1 /* 2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism 3 * 4 * (C) Copyright 2008-2010 Intel Corporation 5 * Author: Sreedhara DS (sreedhara.ds@intel.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * SCU running in ARC processor communicates with other entity running in IA 13 * core through IPC mechanism which in turn messaging between IA core ad SCU. 14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and 15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with 16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) 17 * along with other APIs. 18 */ 19 #include <linux/delay.h> 20 #include <linux/errno.h> 21 #include <linux/init.h> 22 #include <linux/device.h> 23 #include <linux/pm.h> 24 #include <linux/pci.h> 25 #include <linux/interrupt.h> 26 #include <linux/sfi.h> 27 #include <linux/module.h> 28 #include <asm/intel-mid.h> 29 #include <asm/intel_scu_ipc.h> 30 31 /* IPC defines the following message types */ 32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ 33 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ 34 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ 35 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ 36 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ 37 38 /* Command id associated with message IPCMSG_PCNTRL */ 39 #define IPC_CMD_PCNTRL_W 0 /* Register write */ 40 #define IPC_CMD_PCNTRL_R 1 /* Register read */ 41 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ 42 43 /* 44 * IPC register summary 45 * 46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000 47 * To read or write information to the SCU, driver writes to IPC-1 memory 48 * mapped registers (base address 0xFF11C000). The following is the IPC 49 * mechanism 50 * 51 * 1. IA core cDMI interface claims this transaction and converts it to a 52 * Transaction Layer Packet (TLP) message which is sent across the cDMI. 53 * 54 * 2. South Complex cDMI block receives this message and writes it to 55 * the IPC-1 register block, causing an interrupt to the SCU 56 * 57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate 58 * message handler is called within firmware. 59 */ 60 61 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ 62 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ 63 #define IPC_IOC 0x100 /* IPC command register IOC bit */ 64 65 #define PCI_DEVICE_ID_LINCROFT 0x082a 66 #define PCI_DEVICE_ID_PENWELL 0x080e 67 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea 68 #define PCI_DEVICE_ID_TANGIER 0x11a0 69 70 /* intel scu ipc driver data*/ 71 struct intel_scu_ipc_pdata_t { 72 u32 ipc_base; 73 u32 i2c_base; 74 u32 ipc_len; 75 u32 i2c_len; 76 u8 irq_mode; 77 }; 78 79 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = { 80 .ipc_base = 0xff11c000, 81 .i2c_base = 0xff12b000, 82 .ipc_len = 0x100, 83 .i2c_len = 0x10, 84 .irq_mode = 0, 85 }; 86 87 /* Penwell and Cloverview */ 88 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = { 89 .ipc_base = 0xff11c000, 90 .i2c_base = 0xff12b000, 91 .ipc_len = 0x100, 92 .i2c_len = 0x10, 93 .irq_mode = 1, 94 }; 95 96 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = { 97 .ipc_base = 0xff009000, 98 .i2c_base = 0xff00d000, 99 .ipc_len = 0x100, 100 .i2c_len = 0x10, 101 .irq_mode = 0, 102 }; 103 104 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id); 105 static void ipc_remove(struct pci_dev *pdev); 106 107 struct intel_scu_ipc_dev { 108 struct pci_dev *pdev; 109 void __iomem *ipc_base; 110 void __iomem *i2c_base; 111 struct completion cmd_complete; 112 u8 irq_mode; 113 }; 114 115 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ 116 117 static int platform; /* Platform type */ 118 119 /* 120 * IPC Read Buffer (Read Only): 121 * 16 byte buffer for receiving data from SCU, if IPC command 122 * processing results in response data 123 */ 124 #define IPC_READ_BUFFER 0x90 125 126 #define IPC_I2C_CNTRL_ADDR 0 127 #define I2C_DATA_ADDR 0x04 128 129 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ 130 131 /* 132 * Command Register (Write Only): 133 * A write to this register results in an interrupt to the SCU core processor 134 * Format: 135 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| 136 */ 137 static inline void ipc_command(u32 cmd) /* Send ipc command */ 138 { 139 if (ipcdev.irq_mode) { 140 reinit_completion(&ipcdev.cmd_complete); 141 writel(cmd | IPC_IOC, ipcdev.ipc_base); 142 } 143 writel(cmd, ipcdev.ipc_base); 144 } 145 146 /* 147 * IPC Write Buffer (Write Only): 148 * 16-byte buffer for sending data associated with IPC command to 149 * SCU. Size of the data is specified in the IPC_COMMAND_REG register 150 */ 151 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */ 152 { 153 writel(data, ipcdev.ipc_base + 0x80 + offset); 154 } 155 156 /* 157 * Status Register (Read Only): 158 * Driver will read this register to get the ready/busy status of the IPC 159 * block and error status of the IPC command that was just processed by SCU 160 * Format: 161 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| 162 */ 163 164 static inline u8 ipc_read_status(void) 165 { 166 return __raw_readl(ipcdev.ipc_base + 0x04); 167 } 168 169 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */ 170 { 171 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset); 172 } 173 174 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */ 175 { 176 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset); 177 } 178 179 static inline int busy_loop(void) /* Wait till scu status is busy */ 180 { 181 u32 status = 0; 182 u32 loop_count = 0; 183 184 status = ipc_read_status(); 185 while (status & 1) { 186 udelay(1); /* scu processing time is in few u secods */ 187 status = ipc_read_status(); 188 loop_count++; 189 /* break if scu doesn't reset busy bit after huge retry */ 190 if (loop_count > 100000) { 191 dev_err(&ipcdev.pdev->dev, "IPC timed out"); 192 return -ETIMEDOUT; 193 } 194 } 195 if ((status >> 1) & 1) 196 return -EIO; 197 198 return 0; 199 } 200 201 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */ 202 static inline int ipc_wait_for_interrupt(void) 203 { 204 int status; 205 206 if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) { 207 struct device *dev = &ipcdev.pdev->dev; 208 dev_err(dev, "IPC timed out\n"); 209 return -ETIMEDOUT; 210 } 211 212 status = ipc_read_status(); 213 214 if ((status >> 1) & 1) 215 return -EIO; 216 217 return 0; 218 } 219 220 int intel_scu_ipc_check_status(void) 221 { 222 return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop(); 223 } 224 225 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ 226 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) 227 { 228 int nc; 229 u32 offset = 0; 230 int err; 231 u8 cbuf[IPC_WWBUF_SIZE] = { }; 232 u32 *wbuf = (u32 *)&cbuf; 233 234 mutex_lock(&ipclock); 235 236 memset(cbuf, 0, sizeof(cbuf)); 237 238 if (ipcdev.pdev == NULL) { 239 mutex_unlock(&ipclock); 240 return -ENODEV; 241 } 242 243 for (nc = 0; nc < count; nc++, offset += 2) { 244 cbuf[offset] = addr[nc]; 245 cbuf[offset + 1] = addr[nc] >> 8; 246 } 247 248 if (id == IPC_CMD_PCNTRL_R) { 249 for (nc = 0, offset = 0; nc < count; nc++, offset += 4) 250 ipc_data_writel(wbuf[nc], offset); 251 ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op); 252 } else if (id == IPC_CMD_PCNTRL_W) { 253 for (nc = 0; nc < count; nc++, offset += 1) 254 cbuf[offset] = data[nc]; 255 for (nc = 0, offset = 0; nc < count; nc++, offset += 4) 256 ipc_data_writel(wbuf[nc], offset); 257 ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op); 258 } else if (id == IPC_CMD_PCNTRL_M) { 259 cbuf[offset] = data[0]; 260 cbuf[offset + 1] = data[1]; 261 ipc_data_writel(wbuf[0], 0); /* Write wbuff */ 262 ipc_command(4 << 16 | id << 12 | 0 << 8 | op); 263 } 264 265 err = intel_scu_ipc_check_status(); 266 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ 267 /* Workaround: values are read as 0 without memcpy_fromio */ 268 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16); 269 for (nc = 0; nc < count; nc++) 270 data[nc] = ipc_data_readb(nc); 271 } 272 mutex_unlock(&ipclock); 273 return err; 274 } 275 276 /** 277 * intel_scu_ipc_ioread8 - read a word via the SCU 278 * @addr: register on SCU 279 * @data: return pointer for read byte 280 * 281 * Read a single register. Returns 0 on success or an error code. All 282 * locking between SCU accesses is handled for the caller. 