1 /*
2  *  toshiba_acpi.c - Toshiba Laptop ACPI Extras
3  *
4  *
5  *  Copyright (C) 2002-2004 John Belmonte
6  *  Copyright (C) 2008 Philip Langdale
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  *
23  *  The devolpment page for this driver is located at
24  *  http://memebeam.org/toys/ToshibaAcpiDriver.
25  *
26  *  Credits:
27  *	Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28  *		engineering the Windows drivers
29  *	Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30  *	Rob Miller - TV out and hotkeys help
31  *
32  *
33  *  TODO
34  *
35  */
36 
37 #define TOSHIBA_ACPI_VERSION	"0.19"
38 #define PROC_INTERFACE_VERSION	1
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/platform_device.h>
47 #include <linux/rfkill.h>
48 #include <linux/input-polldev.h>
49 
50 #include <asm/uaccess.h>
51 
52 #include <acpi/acpi_drivers.h>
53 
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
57 
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
62 
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS	"\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1		"\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2		"\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT	"\\_SB_.VALX.DSSX"
68 
69 /* Toshiba HCI interface definitions
70  *
71  * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72  * be uniform across all their models.  Ideally we would just call
73  * dedicated ACPI methods instead of using this primitive interface.
74  * However the ACPI methods seem to be incomplete in some areas (for
75  * example they allow setting, but not reading, the LCD brightness value),
76  * so this is still useful.
77  */
78 
79 #define HCI_WORDS			6
80 
81 /* operations */
82 #define HCI_SET				0xff00
83 #define HCI_GET				0xfe00
84 
85 /* return codes */
86 #define HCI_SUCCESS			0x0000
87 #define HCI_FAILURE			0x1000
88 #define HCI_NOT_SUPPORTED		0x8000
89 #define HCI_EMPTY			0x8c00
90 
91 /* registers */
92 #define HCI_FAN				0x0004
93 #define HCI_SYSTEM_EVENT		0x0016
94 #define HCI_VIDEO_OUT			0x001c
95 #define HCI_HOTKEY_EVENT		0x001e
96 #define HCI_LCD_BRIGHTNESS		0x002a
97 #define HCI_WIRELESS			0x0056
98 
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS		3
101 #define HCI_LCD_BRIGHTNESS_SHIFT	(16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS	(1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD		0x1
104 #define HCI_VIDEO_OUT_CRT		0x2
105 #define HCI_VIDEO_OUT_TV		0x4
106 #define HCI_WIRELESS_KILL_SWITCH	0x01
107 #define HCI_WIRELESS_BT_PRESENT		0x0f
108 #define HCI_WIRELESS_BT_ATTACH		0x40
109 #define HCI_WIRELESS_BT_POWER		0x80
110 
111 static const struct acpi_device_id toshiba_device_ids[] = {
112 	{"TOS6200", 0},
113 	{"TOS6208", 0},
114 	{"TOS1900", 0},
115 	{"", 0},
116 };
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
118 
119 /* utility
120  */
121 
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
123 {
124 	*word = (*word & ~mask) | (mask * value);
125 }
126 
127 /* acpi interface wrappers
128  */
129 
130 static int is_valid_acpi_path(const char *methodName)
131 {
132 	acpi_handle handle;
133 	acpi_status status;
134 
135 	status = acpi_get_handle(NULL, (char *)methodName, &handle);
136 	return !ACPI_FAILURE(status);
137 }
138 
139 static int write_acpi_int(const char *methodName, int val)
140 {
141 	struct acpi_object_list params;
142 	union acpi_object in_objs[1];
143 	acpi_status status;
144 
145 	params.count = ARRAY_SIZE(in_objs);
146 	params.pointer = in_objs;
147 	in_objs[0].type = ACPI_TYPE_INTEGER;
148 	in_objs[0].integer.value = val;
149 
150 	status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151 	return (status == AE_OK);
152 }
153 
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
156 {
157 	struct acpi_buffer results;
158 	union acpi_object out_objs[1];
159 	acpi_status status;
160 
161 	results.length = sizeof(out_objs);
162 	results.pointer = out_objs;
163 
164 	status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165 	*pVal = out_objs[0].integer.value;
166 
167 	return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
168 }
169 #endif
170 
171 static const char *method_hci /*= 0*/ ;
172 
173 /* Perform a raw HCI call.  Here we don't care about input or output buffer
174  * format.
