1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, Linaro Limited
5 */
6
7 #include <linux/module.h>
8 #include <linux/err.h>
9 #include <linux/debugfs.h>
10 #include <linux/string.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_domain.h>
20 #include <linux/pm_opp.h>
21 #include <linux/interrupt.h>
22 #include <linux/regmap.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/clk.h>
26 #include <linux/nvmem-consumer.h>
27
28 /* Register Offsets for RB-CPR and Bit Definitions */
29
30 /* RBCPR Version Register */
31 #define REG_RBCPR_VERSION 0
32 #define RBCPR_VER_2 0x02
33 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
34
35 /* RBCPR Gate Count and Target Registers */
36 #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
37
38 #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
39 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
40 #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
41 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
42
43 /* RBCPR Timer Control */
44 #define REG_RBCPR_TIMER_INTERVAL 0x44
45 #define REG_RBIF_TIMER_ADJUST 0x4c
46
47 #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
48 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
49 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
50 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
51 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
52 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
53
54 /* RBCPR Config Register */
55 #define REG_RBIF_LIMIT 0x48
56 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
57 #define RBIF_LIMIT_CEILING_SHIFT 6
58 #define RBIF_LIMIT_FLOOR_BITS 6
59 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
60
61 #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
62 #define RBIF_LIMIT_FLOOR_DEFAULT 0
63
64 #define REG_RBIF_SW_VLEVEL 0x94
65 #define RBIF_SW_VLEVEL_DEFAULT 0x20
66
67 #define REG_RBCPR_STEP_QUOT 0x80
68 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
69 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
71
72 /* RBCPR Control Register */
73 #define REG_RBCPR_CTL 0x90
74
75 #define RBCPR_CTL_LOOP_EN BIT(0)
76 #define RBCPR_CTL_TIMER_EN BIT(3)
77 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
78 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
79 #define RBCPR_CTL_COUNT_MODE BIT(10)
80 #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
81 #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
82 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
83 #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
84
85 /* RBCPR Ack/Nack Response */
86 #define REG_RBIF_CONT_ACK_CMD 0x98
87 #define REG_RBIF_CONT_NACK_CMD 0x9c
88
89 /* RBCPR Result status Register */
90 #define REG_RBCPR_RESULT_0 0xa0
91
92 #define RBCPR_RESULT0_BUSY_SHIFT 19
93 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
94 #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
95 #define RBCPR_RESULT0_ERROR_SHIFT 6
96 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
97 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
98 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
99 #define RBCPR_RESULT0_STEP_UP_SHIFT 1
100
101 /* RBCPR Interrupt Control Register */
102 #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
103 #define REG_RBIF_IRQ_CLEAR 0x110
104 #define REG_RBIF_IRQ_STATUS 0x114
105
106 #define CPR_INT_DONE BIT(0)
107 #define CPR_INT_MIN BIT(1)
108 #define CPR_INT_DOWN BIT(2)
109 #define CPR_INT_MID BIT(3)
110 #define CPR_INT_UP BIT(4)
111 #define CPR_INT_MAX BIT(5)
112 #define CPR_INT_CLAMP BIT(6)
113 #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
114 CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
115 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
116
117 #define CPR_NUM_RING_OSC 8
118
119 /* CPR eFuse parameters */
120 #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
121
122 #define CPR_FUSE_MIN_QUOT_DIFF 50
123
124 #define FUSE_REVISION_UNKNOWN (-1)
125
126 enum voltage_change_dir {
127 NO_CHANGE,
128 DOWN,
129 UP,
130 };
131
132 struct cpr_fuse {
133 char *ring_osc;
134 char *init_voltage;
135 char *quotient;
136 char *quotient_offset;
137 };
138
139 struct fuse_corner_data {
140 int ref_uV;
141 int max_uV;
142 int min_uV;
143 int max_volt_scale;
144 int max_quot_scale;
145 /* fuse quot */
146 int quot_offset;
147 int quot_scale;
148 int quot_adjust;
149 /* fuse quot_offset */
150 int quot_offset_scale;
151 int quot_offset_adjust;
152 };
153
154 struct cpr_fuses {
155 int init_voltage_step;
156 int init_voltage_width;
157 struct fuse_corner_data *fuse_corner_data;
158 };
159
160 struct corner_data {
161 unsigned int fuse_corner;
162 unsigned long freq;
163 };
164
165 struct cpr_desc {
166 unsigned int num_fuse_corners;
167 int min_diff_quot;
168 int *step_quot;
169
170 unsigned int timer_delay_us;
171 unsigned int timer_cons_up;
172 unsigned int timer_cons_down;
173 unsigned int up_threshold;
174 unsigned int down_threshold;
175 unsigned int idle_clocks;
176 unsigned int gcnt_us;
177 unsigned int vdd_apc_step_up_limit;
178 unsigned int vdd_apc_step_down_limit;
179 unsigned int clamp_timer_interval;
180
181 struct cpr_fuses cpr_fuses;
182 bool reduce_to_fuse_uV;
183 bool reduce_to_corner_uV;
184 };
185
186 struct acc_desc {
187 unsigned int enable_reg;
188 u32 enable_mask;
189
190 struct reg_sequence *config;
191 struct reg_sequence *settings;
192 int num_regs_per_fuse;
193 };
194
195 struct cpr_acc_desc {
196 const struct cpr_desc *cpr_desc;
197 const struct acc_desc *acc_desc;
198 };
199
200 struct fuse_corner {
201 int min_uV;
202 int max_uV;
203 int uV;
204 int quot;
205 int step_quot;
206 const struct reg_sequence *accs;
207 int num_accs;
208 unsigned long max_freq;
209 u8 ring_osc_idx;
210 };
211
212 struct corner {
213 int min_uV;
214 int max_uV;
215 int uV;
216 int last_uV;
217 int quot_adjust;
218 u32 save_ctl;
219 u32 save_irq;
220 unsigned long freq;
221 struct fuse_corner *fuse_corner;
222 };
223
224 struct cpr_drv {
225 unsigned int num_corners;
226 unsigned int ref_clk_khz;
227
228 struct generic_pm_domain pd;
229 struct device *dev;
230 struct device *attached_cpu_dev;
231 struct mutex lock;
232 void __iomem *base;
233 struct corner *corner;
234 struct regulator *vdd_apc;
235 struct clk *cpu_clk;
236 struct regmap *tcsr;
237 bool loop_disabled;
238 u32 gcnt;
239 unsigned long flags;
240
241 struct fuse_corner *fuse_corners;
242 struct corner *corners;
243
244 const struct cpr_desc *desc;
245 const struct acc_desc *acc_desc;
246 const struct cpr_fuse *cpr_fuses;
247
248 struct dentry *debugfs;
249 };
250
cpr_is_allowed(struct cpr_drv * drv)251 static bool cpr_is_allowed(struct cpr_drv *drv)
252 {
253 return !drv->loop_disabled;
254 }
255
cpr_write(struct cpr_drv * drv,u32 offset,u32 value)256 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
257 {
258 writel_relaxed(value, drv->base + offset);
259 }
260
cpr_read(struct cpr_drv * drv,u32 offset)261 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
262 {
263 return readl_relaxed(drv->base + offset);
264 }
265
266 static void
cpr_masked_write(struct cpr_drv * drv,u32 offset,u32 mask,u32 value)267 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
268 {
269 u32 val;
270
