AB8500_BATT_OVV,
2299 		BATT_OVV_TH_4P75,
2300 		BATT_OVV_TH_4P75);
2301 	if (ret) {
2302 		dev_err(di->dev, "failed to set BATT_OVV\n");
2303 		goto out;
2304 	}
2305 
2306 	/* Enable VBAT OVV detection */
2307 	ret = abx500_mask_and_set_register_interruptible(di->dev,
2308 		AB8500_CHARGER,
2309 		AB8500_BATT_OVV,
2310 		BATT_OVV_ENA,
2311 		BATT_OVV_ENA);
2312 	if (ret) {
2313 		dev_err(di->dev, "failed to enable BATT_OVV\n");
2314 		goto out;
2315 	}
2316 
2317 	/* Low Battery Voltage */
2318 	ret = abx500_set_register_interruptible(di->dev,
2319 		AB8500_SYS_CTRL2_BLOCK,
2320 		AB8500_LOW_BAT_REG,
2321 		ab8500_volt_to_regval(
2322 			di->bm->fg_params->lowbat_threshold) << 1 |
2323 		LOW_BAT_ENABLE);
2324 	if (ret) {
2325 		dev_err(di->dev, "%s write failed\n", __func__);
2326 		goto out;
2327 	}
2328 
2329 	/* Battery OK threshold */
2330 	ret = ab8500_fg_battok_init_hw_register(di);
2331 	if (ret) {
2332 		dev_err(di->dev, "BattOk init write failed.\n");
2333 		goto out;
2334 	}
2335 
2336 	if (is_ab8505(di->parent)) {
2337 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2339 
2340 		if (ret) {
2341 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2342 			goto out;
2343 		}
2344 
2345 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2347 
2348 		if (ret) {
2349 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2350 			goto out;
2351 		}
2352 
2353 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2355 
2356 		if (ret) {
2357 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2358 			goto out;
2359 		}
2360 
2361 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2363 
2364 		if (ret) {
2365 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2366 			goto out;
2367 		}
2368 
2369 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2370 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2371 
2372 		if (ret) {
2373 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2374 			goto out;
2375 		}
2376 	}
2377 out:
2378 	return ret;
2379 }
2380 
2381 /**
2382  * ab8500_fg_external_power_changed() - callback for power supply changes
2383  * @psy:       pointer to the structure power_supply
2384  *
2385  * This function is the entry point of the pointer external_power_changed
2386  * of the structure power_supply.
2387  * This function gets executed when there is a change in any external power
2388  * supply that this driver needs to be notified of.
2389  */
2390 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2391 {
2392 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2393 
2394 	class_for_each_device(power_supply_class, NULL,
2395 		di->fg_psy, ab8500_fg_get_ext_psy_data);
2396 }
2397 
2398 /**
2399  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2400  * @work:	pointer to the work_struct structure
2401  *
2402  * Used to reset the current battery capacity to be able to
2403  * retrigger a new voltage base capacity calculation. For
2404  * test and verification purpose.
