1 /* 2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism 3 * 4 * (C) Copyright 2008-2010,2015 Intel Corporation 5 * Author: Sreedhara DS (sreedhara.ds@intel.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * SCU running in ARC processor communicates with other entity running in IA 13 * core through IPC mechanism which in turn messaging between IA core ad SCU. 14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and 15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with 16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) 17 * along with other APIs. 18 */ 19 #include <linux/delay.h> 20 #include <linux/errno.h> 21 #include <linux/init.h> 22 #include <linux/device.h> 23 #include <linux/pm.h> 24 #include <linux/pci.h> 25 #include <linux/interrupt.h> 26 #include <linux/sfi.h> 27 #include <linux/module.h> 28 #include <asm/intel-mid.h> 29 #include <asm/intel_scu_ipc.h> 30 31 /* IPC defines the following message types */ 32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ 33 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ 34 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ 35 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ 36 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ 37 38 /* Command id associated with message IPCMSG_PCNTRL */ 39 #define IPC_CMD_PCNTRL_W 0 /* Register write */ 40 #define IPC_CMD_PCNTRL_R 1 /* Register read */ 41 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ 42 43 /* 44 * IPC register summary 45 * 46 * IPC register blocks are memory mapped at fixed address of PCI BAR 0. 47 * To read or write information to the SCU, driver writes to IPC-1 memory 48 * mapped registers. The following is the IPC mechanism 49 * 50 * 1. IA core cDMI interface claims this transaction and converts it to a 51 * Transaction Layer Packet (TLP) message which is sent across the cDMI. 52 * 53 * 2. South Complex cDMI block receives this message and writes it to 54 * the IPC-1 register block, causing an interrupt to the SCU 55 * 56 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate 57 * message handler is called within firmware. 58 */ 59 60 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ 61 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ 62 #define IPC_IOC 0x100 /* IPC command register IOC bit */ 63 64 #define PCI_DEVICE_ID_LINCROFT 0x082a 65 #define PCI_DEVICE_ID_PENWELL 0x080e 66 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea 67 #define PCI_DEVICE_ID_TANGIER 0x11a0 68 69 /* intel scu ipc driver data */ 70 struct intel_scu_ipc_pdata_t { 71 u32 i2c_base; 72 u32 i2c_len; 73 u8 irq_mode; 74 }; 75 76 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = { 77 .i2c_base = 0xff12b000, 78 .i2c_len = 0x10, 79 .irq_mode = 0, 80 }; 81 82 /* Penwell and Cloverview */ 83 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = { 84 .i2c_base = 0xff12b000, 85 .i2c_len = 0x10, 86 .irq_mode = 1, 87 }; 88 89 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = { 90 .i2c_base = 0xff00d000, 91 .i2c_len = 0x10, 92 .irq_mode = 0, 93 }; 94 95 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id); 96 static void ipc_remove(struct pci_dev *pdev); 97 98 struct intel_scu_ipc_dev { 99 struct pci_dev *pdev; 100 void __iomem *ipc_base; 101 void __iomem *i2c_base; 102 struct completion cmd_complete; 103 u8 irq_mode; 104 }; 105 106 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ 107 108 /* 109 * IPC Read Buffer (Read Only): 110 * 16 byte buffer for receiving data from SCU, if IPC command 111 * processing results in response data 112 */ 113 #define IPC_READ_BUFFER 0x90 114 115 #define IPC_I2C_CNTRL_ADDR 0 116 #define I2C_DATA_ADDR 0x04 117 118 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ 119 120 /* 121 * Command Register (Write Only): 122 * A write to this register results in an interrupt to the SCU core processor 123 * Format: 124 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| 125 */ 126 static inline void