1 /* 2 * Copyright (c) 2009-2010 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Authors: 17 * Jesse Barnes <jbarnes@virtuousgeek.org> 18 */ 19 20 /* 21 * Some Intel Ibex Peak based platforms support so-called "intelligent 22 * power sharing", which allows the CPU and GPU to cooperate to maximize 23 * performance within a given TDP (thermal design point). This driver 24 * performs the coordination between the CPU and GPU, monitors thermal and 25 * power statistics in the platform, and initializes power monitoring 26 * hardware. It also provides a few tunables to control behavior. Its 27 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 28 * by tracking power and thermal budget; secondarily it can boost turbo 29 * performance by allocating more power or thermal budget to the CPU or GPU 30 * based on available headroom and activity. 31 * 32 * The basic algorithm is driven by a 5s moving average of temperature. If 33 * thermal headroom is available, the CPU and/or GPU power clamps may be 34 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 35 * we scale back the clamp. Aside from trigger events (when we're critically 36 * close or over our TDP) we don't adjust the clamps more than once every 37 * five seconds. 38 * 39 * The thermal device (device 31, function 6) has a set of registers that 40 * are updated by the ME firmware. The ME should also take the clamp values 41 * written to those registers and write them to the CPU, but we currently 42 * bypass that functionality and write the CPU MSR directly. 43 * 44 * UNSUPPORTED: 45 * - dual MCP configs 46 * 47 * TODO: 48 * - handle CPU hotplug 49 * - provide turbo enable/disable api 50 * 51 * Related documents: 52 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 53 * - CDI 401376 - Ibex Peak EDS 54 * - ref 26037, 26641 - IPS BIOS spec 55 * - ref 26489 - Nehalem BIOS writer's guide 56 * - ref 26921 - Ibex Peak BIOS Specification 57 */ 58 59 #include <linux/debugfs.h> 60 #include <linux/delay.h> 61 #include <linux/interrupt.h> 62 #include <linux/kernel.h> 63 #include <linux/kthread.h> 64 #include <linux/module.h> 65 #include <linux/pci.h> 66 #include <linux/sched.h> 67 #include <linux/sched/loadavg.h> 68 #include <linux/seq_file.h> 69 #include <linux/string.h> 70 #include <linux/tick.h> 71 #include <linux/timer.h> 72 #include <linux/dmi.h> 73 #include <drm/i915_drm.h> 74 #include <asm/msr.h> 75 #include <asm/processor.h> 76 #include "intel_ips.h" 77 78 #include <linux/io-64-nonatomic-lo-hi.h> 79 80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 81 82 /* 83 * Package level MSRs for monitor/control 84 */ 85 #define PLATFORM_INFO 0xce 86 #define PLATFORM_TDP (1<<29) 87 #define PLATFORM_RATIO (1<<28) 88 89 #define IA32_MISC_ENABLE 0x1a0 90 #define IA32_MISC_TURBO_EN (1ULL<<38) 91 92 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 93 #define TURBO_TDC_OVR_EN (1UL<<31) 94 #define TURBO_TDC_MASK (0x000000007fff0000UL) 95 #define TURBO_TDC_SHIFT (16) 96 #define TURBO_TDP_OVR_EN (1UL<<15) 97 #define TURBO_TDP_MASK (0x0000000000003fffUL) 98 99 /* 100 * Core/thread MSRs for monitoring 101 */ 102 #define IA32_PERF_CTL 0x199 103 #define IA32_PERF_TURBO_DIS (1ULL<<32) 104 105 /* 106 * Thermal PCI device regs 107 */ 108 #define THM_CFG_TBAR 0x10 109 #define THM_CFG_TBAR_HI 0x14 110 111 #define THM_TSIU 0x00 112 #define THM_TSE 0x01 113 #define TSE_EN 0xb8 114 #define THM_TSS 0x02 115 #define THM_TSTR 0x03 116 #define THM_TSTTP 0x04 117 #define THM_TSCO 0x08 118 #define THM_TSES 0x0c 119 #define THM_TSGPEN 0x0d 120 #define TSGPEN_HOT_LOHI (1<<1) 121 #define TSGPEN_CRIT_LOHI (1<<2) 122 #define THM_TSPC 0x0e 123 #define THM_PPEC 0x10 124 #define THM_CTA 0x12 125 #define THM_PTA 0x14 126 #define PTA_SLOPE_MASK (0xff00) 127 #define PTA_SLOPE_SHIFT 8 128 #define PTA_OFFSET_MASK (0x00ff) 129 #define THM_MGTA 0x16 130 #define MGTA_SLOPE_MASK (0xff00) 131 #define MGTA_SLOPE_SHIFT 8 132 #define MGTA_OFFSET_MASK (0x00ff) 133 #define THM_TRC 0x1a 134 #define TRC_CORE2_EN (1<<15) 135 #define TRC_THM_EN (1<<12) 136 #define TRC_C6_WAR (1<<8) 137 #define TRC_CORE1_EN (1<<7) 138 #define TRC_CORE_PWR (1<<6) 139 #define TRC_PCH_EN (1<<5) 140 #define TRC_MCH_EN (1<<4) 141 #define TRC_DIMM4 (1<<3) 142 #define TRC_DIMM3 (1<<2) 143 #define TRC_DIMM2 (1<<1) 144 #define TRC_DIMM1 (1<<0) 145 #define THM_TES 0x20 146 #define THM_TEN 0x21 147 #define TEN_UPDATE_EN 1 148 #define THM_PSC 0x24 149 #define PSC_NTG (1<<0) /* No GFX turbo support */ 150 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 151 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 152 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 153 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 154 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 155 #define PSP_PBRT (1<<4) /* BIOS run time support */ 156 #define THM_CTV1 0x30 157 #define CTV_TEMP_ERROR (1<<15) 158 #define CTV_TEMP_MASK 0x3f 159 #define CTV_ 160 #define THM_CTV2 0x32 161 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 162 #define THM_AE 0x3f 163 #define THM_HTS 0x50 /* 32 bits */ 164 #define HTS_PCPL_MASK (0x7fe00000) 165 #define HTS_PCPL_SHIFT 21 166 #define HTS_GPL_MASK (0x001ff000) 167 #define HTS_GPL_SHIFT 12 168 #define HTS_PP_MASK (0x00000c00) 169 #define HTS_PP_SHIFT 10 170 #define HTS_PP_DEF 0 171 #define HTS_PP_PROC 1 172 #define HTS_PP_BAL 2 173 #define HTS_PP_GFX 3 174 #define HTS_PCTD_DIS (1<<9) 175 #define HTS_GTD_DIS (1<<8) 176 #define HTS_PTL_MASK (0x000000fe) 177 #define HTS_PTL_SHIFT 1 178 #define HTS_NVV (1<<0) 179 #define THM_HTSHI 0x54 /* 16 bits */ 180 #define HTS2_PPL_MASK (0x03ff) 181 #define HTS2_PRST_MASK (0x3c00) 182 #define HTS2_PRST_SHIFT 10 183 #define HTS2_PRST_UNLOADED 0 184 #define HTS2_PRST_RUNNING 1 185 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 186 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 187 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 188 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 189 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 190 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 191 #define THM_PTL 0x56 192 #define THM_MGTV 0x58 193 #define TV_MASK 0x000000000000ff00 194 #define TV_SHIFT 8 195 #define THM_PTV 0x60 196 #define PTV_MASK 0x00ff 197 #define THM_MMGPC 0x64 198 #define THM_MPPC 0x66 199 #define THM_MPCPC 0x68 200 #define THM_TSPIEN 0x82 201 #define TSPIEN_AUX_LOHI (1<<0) 202 #define TSPIEN_HOT_LOHI (1<<1) 203 #define TSPIEN_CRIT_LOHI (1<<2) 204 #define TSPIEN_AUX2_LOHI (1<<3) 205 #define THM_TSLOCK 0x83 206 #define THM_ATR 0x84 207 #define THM_TOF 0x87 208 #define THM_STS 0x98 209 #define STS_PCPL_MASK (0x7fe00000) 210 #define STS_PCPL_SHIFT 21 211 #define STS_GPL_MASK (0x001ff000) 212 #define STS_GPL_SHIFT 12 213 #define STS_PP_MASK (0x00000c00) 214 #define STS_PP_SHIFT 10 215 #define STS_PP_DEF 0 216 #define STS_PP_PROC 1 217 #define STS_PP_BAL 2 218 #define STS_PP_GFX 3 219 #define STS_PCTD_DIS (1<<9) 220 #define STS_GTD_DIS (1<<8) 221 #define STS_PTL_MASK (0x000000fe) 222 #define STS_PTL_SHIFT 