1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2019, Linaro Limited 5 */ 6 7 #include <linux/module.h> 8 #include <linux/err.h> 9 #include <linux/debugfs.h> 10 #include <linux/string.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/init.h> 14 #include <linux/io.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_domain.h> 20 #include <linux/pm_opp.h> 21 #include <linux/interrupt.h> 22 #include <linux/regmap.h> 23 #include <linux/mfd/syscon.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/clk.h> 26 #include <linux/nvmem-consumer.h> 27 28 /* Register Offsets for RB-CPR and Bit Definitions */ 29 30 /* RBCPR Version Register */ 31 #define REG_RBCPR_VERSION 0 32 #define RBCPR_VER_2 0x02 33 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0) 34 35 /* RBCPR Gate Count and Target Registers */ 36 #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n)) 37 38 #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0 39 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0) 40 #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12 41 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0) 42 43 /* RBCPR Timer Control */ 44 #define REG_RBCPR_TIMER_INTERVAL 0x44 45 #define REG_RBIF_TIMER_ADJUST 0x4c 46 47 #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0) 48 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0 49 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0) 50 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4 51 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0) 52 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8 53 54 /* RBCPR Config Register */ 55 #define REG_RBIF_LIMIT 0x48 56 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0) 57 #define RBIF_LIMIT_CEILING_SHIFT 6 58 #define RBIF_LIMIT_FLOOR_BITS 6 59 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0) 60 61 #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK 62 #define RBIF_LIMIT_FLOOR_DEFAULT 0 63 64 #define REG_RBIF_SW_VLEVEL 0x94 65 #define RBIF_SW_VLEVEL_DEFAULT 0x20 66 67 #define REG_RBCPR_STEP_QUOT 0x80 68 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0) 69 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0) 70 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8 71 72 /* RBCPR Control Register */ 73 #define REG_RBCPR_CTL 0x90 74 75 #define RBCPR_CTL_LOOP_EN BIT(0) 76 #define RBCPR_CTL_TIMER_EN BIT(3) 77 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5) 78 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6) 79 #define RBCPR_CTL_COUNT_MODE BIT(10) 80 #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0) 81 #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24 82 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0) 83 #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28 84 85 /* RBCPR Ack/Nack Response */ 86 #define REG_RBIF_CONT_ACK_CMD 0x98 87 #define REG_RBIF_CONT_NACK_CMD 0x9c 88 89 /* RBCPR Result status Register */ 90 #define REG_RBCPR_RESULT_0 0xa0 91 92 #define RBCPR_RESULT0_BUSY_SHIFT 19 93 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT) 94 #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18 95 #define RBCPR_RESULT0_ERROR_SHIFT 6 96 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0) 97 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2 98 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0) 99 #define RBCPR_RESULT0_STEP_UP_SHIFT 1 100 101 /* RBCPR Interrupt Control Register */ 102 #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n)) 103 #define REG_RBIF_IRQ_CLEAR 0x110 104 #define REG_RBIF_IRQ_STATUS 0x114 105 106 #define CPR_INT_DONE BIT(0) 107 #define CPR_INT_MIN BIT(1) 108 #define CPR_INT_DOWN BIT(2) 109 #define CPR_INT_MID BIT(3) 110 #define CPR_INT_UP BIT(4) 111 #define CPR_INT_MAX BIT(5) 112 #define CPR_INT_CLAMP BIT(6) 113 #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \ 114 CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP) 115 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN) 116 117 #define CPR_NUM_RING_OSC 8 118 119 /* CPR eFuse parameters */ 120 #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0) 121 122 #define CPR_FUSE_MIN_QUOT_DIFF 50 123 124 #define FUSE_REVISION_UNKNOWN (-1) 125 126 enum voltage_change_dir { 127 NO_CHANGE, 128 DOWN, 129 UP, 130 }; 131 132 struct cpr_fuse { 133 char *ring_osc; 134 char *init_voltage; 135 char *quotient; 136 char *quotient_offset; 137 }; 138 139 struct fuse_corner_data { 140 int ref_uV; 141 int max_uV; 142 int min_uV; 143 int max_volt_scale; 144 int max_quot_scale; 145 /* fuse quot */ 146 int quot_offset; 147 int quot_scale; 148 int quot_adjust; 149 /* fuse quot_offset */ 150 int quot_offset_scale; 151 int quot_offset_adjust; 152 }; 153 154 struct cpr_fuses { 155 int init_voltage_step; 156 int init_voltage_width; 157 struct fuse_corner_data *fuse_corner_data; 158 }; 159 160 struct corner_data { 161 unsigned int fuse_corner; 162 unsigned long freq; 163 }; 164 165 struct cpr_desc { 166 unsigned int num_fuse_corners; 167 int min_diff_quot; 168 int *step_quot; 169 170 unsigned int timer_delay_us; 171 unsigned int timer_cons_up; 172 unsigned int timer_cons_down; 173 unsigned int up_threshold; 174 unsigned int down_threshold; 175 unsigned int idle_clocks; 176 unsigned int gcnt_us; 177 unsigned int vdd_apc_step_up_limit; 178 unsigned int vdd_apc_step_down_limit; 179 unsigned int clamp_timer_interval; 180 181 struct cpr_fuses cpr_fuses; 182 bool reduce_to_fuse_uV; 183 bool reduce_to_corner_uV; 184 }; 185 186 struct acc_desc { 187 unsigned int enable_reg; 188 u32 enable_mask; 189 190 struct reg_sequence *config; 191 struct reg_sequence *settings; 192 int num_regs_per_fuse; 193 }; 194 195 struct cpr_acc_desc { 196 const struct cpr_desc *cpr_desc; 197 const struct acc_desc *acc_desc; 198 }; 199 200 struct fuse_corner { 201 int min_uV; 202 int max_uV; 203 int uV; 204 int quot; 205 int step_quot; 206 const struct reg_sequence *accs; 207 int num_accs; 208 unsigned long max_freq; 209 u8 ring_osc_idx; 210 }; 211 212 struct corner { 213 int min_uV; 214 int max_uV; 215 int uV; 216 int last_uV; 217 int quot_adjust; 218 u32 save_ctl; 219 u32 save_irq; 220 unsigned long freq; 221 struct fuse_corner *fuse_corner; 222 }; 223 224 struct cpr_drv { 225 unsigned int num_corners; 