1 /*
2  *  toshiba_acpi.c - Toshiba Laptop ACPI Extras
3  *
4  *
5  *  Copyright (C) 2002-2004 John Belmonte
6  *  Copyright (C) 2008 Philip Langdale
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  *
23  *  The devolpment page for this driver is located at
24  *  http://memebeam.org/toys/ToshibaAcpiDriver.
25  *
26  *  Credits:
27  *	Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28  *		engineering the Windows drivers
29  *	Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30  *	Rob Miller - TV out and hotkeys help
31  *
32  *
33  *  TODO
34  *
35  */
36 
37 #define TOSHIBA_ACPI_VERSION	"0.19"
38 #define PROC_INTERFACE_VERSION	1
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/backlight.h>
47 #include <linux/platform_device.h>
48 #include <linux/rfkill.h>
49 
50 #include <asm/uaccess.h>
51 
52 #include <acpi/acpi_drivers.h>
53 
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
57 
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
62 
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS	"\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1		"\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2		"\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT	"\\_SB_.VALX.DSSX"
68 
69 /* Toshiba HCI interface definitions
70  *
71  * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72  * be uniform across all their models.  Ideally we would just call
73  * dedicated ACPI methods instead of using this primitive interface.
74  * However the ACPI methods seem to be incomplete in some areas (for
75  * example they allow setting, but not reading, the LCD brightness value),
76  * so this is still useful.
77  */
78 
79 #define HCI_WORDS			6
80 
81 /* operations */
82 #define HCI_SET				0xff00
83 #define HCI_GET				0xfe00
84 
85 /* return codes */
86 #define HCI_SUCCESS			0x0000
87 #define HCI_FAILURE			0x1000
88 #define HCI_NOT_SUPPORTED		0x8000
89 #define HCI_EMPTY			0x8c00
90 
91 /* registers */
92 #define HCI_FAN				0x0004
93 #define HCI_SYSTEM_EVENT		0x0016
94 #define HCI_VIDEO_OUT			0x001c
95 #define HCI_HOTKEY_EVENT		0x001e
96 #define HCI_LCD_BRIGHTNESS		0x002a
97 #define HCI_WIRELESS			0x0056
98 
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS		3
101 #define HCI_LCD_BRIGHTNESS_SHIFT	(16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS	(1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD		0x1
104 #define HCI_VIDEO_OUT_CRT		0x2
105 #define HCI_VIDEO_OUT_TV		0x4
106 #define HCI_WIRELESS_KILL_SWITCH	0x01
107 #define HCI_WIRELESS_BT_PRESENT		0x0f
108 #define HCI_WIRELESS_BT_ATTACH		0x40
109 #define HCI_WIRELESS_BT_POWER		0x80
110 
111 static const struct acpi_device_id toshiba_device_ids[] = {
112 	{"TOS6200", 0},
113 	{"TOS6208", 0},
114 	{"TOS1900", 0},
115 	{"", 0},
116 };
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
118 
119 /* utility
120  */
121 
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
123 {
124 	*word = (*word & ~mask) | (mask * value);
125 }
126 
127 /* acpi interface wrappers
128  */
129 
130 static int is_valid_acpi_path(const char *methodName)
131 {
132 	acpi_handle handle;
133 	acpi_status status;
134 
135 	status = acpi_get_handle(NULL, (char *)methodName, &handle);
136 	return !ACPI_FAILURE(status);
137 }
138 
139 static int write_acpi_int(const char *methodName, int val)
140 {
141 	struct acpi_object_list params;
142 	union acpi_object in_objs[1];
143 	acpi_status status;
144 
145 	params.count = ARRAY_SIZE(in_objs);
146 	params.pointer = in_objs;
147 	in_objs[0].type = ACPI_TYPE_INTEGER;
148 	in_objs[0].integer.value = val;
149 
150 	status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151 	return (status == AE_OK);
152 }
153 
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
156 {
157 	struct acpi_buffer results;
158 	union acpi_object out_objs[1];
159 	acpi_status status;
160 
161 	results.length = sizeof(out_objs);
162 	results.pointer = out_objs;
163 
164 	status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165 	*pVal = out_objs[0].integer.value;
166 
167 	return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
168 }
169 #endif
170 
171 static const char *method_hci /*= 0*/ ;
172 
173 /* Perform a raw HCI call.  Here we don't care about input or output buffer
174  * format.