271 val = readl_relaxed(drv->base + offset);
272 val &= ~mask;
273 val |= value & mask;
274 writel_relaxed(val, drv->base + offset);
275 }
276
cpr_irq_clr(struct cpr_drv * drv)277 static void cpr_irq_clr(struct cpr_drv *drv)
278 {
279 cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
280 }
281
cpr_irq_clr_nack(struct cpr_drv * drv)282 static void cpr_irq_clr_nack(struct cpr_drv *drv)
283 {
284 cpr_irq_clr(drv);
285 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
286 }
287
cpr_irq_clr_ack(struct cpr_drv * drv)288 static void cpr_irq_clr_ack(struct cpr_drv *drv)
289 {
290 cpr_irq_clr(drv);
291 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
292 }
293
cpr_irq_set(struct cpr_drv * drv,u32 int_bits)294 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
295 {
296 cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
297 }
298
cpr_ctl_modify(struct cpr_drv * drv,u32 mask,u32 value)299 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
300 {
301 cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
302 }
303
cpr_ctl_enable(struct cpr_drv * drv,struct corner * corner)304 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
305 {
306 u32 val, mask;
307 const struct cpr_desc *desc = drv->desc;
308
309 /* Program Consecutive Up & Down */
310 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
311 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
312 mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
313 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
314 cpr_masked_write(drv, REG_RBCPR_CTL,
315 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
316 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
317 corner->save_ctl);
318 cpr_irq_set(drv, corner->save_irq);
319
320 if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
321 val = RBCPR_CTL_LOOP_EN;
322 else
323 val = 0;
324 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
325 }
326
cpr_ctl_disable(struct cpr_drv * drv)327 static void cpr_ctl_disable(struct cpr_drv *drv)
328 {
329 cpr_irq_set(drv, 0);
330 cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
331 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
332 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
333 RBIF_TIMER_ADJ_CONS_UP_MASK |
334 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
335 cpr_irq_clr(drv);
336 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
337 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
338 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
339 }
340
cpr_ctl_is_enabled(struct cpr_drv * drv)341 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
342 {
343 u32 reg_val;
344
345 reg_val = cpr_read(drv, REG_RBCPR_CTL);
346 return reg_val & RBCPR_CTL_LOOP_EN;
347 }
348
cpr_ctl_is_busy(struct cpr_drv * drv)349 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
350 {
351 u32 reg_val;
352
353 reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
354 return reg_val & RBCPR_RESULT0_BUSY_MASK;
355 }
356
cpr_corner_save(struct cpr_drv * drv,struct corner * corner)357 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
358 {
359 corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
360 corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
361 }
362
cpr_corner_restore(struct cpr_drv * drv,struct corner * corner)363 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
364 {
365 u32 gcnt, ctl, irq, ro_sel, step_quot;
366 struct fuse_corner *fuse = corner->fuse_corner;
367 const struct cpr_desc *desc = drv->desc;
368 int i;
369
370 ro_sel = fuse->ring_osc_idx;
371 gcnt = drv->gcnt;
372 gcnt |= fuse->quot - corner->quot_adjust;
373
374 /* Program the step quotient and idle clocks */
375 step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
376 step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
377 cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
378
379 /* Clear the target quotient value and gate count of all ROs */
380 for (i = 0; i < CPR_NUM_RING_OSC; i++)
381 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
382
383 cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
384 ctl = corner->save_ctl;
385 cpr_write(drv, REG_RBCPR_CTL, ctl);
386 irq = corner->save_irq;
387 cpr_irq_set(drv, irq);
388 dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
389 ctl, irq);
390 }
391
cpr_set_acc(struct regmap * tcsr,struct fuse_corner * f,struct fuse_corner * end)392 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
393 struct fuse_corner *end)
394 {
395 if (f == end)
396 return;
397
398 if (f < end) {
399 for (f += 1; f <= end; f++)
400 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
401 } else {
402 for (f -= 1; f >= end; f--)
403 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
404 }
405 }
406
cpr_pre_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)407 static int cpr_pre_voltage(struct cpr_drv *drv,
408 struct fuse_corner *fuse_corner,
409 enum voltage_change_dir dir)
410 {
411 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
412
413 if (drv->tcsr && dir == DOWN)
414 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
415
416 return 0;
417 }
418
cpr_post_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)419 static int cpr_post_voltage(struct cpr_drv *drv,
420 struct fuse_corner *fuse_corner,
421 enum voltage_change_dir dir)
422 {
423 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
424
425 if (drv->tcsr && dir == UP)
426 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
427
428 return 0;
429 }
430
cpr_scale_voltage(struct cpr_drv * drv,struct corner * corner,int new_uV,enum voltage_change_dir dir)431 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
432 int new_uV, enum voltage_change_dir dir)
433 {
434 int ret;
435 struct fuse_corner *fuse_corner = corner->fuse_corner;
436
437 ret = cpr_pre_voltage(drv, fuse_corner, dir);
438 if (ret)
439 return ret;
440
441 ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
442 if (ret) {
443 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
444 new_uV);
445 return ret;
446 }
447
448 ret = cpr_post_voltage(drv, fuse_corner, dir);
449 if (ret)
450 return ret;
451
452 return 0;
453 }
454
cpr_get_cur_perf_state(struct cpr_drv * drv)455 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
456 {
457 return drv->corner ? drv->corner - drv->corners + 1 : 0;
458 }
459
cpr_scale(struct cpr_drv * drv,enum voltage_change_dir dir)460 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
461 {
462 u32 val, error_steps, reg_mask;
463 int last_uV, new_uV, step_uV, ret;
464 struct corner *corner;
465 const struct cpr_desc *desc = drv->desc;
466
467 if (dir != UP && dir != DOWN)
468 return 0;
469
470 step_uV = regulator_get_linear_step(drv->vdd_apc);
471 if (!step_uV)
472 return -EINVAL;
473
474 corner = drv->corner;
475
476 val = cpr_read(drv, REG_RBCPR_RESULT_0);
477
478 error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
479 error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
480 last_uV = corner->last_uV;
481
482 if (dir == UP) {
483 if (desc->clamp_timer_interval &&
484 error_steps < desc->up_threshold) {
485 /*
486 * Handle the case where another measurement started
487 * after the interrupt was triggered due to a core
488 * exiting from power collapse.