283 * 284 * This function may sleep. 285 */ 286 int intel_scu_ipc_ioread8(u16 addr, u8 *data) 287 { 288 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 289 } 290 EXPORT_SYMBOL(intel_scu_ipc_ioread8); 291 292 /** 293 * intel_scu_ipc_ioread16 - read a word via the SCU 294 * @addr: register on SCU 295 * @data: return pointer for read word 296 * 297 * Read a register pair. Returns 0 on success or an error code. All 298 * locking between SCU accesses is handled for the caller. 299 * 300 * This function may sleep. 301 */ 302 int intel_scu_ipc_ioread16(u16 addr, u16 *data) 303 { 304 u16 x[2] = {addr, addr + 1 }; 305 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 306 } 307 EXPORT_SYMBOL(intel_scu_ipc_ioread16); 308 309 /** 310 * intel_scu_ipc_ioread32 - read a dword via the SCU 311 * @addr: register on SCU 312 * @data: return pointer for read dword 313 * 314 * Read four registers. Returns 0 on success or an error code. All 315 * locking between SCU accesses is handled for the caller. 316 * 317 * This function may sleep. 318 */ 319 int intel_scu_ipc_ioread32(u16 addr, u32 *data) 320 { 321 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; 322 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 323 } 324 EXPORT_SYMBOL(intel_scu_ipc_ioread32); 325 326 /** 327 * intel_scu_ipc_iowrite8 - write a byte via the SCU 328 * @addr: register on SCU 329 * @data: byte to write 330 * 331 * Write a single register. Returns 0 on success or an error code. All 332 * locking between SCU accesses is handled for the caller. 333 * 334 * This function may sleep. 335 */ 336 int intel_scu_ipc_iowrite8(u16 addr, u8 data) 337 { 338 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 339 } 340 EXPORT_SYMBOL(intel_scu_ipc_iowrite8); 341 342 /** 343 * intel_scu_ipc_iowrite16 - write a word via the SCU 344 * @addr: register on SCU 345 * @data: word to write 346 * 347 * Write two registers. Returns 0 on success or an error code. All 348 * locking between SCU accesses is handled for the caller. 349 * 350 * This function may sleep. 351 */ 352 int intel_scu_ipc_iowrite16(u16 addr, u16 data) 353 { 354 u16 x[2] = {addr, addr + 1 }; 355 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 356 } 357 EXPORT_SYMBOL(intel_scu_ipc_iowrite16); 358 359 /** 360 * intel_scu_ipc_iowrite32 - write a dword via the SCU 361 * @addr: register on SCU 362 * @data: dword to write 363 * 364 * Write four registers. Returns 0 on success or an error code. All 365 * locking between SCU accesses is handled for the caller. 366 * 367 * This function may sleep. 368 */ 369 int intel_scu_ipc_iowrite32(u16 addr, u32 data) 370 { 371 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; 372 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 373 } 374 EXPORT_SYMBOL(intel_scu_ipc_iowrite32); 375 376 /** 377 * intel_scu_ipc_readvv - read a set of registers 378 * @addr: register list 379 * @data: bytes to return 380 * @len: length of array 381 * 382 * Read registers. Returns 0 on success or an error code. All 383 * locking between SCU accesses is handled for the caller. 384 * 385 * The largest array length permitted by the hardware is 5 items. 386 * 387 * This function may sleep. 388 */ 389 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) 390 { 391 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 392 } 393 EXPORT_SYMBOL(intel_scu_ipc_readv); 394 395 /** 396 * intel_scu_ipc_writev - write a set of registers 397 * @addr: register list 398 * @data: bytes to write 399 * @len: length of array 400 * 401 * Write registers. Returns 0 on success or an error code. All 402 * locking between SCU accesses is handled for the caller. 