175  */
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
177 {
178 	struct acpi_object_list params;
179 	union acpi_object in_objs[HCI_WORDS];
180 	struct acpi_buffer results;
181 	union acpi_object out_objs[HCI_WORDS + 1];
182 	acpi_status status;
183 	int i;
184 
185 	params.count = HCI_WORDS;
186 	params.pointer = in_objs;
187 	for (i = 0; i < HCI_WORDS; ++i) {
188 		in_objs[i].type = ACPI_TYPE_INTEGER;
189 		in_objs[i].integer.value = in[i];
190 	}
191 
192 	results.length = sizeof(out_objs);
193 	results.pointer = out_objs;
194 
195 	status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196 				      &results);
197 	if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198 		for (i = 0; i < out_objs->package.count; ++i) {
199 			out[i] = out_objs->package.elements[i].integer.value;
200 		}
201 	}
202 
203 	return status;
204 }
205 
206 /* common hci tasks (get or set one or two value)
207  *
208  * In addition to the ACPI status, the HCI system returns a result which
209  * may be useful (such as "not supported").
210  */
211 
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
213 {
214 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215 	u32 out[HCI_WORDS];
216 	acpi_status status = hci_raw(in, out);
217 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218 	return status;
219 }
220 
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
222 {
223 	u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224 	u32 out[HCI_WORDS];
225 	acpi_status status = hci_raw(in, out);
226 	*out1 = out[2];
227 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228 	return status;
229 }
230 
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
232 {
233 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234 	u32 out[HCI_WORDS];
235 	acpi_status status = hci_raw(in, out);
236 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237 	return status;
238 }
239 
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
241 {
242 	u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243 	u32 out[HCI_WORDS];
244 	acpi_status status = hci_raw(in, out);
245 	*out1 = out[2];
246 	*out2 = out[3];
247 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248 	return status;
249 }
250 
251 struct toshiba_acpi_dev {
252 	struct platform_device *p_dev;
253 	struct rfkill *bt_rfk;
254 
255 	const char *bt_name;
256 
257 	struct mutex mutex;
258 };
259 
260 static struct toshiba_acpi_dev toshiba_acpi = {
261 	.bt_name = "Toshiba Bluetooth",
262 };
263 
264 /* Bluetooth rfkill handlers */
265 
266 static u32 hci_get_bt_present(bool *present)
267 {
268 	u32 hci_result;
269 	u32 value, value2;
270 
271 	value = 0;
272 	value2 = 0;
273 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
274 	if (hci_result == HCI_SUCCESS)
275 		*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
276 
277 	return hci_result;
278 }
279 
280 static u32 hci_get_radio_state(bool *radio_state)
281 {
282 	u32 hci_result;
283 	u32 value, value2;
284 
285 	value = 0;
286 	value2 = 0x0001;
287 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
288 
289 	*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
290 	return hci_result;
291 }
292 
293 static int bt_rfkill_set_block(void *data, bool blocked)
294 {
295 	struct toshiba_acpi_dev *dev = data;
296 	u32 result1, result2;
297 	u32 value;
298 	int err;
299 	bool radio_state;
300 
301 	value = (blocked == false);
302 
303 	mutex_lock(&dev->mutex);
304 	if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
305 		err = -EBUSY;
306 		goto out;
307 	}
308 
309 	if (!radio_state) {