2405  */
2406 static void ab8500_fg_reinit_work(struct work_struct *work)
2407 {
2408 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2409 		fg_reinit_work.work);
2410 
2411 	if (!di->flags.calibrate) {
2412 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2413 		ab8500_fg_clear_cap_samples(di);
2414 		ab8500_fg_calc_cap_discharge_voltage(di, true);
2415 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2416 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2417 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2418 
2419 	} else {
2420 		dev_err(di->dev, "Residual offset calibration ongoing "
2421 			"retrying..\n");
2422 		/* Wait one second until next try*/
2423 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2424 			round_jiffies(1));
2425 	}
2426 }
2427 
2428 /* Exposure to the sysfs interface */
2429 
2430 struct ab8500_fg_sysfs_entry {
2431 	struct attribute attr;
2432 	ssize_t (*show)(struct ab8500_fg *, char *);
2433 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2434 };
2435 
2436 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2437 {
2438 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2439 }
2440 
2441 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2442 				 size_t count)
2443 {
2444 	unsigned long charge_full;
2445 	int ret;
2446 
2447 	ret = kstrtoul(buf, 10, &charge_full);
2448 	if (ret)
2449 		return ret;
2450 
2451 	di->bat_cap.max_mah = (int) charge_full;
2452 	return count;
2453 }
2454 
2455 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2456 {
2457 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2458 }
2459 
2460 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2461 				 size_t count)
2462 {
2463 	unsigned long charge_now;
2464 	int ret;
2465 
2466 	ret = kstrtoul(buf, 10, &charge_now);
2467 	if (ret)
2468 		return ret;
2469 
2470 	di->bat_cap.user_mah = (int) charge_now;
2471 	di->flags.user_cap = true;
2472 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2473 	return count;
2474 }
2475 
2476 static struct ab8500_fg_sysfs_entry charge_full_attr =
2477 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2478 
2479 static struct ab8500_fg_sysfs_entry charge_now_attr =
2480 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2481 
2482 static ssize_t
2483 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2484 {
2485 	struct ab8500_fg_sysfs_entry *entry;
2486 	struct ab8500_fg *di;
2487 
2488 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2489 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2490 
2491 	if (!entry->show)
2492 		return -EIO;
2493 
2494 	return entry->show(di, buf);
2495 }
2496 static ssize_t
2497 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2498 		size_t count)
2499 {
2500 	struct ab8500_fg_sysfs_entry *entry;
2501 	struct ab8500_fg *di;
2502 
2503 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2504 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
2505 
2506 	if (!entry->store)
2507 		return -EIO;
2508 
2509 	return entry->store(di, buf, count);
2510 }
2511 
2512 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2513 	.show = ab8500_fg_show,
2514 	.store = ab8500_fg_store,
2515 };
2516 
2517 static struct attribute *ab8500_fg_attrs[] = {
2518 	&charge_full_attr.attr,
2519 	&charge_now_attr.attr,
2520 	NULL,
2521 };
2522 
2523 static struct kobj_type ab8500_fg_ktype = {
2524 	.sysfs_ops = &ab8500_fg_sysfs_ops,
2525 	.default_attrs = ab8500_fg_attrs,
2526 };
2527 
2528 /**
2529  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2530  * @di:                pointer to the struct ab8500_chargalg
2531  *
2532  * This function removes the entry in sysfs.
2533  */
2534 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2535 {
2536 	kobject_del(&di->fg_kobject);
2537 }
2538 
2539 /**
2540  * ab8500_fg_sysfs_init() - init of sysfs entry
2541  * @di:                pointer to the struct ab8500_chargalg
2542  *
2543  * This function adds an entry in sysfs.
2544  * Returns error code in case of failure else 0(on success)
2545  */
2546 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2547 {
2548 	int ret = 0;
2549 
2550 	ret = kobject_init_and_add(&di->fg_kobject,
2551 		&ab8500_fg_ktype,
2552 		NULL, "battery");
2553 	if (ret < 0)
2554 		dev_err(di->dev, "failed to create sysfs entry\n");
2555 
2556 	return ret;
2557 }
2558 
2559 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2560 			     struct device_attribute *attr,
2561 			     char *buf)
2562 {
2563 	int ret;
2564 	u8 reg_value;
2565 	struct power_supply *psy = dev_get_drvdata(dev);
2566 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2567 
2568 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2569 		AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2570 
2571 	if (ret < 0) {
2572 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2573 		goto fail;
2574 	}
2575 
