1 /*
2  * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3  *
4  * (C) Copyright 2008-2010 Intel Corporation
5  * Author: Sreedhara DS (sreedhara.ds@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * SCU running in ARC processor communicates with other entity running in IA
13  * core through IPC mechanism which in turn messaging between IA core ad SCU.
14  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17  * along with other APIs.
18  */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/intel-mid.h>
29 #include <asm/intel_scu_ipc.h>
30 
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
37 
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W      0 /* Register write */
40 #define IPC_CMD_PCNTRL_R      1 /* Register read */
41 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
42 
43 /*
44  * IPC register summary
45  *
46  * IPC register blocks are memory mapped at fixed address of 0xFF11C000
47  * To read or write information to the SCU, driver writes to IPC-1 memory
48  * mapped registers (base address 0xFF11C000). The following is the IPC
49  * mechanism
50  *
51  * 1. IA core cDMI interface claims this transaction and converts it to a
52  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
53  *
54  * 2. South Complex cDMI block receives this message and writes it to
55  *    the IPC-1 register block, causing an interrupt to the SCU
56  *
57  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
58  *    message handler is called within firmware.
59  */
60 
61 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
62 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
63 #define IPC_IOC	          0x100		/* IPC command register IOC bit */
64 
65 #define PCI_DEVICE_ID_LINCROFT		0x082a
66 #define PCI_DEVICE_ID_PENWELL		0x080e
67 #define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
68 #define PCI_DEVICE_ID_TANGIER		0x11a0
69 
70 /* intel scu ipc driver data*/
71 struct intel_scu_ipc_pdata_t {
72 	u32 ipc_base;
73 	u32 i2c_base;
74 	u32 ipc_len;
75 	u32 i2c_len;
76 	u8 irq_mode;
77 };
78 
79 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
80 	.ipc_base = 0xff11c000,
81 	.i2c_base = 0xff12b000,
82 	.ipc_len = 0x100,
83 	.i2c_len = 0x10,
84 	.irq_mode = 0,
85 };
86 
87 /* Penwell and Cloverview */
88 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
89 	.ipc_base = 0xff11c000,
90 	.i2c_base = 0xff12b000,
91 	.ipc_len = 0x100,
92 	.i2c_len = 0x10,
93 	.irq_mode = 1,
94 };
95 
96 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
97 	.ipc_base = 0xff009000,
98 	.i2c_base  = 0xff00d000,
99 	.ipc_len  = 0x100,
100 	.i2c_len = 0x10,
101 	.irq_mode = 0,
102 };
103 
104 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
105 static void ipc_remove(struct pci_dev *pdev);
106 
107 struct intel_scu_ipc_dev {
108 	struct pci_dev *pdev;
109 	void __iomem *ipc_base;
110 	void __iomem *i2c_base;
111 	struct completion cmd_complete;
112 	u8 irq_mode;
113 };
114 
115 static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
116 
117 static int platform;		/* Platform type */
118 
119 /*
120  * IPC Read Buffer (Read Only):
121  * 16 byte buffer for receiving data from SCU, if IPC command
122  * processing results in response data
123  */
124 #define IPC_READ_BUFFER		0x90
125 
126 #define IPC_I2C_CNTRL_ADDR	0
127 #define I2C_DATA_ADDR		0x04
128 
129 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
130 
131 /*
132  * Command Register (Write Only):
133  * A write to this register results in an interrupt to the SCU core processor
134  * Format:
135  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
136  */
137 static inline void ipc_command(u32 cmd) /* Send ipc command */
138 {
139 	if (ipcdev.irq_mode) {
140 		reinit_completion(&ipcdev.cmd_complete);
141 		writel(cmd | IPC_IOC, ipcdev.ipc_base);
142 	}
143 	writel(cmd, ipcdev.ipc_base);
144 }
145 
146 /*
147  * IPC Write Buffer (Write Only):
148  * 16-byte buffer for sending data associated with IPC command to
149  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
150  */
151 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
152 {
153 	writel(data, ipcdev.ipc_base + 0x80 + offset);
154 }
155 
156 /*
157  * Status Register (Read Only):
158  * Driver will read this register to get the ready/busy status of the IPC
159  * block and error status of the IPC command that was just processed by SCU
160  * Format:
161  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
162  */
163 
164 static inline u8 ipc_read_status(void)
165 {
166 	return __raw_readl(ipcdev.ipc_base + 0x04);
167 }
168 
169 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
170 {
171 	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
172 }
173 
174 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
175 {
176 	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
177 }
178 
179 static inline int busy_loop(void) /* Wait till scu status is busy */
180 {
181 	u32 status = 0;
182 	u32 loop_count = 0;
183 
184 	status = ipc_read_status();
185 	while (status & 1) {