310 		err = 0;
311 		goto out;
312 	}
313 
314 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
315 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
316 
317 	if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
318 		err = -EBUSY;
319 	else
320 		err = 0;
321  out:
322 	mutex_unlock(&dev->mutex);
323 	return err;
324 }
325 
326 static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
327 {
328 	bool new_rfk_state;
329 	bool value;
330 	u32 hci_result;
331 	struct toshiba_acpi_dev *dev = data;
332 
333 	mutex_lock(&dev->mutex);
334 
335 	hci_result = hci_get_radio_state(&value);
336 	if (hci_result != HCI_SUCCESS) {
337 		/* Can't do anything useful */
338 		mutex_unlock(&dev->mutex);
339 		return;
340 	}
341 
342 	new_rfk_state = value;
343 
344 	mutex_unlock(&dev->mutex);
345 
346 	if (rfkill_set_hw_state(rfkill, !new_rfk_state))
347 		bt_rfkill_set_block(data, true);
348 }
349 
350 static const struct rfkill_ops toshiba_rfk_ops = {
351 	.set_block = bt_rfkill_set_block,
352 	.poll = bt_rfkill_poll,
353 };
354 
355 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
356 static struct backlight_device *toshiba_backlight_device;
357 static int force_fan;
358 static int last_key_event;
359 static int key_event_valid;
360 
361 static int get_lcd(struct backlight_device *bd)
362 {
363 	u32 hci_result;
364 	u32 value;
365 
366 	hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
367 	if (hci_result == HCI_SUCCESS) {
368 		return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
369 	} else
370 		return -EFAULT;
371 }
372 
373 static int lcd_proc_show(struct seq_file *m, void *v)
374 {
375 	int value = get_lcd(NULL);
376 
377 	if (value >= 0) {
378 		seq_printf(m, "brightness:              %d\n", value);
379 		seq_printf(m, "brightness_levels:       %d\n",
380 			     HCI_LCD_BRIGHTNESS_LEVELS);
381 	} else {
382 		printk(MY_ERR "Error reading LCD brightness\n");
383 	}
384 
385 	return 0;
386 }
387 
388 static int lcd_proc_open(struct inode *inode, struct file *file)
389 {
390 	return single_open(file, lcd_proc_show, NULL);
391 }
392 
393 static int set_lcd(int value)
394 {
395 	u32 hci_result;
396 
397 	value = value << HCI_LCD_BRIGHTNESS_SHIFT;
398 	hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
399 	if (hci_result != HCI_SUCCESS)
400 		return -EFAULT;
401 
402 	return 0;
403 }
404 
405 static int set_lcd_status(struct backlight_device *bd)
406 {
407 	return set_lcd(bd->props.brightness);
408 }
409 
410 static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
411 			      size_t count, loff_t *pos)
412 {
413 	char cmd[42];
414 	size_t len;
415 	int value;
416 	int ret;
417 
418 	len = min(count, sizeof(cmd) - 1);
419 	if (copy_from_user(cmd, buf, len))
420 		return -EFAULT;
421 	cmd[len] = '\0';
422 
423 	if (sscanf(cmd, " brightness : %i", &value) == 1 &&
424 	    value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
425 		ret = set_lcd(value);
426 		if (ret == 0)
427 			ret = count;
428 	} else {
429 		ret = -EINVAL;
430 	}
431 	return ret;
432 }
433 
434 static const struct file_operations lcd_proc_fops = {
435 	.owner		= THIS_MODULE,
436 	.open		= lcd_proc_open,
437 	.read		= seq_read,
438 	.llseek		= seq_lseek,
439 	.release	= single_release,
440 	.write		= lcd_proc_write,
441 };
442 
443 static int video_proc_show(struct seq_file *m, void *v)
444 {
445 	u32 hci_result;
446 	u32 value;
447 
448 	hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
449 	if (hci_result == HCI_SUCCESS) {
450 		int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