2576 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2577 
2578 fail:
2579 	return ret;
2580 }
2581 
2582 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2583 				  struct device_attribute *attr,
2584 				  const char *buf, size_t count)
2585 {
2586 	int ret;
2587 	int reg_value;
2588 	struct power_supply *psy = dev_get_drvdata(dev);
2589 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2590 
2591 	if (kstrtoint(buf, 10, &reg_value))
2592 		goto fail;
2593 
2594 	if (reg_value > 0x7F) {
2595 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2596 		goto fail;
2597 	}
2598 
2599 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2600 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2601 
2602 	if (ret < 0)
2603 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2604 
2605 fail:
2606 	return count;
2607 }
2608 
2609 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2610 			     struct device_attribute *attr,
2611 			     char *buf)
2612 {
2613 	int ret;
2614 	u8 reg_value;
2615 	struct power_supply *psy = dev_get_drvdata(dev);
2616 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2617 
2618 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2619 		AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2620 
2621 	if (ret < 0) {
2622 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2623 		goto fail;
2624 	}
2625 
2626 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2627 
2628 fail:
2629 	return ret;
2630 
2631 }
2632 
2633 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2634 				  struct device_attribute *attr,
2635 				  const char *buf, size_t count)
2636 {
2637 	int ret;
2638 	int reg_value;
2639 	struct power_supply *psy = dev_get_drvdata(dev);
2640 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2641 
2642 	if (kstrtoint(buf, 10, &reg_value))
2643 		goto fail;
2644 
2645 	if (reg_value > 0x7F) {
2646 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2647 		goto fail;
2648 	}
2649 
2650 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2651 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2652 
2653 	if (ret < 0)
2654 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2655 
2656 fail:
2657 	return count;
2658 }
2659 
2660 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2661 			     struct device_attribute *attr,
2662 			     char *buf)
2663 {
2664 	int ret;
2665 	u8 reg_value;
2666 	struct power_supply *psy = dev_get_drvdata(dev);
2667 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2668 
2669 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2670 		AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2671 
2672 	if (ret < 0) {
2673 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2674 		goto fail;
2675 	}
2676 
2677 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2678 
2679 fail:
2680 	return ret;
2681 }
2682 
2683 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2684 					     struct device_attribute *attr,
2685 					     const char *buf, size_t count)
2686 {
2687 	int ret;
2688 	int reg_value;
2689 	struct power_supply *psy = dev_get_drvdata(dev);
2690 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2691 
2692 	if (kstrtoint(buf, 10, &reg_value))
2693 		goto fail;
2694 
2695 	if (reg_value > 0xF) {
2696 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2697 		goto fail;
2698 	}
2699 
2700 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2701 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2702 
2703 	if (ret < 0)
2704 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2705 
2706 fail:
2707 	return count;
2708 
2709 }
2710 
2711 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2712 					  struct device_attribute *attr,
2713 					  char *buf)
2714 {
2715 	int ret;
2716 	u8 reg_value;
2717 	struct power_supply *psy = dev_get_drvdata(dev);
2718 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2719 
2720 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2721 						AB8505_RTC_PCUT_TIME_REG, &reg_value);
2722 
2723 	if (ret < 0) {
2724 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2725 		goto fail;
2726 	}
2727 
2728 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2729 
2730 fail:
2731 	return ret;
2732 }
2733 
2734 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2735 						    struct device_attribute *attr,
2736 						    char *buf)
2737 {
2738 	int ret;
2739 	u8 reg_value;
2740 	struct power_supply *psy = dev_get_drvdata(dev);
2741 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2742 
2743 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2744 						AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2745 
2746 	if (ret < 0) {
2747 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2748 		goto fail;
2749 	}
2750 
2751 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2752 
2753 fail:
2754 	return ret;
2755 }
2756 
2757 static ssize_t ab8505_powercut_read(struct device *dev,