175  */
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
177 {
178 	struct acpi_object_list params;
179 	union acpi_object in_objs[HCI_WORDS];
180 	struct acpi_buffer results;
181 	union acpi_object out_objs[HCI_WORDS + 1];
182 	acpi_status status;
183 	int i;
184 
185 	params.count = HCI_WORDS;
186 	params.pointer = in_objs;
187 	for (i = 0; i < HCI_WORDS; ++i) {
188 		in_objs[i].type = ACPI_TYPE_INTEGER;
189 		in_objs[i].integer.value = in[i];
190 	}
191 
192 	results.length = sizeof(out_objs);
193 	results.pointer = out_objs;
194 
195 	status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196 				      &results);
197 	if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198 		for (i = 0; i < out_objs->package.count; ++i) {
199 			out[i] = out_objs->package.elements[i].integer.value;
200 		}
201 	}
202 
203 	return status;
204 }
205 
206 /* common hci tasks (get or set one or two value)
207  *
208  * In addition to the ACPI status, the HCI system returns a result which
209  * may be useful (such as "not supported").
210  */
211 
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
213 {
214 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215 	u32 out[HCI_WORDS];
216 	acpi_status status = hci_raw(in, out);
217 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218 	return status;
219 }
220 
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
222 {
223 	u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224 	u32 out[HCI_WORDS];
225 	acpi_status status = hci_raw(in, out);
226 	*out1 = out[2];
227 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228 	return status;
229 }
230 
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
232 {
233 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234 	u32 out[HCI_WORDS];
235 	acpi_status status = hci_raw(in, out);
236 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237 	return status;
238 }
239 
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
241 {
242 	u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243 	u32 out[HCI_WORDS];
244 	acpi_status status = hci_raw(in, out);
245 	*out1 = out[2];
246 	*out2 = out[3];
247 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248 	return status;
249 }
250 
251 struct toshiba_acpi_dev {
252 	struct platform_device *p_dev;
253 	struct rfkill *rfk_dev;
254 	struct input_polled_dev *poll_dev;
255 
256 	const char *bt_name;
257 	const char *rfk_name;
258 
259 	bool last_rfk_state;
260 
261 	struct mutex mutex;
262 };
263 
264 static struct toshiba_acpi_dev toshiba_acpi = {
265 	.bt_name = "Toshiba Bluetooth",
266 	.rfk_name = "Toshiba RFKill Switch",
267 	.last_rfk_state = false,
268 };
269 
270 /* Bluetooth rfkill handlers */
271 
272 static u32 hci_get_bt_present(bool *present)
273 {
274 	u32 hci_result;
275 	u32 value, value2;
276 
277 	value = 0;
278 	value2 = 0;
279 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
280 	if (hci_result == HCI_SUCCESS)
281 		*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
282 
283 	return hci_result;
284 }
285 
286 static u32 hci_get_bt_on(bool *on)
287 {
288 	u32 hci_result;
289 	u32 value, value2;
290 
291 	value = 0;
292 	value2 = 0x0001;
293 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
294 	if (hci_result == HCI_SUCCESS)
295 		*on = (value & HCI_WIRELESS_BT_POWER) &&
296 		      (value & HCI_WIRELESS_BT_ATTACH);