226 unsigned int ref_clk_khz; 227 228 struct generic_pm_domain pd; 229 struct device *dev; 230 struct device *attached_cpu_dev; 231 struct mutex lock; 232 void __iomem *base; 233 struct corner *corner; 234 struct regulator *vdd_apc; 235 struct clk *cpu_clk; 236 struct regmap *tcsr; 237 bool loop_disabled; 238 u32 gcnt; 239 unsigned long flags; 240 241 struct fuse_corner *fuse_corners; 242 struct corner *corners; 243 244 const struct cpr_desc *desc; 245 const struct acc_desc *acc_desc; 246 const struct cpr_fuse *cpr_fuses; 247 248 struct dentry *debugfs; 249 }; 250 251 static bool cpr_is_allowed(struct cpr_drv *drv) 252 { 253 return !drv->loop_disabled; 254 } 255 256 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value) 257 { 258 writel_relaxed(value, drv->base + offset); 259 } 260 261 static u32 cpr_read(struct cpr_drv *drv, u32 offset) 262 { 263 return readl_relaxed(drv->base + offset); 264 } 265 266 static void 267 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value) 268 { 269 u32 val; 270 271 val = readl_relaxed(drv->base + offset); 272 val &= ~mask; 273 val |= value & mask; 274 writel_relaxed(val, drv->base + offset); 275 } 276 277 static void cpr_irq_clr(struct cpr_drv *drv) 278 { 279 cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL); 280 } 281 282 static void cpr_irq_clr_nack(struct cpr_drv *drv) 283 { 284 cpr_irq_clr(drv); 285 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); 286 } 287 288 static void cpr_irq_clr_ack(struct cpr_drv *drv) 289 { 290 cpr_irq_clr(drv); 291 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); 292 } 293 294 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits) 295 { 296 cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits); 297 } 298 299 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value) 300 { 301 cpr_masked_write(drv, REG_RBCPR_CTL, mask, value); 302 } 303 304 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner) 305 { 306 u32 val, mask; 307 const struct cpr_desc *desc = drv->desc; 308 309 /* Program Consecutive Up & Down */ 310 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; 311 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; 312 mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK; 313 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val); 314 cpr_masked_write(drv, REG_RBCPR_CTL, 315 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | 316 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 317 corner->save_ctl); 318 cpr_irq_set(drv, corner->save_irq); 319 320 if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV) 321 val = RBCPR_CTL_LOOP_EN; 322 else 323 val = 0; 324 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val); 325 } 326 327 static void cpr_ctl_disable(struct cpr_drv *drv) 328 { 329 cpr_irq_set(drv, 0); 330 cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | 331 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0); 332 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, 333 RBIF_TIMER_ADJ_CONS_UP_MASK | 334 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0); 335 cpr_irq_clr(drv); 336 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); 337 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); 338 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0); 339 } 340 341 static bool cpr_ctl_is_enabled(struct cpr_drv *drv) 342 { 343 u32 reg_val; 344 345 reg_val = cpr_read(drv, REG_RBCPR_CTL); 346 return reg_val & RBCPR_CTL_LOOP_EN; 347 } 348 349 static bool cpr_ctl_is_busy(struct cpr_drv *drv) 350 { 351 u32 reg_val; 352 353 reg_val = cpr_read(drv, REG_RBCPR_RESULT_0); 354 return reg_val & RBCPR_RESULT0_BUSY_MASK; 355 } 356 357 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner) 358 { 359 corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL); 360 corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0)); 361 } 362 363 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner) 364 { 365 u32 gcnt, ctl, irq, ro_sel, step_quot; 366 struct fuse_corner *fuse = corner->fuse_corner; 367 const struct cpr_desc *desc = drv->desc; 368 int i; 369 370 ro_sel = fuse->ring_osc_idx; 371 gcnt = drv->gcnt; 372 gcnt |= fuse->quot - corner->quot_adjust; 373 374 /* Program the step quotient and idle clocks */ 375 step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT; 376 step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK; 377 cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot); 378 379 /* Clear the target quotient value and gate count of all ROs */ 380 for (i = 0; i < CPR_NUM_RING_OSC; i++) 381 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); 382 383 cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt); 384 ctl = corner->save_ctl; 385 cpr_write(drv, REG_RBCPR_CTL, ctl); 386 irq = corner->save_irq; 387 cpr_irq_set(drv, irq); 388 dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt, 389 ctl, irq); 390 } 391 392 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f, 393 struct fuse_corner *end) 394 { 395 if (f == end) 396 return; 397 398 if (f < end) { 399 for (f += 1; f <= end; f++) 400 regmap_multi_reg_write(tcsr, f->accs, f->num_accs); 401 } else { 402 for (f -= 1; f >= end; f--) 403 regmap_multi_reg_write(tcsr, f->accs, f->num_accs); 404 } 405 } 406 407 static int cpr_pre_voltage(struct cpr_drv *drv, 408 struct fuse_corner *fuse_corner, 409 enum voltage_change_dir dir) 410 { 411 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; 412 413 if (drv->tcsr && dir == DOWN) 414 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); 415 416 return 0; 417 } 418 419 static int cpr_post_voltage(struct cpr_drv *drv, 420 struct fuse_corner *fuse_corner, 421 enum voltage_change_dir dir) 422 { 423 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; 424 425 if (drv->tcsr && dir == UP) 426 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); 427 428 return 0; 429 } 430 431 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner, 432 int new_uV, enum voltage_change_dir dir) 433 { 434 int ret; 435 struct fuse_corner *fuse_corner = corner->fuse_corner; 436 437 ret = cpr_pre_voltage(drv, fuse_corner, dir); 438 if (ret) 439 return ret; 440 441 ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV); 442 if (ret) { 443 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n", 