1 223 #define STS_NVV (1<<0) 224 #define THM_SEC 0x9c 225 #define SEC_ACK (1<<0) 226 #define THM_TC3 0xa4 227 #define THM_TC1 0xa8 228 #define STS_PPL_MASK (0x0003ff00) 229 #define STS_PPL_SHIFT 16 230 #define THM_TC2 0xac 231 #define THM_DTV 0xb0 232 #define THM_ITV 0xd8 233 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 234 #define ITV_ME_SEQNO_SHIFT (16) 235 #define ITV_MCH_TEMP_MASK 0x0000ff00 236 #define ITV_MCH_TEMP_SHIFT (8) 237 #define ITV_PCH_TEMP_MASK 0x000000ff 238 239 #define thm_readb(off) readb(ips->regmap + (off)) 240 #define thm_readw(off) readw(ips->regmap + (off)) 241 #define thm_readl(off) readl(ips->regmap + (off)) 242 #define thm_readq(off) readq(ips->regmap + (off)) 243 244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 245 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 246 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 247 248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 249 static bool late_i915_load = false; 250 251 /* For initial average collection */ 252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 255 256 /* Per-SKU limits */ 257 struct ips_mcp_limits { 258 int mcp_power_limit; /* mW units */ 259 int core_power_limit; 260 int mch_power_limit; 261 int core_temp_limit; /* degrees C */ 262 int mch_temp_limit; 263 }; 264 265 /* Max temps are -10 degrees C to avoid PROCHOT# */ 266 267 static struct ips_mcp_limits ips_sv_limits = { 268 .mcp_power_limit = 35000, 269 .core_power_limit = 29000, 270 .mch_power_limit = 20000, 271 .core_temp_limit = 95, 272 .mch_temp_limit = 90 273 }; 274 275 static struct ips_mcp_limits ips_lv_limits = { 276 .mcp_power_limit = 25000, 277 .core_power_limit = 21000, 278 .mch_power_limit = 13000, 279 .core_temp_limit = 95, 280 .mch_temp_limit = 90 281 }; 282 283 static struct ips_mcp_limits ips_ulv_limits = { 284 .mcp_power_limit = 18000, 285 .core_power_limit = 14000, 286 .mch_power_limit = 11000, 287 .core_temp_limit = 95, 288 .mch_temp_limit = 90 289 }; 290 291 struct ips_driver { 292 struct device *dev; 293 void __iomem *regmap; 294 int irq; 295 296 struct task_struct *monitor; 297 struct task_struct *adjust; 298 struct dentry *debug_root; 299 struct timer_list timer; 300 301 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 302 u16 ctv1_avg_temp; 303 u16 ctv2_avg_temp; 304 /* GMCH average */ 305 u16 mch_avg_temp; 306 /* Average for the CPU (both cores?) */ 307 u16 mcp_avg_temp; 308 /* Average power consumption (in mW) */ 309 u32 cpu_avg_power; 310 u32 mch_avg_power; 311 312 /* Offset values */ 313 u16 cta_val; 314 u16 pta_val; 315 u16 mgta_val; 316 317 /* Maximums & prefs, protected by turbo status lock */ 318 spinlock_t turbo_status_lock; 319 u16 mcp_temp_limit; 320 u16 mcp_power_limit; 321 u16 core_power_limit; 322 u16 mch_power_limit; 323 bool cpu_turbo_enabled; 324 bool __cpu_turbo_on; 325 bool gpu_turbo_enabled; 326 bool __gpu_turbo_on; 327 bool gpu_preferred; 328 bool poll_turbo_status; 329 bool second_cpu; 330 bool turbo_toggle_allowed; 331 struct ips_mcp_limits *limits; 332 333 /* Optional MCH interfaces for if i915 is in use */ 334 unsigned long (*read_mch_val)(void); 335 bool (*gpu_raise)(void); 336 bool (*gpu_lower)(void); 337 bool (*gpu_busy)(void); 338 bool (*gpu_turbo_disable)(void); 339 340 /* For restoration at unload */ 341 u64 orig_turbo_limit; 342 u64 orig_turbo_ratios; 343 }; 344 345 static bool 346 ips_gpu_turbo_enabled(struct ips_driver *ips); 347 348 /** 349 * ips_cpu_busy - is CPU busy? 350 * @ips: IPS driver struct 351 * 352 * Check CPU for load to see whether we should increase its thermal budget. 