297 
298 	return hci_result;
299 }
300 
301 static u32 hci_get_radio_state(bool *radio_state)
302 {
303 	u32 hci_result;
304 	u32 value, value2;
305 
306 	value = 0;
307 	value2 = 0x0001;
308 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
309 
310 	*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
311 	return hci_result;
312 }
313 
314 static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
315 {
316 	u32 result1, result2;
317 	u32 value;
318 	bool radio_state;
319 	struct toshiba_acpi_dev *dev = data;
320 
321 	value = (state == RFKILL_STATE_UNBLOCKED);
322 
323 	if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
324 		return -EFAULT;
325 
326 	switch (state) {
327 	case RFKILL_STATE_UNBLOCKED:
328 		if (!radio_state)
329 			return -EPERM;
330 		break;
331 	case RFKILL_STATE_SOFT_BLOCKED:
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	mutex_lock(&dev->mutex);
338 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
339 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
340 	mutex_unlock(&dev->mutex);
341 
342 	if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
343 		return -EFAULT;
344 
345 	return 0;
346 }
347 
348 static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
349 {
350 	bool state_changed;
351 	bool new_rfk_state;
352 	bool value;
353 	u32 hci_result;
354 	struct toshiba_acpi_dev *dev = poll_dev->private;
355 
356 	hci_result = hci_get_radio_state(&value);
357 	if (hci_result != HCI_SUCCESS)
358 		return; /* Can't do anything useful */
359 
360 	new_rfk_state = value;
361 
362 	mutex_lock(&dev->mutex);
363 	state_changed = new_rfk_state != dev->last_rfk_state;
364 	dev->last_rfk_state = new_rfk_state;
365 	mutex_unlock(&dev->mutex);
366 
367 	if (unlikely(state_changed)) {
368 		rfkill_force_state(dev->rfk_dev,
369 				   new_rfk_state ?
370 				   RFKILL_STATE_SOFT_BLOCKED :
371 				   RFKILL_STATE_HARD_BLOCKED);
372 		input_report_switch(poll_dev->input, SW_RFKILL_ALL,
373 				    new_rfk_state);
374 		input_sync(poll_dev->input);
375 	}
376 }
377 
378 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
379 static struct backlight_device *toshiba_backlight_device;
380 static int force_fan;
381 static int last_key_event;
382 static int key_event_valid;
383 
384 typedef struct _ProcItem {
385 	const char *name;
386 	char *(*read_func) (char *);
387 	unsigned long (*write_func) (const char *, unsigned long);
388 } ProcItem;
389 
390 /* proc file handlers
391  */
392 
393 static int
394 dispatch_read(char *page, char **start, off_t off, int count, int *eof,
395 	      ProcItem * item)
396 {
397 	char *p = page;
398 	int len;
399 
400 	if (off == 0)
401 		p = item->read_func(p);
402 
403 	/* ISSUE: I don't understand this code */
404 	len = (p - page);
405 	if (len <= off + count)
406 		*eof = 1;
407 	*start = page + off;
408 	len -= off;
409 	if (len > count)
410 		len = count;
411 	if (len < 0)
412 		len = 0;
413 	return len;
414 }
415 
416 static int
417 dispatch_write(struct file *file, const char __user * buffer,
418 	       unsigned long count, ProcItem * item)
419 {
420 	int result;
421 	char *tmp_buffer;
422 
423 	/* Arg buffer points to userspace memory, which can't be accessed
424 	 * directly.  Since we're making a copy, zero-terminate the
425 	 * destination so that sscanf can be used on it safely.