403 * 404 * The largest array length permitted by the hardware is 5 items. 405 * 406 * This function may sleep. 407 * 408 */ 409 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) 410 { 411 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 412 } 413 EXPORT_SYMBOL(intel_scu_ipc_writev); 414 415 416 /** 417 * intel_scu_ipc_update_register - r/m/w a register 418 * @addr: register address 419 * @bits: bits to update 420 * @mask: mask of bits to update 421 * 422 * Read-modify-write power control unit register. The first data argument 423 * must be register value and second is mask value 424 * mask is a bitmap that indicates which bits to update. 425 * 0 = masked. Don't modify this bit, 1 = modify this bit. 426 * returns 0 on success or an error code. 427 * 428 * This function may sleep. Locking between SCU accesses is handled 429 * for the caller. 430 */ 431 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) 432 { 433 u8 data[2] = { bits, mask }; 434 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); 435 } 436 EXPORT_SYMBOL(intel_scu_ipc_update_register); 437 438 /** 439 * intel_scu_ipc_simple_command - send a simple command 440 * @cmd: command 441 * @sub: sub type 442 * 443 * Issue a simple command to the SCU. Do not use this interface if 444 * you must then access data as any data values may be overwritten 445 * by another SCU access by the time this function returns. 446 * 447 * This function may sleep. Locking for SCU accesses is handled for 448 * the caller. 449 */ 450 int intel_scu_ipc_simple_command(int cmd, int sub) 451 { 452 int err; 453 454 mutex_lock(&ipclock); 455 if (ipcdev.pdev == NULL) { 456 mutex_unlock(&ipclock); 457 return -ENODEV; 458 } 459 ipc_command(sub << 12 | cmd); 460 err = intel_scu_ipc_check_status(); 461 mutex_unlock(&ipclock); 462 return err; 463 } 464 EXPORT_SYMBOL(intel_scu_ipc_simple_command); 465 466 /** 467 * intel_scu_ipc_command - command with data 468 * @cmd: command 469 * @sub: sub type 470 * @in: input data 471 * @inlen: input length in dwords 472 * @out: output data 473 * @outlein: output length in dwords 474 * 475 * Issue a command to the SCU which involves data transfers. Do the 476 * data copies under the lock but leave it for the caller to interpret 477 */ 478 479 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, 480 u32 *out, int outlen) 481 { 482 int i, err; 483 484 mutex_lock(&ipclock); 485 if (ipcdev.pdev == NULL) { 486 mutex_unlock(&ipclock); 487 return -ENODEV; 488 } 489 490 for (i = 0; i < inlen; i++) 491 ipc_data_writel(*in++, 4 * i); 492 493 ipc_command((inlen << 16) | (sub << 12) | cmd); 494 err = intel_scu_ipc_check_status(); 495 496 if (!err) { 497 for (i = 0; i < outlen; i++) 498 *out++ = ipc_data_readl(4 * i); 499 } 500 501 mutex_unlock(&ipclock); 502 return err; 503 } 504 EXPORT_SYMBOL(intel_scu_ipc_command); 505 506 /*I2C commands */ 507 #define IPC_I2C_WRITE 1 /* I2C Write command */ 508 #define IPC_I2C_READ 2 /* I2C Read command */ 509 510 /** 511 * intel_scu_ipc_i2c_cntrl - I2C read/write operations 512 * @addr: I2C address + command bits 513 * @data: data to read/write 514 * 515 * Perform an an I2C read/write operation via the SCU. All locking is 516 * handled for the caller. This function may sleep. 517 * 518 * Returns an error code or 0 on success. 519 * 520 * This has to be in the IPC driver for the locking. 521 */ 522 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) 523 { 524 u32 cmd = 0; 525 526 mutex_lock(&ipclock); 527 if (ipcdev.pdev == NULL) { 528 mutex_unlock(&ipclock); 529 return -ENODEV; 530 } 531 cmd = (addr >> 24) & 0xFF; 532 if (cmd == IPC_I2C_READ) { 533 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); 534 /* Write not getting updated without delay */ 535 mdelay(1); 536 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR); 537 } else if (cmd == IPC_I2C_WRITE) { 538 writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR); 539 mdelay(1); 540 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); 