2758 				    struct device_attribute *attr,
2759 				    char *buf)
2760 {
2761 	int ret;
2762 	u8 reg_value;
2763 	struct power_supply *psy = dev_get_drvdata(dev);
2764 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2765 
2766 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2767 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2768 
2769 	if (ret < 0)
2770 		goto fail;
2771 
2772 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2773 
2774 fail:
2775 	return ret;
2776 }
2777 
2778 static ssize_t ab8505_powercut_write(struct device *dev,
2779 				     struct device_attribute *attr,
2780 				     const char *buf, size_t count)
2781 {
2782 	int ret;
2783 	int reg_value;
2784 	struct power_supply *psy = dev_get_drvdata(dev);
2785 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2786 
2787 	if (kstrtoint(buf, 10, &reg_value))
2788 		goto fail;
2789 
2790 	if (reg_value > 0x1) {
2791 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2792 		goto fail;
2793 	}
2794 
2795 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2796 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2797 
2798 	if (ret < 0)
2799 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2800 
2801 fail:
2802 	return count;
2803 }
2804 
2805 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2806 					 struct device_attribute *attr,
2807 					 char *buf)
2808 {
2809 
2810 	int ret;
2811 	u8 reg_value;
2812 	struct power_supply *psy = dev_get_drvdata(dev);
2813 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2814 
2815 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2816 						AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2817 
2818 	if (ret < 0) {
2819 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2820 		goto fail;
2821 	}
2822 
2823 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2824 
2825 fail:
2826 	return ret;
2827 }
2828 
2829 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2830 					     struct device_attribute *attr,
2831 					     char *buf)
2832 {
2833 	int ret;
2834 	u8 reg_value;
2835 	struct power_supply *psy = dev_get_drvdata(dev);
2836 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2837 
2838 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2839 						AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2840 
2841 	if (ret < 0) {
2842 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2843 		goto fail;
2844 	}
2845 
2846 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2847 
2848 fail:
2849 	return ret;
2850 }
2851 
2852 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2853 					      struct device_attribute *attr,
2854 					      const char *buf, size_t count)
2855 {
2856 	int ret;
2857 	int reg_value;
2858 	struct power_supply *psy = dev_get_drvdata(dev);
2859 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2860 
2861 	if (kstrtoint(buf, 10, &reg_value))
2862 		goto fail;
2863 
2864 	if (reg_value > 0x7) {
2865 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2866 		goto fail;
2867 	}
2868 
2869 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2870 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2871 
2872 	if (ret < 0)
2873 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2874 
2875 fail:
2876 	return count;
2877 }
2878 
2879 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2880 						  struct device_attribute *attr,
2881 						  char *buf)
2882 {
2883 	int ret;
2884 	u8 reg_value;
2885 	struct power_supply *psy = dev_get_drvdata(dev);
2886 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
2887 
2888 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2889 						AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2890 
2891 	if (ret < 0) {
2892 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2893 		goto fail;
2894 	}
2895 
2896 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2897 
2898 fail:
2899 	return ret;
2900 }
2901 
2902 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2903 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2904 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2905 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2906 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2907 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2908 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2909 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2910 	__ATTR(powercut_restart_counter, S_IRUGO,
2911 		ab8505_powercut_restart_counter_read, NULL),
2912 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2913 		ab8505_powercut_read, ab8505_powercut_write),
2914 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2915 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2916 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2917 	__ATTR(powercut_enable_status, S_IRUGO,
2918 		ab8505_powercut_enable_status_read, NULL),
2919 };
2920 