426 	 */
427 	tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
428 	if (!tmp_buffer)
429 		return -ENOMEM;
430 
431 	if (copy_from_user(tmp_buffer, buffer, count)) {
432 		result = -EFAULT;
433 	} else {
434 		tmp_buffer[count] = 0;
435 		result = item->write_func(tmp_buffer, count);
436 	}
437 	kfree(tmp_buffer);
438 	return result;
439 }
440 
441 static int get_lcd(struct backlight_device *bd)
442 {
443 	u32 hci_result;
444 	u32 value;
445 
446 	hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
447 	if (hci_result == HCI_SUCCESS) {
448 		return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
449 	} else
450 		return -EFAULT;
451 }
452 
453 static char *read_lcd(char *p)
454 {
455 	int value = get_lcd(NULL);
456 
457 	if (value >= 0) {
458 		p += sprintf(p, "brightness:              %d\n", value);
459 		p += sprintf(p, "brightness_levels:       %d\n",
460 			     HCI_LCD_BRIGHTNESS_LEVELS);
461 	} else {
462 		printk(MY_ERR "Error reading LCD brightness\n");
463 	}
464 
465 	return p;
466 }
467 
468 static int set_lcd(int value)
469 {
470 	u32 hci_result;
471 
472 	value = value << HCI_LCD_BRIGHTNESS_SHIFT;
473 	hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
474 	if (hci_result != HCI_SUCCESS)
475 		return -EFAULT;
476 
477 	return 0;
478 }
479 
480 static int set_lcd_status(struct backlight_device *bd)
481 {
482 	return set_lcd(bd->props.brightness);
483 }
484 
485 static unsigned long write_lcd(const char *buffer, unsigned long count)
486 {
487 	int value;
488 	int ret;
489 
490 	if (sscanf(buffer, " brightness : %i", &value) == 1 &&
491 	    value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
492 		ret = set_lcd(value);
493 		if (ret == 0)
494 			ret = count;
495 	} else {
496 		ret = -EINVAL;
497 	}
498 	return ret;
499 }
500 
501 static char *read_video(char *p)
502 {
503 	u32 hci_result;
504 	u32 value;
505 
506 	hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
507 	if (hci_result == HCI_SUCCESS) {
508 		int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
509 		int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
510 		int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
511 		p += sprintf(p, "lcd_out:                 %d\n", is_lcd);
512 		p += sprintf(p, "crt_out:                 %d\n", is_crt);
513 		p += sprintf(p, "tv_out:                  %d\n", is_tv);
514 	} else {
515 		printk(MY_ERR "Error reading video out status\n");
516 	}
517 
518 	return p;
519 }
520 
521 static unsigned long write_video(const char *buffer, unsigned long count)
522 {
523 	int value;
524 	int remain = count;
525 	int lcd_out = -1;
526 	int crt_out = -1;
527 	int tv_out = -1;
528 	u32 hci_result;
529 	u32 video_out;
530 
531 	/* scan expression.  Multiple expressions may be delimited with ;
532 	 *
533 	 *  NOTE: to keep scanning simple, invalid fields are ignored
534 	 */
535 	while (remain) {
536 		if (sscanf(buffer, " lcd_out : %i", &value) == 1)
537 			lcd_out = value & 1;
538 		else if (sscanf(buffer, " crt_out : %i", &value) == 1)
539 			crt_out = value & 1;
540 		else if (sscanf(buffer, " tv_out : %i", &value) == 1)
541 			tv_out = value & 1;
542 		/* advance to one character past the next ; */
543 		do {
544 			++buffer;
545 			--remain;
546 		}
547 		while (remain && *(buffer - 1) != ';');
548 	}
549 
550 	hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
551 	if (hci_result == HCI_SUCCESS) {
552 		unsigned int new_video_out = video_out;
553 		if (lcd_out != -1)
554 			_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
555 		if (crt_out != -1)
556 			_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
557 		if (tv_out != -1)
558 			_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
559 		/* To avoid unnecessary video disruption, only write the new
560 		 * video setting if something changed. */
561 		if (new_video_out != video_out)
562 			write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
563 	} else {
564 		return -EFAULT;
565 	}
566 
567 	return count;
568 }
569 
570 static char *read_fan(char *p)
571 {
572 	u32 hci_result;
573 	u32 value;
574 
575 	hci_read1(HCI_FAN, &value, &hci_result);
576 	if (hci_result == HCI_SUCCESS) {