451 		int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
452 		int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
453 		seq_printf(m, "lcd_out:                 %d\n", is_lcd);
454 		seq_printf(m, "crt_out:                 %d\n", is_crt);
455 		seq_printf(m, "tv_out:                  %d\n", is_tv);
456 	} else {
457 		printk(MY_ERR "Error reading video out status\n");
458 	}
459 
460 	return 0;
461 }
462 
463 static int video_proc_open(struct inode *inode, struct file *file)
464 {
465 	return single_open(file, video_proc_show, NULL);
466 }
467 
468 static ssize_t video_proc_write(struct file *file, const char __user *buf,
469 				size_t count, loff_t *pos)
470 {
471 	char *cmd, *buffer;
472 	int value;
473 	int remain = count;
474 	int lcd_out = -1;
475 	int crt_out = -1;
476 	int tv_out = -1;
477 	u32 hci_result;
478 	u32 video_out;
479 
480 	cmd = kmalloc(count + 1, GFP_KERNEL);
481 	if (!cmd)
482 		return -ENOMEM;
483 	if (copy_from_user(cmd, buf, count)) {
484 		kfree(cmd);
485 		return -EFAULT;
486 	}
487 	cmd[count] = '\0';
488 
489 	buffer = cmd;
490 
491 	/* scan expression.  Multiple expressions may be delimited with ;
492 	 *
493 	 *  NOTE: to keep scanning simple, invalid fields are ignored
494 	 */
495 	while (remain) {
496 		if (sscanf(buffer, " lcd_out : %i", &value) == 1)
497 			lcd_out = value & 1;
498 		else if (sscanf(buffer, " crt_out : %i", &value) == 1)
499 			crt_out = value & 1;
500 		else if (sscanf(buffer, " tv_out : %i", &value) == 1)
501 			tv_out = value & 1;
502 		/* advance to one character past the next ; */
503 		do {
504 			++buffer;
505 			--remain;
506 		}
507 		while (remain && *(buffer - 1) != ';');
508 	}
509 
510 	kfree(cmd);
511 
512 	hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
513 	if (hci_result == HCI_SUCCESS) {
514 		unsigned int new_video_out = video_out;
515 		if (lcd_out != -1)
516 			_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
517 		if (crt_out != -1)
518 			_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
519 		if (tv_out != -1)
520 			_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
521 		/* To avoid unnecessary video disruption, only write the new
522 		 * video setting if something changed. */
523 		if (new_video_out != video_out)
524 			write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
525 	} else {
526 		return -EFAULT;
527 	}
528 
529 	return count;
530 }
531 
532 static const struct file_operations video_proc_fops = {
533 	.owner		= THIS_MODULE,
534 	.open		= video_proc_open,
535 	.read		= seq_read,
536 	.llseek		= seq_lseek,
537 	.release	= single_release,
538 	.write		= video_proc_write,
539 };
540 
541 static int fan_proc_show(struct seq_file *m, void *v)
542 {
543 	u32 hci_result;
544 	u32 value;
545 
546 	hci_read1(HCI_FAN, &value, &hci_result);
547 	if (hci_result == HCI_SUCCESS) {
548 		seq_printf(m, "running:                 %d\n", (value > 0));
549 		seq_printf(m, "force_on:                %d\n", force_fan);
550 	} else {
551 		printk(MY_ERR "Error reading fan status\n");
552 	}
553 
554 	return 0;
555 }
556 
557 static int fan_proc_open(struct inode *inode, struct file *file)
558 {
559 	return single_open(file, fan_proc_show, NULL);
560 }
561 
562 static ssize_t fan_proc_write(struct file *file, const char __user *buf,
563 			      size_t count, loff_t *pos)
564 {
565 	char cmd[42];
566 	size_t len;
567 	int value;
568 	u32 hci_result;
569 
570 	len = min(count, sizeof(cmd) - 1);
571 	if (copy_from_user(cmd, buf, len))
572 		return -EFAULT;
573 	cmd[len] = '\0';
574 
575 	if (sscanf(cmd, " force_on : %i", &value) == 1 &&