489 */
490 error_steps = max(desc->up_threshold,
491 desc->vdd_apc_step_up_limit);
492 }
493
494 if (last_uV >= corner->max_uV) {
495 cpr_irq_clr_nack(drv);
496
497 /* Maximize the UP threshold */
498 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
499 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
500 val = reg_mask;
501 cpr_ctl_modify(drv, reg_mask, val);
502
503 /* Disable UP interrupt */
504 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
505
506 return 0;
507 }
508
509 if (error_steps > desc->vdd_apc_step_up_limit)
510 error_steps = desc->vdd_apc_step_up_limit;
511
512 /* Calculate new voltage */
513 new_uV = last_uV + error_steps * step_uV;
514 new_uV = min(new_uV, corner->max_uV);
515
516 dev_dbg(drv->dev,
517 "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
518 new_uV, last_uV, cpr_get_cur_perf_state(drv));
519 } else {
520 if (desc->clamp_timer_interval &&
521 error_steps < desc->down_threshold) {
522 /*
523 * Handle the case where another measurement started
524 * after the interrupt was triggered due to a core
525 * exiting from power collapse.
526 */
527 error_steps = max(desc->down_threshold,
528 desc->vdd_apc_step_down_limit);
529 }
530
531 if (last_uV <= corner->min_uV) {
532 cpr_irq_clr_nack(drv);
533
534 /* Enable auto nack down */
535 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
536 val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537
538 cpr_ctl_modify(drv, reg_mask, val);
539
540 /* Disable DOWN interrupt */
541 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
542
543 return 0;
544 }
545
546 if (error_steps > desc->vdd_apc_step_down_limit)
547 error_steps = desc->vdd_apc_step_down_limit;
548
549 /* Calculate new voltage */
550 new_uV = last_uV - error_steps * step_uV;
551 new_uV = max(new_uV, corner->min_uV);
552
553 dev_dbg(drv->dev,
554 "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
555 new_uV, last_uV, cpr_get_cur_perf_state(drv));
556 }
557
558 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
559 if (ret) {
560 cpr_irq_clr_nack(drv);
561 return ret;
562 }
563 drv->corner->last_uV = new_uV;
564
565 if (dir == UP) {
566 /* Disable auto nack down */
567 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
568 val = 0;
569 } else {
570 /* Restore default threshold for UP */
571 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
572 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
573 val = desc->up_threshold;
574 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
575 }
576
577 cpr_ctl_modify(drv, reg_mask, val);
578
579 /* Re-enable default interrupts */
580 cpr_irq_set(drv, CPR_INT_DEFAULT);
581
582 /* Ack */
583 cpr_irq_clr_ack(drv);
584
585 return 0;
586 }
587
cpr_irq_handler(int irq,void * dev)588 static irqreturn_t cpr_irq_handler(int irq, void *dev)
589 {
590 struct cpr_drv *drv = dev;
591 const struct cpr_desc *desc = drv->desc;
592 irqreturn_t ret = IRQ_HANDLED;
593 u32 val;
594
595 mutex_lock(&drv->lock);
596
597 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
598 if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
599 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
600
601 dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
602
603 if (!cpr_ctl_is_enabled(drv)) {
604 dev_dbg(drv->dev, "CPR is disabled\n");
605 ret = IRQ_NONE;
606 } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
607 dev_dbg(drv->dev, "CPR measurement is not ready\n");
608 } else if (!cpr_is_allowed(drv)) {
609 val = cpr_read(drv, REG_RBCPR_CTL);
610 dev_err_ratelimited(drv->dev,
611 "Interrupt broken? RBCPR_CTL = %#02x\n",
612 val);
613 ret = IRQ_NONE;
614 } else {
615 /*
616 * Following sequence of handling is as per each IRQ's
617 * priority
618 */
619 if (val & CPR_INT_UP) {
620 cpr_scale(drv, UP);
621 } else if (val & CPR_INT_DOWN) {
622 cpr_scale(drv, DOWN);
623 } else if (val & CPR_INT_MIN) {
624 cpr_irq_clr_nack(drv);
625 } else if (val & CPR_INT_MAX) {
626 cpr_irq_clr_nack(drv);
627 } else if (val & CPR_INT_MID) {
628 /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
629 dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
630 } else {
631 dev_dbg(drv->dev,
632 "IRQ occurred for unknown flag (%#08x)\n", val);
633 }
634
635 /* Save register values for the corner */
636 cpr_corner_save(drv, drv->corner);
637 }
638
639 mutex_unlock(&drv->lock);
640
641 return ret;
642 }
643
cpr_enable(struct cpr_drv * drv)644 static int cpr_enable(struct cpr_drv *drv)
645 {
646 int ret;
647
648 ret = regulator_enable(drv->vdd_apc);
649 if (ret)
650 return ret;
651
652 mutex_lock(&drv->lock);
653
654 if (cpr_is_allowed(drv) && drv->corner) {
655 cpr_irq_clr(drv);
656 cpr_corner_restore(drv, drv->corner);
657 cpr_ctl_enable(drv, drv->corner);
658 }
659
660 mutex_unlock(&drv->lock);
661
662 return 0;
663 }
664
cpr_disable(struct cpr_drv * drv)665 static int cpr_disable(struct cpr_drv *drv)
666 {
667 mutex_lock(&drv->lock);
668
669 if (cpr_is_allowed(drv)) {
670 cpr_ctl_disable(drv);
671 cpr_irq_clr(drv);
672 }
673
674 mutex_unlock(&drv->lock);
675
676 return regulator_disable(drv->vdd_apc);
677 }
678
cpr_config(struct cpr_drv * drv)679 static int cpr_config(struct cpr_drv *drv)
680 {
681 int i;
682 u32 val, gcnt;
683 struct corner *corner;
684 const struct cpr_desc *desc = drv->desc;
685
686 /* Disable interrupt and CPR */
687 cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
688 cpr_write(drv, REG_RBCPR_CTL, 0);
689
690 /* Program the default HW ceiling, floor and vlevel */
691 val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
692 << RBIF_LIMIT_CEILING_SHIFT;
693 val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
694 cpr_write(drv, REG_RBIF_LIMIT, val);
695 cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
696
697 /*
698 * Clear the target quotient value and gate count of all
699 * ring oscillators
700 */
701 for (i = 0; i < CPR_NUM_RING_OSC; i++)
702 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
703
704 /* Init and save gcnt */
705 gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
706 gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
707 gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
708 drv->gcnt = gcnt;
709
710 /* Program the delay count for the timer */
711 val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
712 cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
713 dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
714 desc->timer_delay_us);
715
716 /* Program Consecutive Up & Down */
717 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
718 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
719 val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
720 cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
721
722 /* Program the control register */
723 val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
724 val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
725 val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
726 val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
727 cpr_write(drv, REG_RBCPR_CTL, val);
728
729 for (i = 0; i < drv->num_corners; i++) {
730 corner = &drv->corners[i];
731 corner->save_ctl = val;
732 corner->save_irq = CPR_INT_DEFAULT;
733 }
734
735 cpr_irq_set(drv, CPR_INT_DEFAULT);
736
737 val = cpr_read(drv, REG_RBCPR_VERSION);
738 if (val <= RBCPR_VER_2)
739 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
740
741 return 0;
742 }
743
cpr_set_performance_state(struct generic_pm_domain * domain,unsigned int state)744 static int cpr_set_performance_state(struct generic_pm_domain *domain,
745 unsigned int state)
746 {
747 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
748 struct corner *corner, *end;
749 enum voltage_change_dir dir;
750 int ret = 0, new_uV;
751
752 mutex_lock(&drv->lock);
753
754 dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
755 __func__, state, cpr_get_cur_perf_state(drv));
756
757 /*
758 * Determine new corner we're going to.