444 new_uV); 445 return ret; 446 } 447 448 ret = cpr_post_voltage(drv, fuse_corner, dir); 449 if (ret) 450 return ret; 451 452 return 0; 453 } 454 455 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv) 456 { 457 return drv->corner ? drv->corner - drv->corners + 1 : 0; 458 } 459 460 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir) 461 { 462 u32 val, error_steps, reg_mask; 463 int last_uV, new_uV, step_uV, ret; 464 struct corner *corner; 465 const struct cpr_desc *desc = drv->desc; 466 467 if (dir != UP && dir != DOWN) 468 return 0; 469 470 step_uV = regulator_get_linear_step(drv->vdd_apc); 471 if (!step_uV) 472 return -EINVAL; 473 474 corner = drv->corner; 475 476 val = cpr_read(drv, REG_RBCPR_RESULT_0); 477 478 error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT; 479 error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK; 480 last_uV = corner->last_uV; 481 482 if (dir == UP) { 483 if (desc->clamp_timer_interval && 484 error_steps < desc->up_threshold) { 485 /* 486 * Handle the case where another measurement started 487 * after the interrupt was triggered due to a core 488 * exiting from power collapse. 489 */ 490 error_steps = max(desc->up_threshold, 491 desc->vdd_apc_step_up_limit); 492 } 493 494 if (last_uV >= corner->max_uV) { 495 cpr_irq_clr_nack(drv); 496 497 /* Maximize the UP threshold */ 498 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; 499 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; 500 val = reg_mask; 501 cpr_ctl_modify(drv, reg_mask, val); 502 503 /* Disable UP interrupt */ 504 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP); 505 506 return 0; 507 } 508 509 if (error_steps > desc->vdd_apc_step_up_limit) 510 error_steps = desc->vdd_apc_step_up_limit; 511 512 /* Calculate new voltage */ 513 new_uV = last_uV + error_steps * step_uV; 514 new_uV = min(new_uV, corner->max_uV); 515 516 dev_dbg(drv->dev, 517 "UP: -> new_uV: %d last_uV: %d perf state: %u\n", 518 new_uV, last_uV, cpr_get_cur_perf_state(drv)); 519 } else { 520 if (desc->clamp_timer_interval && 521 error_steps < desc->down_threshold) { 522 /* 523 * Handle the case where another measurement started 524 * after the interrupt was triggered due to a core 525 * exiting from power collapse. 526 */ 527 error_steps = max(desc->down_threshold, 528 desc->vdd_apc_step_down_limit); 529 } 530 531 if (last_uV <= corner->min_uV) { 532 cpr_irq_clr_nack(drv); 533 534 /* Enable auto nack down */ 535 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; 536 val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; 537 538 cpr_ctl_modify(drv, reg_mask, val); 539 540 /* Disable DOWN interrupt */ 541 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN); 542 543 return 0; 544 } 545 546 if (error_steps > desc->vdd_apc_step_down_limit) 547 error_steps = desc->vdd_apc_step_down_limit; 548 549 /* Calculate new voltage */ 550 new_uV = last_uV - error_steps * step_uV; 551 new_uV = max(new_uV, corner->min_uV); 552 553 dev_dbg(drv->dev, 554 "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n", 555 new_uV, last_uV, cpr_get_cur_perf_state(drv)); 556 } 557 558 ret = cpr_scale_voltage(drv, corner, new_uV, dir); 559 if (ret) { 560 cpr_irq_clr_nack(drv); 561 return ret; 562 } 563 drv->corner->last_uV = new_uV; 564 565 if (dir == UP) { 566 /* Disable auto nack down */ 567 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; 568 val = 0; 569 } else { 570 /* Restore default threshold for UP */ 571 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; 572 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; 573 val = desc->up_threshold; 574 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; 575 } 576 577 cpr_ctl_modify(drv, reg_mask, val); 578 579 /* Re-enable default interrupts */ 580 cpr_irq_set(drv, CPR_INT_DEFAULT); 581 582 /* Ack */ 583 cpr_irq_clr_ack(drv); 584 585 return 0; 586 } 587 588 static irqreturn_t cpr_irq_handler(int irq, void *dev) 589 { 590 struct cpr_drv *drv = dev; 591 const struct cpr_desc *desc = drv->desc; 592 irqreturn_t ret = IRQ_HANDLED; 593 u32 val; 594 595 mutex_lock(&drv->lock); 596 597 val = cpr_read(drv, REG_RBIF_IRQ_STATUS); 598 if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS) 599 val = cpr_read(drv, REG_RBIF_IRQ_STATUS); 600 601 dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val); 602 603 if (!cpr_ctl_is_enabled(drv)) { 604 dev_dbg(drv->dev, "CPR is disabled\n"); 605 ret = IRQ_NONE; 606 } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) { 607 dev_dbg(drv->dev, "CPR measurement is not ready\n"); 608 } else if (!cpr_is_allowed(drv)) { 609 val = cpr_read(drv, REG_RBCPR_CTL); 610 dev_err_ratelimited(drv->dev, 611 "Interrupt broken? RBCPR_CTL = %#02x\n", 612 val); 613 ret = IRQ_NONE; 614 } else { 615 /* 616 * Following sequence of handling is as per each IRQ's 617 * priority 618 */ 619 if (val & CPR_INT_UP) { 620 cpr_scale(drv, UP); 621 } else if (val & CPR_INT_DOWN) { 622 cpr_scale(drv, DOWN); 623 } else if (val & CPR_INT_MIN) { 624 cpr_irq_clr_nack(drv); 625 } else if (val & CPR_INT_MAX) { 626 cpr_irq_clr_nack(drv); 627 } else if (val & CPR_INT_MID) { 628 /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */ 629 dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); 630 } else { 631 dev_dbg(drv->dev, 632 "IRQ occurred for unknown flag (%#08x)\n", val); 633 } 634 635 /* Save register values for the corner */ 636 cpr_corner_save(drv, drv->corner); 637 } 638 639 mutex_unlock(&drv->lock); 640 641 return ret; 642 } 643 644 static int cpr_enable(struct cpr_drv *drv) 645 { 646 int ret; 647 648 ret = regulator_enable(drv->vdd_apc); 649 if (ret) 650 return ret; 651 652 mutex_lock(&drv->lock); 653 654 if (cpr_is_allowed(drv) && drv->corner) { 655 cpr_irq_clr(drv); 656 cpr_corner_restore(drv, drv->corner); 657 cpr_ctl_enable(drv, drv->corner); 658 } 659 660 mutex_unlock(&drv->lock); 661 662 return 0; 663 } 664 665 static int cpr_disable(struct cpr_drv *drv) 666 { 667 mutex_lock(&drv->lock); 668 669 if (cpr_is_allowed(drv)) { 670 cpr_ctl_disable(drv); 671 cpr_irq_clr(drv); 672 } 673 674 mutex_unlock(&drv->lock); 675 676 return regulator_disable(drv->vdd_apc); 677 } 678 679 static int cpr_config(struct cpr_drv *drv) 680 { 681 int i; 682 u32 val, gcnt; 683 struct