576 	    value >= 0 && value <= 1) {
577 		hci_write1(HCI_FAN, value, &hci_result);
578 		if (hci_result != HCI_SUCCESS)
579 			return -EFAULT;
580 		else
581 			force_fan = value;
582 	} else {
583 		return -EINVAL;
584 	}
585 
586 	return count;
587 }
588 
589 static const struct file_operations fan_proc_fops = {
590 	.owner		= THIS_MODULE,
591 	.open		= fan_proc_open,
592 	.read		= seq_read,
593 	.llseek		= seq_lseek,
594 	.release	= single_release,
595 	.write		= fan_proc_write,
596 };
597 
598 static int keys_proc_show(struct seq_file *m, void *v)
599 {
600 	u32 hci_result;
601 	u32 value;
602 
603 	if (!key_event_valid) {
604 		hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
605 		if (hci_result == HCI_SUCCESS) {
606 			key_event_valid = 1;
607 			last_key_event = value;
608 		} else if (hci_result == HCI_EMPTY) {
609 			/* better luck next time */
610 		} else if (hci_result == HCI_NOT_SUPPORTED) {
611 			/* This is a workaround for an unresolved issue on
612 			 * some machines where system events sporadically
613 			 * become disabled. */
614 			hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
615 			printk(MY_NOTICE "Re-enabled hotkeys\n");
616 		} else {
617 			printk(MY_ERR "Error reading hotkey status\n");
618 			goto end;
619 		}
620 	}
621 
622 	seq_printf(m, "hotkey_ready:            %d\n", key_event_valid);
623 	seq_printf(m, "hotkey:                  0x%04x\n", last_key_event);
624 end:
625 	return 0;
626 }
627 
628 static int keys_proc_open(struct inode *inode, struct file *file)
629 {
630 	return single_open(file, keys_proc_show, NULL);
631 }
632 
633 static ssize_t keys_proc_write(struct file *file, const char __user *buf,
634 			       size_t count, loff_t *pos)
635 {
636 	char cmd[42];
637 	size_t len;
638 	int value;
639 
640 	len = min(count, sizeof(cmd) - 1);
641 	if (copy_from_user(cmd, buf, len))
642 		return -EFAULT;
643 	cmd[len] = '\0';
644 
645 	if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
646 		key_event_valid = 0;
647 	} else {
648 		return -EINVAL;
649 	}
650 
651 	return count;
652 }
653 
654 static const struct file_operations keys_proc_fops = {
655 	.owner		= THIS_MODULE,
656 	.open		= keys_proc_open,
657 	.read		= seq_read,
658 	.llseek		= seq_lseek,
659 	.release	= single_release,
660 	.write		= keys_proc_write,
661 };
662 
663 static int version_proc_show(struct seq_file *m, void *v)
664 {
665 	seq_printf(m, "driver:                  %s\n", TOSHIBA_ACPI_VERSION);
666 	seq_printf(m, "proc_interface:          %d\n", PROC_INTERFACE_VERSION);
667 	return 0;
668 }
669 
670 static int version_proc_open(struct inode *inode, struct file *file)
671 {
672 	return single_open(file, version_proc_show, PDE(inode)->data);
673 }
674 
675 static const struct file_operations version_proc_fops = {
676 	.owner		= THIS_MODULE,
677 	.open		= version_proc_open,
678 	.read		= seq_read,
679 	.llseek		= seq_lseek,
680 	.release	= single_release,
681 };
682 
683 /* proc and module init
684  */
685 
686 #define PROC_TOSHIBA		"toshiba"
687 
688 static acpi_status __init add_device(void)
689 {
690 	proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
691 	proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
692 	proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
693 	proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
694 	proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
695 
696 	return AE_OK;
697 }
698 
699 static acpi_status remove_device(void)
700 {
701 	remove_proc_entry("lcd", toshiba_proc_dir);