759 * Remove one since lowest performance state is 1.
760 */
761 corner = drv->corners + state - 1;
762 end = &drv->corners[drv->num_corners - 1];
763 if (corner > end || corner < drv->corners) {
764 ret = -EINVAL;
765 goto unlock;
766 }
767
768 /* Determine direction */
769 if (drv->corner > corner)
770 dir = DOWN;
771 else if (drv->corner < corner)
772 dir = UP;
773 else
774 dir = NO_CHANGE;
775
776 if (cpr_is_allowed(drv))
777 new_uV = corner->last_uV;
778 else
779 new_uV = corner->uV;
780
781 if (cpr_is_allowed(drv))
782 cpr_ctl_disable(drv);
783
784 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
785 if (ret)
786 goto unlock;
787
788 if (cpr_is_allowed(drv)) {
789 cpr_irq_clr(drv);
790 if (drv->corner != corner)
791 cpr_corner_restore(drv, corner);
792 cpr_ctl_enable(drv, corner);
793 }
794
795 drv->corner = corner;
796
797 unlock:
798 mutex_unlock(&drv->lock);
799
800 return ret;
801 }
802
803 static int
cpr_populate_ring_osc_idx(struct cpr_drv * drv)804 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
805 {
806 struct fuse_corner *fuse = drv->fuse_corners;
807 struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
808 const struct cpr_fuse *fuses = drv->cpr_fuses;
809 u32 data;
810 int ret;
811
812 for (; fuse < end; fuse++, fuses++) {
813 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
814 if (ret)
815 return ret;
816 fuse->ring_osc_idx = data;
817 }
818
819 return 0;
820 }
821
cpr_read_fuse_uV(const struct cpr_desc * desc,const struct fuse_corner_data * fdata,const char * init_v_efuse,int step_volt,struct cpr_drv * drv)822 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
823 const struct fuse_corner_data *fdata,
824 const char *init_v_efuse,
825 int step_volt,
826 struct cpr_drv *drv)
827 {
828 int step_size_uV, steps, uV;
829 u32 bits = 0;
830 int ret;
831
832 ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
833 if (ret)
834 return ret;
835
836 steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
837 /* Not two's complement.. instead highest bit is sign bit */
838 if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
839 steps = -steps;
840
841 step_size_uV = desc->cpr_fuses.init_voltage_step;
842
843 uV = fdata->ref_uV + steps * step_size_uV;
844 return DIV_ROUND_UP(uV, step_volt) * step_volt;
845 }
846
cpr_fuse_corner_init(struct cpr_drv * drv)847 static int cpr_fuse_corner_init(struct cpr_drv *drv)
848 {
849 const struct cpr_desc *desc = drv->desc;
850 const struct cpr_fuse *fuses = drv->cpr_fuses;
851 const struct acc_desc *acc_desc = drv->acc_desc;
852 int i;
853 unsigned int step_volt;
854 struct fuse_corner_data *fdata;
855 struct fuse_corner *fuse, *end;
856 int uV;
857 const struct reg_sequence *accs;
858 int ret;
859
860 accs = acc_desc->settings;
861
862 step_volt = regulator_get_linear_step(drv->vdd_apc);
863 if (!step_volt)
864 return -EINVAL;
865
866 /* Populate fuse_corner members */
867 fuse = drv->fuse_corners;
868 end = &fuse[desc->num_fuse_corners - 1];
869 fdata = desc->cpr_fuses.fuse_corner_data;
870
871 for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
872 /*
873 * Update SoC voltages: platforms might choose a different
874 * regulators than the one used to characterize the algorithms
875 * (ie, init_voltage_step).
876 */
877 fdata->min_uV = roundup(fdata->min_uV, step_volt);
878 fdata->max_uV = roundup(fdata->max_uV, step_volt);
879
880 /* Populate uV */
881 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
882 step_volt, drv);
883 if (uV < 0)
884 return uV;
885
886 fuse->min_uV = fdata->min_uV;
887 fuse->max_uV = fdata->max_uV;
888 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
889
890 if (fuse == end) {
891 /*
892 * Allow the highest fuse corner's PVS voltage to
893 * define the ceiling voltage for that corner in order
894 * to support SoC's in which variable ceiling values
895 * are required.
896 */
897 end->max_uV = max(end->max_uV, end->uV);
898 }
899
900 /* Populate target quotient by scaling */
901 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
902 if (ret)
903 return ret;
904
905 fuse->quot *= fdata->quot_scale;
906 fuse->quot += fdata->quot_offset;
907 fuse->quot += fdata->quot_adjust;
908 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
909
910 /* Populate acc settings */
911 fuse->accs = accs;
912 fuse->num_accs = acc_desc->num_regs_per_fuse;
913 accs += acc_desc->num_regs_per_fuse;
914 }
915
916 /*
917 * Restrict all fuse corner PVS voltages based upon per corner
918 * ceiling and floor voltages.