corner *corner; 684 const struct cpr_desc *desc = drv->desc; 685 686 /* Disable interrupt and CPR */ 687 cpr_write(drv, REG_RBIF_IRQ_EN(0), 0); 688 cpr_write(drv, REG_RBCPR_CTL, 0); 689 690 /* Program the default HW ceiling, floor and vlevel */ 691 val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK) 692 << RBIF_LIMIT_CEILING_SHIFT; 693 val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK; 694 cpr_write(drv, REG_RBIF_LIMIT, val); 695 cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT); 696 697 /* 698 * Clear the target quotient value and gate count of all 699 * ring oscillators 700 */ 701 for (i = 0; i < CPR_NUM_RING_OSC; i++) 702 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); 703 704 /* Init and save gcnt */ 705 gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000; 706 gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK; 707 gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT; 708 drv->gcnt = gcnt; 709 710 /* Program the delay count for the timer */ 711 val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000; 712 cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val); 713 dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, 714 desc->timer_delay_us); 715 716 /* Program Consecutive Up & Down */ 717 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; 718 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; 719 val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT; 720 cpr_write(drv, REG_RBIF_TIMER_ADJUST, val); 721 722 /* Program the control register */ 723 val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT; 724 val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT; 725 val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE; 726 val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN; 727 cpr_write(drv, REG_RBCPR_CTL, val); 728 729 for (i = 0; i < drv->num_corners; i++) { 730 corner = &drv->corners[i]; 731 corner->save_ctl = val; 732 corner->save_irq = CPR_INT_DEFAULT; 733 } 734 735 cpr_irq_set(drv, CPR_INT_DEFAULT); 736 737 val = cpr_read(drv, REG_RBCPR_VERSION); 738 if (val <= RBCPR_VER_2) 739 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS; 740 741 return 0; 742 } 743 744 static int cpr_set_performance_state(struct generic_pm_domain *domain, 745 unsigned int state) 746 { 747 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); 748 struct corner *corner, *end; 749 enum voltage_change_dir dir; 750 int ret = 0, new_uV; 751 752 mutex_lock(&drv->lock); 753 754 dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n", 755 __func__, state, cpr_get_cur_perf_state(drv)); 756 757 /* 758 * Determine new corner we're going to. 759 * Remove one since lowest performance state is 1. 760 */ 761 corner = drv->corners + state - 1; 762 end = &drv->corners[drv->num_corners - 1]; 763 if (corner > end || corner < drv->corners) { 764 ret = -EINVAL; 765 goto unlock; 766 } 767 768 /* Determine direction */ 769 if (drv->corner > corner) 770 dir = DOWN; 771 else if (drv->corner < corner) 772 dir = UP; 773 else 774 dir = NO_CHANGE; 775 776 if (cpr_is_allowed(drv)) 777 new_uV = corner->last_uV; 778 else 779 new_uV = corner->uV; 780 781 if (cpr_is_allowed(drv)) 782 cpr_ctl_disable(drv); 783 784 ret = cpr_scale_voltage(drv, corner, new_uV, dir); 785 if (ret) 786 goto unlock; 787 788 if (cpr_is_allowed(drv)) { 789 cpr_irq_clr(drv); 790 if (drv->corner != corner) 791 cpr_corner_restore(drv, corner); 792 cpr_ctl_enable(drv, corner); 793 } 794 795 drv->corner = corner; 796 797 unlock: 798 mutex_unlock(&drv->lock); 799 800 return ret; 801 } 802 803 static int 804 cpr_populate_ring_osc_idx(struct cpr_drv *drv) 805 { 806 struct fuse_corner *fuse = drv->fuse_corners; 807 struct fuse_corner *end = fuse + drv->desc->num_fuse_corners; 808 const struct cpr_fuse *fuses = drv->cpr_fuses; 809 u32 data; 810 int ret; 811 812 for (; fuse < end; fuse++, fuses++) { 813 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data); 814 if (ret) 815 return ret; 816 fuse->ring_osc_idx = data; 817 } 818 819 return 0; 820 } 821 822 static int cpr_read_fuse_uV(const struct cpr_desc *desc, 823 const struct fuse_corner_data *fdata, 824 const char *init_v_efuse, 825 int step_volt, 826 struct cpr_drv *drv) 827 { 828 int step_size_uV, steps, uV; 829 u32 bits = 0; 830 int ret; 831 832 ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits); 833 if (ret) 834 return ret; 835 836 steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1); 837 /* Not two's complement.. instead highest bit is sign bit */ 838 if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1)) 839 steps = -steps; 840 841 step_size_uV = desc->cpr_fuses.init_voltage_step; 842 843 uV = fdata->ref_uV + steps * step_size_uV; 844 return DIV_ROUND_UP(uV, step_volt) * step_volt; 845 } 846 847 static int cpr_fuse_corner_init(struct cpr_drv *drv) 848 { 849 const struct cpr_desc *desc = drv->desc; 850 const struct cpr_fuse *fuses = drv->cpr_fuses; 851 const struct acc_desc *acc_desc = drv->acc_desc; 852 int i; 853 unsigned int step_volt; 854 struct fuse_corner_data *fdata; 855 struct fuse_corner *fuse, *end; 856 int uV; 857 const struct reg_sequence *accs; 858 int ret; 859 860 accs = acc_desc->settings; 861 862 step_volt = regulator_get_linear_step(drv->vdd_apc); 863 if (!step_volt) 864 return -EINVAL; 865 866 /* Populate fuse_corner members */ 867 fuse = drv->fuse_corners; 868 end = &fuse[desc->num_fuse_corners - 1]; 869 fdata = desc->cpr_fuses.fuse_corner_data; 870 871 for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) { 872 /* 873 * Update SoC voltages: platforms might choose a different 874 * regulators than the one used to characterize the algorithms 875 * (ie, init_voltage_step). 876 */ 877 fdata->min_uV = roundup(fdata->min_uV, step_volt); 878 fdata->max_uV = roundup(fdata->max_uV, step_volt); 879 880 /* Populate uV */ 881 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage, 882 step_volt, drv); 883 if (uV < 0) 884 return uV; 885 886 fuse->min_uV = fdata->min_uV; 887 fuse->max_uV = fdata->max_uV; 888 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV); 889 890 if (fuse == end) { 891 /* 892 * Allow the highest fuse corner's PVS voltage to 893 * define the ceiling voltage for that corner in order 894 * to support SoC's in which variable ceiling values 895 * are required. 