ipc_command(u32 cmd) /* Send ipc command */ 127 { 128 if (ipcdev.irq_mode) { 129 reinit_completion(&ipcdev.cmd_complete); 130 writel(cmd | IPC_IOC, ipcdev.ipc_base); 131 } 132 writel(cmd, ipcdev.ipc_base); 133 } 134 135 /* 136 * IPC Write Buffer (Write Only): 137 * 16-byte buffer for sending data associated with IPC command to 138 * SCU. Size of the data is specified in the IPC_COMMAND_REG register 139 */ 140 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */ 141 { 142 writel(data, ipcdev.ipc_base + 0x80 + offset); 143 } 144 145 /* 146 * Status Register (Read Only): 147 * Driver will read this register to get the ready/busy status of the IPC 148 * block and error status of the IPC command that was just processed by SCU 149 * Format: 150 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| 151 */ 152 static inline u8 ipc_read_status(void) 153 { 154 return __raw_readl(ipcdev.ipc_base + 0x04); 155 } 156 157 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */ 158 { 159 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset); 160 } 161 162 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */ 163 { 164 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset); 165 } 166 167 /* Wait till scu status is busy */ 168 static inline int busy_loop(void) 169 { 170 u32 status = ipc_read_status(); 171 u32 loop_count = 100000; 172 173 /* break if scu doesn't reset busy bit after huge retry */ 174 while ((status & BIT(0)) && --loop_count) { 175 udelay(1); /* scu processing time is in few u secods */ 176 status = ipc_read_status(); 177 } 178 179 if (status & BIT(0)) { 180 dev_err(&ipcdev.pdev->dev, "IPC timed out"); 181 return -ETIMEDOUT; 182 } 183 184 if (status & BIT(1)) 185 return -EIO; 186 187 return 0; 188 } 189 190 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */ 191 static inline int ipc_wait_for_interrupt(void) 192 { 193 int status; 194 195 if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) { 196 struct device *dev = &ipcdev.pdev->dev; 197 dev_err(dev, "IPC timed out\n"); 198 return -ETIMEDOUT; 199 } 200 201 status = ipc_read_status(); 202 if (status & BIT(1)) 203 return -EIO; 204 205 return 0; 206 } 207 208 static int intel_scu_ipc_check_status(void) 209 { 210 return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop(); 211 } 212 213 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ 214 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) 215 { 216 int nc; 217 u32 offset = 0; 218 int err; 219 u8 cbuf[IPC_WWBUF_SIZE] = { }; 220 u32 *wbuf = (u32 *)&cbuf; 221 222 mutex_lock(&ipclock); 223 224 memset(cbuf, 0, sizeof(cbuf)); 225 226 if (ipcdev.pdev == NULL) { 227 mutex_unlock(&ipclock); 228 return -ENODEV; 229 } 230 231 for (nc = 0; nc < count; nc++, offset += 2) { 232 cbuf[offset] = addr[nc]; 233 cbuf[offset + 1] = addr[nc] >> 8; 234 } 235 236 if (id == IPC_CMD_PCNTRL_R) { 237 for (nc = 0, offset = 0; nc < count; nc++, offset += 4) 238 ipc_data_writel(wbuf[nc], offset); 239 ipc_command((count * 2) << 16 | id << 12 | 0 << 8 | op); 240 } else if (id == IPC_CMD_PCNTRL_W) { 241 for (nc = 0; nc < count; nc++, offset += 1) 242 cbuf[offset] = data[nc]; 243 for (nc = 0, offset = 0; nc < count; nc++, offset += 4) 244 ipc_data_writel(wbuf[nc], offset); 245 ipc_command((count * 3) << 16 | id << 12 | 0 << 8 | op); 246 } else if (id == IPC_CMD_PCNTRL_M) { 247 cbuf[offset] = data[0]; 248 cbuf[offset + 1] = data[1]; 249 ipc_data_writel(wbuf[0], 0); /* Write wbuff */ 250 ipc_command(4 << 16 | id << 12 | 0 << 8 | op); 251 } 252 253 err = intel_scu_ipc_check_status(); 254 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ 255 /* Workaround: values are read as 0 without memcpy_fromio */ 256 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16); 257 for (nc = 0; nc < count; nc++) 258 data[nc] = ipc_data_readb(nc); 259 } 260 mutex_unlock(&ipclock); 261 return err; 262 } 263 264 /** 265 * intel_scu_ipc_ioread8 - read a word via the SCU 266 * @addr: register on SCU 267 * @data: return pointer for read byte 268 * 269 * Read a single register. Returns 0 on success or an error code. All 270 * locking between SCU accesses is handled for the caller. 