919 */
920 for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
921 if (fuse->uV > fuse->max_uV)
922 fuse->uV = fuse->max_uV;
923 else if (fuse->uV < fuse->min_uV)
924 fuse->uV = fuse->min_uV;
925
926 ret = regulator_is_supported_voltage(drv->vdd_apc,
927 fuse->min_uV,
928 fuse->min_uV);
929 if (!ret) {
930 dev_err(drv->dev,
931 "min uV: %d (fuse corner: %d) not supported by regulator\n",
932 fuse->min_uV, i);
933 return -EINVAL;
934 }
935
936 ret = regulator_is_supported_voltage(drv->vdd_apc,
937 fuse->max_uV,
938 fuse->max_uV);
939 if (!ret) {
940 dev_err(drv->dev,
941 "max uV: %d (fuse corner: %d) not supported by regulator\n",
942 fuse->max_uV, i);
943 return -EINVAL;
944 }
945
946 dev_dbg(drv->dev,
947 "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
948 i, fuse->min_uV, fuse->uV, fuse->max_uV,
949 fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
950 }
951
952 return 0;
953 }
954
cpr_calculate_scaling(const char * quot_offset,struct cpr_drv * drv,const struct fuse_corner_data * fdata,const struct corner * corner)955 static int cpr_calculate_scaling(const char *quot_offset,
956 struct cpr_drv *drv,
957 const struct fuse_corner_data *fdata,
958 const struct corner *corner)
959 {
960 u32 quot_diff = 0;
961 unsigned long freq_diff;
962 int scaling;
963 const struct fuse_corner *fuse, *prev_fuse;
964 int ret;
965
966 fuse = corner->fuse_corner;
967 prev_fuse = fuse - 1;
968
969 if (quot_offset) {
970 ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, "_diff);
971 if (ret)
972 return ret;
973
974 quot_diff *= fdata->quot_offset_scale;
975 quot_diff += fdata->quot_offset_adjust;
976 } else {
977 quot_diff = fuse->quot - prev_fuse->quot;
978 }
979
980 freq_diff = fuse->max_freq - prev_fuse->max_freq;
981 freq_diff /= 1000000; /* Convert to MHz */
982 scaling = 1000 * quot_diff / freq_diff;
983 return min(scaling, fdata->max_quot_scale);
984 }
985
cpr_interpolate(const struct corner * corner,int step_volt,const struct fuse_corner_data * fdata)986 static int cpr_interpolate(const struct corner *corner, int step_volt,
987 const struct fuse_corner_data *fdata)
988 {
989 unsigned long f_high, f_low, f_diff;
990 int uV_high, uV_low, uV;
991 u64 temp, temp_limit;
992 const struct fuse_corner *fuse, *prev_fuse;
993
994 fuse = corner->fuse_corner;
995 prev_fuse = fuse - 1;
996
997 f_high = fuse->max_freq;
998 f_low = prev_fuse->max_freq;
999 uV_high = fuse->uV;
1000 uV_low = prev_fuse->uV;
1001 f_diff = fuse->max_freq - corner->freq;
1002
1003 /*
1004 * Don't interpolate in the wrong direction. This could happen
1005 * if the adjusted fuse voltage overlaps with the previous fuse's
1006 * adjusted voltage.
1007 */
1008 if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1009 return corner->uV;
1010
1011 temp = f_diff * (uV_high - uV_low);
1012 temp = div64_ul(temp, f_high - f_low);
1013
1014 /*
1015 * max_volt_scale has units of uV/MHz while freq values
1016 * have units of Hz. Divide by 1000000 to convert to.
1017 */
1018 temp_limit = f_diff * fdata->max_volt_scale;
1019 do_div(temp_limit, 1000000);
1020
1021 uV = uV_high - min(temp, temp_limit);
1022 return roundup(uV, step_volt);
1023 }
1024
cpr_get_fuse_corner(struct dev_pm_opp * opp)1025 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1026 {
1027 struct device_node *np;
1028 unsigned int fuse_corner = 0;
1029
1030 np = dev_pm_opp_get_of_node(opp);
1031 if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1032 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1033 __func__);
1034
1035 of_node_put(np);
1036
1037 return fuse_corner;
1038 }
1039
cpr_get_opp_hz_for_req(struct dev_pm_opp * ref,struct device * cpu_dev)1040 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1041 struct device *cpu_dev)
1042 {
1043 u64 rate = 0;
1044 struct device_node *ref_np;
1045 struct device_node *desc_np;
1046 struct device_node *child_np = NULL;
1047 struct device_node *child_req_np = NULL;
1048
1049 desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1050 if (!desc_np)
1051 return 0;
1052
1053 ref_np = dev_pm_opp_get_of_node(ref);
1054 if (!ref_np)
1055 goto out_ref;
1056
1057 do {
1058 of_node_put(child_req_np);
1059 child_np = of_get_next_available_child(desc_np, child_np);
1060 child_req_np = of_parse_phandle(child_np, "required-opps", 0);
1061 } while (child_np && child_req_np != ref_np);
1062
1063 if (child_np && child_req_np == ref_np)
1064 of_property_read_u64(child_np, "opp-hz", &rate);
1065
1066 of_node_put(child_req_np);
1067 of_node_put(child_np);
1068 of_node_put(ref_np);
1069 out_ref:
1070 of_node_put(desc_np);
1071
1072 return (unsigned long) rate;
1073 }
1074
cpr_corner_init(struct cpr_drv * drv)1075 static int cpr_corner_init(struct cpr_drv *drv)
1076 {
1077 const struct cpr_desc *desc = drv->desc;
1078 const struct cpr_fuse *fuses = drv->cpr_fuses;
1079 int i, level, scaling = 0;
1080 unsigned int fnum, fc;
1081 const char *quot_offset;
1082 struct fuse_corner *fuse, *prev_fuse;
1083 struct corner *corner, *end;
1084 struct corner_data *cdata;
1085 const struct fuse_corner_data *fdata;
1086 bool apply_scaling;
1087 unsigned long freq_diff, freq_diff_mhz;
1088 unsigned long freq;
1089 int step_volt = regulator_get_linear_step(drv->vdd_apc);
1090 struct dev_pm_opp *opp;
1091
1092 if (!step_volt)
1093 return -EINVAL;
1094
1095 corner = drv->corners;
1096 end = &corner[drv->num_corners - 1];
1097
1098 cdata = devm_kcalloc(drv->dev, drv->num_corners,
1099 sizeof(struct corner_data),
1100 GFP_KERNEL);
1101 if (!cdata)
1102 return -ENOMEM;
1103
1104 /*
1105 * Store maximum frequency for each fuse corner based on the frequency
1106 * plan
1107 */
1108 for (level = 1; level <= drv->num_corners; level++) {
1109 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1110 if (IS_ERR(opp))
1111 return -EINVAL;
1112 fc = cpr_get_fuse_corner(opp);
1113 if (!fc) {
1114 dev_pm_opp_put(opp);
1115 return -EINVAL;
1116 }
1117 fnum = fc - 1;
1118 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1119 if (!freq) {
1120 dev_pm_opp_put(opp);
1121 return -EINVAL;
1122 }
1123 cdata[level - 1].fuse_corner = fnum;
1124 cdata[level - 1].freq = freq;
1125
1126 fuse = &drv->fuse_corners[fnum];
1127 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1128 freq, dev_pm_opp_get_level(opp) - 1, fnum);