541 } else { 542 dev_err(&ipcdev.pdev->dev, 543 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); 544 545 mutex_unlock(&ipclock); 546 return -EIO; 547 } 548 mutex_unlock(&ipclock); 549 return 0; 550 } 551 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); 552 553 /* 554 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 555 * When ioc bit is set to 1, caller api must wait for interrupt handler called 556 * which in turn unlocks the caller api. Currently this is not used 557 * 558 * This is edge triggered so we need take no action to clear anything 559 */ 560 static irqreturn_t ioc(int irq, void *dev_id) 561 { 562 if (ipcdev.irq_mode) 563 complete(&ipcdev.cmd_complete); 564 565 return IRQ_HANDLED; 566 } 567 568 /** 569 * ipc_probe - probe an Intel SCU IPC 570 * @dev: the PCI device matching 571 * @id: entry in the match table 572 * 573 * Enable and install an intel SCU IPC. This appears in the PCI space 574 * but uses some hard coded addresses as well. 575 */ 576 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id) 577 { 578 int err; 579 struct intel_scu_ipc_pdata_t *pdata; 580 resource_size_t pci_resource; 581 582 if (ipcdev.pdev) /* We support only one SCU */ 583 return -EBUSY; 584 585 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data; 586 587 ipcdev.pdev = pci_dev_get(dev); 588 ipcdev.irq_mode = pdata->irq_mode; 589 590 err = pci_enable_device(dev); 591 if (err) 592 return err; 593 594 err = pci_request_regions(dev, "intel_scu_ipc"); 595 if (err) 596 return err; 597 598 pci_resource = pci_resource_start(dev, 0); 599 if (!pci_resource) 600 return -ENOMEM; 601 602 init_completion(&ipcdev.cmd_complete); 603 604 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev)) 605 return -EBUSY; 606 607 ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len); 608 if (!ipcdev.ipc_base) 609 return -ENOMEM; 610 611 ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len); 612 if (!ipcdev.i2c_base) { 613 iounmap(ipcdev.ipc_base); 614 return -ENOMEM; 615 } 616 617 intel_scu_devices_create(); 618 619 return 0; 620 } 621 622 /** 623 * ipc_remove - remove a bound IPC device 624 * @pdev: PCI device 625 * 626 * In practice the SCU is not removable but this function is also 627 * called for each device on a module unload or cleanup which is the 628 * path that will get used. 629 * 630 * Free up the mappings and release the PCI resources 631 */ 632 static void ipc_remove(struct pci_dev *pdev) 633 { 634 free_irq(pdev->irq, &ipcdev); 635 pci_release_regions(pdev); 636 pci_dev_put(ipcdev.pdev); 637 iounmap(ipcdev.ipc_base); 638 iounmap(ipcdev.i2c_base); 639 ipcdev.pdev = NULL; 640 intel_scu_devices_destroy(); 641 } 642 643 static const struct pci_device_id pci_ids[] = { 644 { 645 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT), 646 (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata, 647 }, { 648 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), 649 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, 650 }, { 651 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW), 652 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, 653 }, { 654 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), 655 (kernel_ulong_t)&intel_scu_ipc_tangier_pdata, 656 }, { 657 0, 658 } 659 }; 660 MODULE_DEVICE_TABLE(pci, pci_ids); 661 662 static struct pci_driver ipc_driver = { 663 .name = "intel_scu_ipc", 664 .id_table = pci_ids, 665 .probe = ipc_probe, 666 .remove = ipc_remove, 667 }; 668 669 670 static int __init intel_scu_ipc_init(void) 671 { 672 platform = intel_mid_identify_cpu(); 673 if (platform == 0) 674 return -ENODEV; 675 return pci_register_driver(&ipc_driver); 676 } 677 678 static void __exit intel_scu_ipc_exit(void) 679 { 680 pci_unregister_driver(&ipc_driver); 681 } 682 683 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>"); 684 MODULE_DESCRIPTION("Intel SCU IPC driver"); 685 MODULE_LICENSE("GPL"); 686 687 module_init(intel_scu_ipc_init); 688 module_exit(intel_scu_ipc_exit); 689