2921 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2922 {
2923 	unsigned int i;
2924 
2925 	if (is_ab8505(di->parent)) {
2926 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2927 			if (device_create_file(&di->fg_psy->dev,
2928 					       &ab8505_fg_sysfs_psy_attrs[i]))
2929 				goto sysfs_psy_create_attrs_failed_ab8505;
2930 	}
2931 	return 0;
2932 sysfs_psy_create_attrs_failed_ab8505:
2933 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2934 	while (i--)
2935 		device_remove_file(&di->fg_psy->dev,
2936 				   &ab8505_fg_sysfs_psy_attrs[i]);
2937 
2938 	return -EIO;
2939 }
2940 
2941 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2942 {
2943 	unsigned int i;
2944 
2945 	if (is_ab8505(di->parent)) {
2946 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2947 			(void)device_remove_file(&di->fg_psy->dev,
2948 						 &ab8505_fg_sysfs_psy_attrs[i]);
2949 	}
2950 }
2951 
2952 /* Exposure to the sysfs interface <<END>> */
2953 
2954 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2955 {
2956 	struct ab8500_fg *di = dev_get_drvdata(dev);
2957 
2958 	/*
2959 	 * Change state if we're not charging. If we're charging we will wake
2960 	 * up on the FG IRQ
2961 	 */
2962 	if (!di->flags.charging) {
2963 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2964 		queue_work(di->fg_wq, &di->fg_work);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2971 {
2972 	struct ab8500_fg *di = dev_get_drvdata(dev);
2973 
2974 	flush_delayed_work(&di->fg_periodic_work);
2975 	flush_work(&di->fg_work);
2976 	flush_work(&di->fg_acc_cur_work);
2977 	flush_delayed_work(&di->fg_reinit_work);
2978 	flush_delayed_work(&di->fg_low_bat_work);
2979 	flush_delayed_work(&di->fg_check_hw_failure_work);
2980 
2981 	/*
2982 	 * If the FG is enabled we will disable it before going to suspend
2983 	 * only if we're not charging
2984 	 */
2985 	if (di->flags.fg_enabled && !di->flags.charging)
2986 		ab8500_fg_coulomb_counter(di, false);
2987 
2988 	return 0;
2989 }
2990 
2991 /* ab8500 fg driver interrupts and their respective isr */
2992 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2993 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2994 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
2995 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2996 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2997 	{"CCEOC", ab8500_fg_cc_data_end_handler},
2998 };
2999 
3000 static char *supply_interface[] = {
3001 	"ab8500_chargalg",
3002 	"ab8500_usb",
3003 };
3004 
3005 static const struct power_supply_desc ab8500_fg_desc = {
3006 	.name			= "ab8500_fg",
3007 	.type			= POWER_SUPPLY_TYPE_BATTERY,
3008 	.properties		= ab8500_fg_props,
3009 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
3010 	.get_property		= ab8500_fg_get_property,
3011 	.external_power_changed	= ab8500_fg_external_power_changed,
3012 };
3013 
3014 static int ab8500_fg_bind(struct device *dev, struct device *master,
3015 			  void *data)
3016 {
3017 	struct ab8500_fg *di = dev_get_drvdata(dev);
3018 
3019 	/* Create a work queue for running the FG algorithm */
3020 	di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3021 	if (di->fg_wq == NULL) {
3022 		dev_err(dev, "failed to create work queue\n");
3023 		return -ENOMEM;
3024 	}
3025 
3026 	/* Start the coulomb counter */
3027 	ab8500_fg_coulomb_counter(di, true);
3028 	/* Run the FG algorithm */
3029 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3030 
3031 	return 0;
3032 }
3033 
3034 static void ab8500_fg_unbind(struct device *dev, struct device *master,
3035 			     void *data)
3036 {
3037 	struct ab8500_fg *di = dev_get_drvdata(dev);
3038 	int ret;
3039 
3040 	/* Disable coulomb counter */
3041 	ret = ab8500_fg_coulomb_counter(di, false);
3042 	if (ret)
3043 		dev_err(dev, "failed to disable coulomb counter\n");
3044 
3045 	destroy_workqueue(di->fg_wq);
3046 	flush_scheduled_work();
3047 }
3048 
3049 static const struct component_ops ab8500_fg_component_ops = {
3050 	.bind = ab8500_fg_bind,
3051 	.unbind = ab8500_fg_unbind,
3052 };
3053 
3054 static int ab8500_fg_probe(struct platform_device *pdev)
3055 {
3056 	struct device *dev = &pdev->dev;
3057 	struct power_supply_config psy_cfg = {};
3058 	struct ab8500_fg *di;
3059 	int i, irq;
3060 	int ret = 0;
3061 
3062 	di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3063 	if (!di)
3064 		return -ENOMEM;
3065 
3066 	di->bm = &ab8500_bm_data;
3067 
3068 	mutex_init(&di->cc_lock);
3069 
3070 	/* get parent data */
3071 	di->dev = dev;
3072 	di->parent = dev_get_drvdata(pdev->dev.parent);
3073 
3074 	di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3075 	if (IS_ERR(di->main_bat_v)) {
3076 		ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3077 				    "failed to get main battery ADC channel\n");
3078 		return ret;
3079 	}
3080 
3081 	psy_cfg.supplied_to = supply_interface;