1129 if (freq > fuse->max_freq)
1130 fuse->max_freq = freq;
1131 dev_pm_opp_put(opp);
1132 }
1133
1134 /*
1135 * Get the quotient adjustment scaling factor, according to:
1136 *
1137 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1138 * / (freq(corner_N) - freq(corner_N-1)), max_factor)
1139 *
1140 * QUOT(corner_N): quotient read from fuse for fuse corner N
1141 * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
1142 * freq(corner_N): max frequency in MHz supported by fuse corner N
1143 * freq(corner_N-1): max frequency in MHz supported by fuse corner
1144 * (N - 1)
1145 *
1146 * Then walk through the corners mapped to each fuse corner
1147 * and calculate the quotient adjustment for each one using the
1148 * following formula:
1149 *
1150 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1151 *
1152 * freq_max: max frequency in MHz supported by the fuse corner
1153 * freq_corner: frequency in MHz corresponding to the corner
1154 * scaling: calculated from above equation
1155 *
1156 *
1157 * + +
1158 * | v |
1159 * q | f c o | f c
1160 * u | c l | c
1161 * o | f t | f
1162 * t | c a | c
1163 * | c f g | c f
1164 * | e |
1165 * +--------------- +----------------
1166 * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1167 * corner corner
1168 *
1169 * c = corner
1170 * f = fuse corner
1171 *
1172 */
1173 for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1174 fnum = cdata[i].fuse_corner;
1175 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1176 quot_offset = fuses[fnum].quotient_offset;
1177 fuse = &drv->fuse_corners[fnum];
1178 if (fnum)
1179 prev_fuse = &drv->fuse_corners[fnum - 1];
1180 else
1181 prev_fuse = NULL;
1182
1183 corner->fuse_corner = fuse;
1184 corner->freq = cdata[i].freq;
1185 corner->uV = fuse->uV;
1186
1187 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1188 scaling = cpr_calculate_scaling(quot_offset, drv,
1189 fdata, corner);
1190 if (scaling < 0)
1191 return scaling;
1192
1193 apply_scaling = true;
1194 } else if (corner->freq == fuse->max_freq) {
1195 /* This is a fuse corner; don't scale anything */
1196 apply_scaling = false;
1197 }
1198
1199 if (apply_scaling) {
1200 freq_diff = fuse->max_freq - corner->freq;
1201 freq_diff_mhz = freq_diff / 1000000;
1202 corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1203
1204 corner->uV = cpr_interpolate(corner, step_volt, fdata);
1205 }
1206
1207 corner->max_uV = fuse->max_uV;
1208 corner->min_uV = fuse->min_uV;
1209 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1210 corner->last_uV = corner->uV;
1211
1212 /* Reduce the ceiling voltage if needed */
1213 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1214 corner->max_uV = corner->uV;
1215 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1216 corner->max_uV = max(corner->min_uV, fuse->uV);
1217
1218 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1219 corner->min_uV, corner->uV, corner->max_uV,
1220 fuse->quot - corner->quot_adjust);
1221 }
1222
1223 return 0;
1224 }
1225
cpr_get_fuses(struct cpr_drv * drv)1226 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1227 {
1228 const struct cpr_desc *desc = drv->desc;
1229 struct cpr_fuse *fuses;
1230 int i;
1231
1232 fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1233 sizeof(struct cpr_fuse),
1234 GFP_KERNEL);
1235 if (!fuses)
1236 return ERR_PTR(-ENOMEM);
1237
1238 for (i = 0; i < desc->num_fuse_corners; i++) {
1239 char tbuf[32];
1240
1241 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1242 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1243 if (!fuses[i].ring_osc)
1244 return ERR_PTR(-ENOMEM);
1245
1246 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1247 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1248 GFP_KERNEL);
1249 if (!fuses[i].init_voltage)
1250 return ERR_PTR(-ENOMEM);
1251
1252 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1253 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1254 if (!fuses[i].quotient)
1255 return ERR_PTR(-ENOMEM);
1256
1257 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1258 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1259 GFP_KERNEL);
1260 if (!fuses[i].quotient_offset)
1261 return ERR_PTR(-ENOMEM);
1262 }
1263
1264 return fuses;
1265 }
1266
cpr_set_loop_allowed(struct cpr_drv * drv)1267 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1268 {
1269 drv->loop_disabled = false;
1270 }
1271
cpr_init_parameters(struct cpr_drv * drv)1272 static int cpr_init_parameters(struct cpr_drv *drv)
1273 {
1274 const struct cpr_desc *desc = drv->desc;
1275 struct clk *clk;
1276
1277 clk = clk_get(drv->dev, "ref");
1278 if (IS_ERR(clk))
1279 return PTR_ERR(clk);
1280
1281 drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1282 clk_put(clk);
1283
1284 if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1285 desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1286 desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1287 desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1288 desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1289 desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1290 return -EINVAL;
1291
1292 dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1293 desc->up_threshold, desc->down_threshold);
1294
1295 return 0;
1296 }
1297
cpr_find_initial_corner(struct cpr_drv * drv)1298 static int cpr_find_initial_corner(struct cpr_drv *drv)
1299 {
1300 unsigned long rate;
1301 const struct corner *end;
1302 struct corner *iter;
1303 unsigned int i = 0;
1304
1305 if (!drv->cpu_clk) {
1306 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1307 return -EINVAL;
1308 }
1309
1310 end = &drv->corners[drv->num_corners - 1];
1311 rate = clk_get_rate(drv->cpu_clk);
1312
1313 /*
1314 * Some bootloaders set a CPU clock frequency that is not defined
1315 * in the OPP table. When running at an unlisted frequency,
1316 * cpufreq_online() will change to the OPP which has the lowest
1317 * frequency, at or above the unlisted frequency.
1318 * Since cpufreq_online() always "rounds up" in the case of an
1319 * unlisted frequency, this function always "rounds down" in case
1320 * of an unlisted frequency. That way, when cpufreq_online()
1321 * triggers the first ever call to cpr_set_performance_state(),
1322 * it will correctly determine the direction as UP.