577 		p += sprintf(p, "running:                 %d\n", (value > 0));
578 		p += sprintf(p, "force_on:                %d\n", force_fan);
579 	} else {
580 		printk(MY_ERR "Error reading fan status\n");
581 	}
582 
583 	return p;
584 }
585 
586 static unsigned long write_fan(const char *buffer, unsigned long count)
587 {
588 	int value;
589 	u32 hci_result;
590 
591 	if (sscanf(buffer, " force_on : %i", &value) == 1 &&
592 	    value >= 0 && value <= 1) {
593 		hci_write1(HCI_FAN, value, &hci_result);
594 		if (hci_result != HCI_SUCCESS)
595 			return -EFAULT;
596 		else
597 			force_fan = value;
598 	} else {
599 		return -EINVAL;
600 	}
601 
602 	return count;
603 }
604 
605 static char *read_keys(char *p)
606 {
607 	u32 hci_result;
608 	u32 value;
609 
610 	if (!key_event_valid) {
611 		hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
612 		if (hci_result == HCI_SUCCESS) {
613 			key_event_valid = 1;
614 			last_key_event = value;
615 		} else if (hci_result == HCI_EMPTY) {
616 			/* better luck next time */
617 		} else if (hci_result == HCI_NOT_SUPPORTED) {
618 			/* This is a workaround for an unresolved issue on
619 			 * some machines where system events sporadically
620 			 * become disabled. */
621 			hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
622 			printk(MY_NOTICE "Re-enabled hotkeys\n");
623 		} else {
624 			printk(MY_ERR "Error reading hotkey status\n");
625 			goto end;
626 		}
627 	}
628 
629 	p += sprintf(p, "hotkey_ready:            %d\n", key_event_valid);
630 	p += sprintf(p, "hotkey:                  0x%04x\n", last_key_event);
631 
632       end:
633 	return p;
634 }
635 
636 static unsigned long write_keys(const char *buffer, unsigned long count)
637 {
638 	int value;
639 
640 	if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
641 		key_event_valid = 0;
642 	} else {
643 		return -EINVAL;
644 	}
645 
646 	return count;
647 }
648 
649 static char *read_version(char *p)
650 {
651 	p += sprintf(p, "driver:                  %s\n", TOSHIBA_ACPI_VERSION);
652 	p += sprintf(p, "proc_interface:          %d\n",
653 		     PROC_INTERFACE_VERSION);
654 	return p;
655 }
656 
657 /* proc and module init
658  */
659 
660 #define PROC_TOSHIBA		"toshiba"
661 
662 static ProcItem proc_items[] = {
663 	{"lcd", read_lcd, write_lcd},
664 	{"video", read_video, write_video},
665 	{"fan", read_fan, write_fan},
666 	{"keys", read_keys, write_keys},
667 	{"version", read_version, NULL},
668 	{NULL}
669 };
670 
671 static acpi_status __init add_device(void)
672 {
673 	struct proc_dir_entry *proc;
674 	ProcItem *item;
675 
676 	for (item = proc_items; item->name; ++item) {
677 		proc = create_proc_read_entry(item->name,
678 					      S_IFREG | S_IRUGO | S_IWUSR,
679 					      toshiba_proc_dir,
680 					      (read_proc_t *) dispatch_read,
681 					      item);
682 		if (proc && item->write_func)
683 			proc->write_proc = (write_proc_t *) dispatch_write;
684 	}
685 
686 	return AE_OK;
687 }
688 
689 static acpi_status remove_device(void)
690 {
691 	ProcItem *item;
692 
693 	for (item = proc_items; item->name; ++item)
694 		remove_proc_entry(item->name, toshiba_proc_dir);
695 	return AE_OK;
696 }
697 
698 static struct backlight_ops toshiba_backlight_data = {
699         .get_brightness = get_lcd,
700         .update_status  = set_lcd_status,
701 };
702 
703 static void toshiba_acpi_exit(void)
704 {
705 	if (toshiba_acpi.poll_dev) {
706 		input_unregister_polled_device(toshiba_acpi.poll_dev);
707 		input_free_polled_device(toshiba_acpi.poll_dev);
708 	}
709 
710 	if (toshiba_acpi.rfk_dev)
711 		rfkill_unregister(toshiba_acpi.rfk_dev);
712 
713 	if (toshiba_backlight_device)
714 		backlight_device_unregister(toshiba_backlight_device);
715 
716 	remove_device();
717 
718 	if (toshiba_proc_dir)
719 		remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
720 
721 	platform_device_unregister(toshiba_acpi.p_dev);
722 
723 	return;
724 }
725 
726 static int __init toshiba_acpi_init(void)
727 {
728 	acpi_status status = AE_OK;
729 	u32 hci_result;
730 	bool bt_present;
731 	bool bt_on;
732 	bool radio_on;
733 	int ret = 0;
734 
735 	if (acpi_disabled)
736 		return -ENODEV;