3082 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3083 	psy_cfg.drv_data = di;
3084 
3085 	di->bat_cap.max_mah_design = di->bm->bi.charge_full_design_uah;
3086 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3087 	di->vbat_nom_uv = di->bm->bi.voltage_max_design_uv;
3088 
3089 	di->init_capacity = true;
3090 
3091 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3092 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3093 
3094 	/* Init work for running the fg algorithm instantly */
3095 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3096 
3097 	/* Init work for getting the battery accumulated current */
3098 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3099 
3100 	/* Init work for reinitialising the fg algorithm */
3101 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3102 		ab8500_fg_reinit_work);
3103 
3104 	/* Work delayed Queue to run the state machine */
3105 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3106 		ab8500_fg_periodic_work);
3107 
3108 	/* Work to check low battery condition */
3109 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3110 		ab8500_fg_low_bat_work);
3111 
3112 	/* Init work for HW failure check */
3113 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3114 		ab8500_fg_check_hw_failure_work);
3115 
3116 	/* Reset battery low voltage flag */
3117 	di->flags.low_bat = false;
3118 
3119 	/* Initialize low battery counter */
3120 	di->low_bat_cnt = 10;
3121 
3122 	/* Initialize OVV, and other registers */
3123 	ret = ab8500_fg_init_hw_registers(di);
3124 	if (ret) {
3125 		dev_err(dev, "failed to initialize registers\n");
3126 		return ret;
3127 	}
3128 
3129 	/* Consider battery unknown until we're informed otherwise */
3130 	di->flags.batt_unknown = true;
3131 	di->flags.batt_id_received = false;
3132 
3133 	/* Register FG power supply class */
3134 	di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3135 	if (IS_ERR(di->fg_psy)) {
3136 		dev_err(dev, "failed to register FG psy\n");
3137 		return PTR_ERR(di->fg_psy);
3138 	}
3139 
3140 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3141 
3142 	/*
3143 	 * Initialize completion used to notify completion and start
3144 	 * of inst current
3145 	 */
3146 	init_completion(&di->ab8500_fg_started);
3147 	init_completion(&di->ab8500_fg_complete);
3148 
3149 	/* Register primary interrupt handlers */
3150 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3151 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3152 		if (irq < 0)
3153 			return irq;
3154 
3155 		ret = devm_request_threaded_irq(dev, irq, NULL,
3156 				  ab8500_fg_irq[i].isr,
3157 				  IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3158 				  ab8500_fg_irq[i].name, di);
3159 
3160 		if (ret != 0) {
3161 			dev_err(dev, "failed to request %s IRQ %d: %d\n",
3162 				ab8500_fg_irq[i].name, irq, ret);
3163 			return ret;
3164 		}
3165 		dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3166 			ab8500_fg_irq[i].name, irq, ret);
3167 	}
3168 
3169 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
3170 	disable_irq(di->irq);
3171 	di->nbr_cceoc_irq_cnt = 0;
3172 
3173 	platform_set_drvdata(pdev, di);
3174 
3175 	ret = ab8500_fg_sysfs_init(di);
3176 	if (ret) {
3177 		dev_err(dev, "failed to create sysfs entry\n");
3178 		return ret;
3179 	}
3180 
3181 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
3182 	if (ret) {
3183 		dev_err(dev, "failed to create FG psy\n");
3184 		ab8500_fg_sysfs_exit(di);
3185 		return ret;
3186 	}
3187 
3188 	/* Calibrate the fg first time */
3189 	di->flags.calibrate = true;
3190 	di->calib_state = AB8500_FG_CALIB_INIT;
3191 
3192 	/* Use room temp as default value until we get an update from driver. */
3193 	di->bat_temp = 210;
3194 
3195 	list_add_tail(&di->node, &ab8500_fg_list);
3196 
3197 	return component_add(dev, &ab8500_fg_component_ops);
3198 }
3199 
3200 static int ab8500_fg_remove(struct platform_device *pdev)
3201 {
3202 	int ret = 0;
3203 	struct ab8500_fg *di = platform_get_drvdata(pdev);
3204 
3205 	component_del(&pdev->dev, &ab8500_fg_component_ops);
3206 	list_del(&di->node);
3207 	ab8500_fg_sysfs_exit(di);
3208 	ab8500_fg_sysfs_psy_remove_attrs(di);
3209 
3210 	return ret;
3211 }
3212 
3213 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3214 
3215 static const struct of_device_id ab8500_fg_match[] = {
3216 	{ .compatible = "stericsson,ab8500-fg", },
3217 	{ },
3218 };
3219 MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3220 
3221 struct platform_driver ab8500_fg_driver = {
3222 	.probe = ab8500_fg_probe,
3223 	.remove = ab8500_fg_remove,
3224 	.driver = {
3225 		.name = "ab8500-fg",
3226 		.of_match_table = ab8500_fg_match,
3227 		.pm = &ab8500_fg_pm_ops,
3228 	},
3229 };
3230 MODULE_LICENSE("GPL v2");
3231 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3232 MODULE_ALIAS("platform:ab8500-fg");
3233 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3234