1323 */
1324 for (iter = drv->corners; iter <= end; iter++) {
1325 if (iter->freq > rate)
1326 break;
1327 i++;
1328 if (iter->freq == rate) {
1329 drv->corner = iter;
1330 break;
1331 }
1332 if (iter->freq < rate)
1333 drv->corner = iter;
1334 }
1335
1336 if (!drv->corner) {
1337 dev_err(drv->dev, "boot up corner not found\n");
1338 return -EINVAL;
1339 }
1340
1341 dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1342
1343 return 0;
1344 }
1345
1346 static const struct cpr_desc qcs404_cpr_desc = {
1347 .num_fuse_corners = 3,
1348 .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1349 .step_quot = (int []){ 25, 25, 25, },
1350 .timer_delay_us = 5000,
1351 .timer_cons_up = 0,
1352 .timer_cons_down = 2,
1353 .up_threshold = 1,
1354 .down_threshold = 3,
1355 .idle_clocks = 15,
1356 .gcnt_us = 1,
1357 .vdd_apc_step_up_limit = 1,
1358 .vdd_apc_step_down_limit = 1,
1359 .cpr_fuses = {
1360 .init_voltage_step = 8000,
1361 .init_voltage_width = 6,
1362 .fuse_corner_data = (struct fuse_corner_data[]){
1363 /* fuse corner 0 */
1364 {
1365 .ref_uV = 1224000,
1366 .max_uV = 1224000,
1367 .min_uV = 1048000,
1368 .max_volt_scale = 0,
1369 .max_quot_scale = 0,
1370 .quot_offset = 0,
1371 .quot_scale = 1,
1372 .quot_adjust = 0,
1373 .quot_offset_scale = 5,
1374 .quot_offset_adjust = 0,
1375 },
1376 /* fuse corner 1 */
1377 {
1378 .ref_uV = 1288000,
1379 .max_uV = 1288000,
1380 .min_uV = 1048000,
1381 .max_volt_scale = 2000,
1382 .max_quot_scale = 1400,
1383 .quot_offset = 0,
1384 .quot_scale = 1,
1385 .quot_adjust = -20,
1386 .quot_offset_scale = 5,
1387 .quot_offset_adjust = 0,
1388 },
1389 /* fuse corner 2 */
1390 {
1391 .ref_uV = 1352000,
1392 .max_uV = 1384000,
1393 .min_uV = 1088000,
1394 .max_volt_scale = 2000,
1395 .max_quot_scale = 1400,
1396 .quot_offset = 0,
1397 .quot_scale = 1,
1398 .quot_adjust = 0,
1399 .quot_offset_scale = 5,
1400 .quot_offset_adjust = 0,
1401 },
1402 },
1403 },
1404 };
1405
1406 static const struct acc_desc qcs404_acc_desc = {
1407 .settings = (struct reg_sequence[]){
1408 { 0xb120, 0x1041040 },
1409 { 0xb124, 0x41 },
1410 { 0xb120, 0x0 },
1411 { 0xb124, 0x0 },
1412 { 0xb120, 0x0 },
1413 { 0xb124, 0x0 },
1414 },
1415 .config = (struct reg_sequence[]){
1416 { 0xb138, 0xff },
1417 { 0xb130, 0x5555 },
1418 },
1419 .num_regs_per_fuse = 2,
1420 };
1421
1422 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1423 .cpr_desc = &qcs404_cpr_desc,
1424 .acc_desc = &qcs404_acc_desc,
1425 };
1426
cpr_get_performance_state(struct generic_pm_domain * genpd,struct dev_pm_opp * opp)1427 static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
1428 struct dev_pm_opp *opp)
1429 {
1430 return dev_pm_opp_get_level(opp);
1431 }
1432
cpr_power_off(struct generic_pm_domain * domain)1433 static int cpr_power_off(struct generic_pm_domain *domain)
1434 {
1435 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1436
1437 return cpr_disable(drv);
1438 }
1439
cpr_power_on(struct generic_pm_domain * domain)1440 static int cpr_power_on(struct generic_pm_domain *domain)
1441 {
1442 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1443
1444 return cpr_enable(drv);
1445 }
1446
cpr_pd_attach_dev(struct generic_pm_domain * domain,struct device * dev)1447 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1448 struct device *dev)
1449 {
1450 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1451 const struct acc_desc *acc_desc = drv->acc_desc;
1452 int ret = 0;
1453
1454 mutex_lock(&drv->lock);
1455
1456 dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1457
1458 /*
1459 * This driver only supports scaling voltage for a CPU cluster
1460 * where all CPUs in the cluster share a single regulator.
1461 * Therefore, save the struct device pointer only for the first
1462 * CPU device that gets attached. There is no need to do any
1463 * additional initialization when further CPUs get attached.
1464 */
1465 if (drv->attached_cpu_dev)
1466 goto unlock;
1467
1468 /*
1469 * cpr_scale_voltage() requires the direction (if we are changing
1470 * to a higher or lower OPP). The first time
1471 * cpr_set_performance_state() is called, there is no previous
1472 * performance state defined. Therefore, we call
1473 * cpr_find_initial_corner() that gets the CPU clock frequency
1474 * set by the bootloader, so that we can determine the direction
1475 * the first time cpr_set_performance_state() is called.
1476 */
1477 drv->cpu_clk = devm_clk_get(dev, NULL);
1478 if (IS_ERR(drv->cpu_clk)) {
1479 ret = PTR_ERR(drv->cpu_clk);
1480 if (ret != -EPROBE_DEFER)
1481 dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
1482 goto unlock;
1483 }
1484 drv->attached_cpu_dev = dev;
1485
1486 dev_dbg(drv->dev, "using cpu clk from: %s\n",
1487 dev_name(drv->attached_cpu_dev));
1488
1489 /*
1490 * Everything related to (virtual) corners has to be initialized
1491 * here, when attaching to the power domain, since we need to know
1492 * the maximum frequency for each fuse corner, and this is only
1493 * available after the cpufreq driver has attached to us.
1494 * The reason for this is that we need to know the highest
1495 * frequency associated with each fuse corner.