353 * 354 * RETURNS: 355 * True if the CPU could use more power, false otherwise. 356 */ 357 static bool ips_cpu_busy(struct ips_driver *ips) 358 { 359 if ((avenrun[0] >> FSHIFT) > 1) 360 return true; 361 362 return false; 363 } 364 365 /** 366 * ips_cpu_raise - raise CPU power clamp 367 * @ips: IPS driver struct 368 * 369 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 370 * this platform. 371 * 372 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 373 * long as we haven't hit the TDP limit for the SKU). 374 */ 375 static void ips_cpu_raise(struct ips_driver *ips) 376 { 377 u64 turbo_override; 378 u16 cur_tdp_limit, new_tdp_limit; 379 380 if (!ips->cpu_turbo_enabled) 381 return; 382 383 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 384 385 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 386 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 387 388 /* Clamp to SKU TDP limit */ 389 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 390 new_tdp_limit = cur_tdp_limit; 391 392 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 393 394 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 395 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 396 397 turbo_override &= ~TURBO_TDP_MASK; 398 turbo_override |= new_tdp_limit; 399 400 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 401 } 402 403 /** 404 * ips_cpu_lower - lower CPU power clamp 405 * @ips: IPS driver struct 406 * 407 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 408 * 409 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 410 * as low as the platform limits will allow (though we could go lower there 411 * wouldn't be much point). 412 */ 413 static void ips_cpu_lower(struct ips_driver *ips) 414 { 415 u64 turbo_override; 416 u16 cur_limit, new_limit; 417 418 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 419 420 cur_limit = turbo_override & TURBO_TDP_MASK; 421 new_limit = cur_limit - 8; /* 1W decrease */ 422 423 /* Clamp to SKU TDP limit */ 424 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 425 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 426 427 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 428 429 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 430 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 431 432 turbo_override &= ~TURBO_TDP_MASK; 433 turbo_override |= new_limit; 434 435 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 436 } 437 438 /** 439 * do_enable_cpu_turbo - internal turbo enable function 440 * @data: unused 441 * 442 * Internal function for actually updating MSRs. When we enable/disable 443 * turbo, we need to do it on each CPU; this function is the one called 444 * by on_each_cpu() when needed. 445 */ 446 static void do_enable_cpu_turbo(void *data) 447 { 448 u64 perf_ctl; 449 450 rdmsrl(IA32_PERF_CTL, perf_ctl); 451 if (perf_ctl & IA32_PERF_TURBO_DIS) { 452 perf_ctl &= ~IA32_PERF_TURBO_DIS; 453 wrmsrl(IA32_PERF_CTL, perf_ctl); 454 } 455 } 456 457 /** 458 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 459 * @ips: IPS driver struct 460 * 461 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 462 * all logical threads. 