271 * 272 * This function may sleep. 273 */ 274 int intel_scu_ipc_ioread8(u16 addr, u8 *data) 275 { 276 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 277 } 278 EXPORT_SYMBOL(intel_scu_ipc_ioread8); 279 280 /** 281 * intel_scu_ipc_ioread16 - read a word via the SCU 282 * @addr: register on SCU 283 * @data: return pointer for read word 284 * 285 * Read a register pair. Returns 0 on success or an error code. All 286 * locking between SCU accesses is handled for the caller. 287 * 288 * This function may sleep. 289 */ 290 int intel_scu_ipc_ioread16(u16 addr, u16 *data) 291 { 292 u16 x[2] = {addr, addr + 1}; 293 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 294 } 295 EXPORT_SYMBOL(intel_scu_ipc_ioread16); 296 297 /** 298 * intel_scu_ipc_ioread32 - read a dword via the SCU 299 * @addr: register on SCU 300 * @data: return pointer for read dword 301 * 302 * Read four registers. Returns 0 on success or an error code. All 303 * locking between SCU accesses is handled for the caller. 304 * 305 * This function may sleep. 306 */ 307 int intel_scu_ipc_ioread32(u16 addr, u32 *data) 308 { 309 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; 310 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 311 } 312 EXPORT_SYMBOL(intel_scu_ipc_ioread32); 313 314 /** 315 * intel_scu_ipc_iowrite8 - write a byte via the SCU 316 * @addr: register on SCU 317 * @data: byte to write 318 * 319 * Write a single register. Returns 0 on success or an error code. All 320 * locking between SCU accesses is handled for the caller. 321 * 322 * This function may sleep. 323 */ 324 int intel_scu_ipc_iowrite8(u16 addr, u8 data) 325 { 326 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 327 } 328 EXPORT_SYMBOL(intel_scu_ipc_iowrite8); 329 330 /** 331 * intel_scu_ipc_iowrite16 - write a word via the SCU 332 * @addr: register on SCU 333 * @data: word to write 334 * 335 * Write two registers. Returns 0 on success or an error code. All 336 * locking between SCU accesses is handled for the caller. 337 * 338 * This function may sleep. 339 */ 340 int intel_scu_ipc_iowrite16(u16 addr, u16 data) 341 { 342 u16 x[2] = {addr, addr + 1}; 343 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 344 } 345 EXPORT_SYMBOL(intel_scu_ipc_iowrite16); 346 347 /** 348 * intel_scu_ipc_iowrite32 - write a dword via the SCU 349 * @addr: register on SCU 350 * @data: dword to write 351 * 352 * Write four registers. Returns 0 on success or an error code. All 353 * locking between SCU accesses is handled for the caller. 354 * 355 * This function may sleep. 356 */ 357 int intel_scu_ipc_iowrite32(u16 addr, u32 data) 358 { 359 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; 360 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 361 } 362 EXPORT_SYMBOL(intel_scu_ipc_iowrite32); 363 364 /** 365 * intel_scu_ipc_readvv - read a set of registers 366 * @addr: register list 367 * @data: bytes to return 368 * @len: length of array 369 * 370 * Read registers. Returns 0 on success or an error code. All 371 * locking between SCU accesses is handled for the caller. 372 * 373 * The largest array length permitted by the hardware is 5 items. 374 * 375 * This function may sleep. 376 */ 377 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) 378 { 379 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); 380 } 381 EXPORT_SYMBOL(intel_scu_ipc_readv); 382 383 /** 384 * intel_scu_ipc_writev - write a set of registers 385 * @addr: register list 386 * @data: bytes to write 387 * @len: length of array 388 * 389 * Write registers. Returns 0 on success or an error code. All 390 * locking between SCU accesses is handled for the caller. 391 * 392 * The largest array length permitted by the hardware is 5 items. 393 * 394 * This function may sleep. 