186 		udelay(1); /* scu processing time is in few u secods */
187 		status = ipc_read_status();
188 		loop_count++;
189 		/* break if scu doesn't reset busy bit after huge retry */
190 		if (loop_count > 100000) {
191 			dev_err(&ipcdev.pdev->dev, "IPC timed out");
192 			return -ETIMEDOUT;
193 		}
194 	}
195 	if ((status >> 1) & 1)
196 		return -EIO;
197 
198 	return 0;
199 }
200 
201 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
202 static inline int ipc_wait_for_interrupt(void)
203 {
204 	int status;
205 
206 	if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) {
207 		struct device *dev = &ipcdev.pdev->dev;
208 		dev_err(dev, "IPC timed out\n");
209 		return -ETIMEDOUT;
210 	}
211 
212 	status = ipc_read_status();
213 
214 	if ((status >> 1) & 1)
215 		return -EIO;
216 
217 	return 0;
218 }
219 
220 int intel_scu_ipc_check_status(void)
221 {
222 	return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop();
223 }
224 
225 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
226 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
227 {
228 	int nc;
229 	u32 offset = 0;
230 	int err;
231 	u8 cbuf[IPC_WWBUF_SIZE] = { };
232 	u32 *wbuf = (u32 *)&cbuf;
233 
234 	mutex_lock(&ipclock);
235 
236 	memset(cbuf, 0, sizeof(cbuf));
237 
238 	if (ipcdev.pdev == NULL) {
239 		mutex_unlock(&ipclock);
240 		return -ENODEV;
241 	}
242 
243 	for (nc = 0; nc < count; nc++, offset += 2) {
244 		cbuf[offset] = addr[nc];
245 		cbuf[offset + 1] = addr[nc] >> 8;
246 	}
247 
248 	if (id == IPC_CMD_PCNTRL_R) {
249 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
250 			ipc_data_writel(wbuf[nc], offset);
251 		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
252 	} else if (id == IPC_CMD_PCNTRL_W) {
253 		for (nc = 0; nc < count; nc++, offset += 1)
254 			cbuf[offset] = data[nc];
255 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
256 			ipc_data_writel(wbuf[nc], offset);
257 		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
258 	} else if (id == IPC_CMD_PCNTRL_M) {
259 		cbuf[offset] = data[0];
260 		cbuf[offset + 1] = data[1];
261 		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
262 		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
263 	}
264 
265 	err = intel_scu_ipc_check_status();
266 	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
267 		/* Workaround: values are read as 0 without memcpy_fromio */
268 		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
269 		for (nc = 0; nc < count; nc++)
270 			data[nc] = ipc_data_readb(nc);
271 	}
272 	mutex_unlock(&ipclock);
273 	return err;
274 }
275 
276 /**
277  *	intel_scu_ipc_ioread8		-	read a word via the SCU
278  *	@addr: register on SCU
279  *	@data: return pointer for read byte
280  *
281  *	Read a single register. Returns 0 on success or an error code. All
282  *	locking between SCU accesses is handled for the caller.
283  *
284  *	This function may sleep.
285  */
286 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
287 {
288 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
289 }
290 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
291 
292 /**
293  *	intel_scu_ipc_ioread16		-	read a word via the SCU
294  *	@addr: register on SCU
295  *	@data: return pointer for read word
296  *
297  *	Read a register pair. Returns 0 on success or an error code. All
298  *	locking between SCU accesses is handled for the caller.
299  *
300  *	This function may sleep.
301  */
302 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
303 {
304 	u16 x[2] = {addr, addr + 1 };
305 	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
306 }
307 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
308 
309 /**
310  *	intel_scu_ipc_ioread32		-	read a dword via the SCU
311  *	@addr: register on SCU
312  *	@data: return pointer for read dword
313  *
314  *	Read four registers. Returns 0 on success or an error code. All
315  *	locking between SCU accesses is handled for the caller.
316  *
317  *	This function may sleep.
318  */
319 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
320 {
321 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
322 	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
323 }
324 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
325 
326 /**
327  *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
328  *	@addr: register on SCU
329  *	@data: byte to write
330  *
331  *	Write a single register. Returns 0 on success or an error code. All
332  *	locking between SCU accesses is handled for the caller.
333  *
334  *	This function may sleep.
335  */
336 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
337 {
338 	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
339 }
340 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
341 
342 /**
343  *	intel_scu_ipc_iowrite16		-	write a word via the SCU
344  *	@addr: register on SCU
345  *	@data: word to write
346  *
347  *	Write two registers. Returns 0 on success or an error code. All
348  *	locking between SCU accesses is handled for the caller.
349  *
350  *	This function may sleep.