896 */ 897 end->max_uV = max(end->max_uV, end->uV); 898 } 899 900 /* Populate target quotient by scaling */ 901 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot); 902 if (ret) 903 return ret; 904 905 fuse->quot *= fdata->quot_scale; 906 fuse->quot += fdata->quot_offset; 907 fuse->quot += fdata->quot_adjust; 908 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx]; 909 910 /* Populate acc settings */ 911 fuse->accs = accs; 912 fuse->num_accs = acc_desc->num_regs_per_fuse; 913 accs += acc_desc->num_regs_per_fuse; 914 } 915 916 /* 917 * Restrict all fuse corner PVS voltages based upon per corner 918 * ceiling and floor voltages. 919 */ 920 for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) { 921 if (fuse->uV > fuse->max_uV) 922 fuse->uV = fuse->max_uV; 923 else if (fuse->uV < fuse->min_uV) 924 fuse->uV = fuse->min_uV; 925 926 ret = regulator_is_supported_voltage(drv->vdd_apc, 927 fuse->min_uV, 928 fuse->min_uV); 929 if (!ret) { 930 dev_err(drv->dev, 931 "min uV: %d (fuse corner: %d) not supported by regulator\n", 932 fuse->min_uV, i); 933 return -EINVAL; 934 } 935 936 ret = regulator_is_supported_voltage(drv->vdd_apc, 937 fuse->max_uV, 938 fuse->max_uV); 939 if (!ret) { 940 dev_err(drv->dev, 941 "max uV: %d (fuse corner: %d) not supported by regulator\n", 942 fuse->max_uV, i); 943 return -EINVAL; 944 } 945 946 dev_dbg(drv->dev, 947 "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n", 948 i, fuse->min_uV, fuse->uV, fuse->max_uV, 949 fuse->ring_osc_idx, fuse->quot, fuse->step_quot); 950 } 951 952 return 0; 953 } 954 955 static int cpr_calculate_scaling(const char *quot_offset, 956 struct cpr_drv *drv, 957 const struct fuse_corner_data *fdata, 958 const struct corner *corner) 959 { 960 u32 quot_diff = 0; 961 unsigned long freq_diff; 962 int scaling; 963 const struct fuse_corner *fuse, *prev_fuse; 964 int ret; 965 966 fuse = corner->fuse_corner; 967 prev_fuse = fuse - 1; 968 969 if (quot_offset) { 970 ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, "_diff); 971 if (ret) 972 return ret; 973 974 quot_diff *= fdata->quot_offset_scale; 975 quot_diff += fdata->quot_offset_adjust; 976 } else { 977 quot_diff = fuse->quot - prev_fuse->quot; 978 } 979 980 freq_diff = fuse->max_freq - prev_fuse->max_freq; 981 freq_diff /= 1000000; /* Convert to MHz */ 982 scaling = 1000 * quot_diff / freq_diff; 983 return min(scaling, fdata->max_quot_scale); 984 } 985 986 static int cpr_interpolate(const struct corner *corner, int step_volt, 987 const struct fuse_corner_data *fdata) 988 { 989 unsigned long f_high, f_low, f_diff; 990 int uV_high, uV_low, uV; 991 u64 temp, temp_limit; 992 const struct fuse_corner *fuse, *prev_fuse; 993 994 fuse = corner->fuse_corner; 995 prev_fuse = fuse - 1; 996 997 f_high = fuse->max_freq; 998 f_low = prev_fuse->max_freq; 999 uV_high = fuse->uV; 1000 uV_low = prev_fuse->uV; 1001 f_diff = fuse->max_freq - corner->freq; 1002 1003 /* 1004 * Don't interpolate in the wrong direction. This could happen 1005 * if the adjusted fuse voltage overlaps with the previous fuse's 1006 * adjusted voltage. 1007 */ 1008 if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq) 1009 return corner->uV; 1010 1011 temp = f_diff * (uV_high - uV_low); 1012 temp = div64_ul(temp, f_high - f_low); 1013 1014 /* 1015 * max_volt_scale has units of uV/MHz while freq values 1016 * have units of Hz. Divide by 1000000 to convert to. 1017 */ 1018 temp_limit = f_diff * fdata->max_volt_scale; 1019 do_div(temp_limit, 1000000); 1020 1021 uV = uV_high - min(temp, temp_limit); 1022 return roundup(uV, step_volt); 1023 } 1024 1025 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp) 1026 { 1027 struct device_node *np; 1028 unsigned int fuse_corner = 0; 1029 1030 np = dev_pm_opp_get_of_node(opp); 1031 if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner)) 1032 pr_err("%s: missing 'qcom,opp-fuse-level' property\n", 1033 __func__); 1034 1035 of_node_put(np); 1036 1037 return fuse_corner; 1038 } 1039 1040 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref, 1041 struct device *cpu_dev) 1042 { 1043 u64 rate = 0; 1044 struct device_node *ref_np; 1045 struct device_node *desc_np; 1046 struct device_node *child_np = NULL; 1047 struct device_node *child_req_np = NULL; 1048 1049 desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1050 if (!desc_np) 1051 return 0; 1052 1053 ref_np = dev_pm_opp_get_of_node(ref); 1054 if (!ref_np) 1055 goto out_ref; 1056 1057 do { 1058 of_node_put(child_req_np); 1059 child_np = of_get_next_available_child(desc_np, child_np); 1060 child_req_np = of_parse_phandle(child_np, "required-opps", 0); 1061 } while (child_np && child_req_np != ref_np); 1062 1063 if (child_np && child_req_np == ref_np) 1064 of_property_read_u64(child_np, "opp-hz", &rate); 1065 1066 of_node_put(child_req_np); 1067 of_node_put(child_np); 1068 of_node_put(ref_np); 1069 out_ref: 1070 of_node_put(desc_np); 1071 1072 return (unsigned long) rate; 1073 } 1074 1075 static int cpr_corner_init(struct cpr_drv *drv) 1076 { 1077 const struct cpr_desc *desc = drv->desc; 1078 const struct cpr_fuse *fuses = drv->cpr_fuses; 1079 int i, level, scaling = 0; 1080 unsigned int fnum, fc; 1081 const char *quot_offset; 1082 struct fuse_corner *fuse, *prev_fuse; 1083 struct corner *corner, *end; 1084 struct corner_data *cdata; 1085 const struct fuse_corner_data *fdata; 1086 bool apply_scaling; 1087 unsigned long freq_diff, freq_diff_mhz; 1088 unsigned long freq; 1089 int step_volt = regulator_get_linear_step(drv->vdd_apc); 1090 struct dev_pm_opp *opp; 1091 1092 if (!step_volt) 1093 return -EINVAL; 1094 1095 corner = drv->corners; 1096 end = &corner[drv->num_corners - 1]; 1097 1098 cdata = devm_kcalloc(drv->dev, drv->num_corners, 1099 sizeof(struct corner_data), 1100 GFP_KERNEL); 1101 if (!cdata) 1102 return -ENOMEM; 1103 1104 /* 1105 * Store maximum frequency for each fuse corner based on the frequency 1106 * plan 1107 */ 1108 for (level = 1; level <= drv->num_corners; level++) { 1109 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level); 1110 if (IS_ERR(opp)) 1111 return -EINVAL; 1112 fc = cpr_get_fuse_corner(opp); 1113 if (!fc) { 1114 dev_pm_opp_put(opp); 1115 return -EINVAL; 1116 } 1117 fnum = fc - 1; 1118 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev); 1119 if (!freq) { 1120 dev_pm_opp_put(opp); 1121 return -EINVAL; 1122 } 1123 cdata[level - 1].fuse_corner = fnum; 1124 cdata[level - 1].freq = freq; 1125 1126 fuse = &drv->fuse_corners[fnum]; 1127 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n", 1128 freq, dev_pm_opp_get_level(opp) - 1, fnum); 1129 if (freq > fuse->max_freq) 1130 fuse->max_freq = freq; 1131 dev_pm_opp_put(opp); 1132 } 1133 1134 /* 1135 * Get the quotient adjustment scaling factor, according to: 1136 * 1137 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) 1138 * / (freq(corner_N) - freq(corner_N-1)), max_factor) 1139 * 1140 * QUOT(corner_N): quotient read from fuse for fuse corner N 1141 * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) 1142 * freq(corner_N): max frequency in MHz supported by fuse corner N 1143 * freq(corner_N-1): max frequency in MHz supported by fuse corner 1144 * (N - 1) 1145 * 1146 * Then walk through the corners mapped to each fuse corner 1147 * and calculate the quotient adjustment for each one using the 1148 * following formula: 1149 * 1150 * quot_adjust = (freq_max - freq_corner) * scaling / 1000 1151 * 1152 * freq_max: max frequency in MHz supported by the fuse corner 1153 * freq_corner: frequency in MHz corresponding to the corner 1154 * scaling: calculated from above equation 1155 * 1156 * 1157 * + + 1158 * | v | 1159 * q | f c o | f c 1160 * u | c l | c 1161 * o | f t | f 1162 * t | c a | c 1163 * | c f g | c f 1164 * | e | 1165 * +--------------- +---------------- 1166 * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 1167 * corner corner 1168 * 1169 * c = corner 1170 * f = fuse corner 1171 * 1172 */ 1173 for (apply_scaling = false, i = 0; corner <= end; corner++, i++) { 1174 fnum = cdata[i].fuse_corner; 1175 fdata = &desc->cpr_fuses.fuse_corner_data[fnum]; 1176 quot_offset = fuses[fnum].quotient_offset; 1177 fuse = &drv->fuse_corners[fnum]; 1178 if (fnum) 1179 prev_fuse = &drv->fuse_corners[fnum - 1]; 1180 else 1181 prev_fuse = NULL; 1182 1183 corner->fuse_corner = fuse; 1184 corner->freq = cdata[i].freq; 1185 corner->uV = fuse->uV; 1186 1187 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) { 1188 scaling = cpr_calculate_scaling(quot_offset, drv, 1189 fdata, corner); 1190 if (scaling < 0) 1191 return scaling; 1192 1193 apply_scaling = true; 1194 } else if (corner->freq == fuse->max_freq) { 1195 /* This is a fuse corner; don't scale anything */ 1196 apply_scaling = false; 1197 } 1198 1199 if (apply_scaling) { 1200 freq_diff = fuse->max_freq - corner->freq; 1201 freq_diff_mhz = freq_diff / 1000000; 1202 corner->quot_adjust = scaling * freq_diff_mhz / 1000; 1203 1204 corner->uV = cpr_interpolate(corner, step_volt, fdata); 1205 } 1206 1207 corner->max_uV = fuse->max_uV; 1208 corner->min_uV = fuse->min_uV; 1209 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); 1210 corner->last_uV = corner->uV; 1211 1212 /* Reduce the ceiling voltage if needed */ 1213 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) 1214 corner->max_uV = corner->uV; 1215 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) 1216 corner->max_uV = max(corner->min_uV, fuse->uV); 1217 1218 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i, 1219 corner->min_uV, corner->uV, corner->max_uV, 1220 fuse->quot - corner->quot_adjust); 1221 } 1222 1223 return 0; 1224 } 1225 1226 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv) 1227 { 1228 const struct cpr_desc *desc = drv->desc; 1229 struct cpr_fuse *fuses; 1230 int i; 1231 1232 fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners, 1233 sizeof(struct cpr_fuse), 1234 GFP_KERNEL); 1235 if (!fuses) 1236 return ERR_PTR(-ENOMEM); 1237 1238 for (i = 0; i < desc->num_fuse_corners; i++) { 1239 char tbuf[32]; 1240 1241 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1); 1242 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); 1243 if (!fuses[i].ring_osc) 1244 return ERR_PTR(-ENOMEM); 1245 1246 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1); 1247 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf, 1248 GFP_KERNEL); 1249 if (!fuses[i].init_voltage) 1250 return ERR_PTR(-ENOMEM); 1251 1252 snprintf(tbuf, 32, "cpr_quotient%d", i + 1); 1253 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); 1254 if (!fuses[i].quotient) 1255 return ERR_PTR(-ENOMEM); 1256 1257 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1); 1258 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf, 1259 GFP_KERNEL); 1260 if (!fuses[i].quotient_offset) 1261 return ERR_PTR(-ENOMEM); 1262 } 1263 1264 return fuses; 1265 } 1266 1267 static void cpr_set_loop_allowed(struct cpr_drv *drv) 1268 { 1269 drv->loop_disabled = false; 1270 } 1271 1272 static int cpr_init_parameters(struct cpr_drv *drv) 1273 { 1274 const struct cpr_desc *desc = drv->desc; 1275 struct clk *clk; 1276 1277 clk = clk_get(drv->dev, "ref"); 1278 if (IS_ERR(clk)) 1279 return PTR_ERR(clk); 1280 1281 drv->ref_clk_khz = clk_get_rate(clk) / 1000; 1282 clk_put(clk); 1283 1284 if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK || 1285 desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK || 1286 desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK || 1287 desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK || 1288 desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK || 1289 desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK) 1290 return -EINVAL; 1291 1292 dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", 1293 desc->up_threshold, desc->down_threshold); 1294 1295 return 0; 1296 } 1297 1298 static int cpr_find_initial_corner(struct cpr_drv *drv) 1299 { 1300 unsigned long rate; 1301 const struct corner *end; 1302 struct corner *iter; 1303 unsigned int i = 0; 1304 1305 if (!drv->cpu_clk) { 1306 dev_err(drv->dev, "cannot get rate from NULL clk\n"); 1307 return -EINVAL; 1308 } 1309 1310 end = &drv->corners[drv->num_corners - 1]; 1311 rate = clk_get_rate(drv->cpu_clk); 1312 1313 /* 1314 * Some bootloaders set a CPU clock frequency that is not defined 1315 * in the OPP table. When running at an unlisted frequency, 1316 * cpufreq_online() will change to the OPP which has the lowest 1317 * frequency, at or above the unlisted frequency. 