395 * 396 */ 397 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) 398 { 399 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); 400 } 401 EXPORT_SYMBOL(intel_scu_ipc_writev); 402 403 /** 404 * intel_scu_ipc_update_register - r/m/w a register 405 * @addr: register address 406 * @bits: bits to update 407 * @mask: mask of bits to update 408 * 409 * Read-modify-write power control unit register. The first data argument 410 * must be register value and second is mask value 411 * mask is a bitmap that indicates which bits to update. 412 * 0 = masked. Don't modify this bit, 1 = modify this bit. 413 * returns 0 on success or an error code. 414 * 415 * This function may sleep. Locking between SCU accesses is handled 416 * for the caller. 417 */ 418 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) 419 { 420 u8 data[2] = { bits, mask }; 421 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); 422 } 423 EXPORT_SYMBOL(intel_scu_ipc_update_register); 424 425 /** 426 * intel_scu_ipc_simple_command - send a simple command 427 * @cmd: command 428 * @sub: sub type 429 * 430 * Issue a simple command to the SCU. Do not use this interface if 431 * you must then access data as any data values may be overwritten 432 * by another SCU access by the time this function returns. 433 * 434 * This function may sleep. Locking for SCU accesses is handled for 435 * the caller. 436 */ 437 int intel_scu_ipc_simple_command(int cmd, int sub) 438 { 439 int err; 440 441 mutex_lock(&ipclock); 442 if (ipcdev.pdev == NULL) { 443 mutex_unlock(&ipclock); 444 return -ENODEV; 445 } 446 ipc_command(sub << 12 | cmd); 447 err = intel_scu_ipc_check_status(); 448 mutex_unlock(&ipclock); 449 return err; 450 } 451 EXPORT_SYMBOL(intel_scu_ipc_simple_command); 452 453 /** 454 * intel_scu_ipc_command - command with data 455 * @cmd: command 456 * @sub: sub type 457 * @in: input data 458 * @inlen: input length in dwords 459 * @out: output data 460 * @outlein: output length in dwords 461 * 462 * Issue a command to the SCU which involves data transfers. Do the 463 * data copies under the lock but leave it for the caller to interpret 464 */ 465 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, 466 u32 *out, int outlen) 467 { 468 int i, err; 469 470 mutex_lock(&ipclock); 471 if (ipcdev.pdev == NULL) { 472 mutex_unlock(&ipclock); 473 return -ENODEV; 474 } 475 476 for (i = 0; i < inlen; i++) 477 ipc_data_writel(*in++, 4 * i); 478 479 ipc_command((inlen << 16) | (sub << 12) | cmd); 480 err = intel_scu_ipc_check_status(); 481 482 if (!err) { 483 for (i = 0; i < outlen; i++) 484 *out++ = ipc_data_readl(4 * i); 485 } 486 487 mutex_unlock(&ipclock); 488 return err; 489 } 490 EXPORT_SYMBOL(intel_scu_ipc_command); 491 492 /* I2C commands */ 493 #define IPC_I2C_WRITE 1 /* I2C Write command */ 494 #define IPC_I2C_READ 2 /* I2C Read command */ 495 496 /** 497 * intel_scu_ipc_i2c_cntrl - I2C read/write operations 498 * @addr: I2C address + command bits 499 * @data: data to read/write 500 * 501 * Perform an an I2C read/write operation via the SCU. All locking is 502 * handled for the caller. This function may sleep. 503 * 504 * Returns an error code or 0 on success. 505 * 506 * This has to be in the IPC driver for the locking. 507 */ 508 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) 509 { 510 u32 cmd = 0; 511 512 mutex_lock(&ipclock); 513 if (ipcdev.pdev == NULL) { 514 mutex_unlock(&ipclock); 515 return -ENODEV; 516 } 517 cmd = (addr >> 24) & 0xFF; 518 if (cmd == IPC_I2C_READ) { 519 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); 520 /* Write not getting updated without delay */ 521 mdelay(1); 522 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR); 523 } else if (cmd == IPC_I2C_WRITE) { 524 writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR); 525 mdelay(1); 526 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); 527 } else { 528 dev_err(&ipcdev.pdev->dev, 529 