1496 */
1497 ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1498 if (ret < 0) {
1499 dev_err(drv->dev, "could not get OPP count\n");
1500 goto unlock;
1501 }
1502 drv->num_corners = ret;
1503
1504 if (drv->num_corners < 2) {
1505 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1506 ret = -EINVAL;
1507 goto unlock;
1508 }
1509
1510 drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1511 sizeof(*drv->corners),
1512 GFP_KERNEL);
1513 if (!drv->corners) {
1514 ret = -ENOMEM;
1515 goto unlock;
1516 }
1517
1518 ret = cpr_corner_init(drv);
1519 if (ret)
1520 goto unlock;
1521
1522 cpr_set_loop_allowed(drv);
1523
1524 ret = cpr_init_parameters(drv);
1525 if (ret)
1526 goto unlock;
1527
1528 /* Configure CPR HW but keep it disabled */
1529 ret = cpr_config(drv);
1530 if (ret)
1531 goto unlock;
1532
1533 ret = cpr_find_initial_corner(drv);
1534 if (ret)
1535 goto unlock;
1536
1537 if (acc_desc->config)
1538 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1539 acc_desc->num_regs_per_fuse);
1540
1541 /* Enable ACC if required */
1542 if (acc_desc->enable_mask)
1543 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1544 acc_desc->enable_mask,
1545 acc_desc->enable_mask);
1546
1547 dev_info(drv->dev, "driver initialized with %u OPPs\n",
1548 drv->num_corners);
1549
1550 unlock:
1551 mutex_unlock(&drv->lock);
1552
1553 return ret;
1554 }
1555
cpr_debug_info_show(struct seq_file * s,void * unused)1556 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1557 {
1558 u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1559 u32 step_dn, step_up, error, error_lt0, busy;
1560 struct cpr_drv *drv = s->private;
1561 struct fuse_corner *fuse_corner;
1562 struct corner *corner;
1563
1564 corner = drv->corner;
1565 fuse_corner = corner->fuse_corner;
1566
1567 seq_printf(s, "corner, current_volt = %d uV\n",
1568 corner->last_uV);
1569
1570 ro_sel = fuse_corner->ring_osc_idx;
1571 gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1572 seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1573
1574 ctl = cpr_read(drv, REG_RBCPR_CTL);
1575 seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1576
1577 irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1578 seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1579
1580 reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1581 seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1582
1583 step_dn = reg & 0x01;
1584 step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1585 seq_printf(s, " [step_dn = %u", step_dn);
1586
1587 seq_printf(s, ", step_up = %u", step_up);
1588
1589 error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1590 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1591 seq_printf(s, ", error_steps = %u", error_steps);
1592
1593 error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1594 seq_printf(s, ", error = %u", error);
1595
1596 error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1597 seq_printf(s, ", error_lt_0 = %u", error_lt0);
1598
1599 busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1600 seq_printf(s, ", busy = %u]\n", busy);
1601
1602 return 0;
1603 }
1604 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1605
cpr_debugfs_init(struct cpr_drv * drv)1606 static void cpr_debugfs_init(struct cpr_drv *drv)
1607 {
1608 drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1609
1610 debugfs_create_file("debug_info", 0444, drv->debugfs,
1611 drv, &cpr_debug_info_fops);
1612 }
1613
cpr_probe(struct platform_device * pdev)1614 static int cpr_probe(struct platform_device *pdev)
1615 {
1616 struct device *dev = &pdev->dev;
1617 struct cpr_drv *drv;
1618 int irq, ret;
1619 const struct cpr_acc_desc *data;
1620 struct device_node *np;
1621 u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1622
1623 data = of_device_get_match_data(dev);
1624 if (!data || !data->cpr_desc || !data->acc_desc)
1625 return -EINVAL;
1626
1627 drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1628 if (!drv)
1629 return -ENOMEM;
1630 drv->dev = dev;
1631 drv->desc = data->cpr_desc;
1632 drv->acc_desc = data->acc_desc;
1633
1634 drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1635 sizeof(*drv->fuse_corners),
1636 GFP_KERNEL);
1637 if (!drv->fuse_corners)
1638 return -ENOMEM;
1639
1640 np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1641 if (!np)
1642 return -ENODEV;
1643
1644 drv->tcsr = syscon_node_to_regmap(np);
1645 of_node_put(np);
1646 if (IS_ERR(drv->tcsr))
1647 return PTR_ERR(drv->tcsr);
1648
1649 drv->base = devm_platform_ioremap_resource(pdev, 0);
1650 if (IS_ERR(drv->base))
1651 return PTR_ERR(drv->base);
1652
1653 irq = platform_get_irq(pdev, 0);
1654 if (irq < 0)
1655 return -EINVAL;
1656
1657 drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1658 if (IS_ERR(drv->vdd_apc))
1659 return PTR_ERR(drv->vdd_apc);
1660
1661 /*
1662 * Initialize fuse corners, since it simply depends
1663 * on data in efuses.
1664 * Everything related to (virtual) corners has to be
1665 * initialized after attaching to the power domain,
1666 * since it depends on the CPU's OPP table.
1667 */
1668 ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
1669 if (ret)
1670 return ret;
1671
1672 drv->cpr_fuses = cpr_get_fuses(drv);
1673 if (IS_ERR(drv->cpr_fuses))
1674 return PTR_ERR(drv->cpr_fuses);
1675
1676 ret = cpr_populate_ring_osc_idx(drv);
1677 if (ret)
1678 return ret;
1679
1680 ret = cpr_fuse_corner_init(drv);
1681 if (ret)
1682 return ret;
1683
1684 mutex_init(&drv->lock);
1685
1686 ret = devm_request_threaded_irq(dev, irq, NULL,
1687 cpr_irq_handler,
1688 IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1689 "cpr", drv);
1690 if (ret)
1691 return ret;
1692
1693 drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1694 GFP_KERNEL);
1695 if (!drv->pd.name)
1696 return -EINVAL;
1697
1698 drv->pd.power_off = cpr_power_off;
1699 drv->pd.power_on = cpr_power_on;
1700 drv->pd.set_performance_state = cpr_set_performance_state;
1701 drv->pd.opp_to_performance_state = cpr_get_performance_state;
1702 drv->pd.attach_dev = cpr_pd_attach_dev;
1703
1704 ret = pm_genpd_init(&drv->pd, NULL, true);
1705 if (ret)
1706 return ret;
1707
1708 ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1709 if (ret)
1710 goto err_remove_genpd;
1711
1712 platform_set_drvdata(pdev, drv);
1713 cpr_debugfs_init(drv);
1714
1715 return 0;
1716
1717 err_remove_genpd:
1718 pm_genpd_remove(&drv->pd);
1719 return ret;
1720 }
1721
cpr_remove(struct platform_device * pdev)1722 static int cpr_remove(struct platform_device *pdev)
1723 {
1724 struct cpr_drv *drv = platform_get_drvdata(pdev);
1725
1726 if (cpr_is_allowed(drv)) {
1727 cpr_ctl_disable(drv);
1728 cpr_irq_set(drv, 0);
1729 }
1730
1731 of_genpd_del_provider(pdev->dev.of_node);
1732 pm_genpd_remove(&drv->pd);
1733
1734 debugfs_remove_recursive(drv->debugfs);
1735
1736 return 0;
1737 }
1738
1739 static const struct of_device_id cpr_match_table[] = {
1740 { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1741 { }
1742 };
1743 MODULE_DEVICE_TABLE(of, cpr_match_table);
1744
1745 static struct platform_driver cpr_driver = {
1746 .probe = cpr_probe,
1747 .remove = cpr_remove,
1748 .driver = {
1749 .name = "qcom-cpr",
1750 .of_match_table = cpr_match_table,
1751 },
1752 };
1753 module_platform_driver(cpr_driver);
1754
1755 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1756 MODULE_LICENSE("GPL v2");
1757