1318 * Since cpufreq_online() always "rounds up" in the case of an 1319 * unlisted frequency, this function always "rounds down" in case 1320 * of an unlisted frequency. That way, when cpufreq_online() 1321 * triggers the first ever call to cpr_set_performance_state(), 1322 * it will correctly determine the direction as UP. 1323 */ 1324 for (iter = drv->corners; iter <= end; iter++) { 1325 if (iter->freq > rate) 1326 break; 1327 i++; 1328 if (iter->freq == rate) { 1329 drv->corner = iter; 1330 break; 1331 } 1332 if (iter->freq < rate) 1333 drv->corner = iter; 1334 } 1335 1336 if (!drv->corner) { 1337 dev_err(drv->dev, "boot up corner not found\n"); 1338 return -EINVAL; 1339 } 1340 1341 dev_dbg(drv->dev, "boot up perf state: %u\n", i); 1342 1343 return 0; 1344 } 1345 1346 static const struct cpr_desc qcs404_cpr_desc = { 1347 .num_fuse_corners = 3, 1348 .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF, 1349 .step_quot = (int []){ 25, 25, 25, }, 1350 .timer_delay_us = 5000, 1351 .timer_cons_up = 0, 1352 .timer_cons_down = 2, 1353 .up_threshold = 1, 1354 .down_threshold = 3, 1355 .idle_clocks = 15, 1356 .gcnt_us = 1, 1357 .vdd_apc_step_up_limit = 1, 1358 .vdd_apc_step_down_limit = 1, 1359 .cpr_fuses = { 1360 .init_voltage_step = 8000, 1361 .init_voltage_width = 6, 1362 .fuse_corner_data = (struct fuse_corner_data[]){ 1363 /* fuse corner 0 */ 1364 { 1365 .ref_uV = 1224000, 1366 .max_uV = 1224000, 1367 .min_uV = 1048000, 1368 .max_volt_scale = 0, 1369 .max_quot_scale = 0, 1370 .quot_offset = 0, 1371 .quot_scale = 1, 1372 .quot_adjust = 0, 1373 .quot_offset_scale = 5, 1374 .quot_offset_adjust = 0, 1375 }, 1376 /* fuse corner 1 */ 1377 { 1378 .ref_uV = 1288000, 1379 .max_uV = 1288000, 1380 .min_uV = 1048000, 1381 .max_volt_scale = 2000, 1382 .max_quot_scale = 1400, 1383 .quot_offset = 0, 1384 .quot_scale = 1, 1385 .quot_adjust = -20, 1386 .quot_offset_scale = 5, 1387 .quot_offset_adjust = 0, 1388 }, 1389 /* fuse corner 2 */ 1390 { 1391 .ref_uV = 1352000, 1392 .max_uV = 1384000, 1393 .min_uV = 1088000, 1394 .max_volt_scale = 2000, 1395 .max_quot_scale = 1400, 1396 .quot_offset = 0, 1397 .quot_scale = 1, 1398 .quot_adjust = 0, 1399 .quot_offset_scale = 5, 1400 .quot_offset_adjust = 0, 1401 }, 1402 }, 1403 }, 1404 }; 1405 1406 static const struct acc_desc qcs404_acc_desc = { 1407 .settings = (struct reg_sequence[]){ 1408 { 0xb120, 0x1041040 }, 1409 { 0xb124, 0x41 }, 1410 { 0xb120, 0x0 }, 1411 { 0xb124, 0x0 }, 1412 { 0xb120, 0x0 }, 1413 { 0xb124, 0x0 }, 1414 }, 1415 .config = (struct reg_sequence[]){ 1416 { 0xb138, 0xff }, 1417 { 0xb130, 0x5555 }, 1418 }, 1419 .num_regs_per_fuse = 2, 1420 }; 1421 1422 static const struct cpr_acc_desc qcs404_cpr_acc_desc = { 1423 .cpr_desc = &qcs404_cpr_desc, 1424 .acc_desc = &qcs404_acc_desc, 1425 }; 1426 1427 static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd, 1428 struct dev_pm_opp *opp) 1429 { 1430 return dev_pm_opp_get_level(opp); 1431 } 1432 1433 static int cpr_power_off(struct generic_pm_domain *domain) 1434 { 1435 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); 1436 1437 return cpr_disable(drv); 1438 } 1439 1440 static int cpr_power_on(struct generic_pm_domain *domain) 1441 { 1442 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); 1443 1444 return cpr_enable(drv); 1445 } 1446 1447 static int cpr_pd_attach_dev(struct generic_pm_domain *domain, 1448 struct device *dev) 1449 { 1450 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); 1451 const struct acc_desc *acc_desc = drv->acc_desc; 1452 int ret = 0; 1453 1454 mutex_lock(&drv->lock); 1455 1456 dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); 1457 1458 /* 1459 * This driver only supports scaling voltage for a CPU cluster 1460 * where all CPUs in the cluster share a single regulator. 1461 * Therefore, save the struct device pointer only for the first 1462 * CPU device that gets attached. There is no need to do any 1463 * additional initialization when further CPUs get attached. 1464 */ 1465 if (drv->attached_cpu_dev) 1466 goto unlock; 1467 1468 /* 1469 * cpr_scale_voltage() requires the direction (if we are changing 1470 * to a higher or lower OPP). The first time 1471 * cpr_set_performance_state() is called, there is no previous 1472 * performance state defined. Therefore, we call 1473 * cpr_find_initial_corner() that gets the CPU clock frequency 1474 * set by the bootloader, so that we can determine the direction 1475 * the first time cpr_set_performance_state() is called. 1476 */ 1477 drv->cpu_clk = devm_clk_get(dev, NULL); 1478 if (IS_ERR(drv->cpu_clk)) { 1479 ret = PTR_ERR(drv->cpu_clk); 1480 if (ret != -EPROBE_DEFER) 1481 dev_err(drv->dev, "could not get cpu clk: %d\n", ret); 1482 goto unlock; 1483 } 1484 drv->attached_cpu_dev = dev; 1485 1486 dev_dbg(drv->dev, "using cpu clk from: %s\n", 1487 dev_name(drv->attached_cpu_dev)); 1488 1489 /* 1490 * Everything related to (virtual) corners has to be initialized 1491 * here, when attaching to the power domain, since we need to know 1492 * the maximum frequency for each fuse corner, and this is only 1493 * available after the cpufreq driver has attached to us. 1494 * The reason for this is that we need to know the highest 1495 * frequency associated with each fuse corner. 1496 */ 1497 ret = dev_pm_opp_get_opp_count(&drv->pd.dev); 1498 if (ret < 0) { 1499 dev_err(drv->dev, "could not get OPP count\n"); 1500 goto unlock; 1501 } 1502 drv->num_corners = ret; 1503 1504 if (drv->num_corners < 2) { 1505 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); 1506 ret = -EINVAL; 1507 goto unlock; 1508 } 1509 1510 drv->corners = devm_kcalloc(drv->dev, drv->num_corners, 1511 sizeof(*drv->corners), 1512 GFP_KERNEL); 1513 if (!drv->corners) { 1514 ret = -ENOMEM; 1515 goto unlock; 1516 } 1517 1518 ret = cpr_corner_init(drv); 1519 if (ret) 1520 goto unlock; 1521 1522 cpr_set_loop_allowed(drv); 1523 1524 ret = cpr_init_parameters(drv); 1525 if (ret) 1526 goto unlock; 1527 1528 /* Configure CPR HW but keep it disabled */ 1529 ret = cpr_config(drv); 1530 if (ret) 1531 goto unlock; 1532 1533 ret = cpr_find_initial_corner(drv); 1534 if (ret) 1535 goto unlock; 1536 1537 if (acc_desc->config) 1538 regmap_multi_reg_write(drv->tcsr, acc_desc->config, 