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); 530 531 mutex_unlock(&ipclock); 532 return -EIO; 533 } 534 mutex_unlock(&ipclock); 535 return 0; 536 } 537 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); 538 539 /* 540 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 541 * When ioc bit is set to 1, caller api must wait for interrupt handler called 542 * which in turn unlocks the caller api. Currently this is not used 543 * 544 * This is edge triggered so we need take no action to clear anything 545 */ 546 static irqreturn_t ioc(int irq, void *dev_id) 547 { 548 if (ipcdev.irq_mode) 549 complete(&ipcdev.cmd_complete); 550 551 return IRQ_HANDLED; 552 } 553 554 /** 555 * ipc_probe - probe an Intel SCU IPC 556 * @dev: the PCI device matching 557 * @id: entry in the match table 558 * 559 * Enable and install an intel SCU IPC. This appears in the PCI space 560 * but uses some hard coded addresses as well. 561 */ 562 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id) 563 { 564 int err; 565 struct intel_scu_ipc_pdata_t *pdata; 566 resource_size_t base; 567 568 if (ipcdev.pdev) /* We support only one SCU */ 569 return -EBUSY; 570 571 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data; 572 573 ipcdev.pdev = pci_dev_get(dev); 574 ipcdev.irq_mode = pdata->irq_mode; 575 576 err = pci_enable_device(dev); 577 if (err) 578 return err; 579 580 err = pci_request_regions(dev, "intel_scu_ipc"); 581 if (err) 582 return err; 583 584 base = pci_resource_start(dev, 0); 585 if (!base) 586 return -ENOMEM; 587 588 init_completion(&ipcdev.cmd_complete); 589 590 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev)) 591 return -EBUSY; 592 593 ipcdev.ipc_base = ioremap_nocache(base, pci_resource_len(dev, 0)); 594 if (!ipcdev.ipc_base) 595 return -ENOMEM; 596 597 ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len); 598 if (!ipcdev.i2c_base) { 599 iounmap(ipcdev.ipc_base); 600 return -ENOMEM; 601 } 602 603 intel_scu_devices_create(); 604 605 return 0; 606 } 607 608 /** 609 * ipc_remove - remove a bound IPC device 610 * @pdev: PCI device 611 * 612 * In practice the SCU is not removable but this function is also 613 * called for each device on a module unload or cleanup which is the 614 * path that will get used. 615 * 616 * Free up the mappings and release the PCI resources 617 */ 618 static void ipc_remove(struct pci_dev *pdev) 619 { 620 free_irq(pdev->irq, &ipcdev); 621 pci_release_regions(pdev); 622 pci_dev_put(ipcdev.pdev); 623 iounmap(ipcdev.ipc_base); 624 iounmap(ipcdev.i2c_base); 625 ipcdev.pdev = NULL; 626 intel_scu_devices_destroy(); 627 } 628 629 static const struct pci_device_id pci_ids[] = { 630 { 631 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT), 632 (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata, 633 }, { 634 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), 635 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, 636 }, { 637 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW), 638 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata, 639 }, { 640 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), 641 (kernel_ulong_t)&intel_scu_ipc_tangier_pdata, 642 }, { 643 0, 644 } 645 }; 646 MODULE_DEVICE_TABLE(pci, pci_ids); 647 648 static struct pci_driver ipc_driver = { 649 .name = "intel_scu_ipc", 650 .id_table = pci_ids, 651 .probe = ipc_probe, 652 .remove = ipc_remove, 653 }; 654 655 static int __init intel_scu_ipc_init(void) 656 { 657 int platform; /* Platform type */ 658 659 platform = intel_mid_identify_cpu(); 660 if (platform == 0) 661 return -ENODEV; 662 return pci_register_driver(&ipc_driver); 663 } 664 665 static void __exit intel_scu_ipc_exit(void) 666 { 667 pci_unregister_driver(&ipc_driver); 668 } 669 670 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>"); 671 MODULE_DESCRIPTION("Intel SCU IPC driver"); 672 MODULE_LICENSE("GPL"); 673 674 module_init(intel_scu_ipc_init); 675 module_exit(intel_scu_ipc_exit); 676