737 
738 	/* simple device detection: look for HCI method */
739 	if (is_valid_acpi_path(METHOD_HCI_1))
740 		method_hci = METHOD_HCI_1;
741 	else if (is_valid_acpi_path(METHOD_HCI_2))
742 		method_hci = METHOD_HCI_2;
743 	else
744 		return -ENODEV;
745 
746 	printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
747 	       TOSHIBA_ACPI_VERSION);
748 	printk(MY_INFO "    HCI method: %s\n", method_hci);
749 
750 	mutex_init(&toshiba_acpi.mutex);
751 
752 	toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
753 							      -1, NULL, 0);
754 	if (IS_ERR(toshiba_acpi.p_dev)) {
755 		ret = PTR_ERR(toshiba_acpi.p_dev);
756 		printk(MY_ERR "unable to register platform device\n");
757 		toshiba_acpi.p_dev = NULL;
758 		toshiba_acpi_exit();
759 		return ret;
760 	}
761 
762 	force_fan = 0;
763 	key_event_valid = 0;
764 
765 	/* enable event fifo */
766 	hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
767 
768 	toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
769 	if (!toshiba_proc_dir) {
770 		toshiba_acpi_exit();
771 		return -ENODEV;
772 	} else {
773 		status = add_device();
774 		if (ACPI_FAILURE(status)) {
775 			toshiba_acpi_exit();
776 			return -ENODEV;
777 		}
778 	}
779 
780 	toshiba_backlight_device = backlight_device_register("toshiba",
781 						&toshiba_acpi.p_dev->dev,
782 						NULL,
783 						&toshiba_backlight_data);
784         if (IS_ERR(toshiba_backlight_device)) {
785 		ret = PTR_ERR(toshiba_backlight_device);
786 
787 		printk(KERN_ERR "Could not register toshiba backlight device\n");
788 		toshiba_backlight_device = NULL;
789 		toshiba_acpi_exit();
790 		return ret;
791 	}
792         toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
793 
794 	/* Register rfkill switch for Bluetooth */
795 	if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
796 		toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
797 							RFKILL_TYPE_BLUETOOTH);
798 		if (!toshiba_acpi.rfk_dev) {
799 			printk(MY_ERR "unable to allocate rfkill device\n");
800 			toshiba_acpi_exit();
801 			return -ENOMEM;
802 		}
803 
804 		toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
805 		toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
806 		toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
807 		toshiba_acpi.rfk_dev->data = &toshiba_acpi;
808 
809 		if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
810 			toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
811 		} else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
812 			   radio_on) {
813 			toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
814 		} else {
815 			toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
816 		}
817 
818 		ret = rfkill_register(toshiba_acpi.rfk_dev);
819 		if (ret) {
820 			printk(MY_ERR "unable to register rfkill device\n");
821 			toshiba_acpi_exit();
822 			return -ENOMEM;
823 		}
824 
825 		/* Register input device for kill switch */
826 		toshiba_acpi.poll_dev = input_allocate_polled_device();
827 		if (!toshiba_acpi.poll_dev) {
828 			printk(MY_ERR
829 			       "unable to allocate kill-switch input device\n");
830 			toshiba_acpi_exit();
831 			return -ENOMEM;
832 		}
833 		toshiba_acpi.poll_dev->private = &toshiba_acpi;
834 		toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
835 		toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
836 
837 		toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
838 		toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
839 		/* Toshiba USB ID */
840 		toshiba_acpi.poll_dev->input->id.vendor = 0x0930;
841 		set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
842 		set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
843 		input_report_switch(toshiba_acpi.poll_dev->input,
844 				    SW_RFKILL_ALL, TRUE);
845 		input_sync(toshiba_acpi.poll_dev->input);
846 
847 		ret = input_register_polled_device(toshiba_acpi.poll_dev);
848 		if (ret) {
849 			printk(MY_ERR
850 			       "unable to register kill-switch input device\n");
851 			toshiba_acpi_exit();
852 			return ret;
853 		}
854 	}
855 
856 	return 0;
857 }
858 
859 module_init(toshiba_acpi_init);
860 module_exit(toshiba_acpi_exit);
861