463 */ 464 static void ips_enable_cpu_turbo(struct ips_driver *ips) 465 { 466 /* Already on, no need to mess with MSRs */ 467 if (ips->__cpu_turbo_on) 468 return; 469 470 if (ips->turbo_toggle_allowed) 471 on_each_cpu(do_enable_cpu_turbo, ips, 1); 472 473 ips->__cpu_turbo_on = true; 474 } 475 476 /** 477 * do_disable_cpu_turbo - internal turbo disable function 478 * @data: unused 479 * 480 * Internal function for actually updating MSRs. When we enable/disable 481 * turbo, we need to do it on each CPU; this function is the one called 482 * by on_each_cpu() when needed. 483 */ 484 static void do_disable_cpu_turbo(void *data) 485 { 486 u64 perf_ctl; 487 488 rdmsrl(IA32_PERF_CTL, perf_ctl); 489 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 490 perf_ctl |= IA32_PERF_TURBO_DIS; 491 wrmsrl(IA32_PERF_CTL, perf_ctl); 492 } 493 } 494 495 /** 496 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 497 * @ips: IPS driver struct 498 * 499 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 500 * all logical threads. 501 */ 502 static void ips_disable_cpu_turbo(struct ips_driver *ips) 503 { 504 /* Already off, leave it */ 505 if (!ips->__cpu_turbo_on) 506 return; 507 508 if (ips->turbo_toggle_allowed) 509 on_each_cpu(do_disable_cpu_turbo, ips, 1); 510 511 ips->__cpu_turbo_on = false; 512 } 513 514 /** 515 * ips_gpu_busy - is GPU busy? 516 * @ips: IPS driver struct 517 * 518 * Check GPU for load to see whether we should increase its thermal budget. 519 * We need to call into the i915 driver in this case. 520 * 521 * RETURNS: 522 * True if the GPU could use more power, false otherwise. 523 */ 524 static bool ips_gpu_busy(struct ips_driver *ips) 525 { 526 if (!ips_gpu_turbo_enabled(ips)) 527 return false; 528 529 return ips->gpu_busy(); 530 } 531 532 /** 533 * ips_gpu_raise - raise GPU power clamp 534 * @ips: IPS driver struct 535 * 536 * Raise the GPU frequency/power if possible. We need to call into the 537 * i915 driver in this case. 538 */ 539 static void ips_gpu_raise(struct ips_driver *ips) 540 { 541 if (!ips_gpu_turbo_enabled(ips)) 542 return; 543 544 if (!ips->gpu_raise()) 545 ips->gpu_turbo_enabled = false; 546 547 return; 548 } 549 550 /** 551 * ips_gpu_lower - lower GPU power clamp 552 * @ips: IPS driver struct 553 * 554 * Lower GPU frequency/power if possible. Need to call i915. 555 */ 556 static void ips_gpu_lower(struct ips_driver *ips) 557 { 558 if (!ips_gpu_turbo_enabled(ips)) 559 return; 560 561 if (!ips->gpu_lower()) 562 ips->gpu_turbo_enabled = false; 563 564 return; 565 } 566 567 /** 568 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 569 * @ips: IPS driver struct 570 * 571 * Call into the graphics driver indicating that it can safely use 572 * turbo mode. 573 */ 574 static void ips_enable_gpu_turbo(struct ips_driver *ips) 575 { 576 if (ips->__gpu_turbo_on) 577 return; 578 ips->__gpu_turbo_on = true; 579 } 580 581 /** 582 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 583 * @ips: IPS driver struct 584 * 585 * Request that the graphics driver disable turbo mode. 586 */ 587 static void ips_disable_gpu_turbo(struct ips_driver *ips) 588 { 589 /* Avoid calling i915 if turbo is already disabled */ 590 if (!ips->__gpu_turbo_on) 591 return; 592 593 if (!ips->gpu_turbo_disable()) 594 dev_err(ips->dev, "failed to disable graphics turbo\n"); 595 else 596 ips->__gpu_turbo_on = false; 597 } 598 599 /** 600 * mcp_exceeded - check whether we're outside our thermal & power limits 601 * @ips: IPS driver struct 602 * 603 * Check whether the MCP is over its thermal or power budget. 