702 	remove_proc_entry("video", toshiba_proc_dir);
703 	remove_proc_entry("fan", toshiba_proc_dir);
704 	remove_proc_entry("keys", toshiba_proc_dir);
705 	remove_proc_entry("version", toshiba_proc_dir);
706 	return AE_OK;
707 }
708 
709 static struct backlight_ops toshiba_backlight_data = {
710         .get_brightness = get_lcd,
711         .update_status  = set_lcd_status,
712 };
713 
714 static void toshiba_acpi_exit(void)
715 {
716 	if (toshiba_acpi.bt_rfk) {
717 		rfkill_unregister(toshiba_acpi.bt_rfk);
718 		rfkill_destroy(toshiba_acpi.bt_rfk);
719 	}
720 
721 	if (toshiba_backlight_device)
722 		backlight_device_unregister(toshiba_backlight_device);
723 
724 	remove_device();
725 
726 	if (toshiba_proc_dir)
727 		remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
728 
729 	platform_device_unregister(toshiba_acpi.p_dev);
730 
731 	return;
732 }
733 
734 static int __init toshiba_acpi_init(void)
735 {
736 	acpi_status status = AE_OK;
737 	u32 hci_result;
738 	bool bt_present;
739 	int ret = 0;
740 
741 	if (acpi_disabled)
742 		return -ENODEV;
743 
744 	/* simple device detection: look for HCI method */
745 	if (is_valid_acpi_path(METHOD_HCI_1))
746 		method_hci = METHOD_HCI_1;
747 	else if (is_valid_acpi_path(METHOD_HCI_2))
748 		method_hci = METHOD_HCI_2;
749 	else
750 		return -ENODEV;
751 
752 	printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
753 	       TOSHIBA_ACPI_VERSION);
754 	printk(MY_INFO "    HCI method: %s\n", method_hci);
755 
756 	mutex_init(&toshiba_acpi.mutex);
757 
758 	toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
759 							      -1, NULL, 0);
760 	if (IS_ERR(toshiba_acpi.p_dev)) {
761 		ret = PTR_ERR(toshiba_acpi.p_dev);
762 		printk(MY_ERR "unable to register platform device\n");
763 		toshiba_acpi.p_dev = NULL;
764 		toshiba_acpi_exit();
765 		return ret;
766 	}
767 
768 	force_fan = 0;
769 	key_event_valid = 0;
770 
771 	/* enable event fifo */
772 	hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
773 
774 	toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
775 	if (!toshiba_proc_dir) {
776 		toshiba_acpi_exit();
777 		return -ENODEV;
778 	} else {
779 		status = add_device();
780 		if (ACPI_FAILURE(status)) {
781 			toshiba_acpi_exit();
782 			return -ENODEV;
783 		}
784 	}
785 
786 	toshiba_backlight_device = backlight_device_register("toshiba",
787 						&toshiba_acpi.p_dev->dev,
788 						NULL,
789 						&toshiba_backlight_data);
790         if (IS_ERR(toshiba_backlight_device)) {
791 		ret = PTR_ERR(toshiba_backlight_device);
792 
793 		printk(KERN_ERR "Could not register toshiba backlight device\n");
794 		toshiba_backlight_device = NULL;
795 		toshiba_acpi_exit();
796 		return ret;
797 	}
798         toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
799 
800 	/* Register rfkill switch for Bluetooth */
801 	if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
802 		toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
803 						   &toshiba_acpi.p_dev->dev,
804 						   RFKILL_TYPE_BLUETOOTH,
805 						   &toshiba_rfk_ops,
806 						   &toshiba_acpi);
807 		if (!toshiba_acpi.bt_rfk) {
808 			printk(MY_ERR "unable to allocate rfkill device\n");
809 			toshiba_acpi_exit();
810 			return -ENOMEM;
811 		}
812 
813 		ret = rfkill_register(toshiba_acpi.bt_rfk);
814 		if (ret) {
815 			printk(MY_ERR "unable to register rfkill device\n");
816 			rfkill_destroy(toshiba_acpi.bt_rfk);
817 			toshiba_acpi_exit();
818 			return ret;
819 		}
820 	}
821 
822 	return 0;
823 }
824 
825 module_init(toshiba_acpi_init);
826 module_exit(toshiba_acpi_exit);
827