351  */
352 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
353 {
354 	u16 x[2] = {addr, addr + 1 };
355 	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
356 }
357 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
358 
359 /**
360  *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
361  *	@addr: register on SCU
362  *	@data: dword to write
363  *
364  *	Write four registers. Returns 0 on success or an error code. All
365  *	locking between SCU accesses is handled for the caller.
366  *
367  *	This function may sleep.
368  */
369 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
370 {
371 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
372 	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
373 }
374 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
375 
376 /**
377  *	intel_scu_ipc_readvv		-	read a set of registers
378  *	@addr: register list
379  *	@data: bytes to return
380  *	@len: length of array
381  *
382  *	Read registers. Returns 0 on success or an error code. All
383  *	locking between SCU accesses is handled for the caller.
384  *
385  *	The largest array length permitted by the hardware is 5 items.
386  *
387  *	This function may sleep.
388  */
389 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
390 {
391 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
392 }
393 EXPORT_SYMBOL(intel_scu_ipc_readv);
394 
395 /**
396  *	intel_scu_ipc_writev		-	write a set of registers
397  *	@addr: register list
398  *	@data: bytes to write
399  *	@len: length of array
400  *
401  *	Write registers. Returns 0 on success or an error code. All
402  *	locking between SCU accesses is handled for the caller.
403  *
404  *	The largest array length permitted by the hardware is 5 items.
405  *
406  *	This function may sleep.
407  *
408  */
409 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
410 {
411 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
412 }
413 EXPORT_SYMBOL(intel_scu_ipc_writev);
414 
415 
416 /**
417  *	intel_scu_ipc_update_register	-	r/m/w a register
418  *	@addr: register address
419  *	@bits: bits to update
420  *	@mask: mask of bits to update
421  *
422  *	Read-modify-write power control unit register. The first data argument
423  *	must be register value and second is mask value
424  *	mask is a bitmap that indicates which bits to update.
425  *	0 = masked. Don't modify this bit, 1 = modify this bit.
426  *	returns 0 on success or an error code.
427  *
428  *	This function may sleep. Locking between SCU accesses is handled
429  *	for the caller.
430  */
431 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
432 {
433 	u8 data[2] = { bits, mask };
434 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
435 }
436 EXPORT_SYMBOL(intel_scu_ipc_update_register);
437 
438 /**
439  *	intel_scu_ipc_simple_command	-	send a simple command
440  *	@cmd: command
441  *	@sub: sub type
442  *
443  *	Issue a simple command to the SCU. Do not use this interface if
444  *	you must then access data as any data values may be overwritten
445  *	by another SCU access by the time this function returns.
446  *
447  *	This function may sleep. Locking for SCU accesses is handled for
448  *	the caller.
449  */
450 int intel_scu_ipc_simple_command(int cmd, int sub)
451 {
452 	int err;
453 
454 	mutex_lock(&ipclock);
455 	if (ipcdev.pdev == NULL) {
456 		mutex_unlock(&ipclock);
457 		return -ENODEV;
458 	}
459 	ipc_command(sub << 12 | cmd);
460 	err = intel_scu_ipc_check_status();
461 	mutex_unlock(&ipclock);
462 	return err;
463 }
464 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
465 
466 /**
467  *	intel_scu_ipc_command	-	command with data
468  *	@cmd: command
469  *	@sub: sub type
470  *	@in: input data
471  *	@inlen: input length in dwords
472  *	@out: output data
473  *	@outlein: output length in dwords
474  *
475  *	Issue a command to the SCU which involves data transfers. Do the
476  *	data copies under the lock but leave it for the caller to interpret
477  */
478 
479 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
480 							u32 *out, int outlen)
481 {
482 	int i, err;
483 
484 	mutex_lock(&ipclock);
485 	if (ipcdev.pdev == NULL) {
486 		mutex_unlock(&ipclock);
487 		return -ENODEV;
488 	}
489 
490 	for (i = 0; i < inlen; i++)
491 		ipc_data_writel(*in++, 4 * i);
492 
493 	ipc_command((inlen << 16) | (sub << 12) | cmd);
494 	err = intel_scu_ipc_check_status();
495 
496 	if (!err) {
497 		for (i = 0; i < outlen; i++)
498 			*out++ = ipc_data_readl(4 * i);
499 	}
500 
501 	mutex_unlock(&ipclock);
502 	return err;
503 }
504 EXPORT_SYMBOL(intel_scu_ipc_command);
505 
506 /*I2C commands */
507 #define IPC_I2C_WRITE 1 /* I2C Write command */
508 #define IPC_I2C_READ  2 /* I2C Read command */
509 
510 /**
511  *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
512  *	@addr: I2C address + command bits
513  *	@data: data to read/write
514  *
515  *	Perform an an I2C read/write operation via the SCU. All locking is
516  *	handled for the caller. This function may sleep.
517  *
518  *	Returns an error code or 0 on success.