604 */ 605 static bool mcp_exceeded(struct ips_driver *ips) 606 { 607 unsigned long flags; 608 bool ret = false; 609 u32 temp_limit; 610 u32 avg_power; 611 612 spin_lock_irqsave(&ips->turbo_status_lock, flags); 613 614 temp_limit = ips->mcp_temp_limit * 100; 615 if (ips->mcp_avg_temp > temp_limit) 616 ret = true; 617 618 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 619 if (avg_power > ips->mcp_power_limit) 620 ret = true; 621 622 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 623 624 return ret; 625 } 626 627 /** 628 * cpu_exceeded - check whether a CPU core is outside its limits 629 * @ips: IPS driver struct 630 * @cpu: CPU number to check 631 * 632 * Check a given CPU's average temp or power is over its limit. 633 */ 634 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 635 { 636 unsigned long flags; 637 int avg; 638 bool ret = false; 639 640 spin_lock_irqsave(&ips->turbo_status_lock, flags); 641 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 642 if (avg > (ips->limits->core_temp_limit * 100)) 643 ret = true; 644 if (ips->cpu_avg_power > ips->core_power_limit * 100) 645 ret = true; 646 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 647 648 if (ret) 649 dev_info(ips->dev, "CPU power or thermal limit exceeded\n"); 650 651 return ret; 652 } 653 654 /** 655 * mch_exceeded - check whether the GPU is over budget 656 * @ips: IPS driver struct 657 * 658 * Check the MCH temp & power against their maximums. 659 */ 660 static bool mch_exceeded(struct ips_driver *ips) 661 { 662 unsigned long flags; 663 bool ret = false; 664 665 spin_lock_irqsave(&ips->turbo_status_lock, flags); 666 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 667 ret = true; 668 if (ips->mch_avg_power > ips->mch_power_limit) 669 ret = true; 670 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 671 672 return ret; 673 } 674 675 /** 676 * verify_limits - verify BIOS provided limits 677 * @ips: IPS structure 678 * 679 * BIOS can optionally provide non-default limits for power and temp. Check 680 * them here and use the defaults if the BIOS values are not provided or 681 * are otherwise unusable. 682 */ 683 static void verify_limits(struct ips_driver *ips) 684 { 685 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 686 ips->mcp_power_limit > 35000) 687 ips->mcp_power_limit = ips->limits->mcp_power_limit; 688 689 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 690 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 691 ips->mcp_temp_limit > 150) 692 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 693 ips->limits->mch_temp_limit); 694 } 695 696 /** 697 * update_turbo_limits - get various limits & settings from regs 698 * @ips: IPS driver struct 699 * 700 * Update the IPS power & temp limits, along with turbo enable flags, 701 * based on latest register contents. 702 * 703 * Used at init time and for runtime BIOS support, which requires polling 704 * the regs for updates (as a result of AC->DC transition for example). 705 * 706 * LOCKING: 707 * Caller must hold turbo_status_lock (outside of init) 708 */ 709 static void update_turbo_limits(struct ips_driver *ips) 710 { 711 u32 hts = thm_readl(THM_HTS); 712 713 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 714 /* 715 * Disable turbo for now, until we can figure out why the power figures 716 * are wrong 717 */ 718 ips->cpu_turbo_enabled = false; 719 720 if (ips->gpu_busy) 721 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 722 723 ips->core_power_limit = thm_readw(THM_MPCPC); 724 ips->mch_power_limit = thm_readw(THM_MMGPC); 725 ips->mcp_temp_limit = thm_readw(THM_PTL); 726 ips->mcp_power_limit = thm_readw(THM_MPPC); 727 728 verify_limits(ips); 729 /* Ignore BIOS CPU vs GPU pref */ 730 } 731 732 /** 733 * ips_adjust - adjust power clamp based on thermal state 734 * @data: ips driver structure 735 * 736 * Wake up every 5s or so and check whether we should adjust the power clamp. 