1539 acc_desc->num_regs_per_fuse); 1540 1541 /* Enable ACC if required */ 1542 if (acc_desc->enable_mask) 1543 regmap_update_bits(drv->tcsr, acc_desc->enable_reg, 1544 acc_desc->enable_mask, 1545 acc_desc->enable_mask); 1546 1547 dev_info(drv->dev, "driver initialized with %u OPPs\n", 1548 drv->num_corners); 1549 1550 unlock: 1551 mutex_unlock(&drv->lock); 1552 1553 return ret; 1554 } 1555 1556 static int cpr_debug_info_show(struct seq_file *s, void *unused) 1557 { 1558 u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps; 1559 u32 step_dn, step_up, error, error_lt0, busy; 1560 struct cpr_drv *drv = s->private; 1561 struct fuse_corner *fuse_corner; 1562 struct corner *corner; 1563 1564 corner = drv->corner; 1565 fuse_corner = corner->fuse_corner; 1566 1567 seq_printf(s, "corner, current_volt = %d uV\n", 1568 corner->last_uV); 1569 1570 ro_sel = fuse_corner->ring_osc_idx; 1571 gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel)); 1572 seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt); 1573 1574 ctl = cpr_read(drv, REG_RBCPR_CTL); 1575 seq_printf(s, "rbcpr_ctl = %#02X\n", ctl); 1576 1577 irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS); 1578 seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status); 1579 1580 reg = cpr_read(drv, REG_RBCPR_RESULT_0); 1581 seq_printf(s, "rbcpr_result_0 = %#02X\n", reg); 1582 1583 step_dn = reg & 0x01; 1584 step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01; 1585 seq_printf(s, " [step_dn = %u", step_dn); 1586 1587 seq_printf(s, ", step_up = %u", step_up); 1588 1589 error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT) 1590 & RBCPR_RESULT0_ERROR_STEPS_MASK; 1591 seq_printf(s, ", error_steps = %u", error_steps); 1592 1593 error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK; 1594 seq_printf(s, ", error = %u", error); 1595 1596 error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01; 1597 seq_printf(s, ", error_lt_0 = %u", error_lt0); 1598 1599 busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01; 1600 seq_printf(s, ", busy = %u]\n", busy); 1601 1602 return 0; 1603 } 1604 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info); 1605 1606 static void cpr_debugfs_init(struct cpr_drv *drv) 1607 { 1608 drv->debugfs = debugfs_create_dir("qcom_cpr", NULL); 1609 1610 debugfs_create_file("debug_info", 0444, drv->debugfs, 1611 drv, &cpr_debug_info_fops); 1612 } 1613 1614 static int cpr_probe(struct platform_device *pdev) 1615 { 1616 struct device *dev = &pdev->dev; 1617 struct cpr_drv *drv; 1618 int irq, ret; 1619 const struct cpr_acc_desc *data; 1620 struct device_node *np; 1621 u32 cpr_rev = FUSE_REVISION_UNKNOWN; 1622 1623 data = of_device_get_match_data(dev); 1624 if (!data || !data->cpr_desc || !data->acc_desc) 1625 return -EINVAL; 1626 1627 drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); 1628 if (!drv) 1629 return -ENOMEM; 1630 drv->dev = dev; 1631 drv->desc = data->cpr_desc; 1632 drv->acc_desc = data->acc_desc; 1633 1634 drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners, 1635 sizeof(*drv->fuse_corners), 1636 GFP_KERNEL); 1637 if (!drv->fuse_corners) 1638 return -ENOMEM; 1639 1640 np = of_parse_phandle(dev->of_node, "acc-syscon", 0); 1641 if (!np) 1642 return -ENODEV; 1643 1644 drv->tcsr = syscon_node_to_regmap(np); 1645 of_node_put(np); 1646 if (IS_ERR(drv->tcsr)) 1647 return PTR_ERR(drv->tcsr); 1648 1649 drv->base = devm_platform_ioremap_resource(pdev, 0); 1650 if (IS_ERR(drv->base)) 1651 return PTR_ERR(drv->base); 1652 1653 irq = platform_get_irq(pdev, 0); 1654 if (irq < 0) 1655 return -EINVAL; 1656 1657 drv->vdd_apc = devm_regulator_get(dev, "vdd-apc"); 1658 if (IS_ERR(drv->vdd_apc)) 1659 return PTR_ERR(drv->vdd_apc); 1660 1661 /* 1662 * Initialize fuse corners, since it simply depends 1663 * on data in efuses. 1664 * Everything related to (virtual) corners has to be 1665 * initialized after attaching to the power domain, 1666 * since it depends on the CPU's OPP table. 1667 */ 1668 ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev); 1669 if (ret) 1670 return ret; 1671 1672 drv->cpr_fuses = cpr_get_fuses(drv); 1673 if (IS_ERR(drv->cpr_fuses)) 1674 return PTR_ERR(drv->cpr_fuses); 1675 1676 ret = cpr_populate_ring_osc_idx(drv); 1677 if (ret) 1678 return ret; 1679 1680 ret = cpr_fuse_corner_init(drv); 1681 if (ret) 1682 return ret; 1683 1684 mutex_init(&drv->lock); 1685 1686 ret = devm_request_threaded_irq(dev, irq, NULL, 1687 cpr_irq_handler, 1688 IRQF_ONESHOT | IRQF_TRIGGER_RISING, 1689 "cpr", drv); 1690 if (ret) 1691 return ret; 1692 1693 drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name, 1694 GFP_KERNEL); 1695 if (!drv->pd.name) 1696 return -EINVAL; 1697 1698 drv->pd.power_off = cpr_power_off; 1699 drv->pd.power_on = cpr_power_on; 1700 drv->pd.set_performance_state = cpr_set_performance_state; 1701 drv->pd.opp_to_performance_state = cpr_get_performance_state; 1702 drv->pd.attach_dev = cpr_pd_attach_dev; 1703 1704 ret = pm_genpd_init(&drv->pd, NULL, true); 1705 if (ret) 1706 return ret; 1707 1708 ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd); 1709 if (ret) 1710 goto err_remove_genpd; 1711 1712 platform_set_drvdata(pdev, drv); 1713 cpr_debugfs_init(drv); 1714 1715 return 0; 1716 1717 err_remove_genpd: 1718 pm_genpd_remove(&drv->pd); 1719 return ret; 1720 } 1721 1722 static int cpr_remove(struct platform_device *pdev) 1723 { 1724 struct cpr_drv *drv = platform_get_drvdata(pdev); 1725 1726 if (cpr_is_allowed(drv)) { 1727 cpr_ctl_disable(drv); 1728 cpr_irq_set(drv, 0); 1729 } 1730 1731 of_genpd_del_provider(pdev->dev.of_node); 1732 pm_genpd_remove(&drv->pd); 1733 1734 debugfs_remove_recursive(drv->debugfs); 1735 1736 return 0; 1737 } 1738 1739 static const struct of_device_id cpr_match_table[] = { 1740 { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc }, 1741 { } 1742 }; 1743 MODULE_DEVICE_TABLE(of, cpr_match_table); 1744 1745 static struct platform_driver cpr_driver = { 1746 .probe = cpr_probe, 1747 .remove = cpr_remove, 1748 .driver = { 1749 .name = "qcom-cpr", 1750 .of_match_table = cpr_match_table, 1751 }, 1752 }; 1753 module_platform_driver(cpr_driver); 1754 1755 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver"); 1756 MODULE_LICENSE("GPL v2"); 1757