519  *
520  *	This has to be in the IPC driver for the locking.
521  */
522 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
523 {
524 	u32 cmd = 0;
525 
526 	mutex_lock(&ipclock);
527 	if (ipcdev.pdev == NULL) {
528 		mutex_unlock(&ipclock);
529 		return -ENODEV;
530 	}
531 	cmd = (addr >> 24) & 0xFF;
532 	if (cmd == IPC_I2C_READ) {
533 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
534 		/* Write not getting updated without delay */
535 		mdelay(1);
536 		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
537 	} else if (cmd == IPC_I2C_WRITE) {
538 		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
539 		mdelay(1);
540 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
541 	} else {
542 		dev_err(&ipcdev.pdev->dev,
543 			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
544 
545 		mutex_unlock(&ipclock);
546 		return -EIO;
547 	}
548 	mutex_unlock(&ipclock);
549 	return 0;
550 }
551 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
552 
553 /*
554  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
555  * When ioc bit is set to 1, caller api must wait for interrupt handler called
556  * which in turn unlocks the caller api. Currently this is not used
557  *
558  * This is edge triggered so we need take no action to clear anything
559  */
560 static irqreturn_t ioc(int irq, void *dev_id)
561 {
562 	if (ipcdev.irq_mode)
563 		complete(&ipcdev.cmd_complete);
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /**
569  *	ipc_probe	-	probe an Intel SCU IPC
570  *	@dev: the PCI device matching
571  *	@id: entry in the match table
572  *
573  *	Enable and install an intel SCU IPC. This appears in the PCI space
574  *	but uses some hard coded addresses as well.
575  */
576 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
577 {
578 	int err;
579 	struct intel_scu_ipc_pdata_t *pdata;
580 	resource_size_t pci_resource;
581 
582 	if (ipcdev.pdev)		/* We support only one SCU */
583 		return -EBUSY;
584 
585 	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
586 
587 	ipcdev.pdev = pci_dev_get(dev);
588 	ipcdev.irq_mode = pdata->irq_mode;
589 
590 	err = pci_enable_device(dev);
591 	if (err)
592 		return err;
593 
594 	err = pci_request_regions(dev, "intel_scu_ipc");
595 	if (err)
596 		return err;
597 
598 	pci_resource = pci_resource_start(dev, 0);
599 	if (!pci_resource)
600 		return -ENOMEM;
601 
602 	init_completion(&ipcdev.cmd_complete);
603 
604 	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
605 		return -EBUSY;
606 
607 	ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len);
608 	if (!ipcdev.ipc_base)
609 		return -ENOMEM;
610 
611 	ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
612 	if (!ipcdev.i2c_base) {
613 		iounmap(ipcdev.ipc_base);
614 		return -ENOMEM;
615 	}
616 
617 	intel_scu_devices_create();
618 
619 	return 0;
620 }
621 
622 /**
623  *	ipc_remove	-	remove a bound IPC device
624  *	@pdev: PCI device
625  *
626  *	In practice the SCU is not removable but this function is also
627  *	called for each device on a module unload or cleanup which is the
628  *	path that will get used.
629  *
630  *	Free up the mappings and release the PCI resources
631  */
632 static void ipc_remove(struct pci_dev *pdev)
633 {
634 	free_irq(pdev->irq, &ipcdev);
635 	pci_release_regions(pdev);
636 	pci_dev_put(ipcdev.pdev);
637 	iounmap(ipcdev.ipc_base);
638 	iounmap(ipcdev.i2c_base);
639 	ipcdev.pdev = NULL;
640 	intel_scu_devices_destroy();
641 }
642 
643 static const struct pci_device_id pci_ids[] = {
644 	{
645 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
646 		(kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
647 	}, {
648 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
649 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
650 	}, {
651 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
652 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
653 	}, {
654 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
655 		(kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
656 	}, {
657 		0,
658 	}
659 };
660 MODULE_DEVICE_TABLE(pci, pci_ids);
661 
662 static struct pci_driver ipc_driver = {
663 	.name = "intel_scu_ipc",
664 	.id_table = pci_ids,
665 	.probe = ipc_probe,
666 	.remove = ipc_remove,
667 };
668 
669 
670 static int __init intel_scu_ipc_init(void)
671 {
672 	platform = intel_mid_identify_cpu();
673 	if (platform == 0)
674 		return -ENODEV;
675 	return  pci_register_driver(&ipc_driver);
676 }
677 
678 static void __exit intel_scu_ipc_exit(void)
679 {
680 	pci_unregister_driver(&ipc_driver);
681 }
682 
683 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
684 MODULE_DESCRIPTION("Intel SCU IPC driver");
685 MODULE_LICENSE("GPL");
686 
687 module_init(intel_scu_ipc_init);
688 module_exit(intel_scu_ipc_exit);
689