737 * Check CPU and GPU load to determine which needs adjustment. There are 738 * several things to consider here: 739 * - do we need to adjust up or down? 740 * - is CPU busy? 741 * - is GPU busy? 742 * - is CPU in turbo? 743 * - is GPU in turbo? 744 * - is CPU or GPU preferred? (CPU is default) 745 * 746 * So, given the above, we do the following: 747 * - up (TDP available) 748 * - CPU not busy, GPU not busy - nothing 749 * - CPU busy, GPU not busy - adjust CPU up 750 * - CPU not busy, GPU busy - adjust GPU up 751 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 752 * non-preferred unit if necessary 753 * - down (at TDP limit) 754 * - adjust both CPU and GPU down if possible 755 * 756 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 757 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing 758 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 759 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 760 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 761 * 762 */ 763 static int ips_adjust(void *data) 764 { 765 struct ips_driver *ips = data; 766 unsigned long flags; 767 768 dev_dbg(ips->dev, "starting ips-adjust thread\n"); 769 770 /* 771 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 772 * often isn't recommended due to ME interaction. 773 */ 774 do { 775 bool cpu_busy = ips_cpu_busy(ips); 776 bool gpu_busy = ips_gpu_busy(ips); 777 778 spin_lock_irqsave(&ips->turbo_status_lock, flags); 779 if (ips->poll_turbo_status) 780 update_turbo_limits(ips); 781 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 782 783 /* Update turbo status if necessary */ 784 if (ips->cpu_turbo_enabled) 785 ips_enable_cpu_turbo(ips); 786 else 787 ips_disable_cpu_turbo(ips); 788 789 if (ips->gpu_turbo_enabled) 790 ips_enable_gpu_turbo(ips); 791 else 792 ips_disable_gpu_turbo(ips); 793 794 /* We're outside our comfort zone, crank them down */ 795 if (mcp_exceeded(ips)) { 796 ips_cpu_lower(ips); 797 ips_gpu_lower(ips); 798 goto sleep; 799 } 800 801 if (!cpu_exceeded(ips, 0) && cpu_busy) 802 ips_cpu_raise(ips); 803 else 804 ips_cpu_lower(ips); 805 806 if (!mch_exceeded(ips) && gpu_busy) 807 ips_gpu_raise(ips); 808 else 809 ips_gpu_lower(ips); 810 811 sleep: 812 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 813 } while (!kthread_should_stop()); 814 815 dev_dbg(ips->dev, "ips-adjust thread stopped\n"); 816 817 return 0; 818 } 819 820 /* 821 * Helpers for reading out temp/power values and calculating their 822 * averages for the decision making and monitoring functions. 823 */ 824 825 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 826 { 827 u64 total = 0; 828 int i; 829 u16 avg; 830 831 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 832 total += (u64)(array[i] * 100); 833 834 do_div(total, IPS_SAMPLE_COUNT); 835 836 avg = (u16)total; 837 838 return avg; 839 } 840 841 static u16 read_mgtv(struct ips_driver *ips) 842 { 843 u16 ret; 844 u64 slope, offset; 845 u64 val; 846 847 val = thm_readq(THM_MGTV); 848 val = (val & TV_MASK) >> TV_SHIFT; 849 850 slope = offset = thm_readw(THM_MGTA); 851 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 852 offset = offset & MGTA_OFFSET_MASK; 853 854 ret = ((val * slope + 0x40) >> 7) + offset; 855 856 return 0; /* MCH temp reporting buggy */ 857 } 858 859 static u16 read_ptv(struct ips_driver *ips) 860 { 861 u16 val, slope, offset; 862 863 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; 864 offset = ips->pta_val & PTA_OFFSET_MASK; 865 866 val = thm_readw(THM_PTV) & PTV_MASK; 867 868 return val; 869 } 870 871 static u16 read_ctv(struct ips_driver *ips, int cpu) 872 { 873 int reg = cpu ? THM_CTV2 : THM_CTV1; 874 u16 val; 875 876 val = thm_readw(reg); 877 if (!(val & CTV_TEMP_ERROR)) 878 val = (val) >> 6; /* discard fractional component */ 879 else 880 val = 0; 881 882 return val; 883 } 884 885 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 886 { 887 u32 val; 888 u32 ret; 889 890 /* 891 * CEC is in joules/65535. Take difference over time to 892 * get watts. 893 */ 894 val = thm_readl(THM_CEC); 895 896 /* period is in ms and we want mW */ 897 ret = (((val - *last) * 1000) / period); 898 ret = (ret * 1000) / 65535; 899 *last = val; 900 901 return 0; 902 } 903 904 static const u16 temp_decay_factor = 2; 905 static u16 update_average_temp(u16 avg, u16 val) 906 { 907 u16 ret; 908 909 /* Multiply by 100 for extra precision */ 910 ret = (val * 100 / temp_decay_factor) + 911 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 912 return ret; 913 } 914 915 static const u16 power_decay_factor = 2; 916 static u16 update_average_power(u32 avg, u32 val) 917 { 918 u32 ret; 919 920 ret = (val / power_decay_factor) + 921 (((power_decay_factor - 1) * avg) / power_decay_factor); 922 923 return ret; 924 } 925 926 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 927 { 928 u64 total = 0; 929 u32 avg; 930 int i; 931 932 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 933 total += array[i]; 934 935 do_div(total, IPS_SAMPLE_COUNT); 936 avg = (u32)total; 937 938 return avg; 939 } 940 941 static void monitor_timeout(struct timer_list *t) 942 { 943 struct ips_driver *ips = from_timer(ips, t, timer); 944 wake_up_process(ips->monitor); 945 } 946 947 /** 948 * ips_monitor - temp/power monitoring thread 949 * @data: ips driver structure 950 * 951 * This is the main function for the IPS driver. It monitors power and 952 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. 953 * 954 * We keep a 5s moving average of power consumption and tempurature. Using 955 * that data, along with CPU vs GPU preference, we adjust the power clamps 956 * up or down. 957 */ 958 static int ips_monitor(void *data) 959 { 960 struct ips_driver *ips = data; 961 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 962 int i; 963 u32 *cpu_samples, *mchp_samples, old_cpu_power; 964 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 965 u8 cur_seqno, last_seqno; 966 967 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 968 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 969 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 970 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 971 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 972 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 973 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 974 !cpu_samples || !mchp_samples) { 975 dev_err(ips->dev, 976 "failed to allocate sample array, ips disabled\n"); 977 kfree(mcp_samples); 978 kfree(ctv1_samples); 979 kfree(ctv2_samples); 980 kfree(mch_samples); 981 kfree(cpu_samples); 982 kfree(mchp_samples); 983 return -ENOMEM; 984 } 985 986 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 987 ITV_ME_SEQNO_SHIFT; 988 seqno_timestamp = get_jiffies_64(); 989 990 old_cpu_power = thm_readl(THM_CEC); 991 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 992 993 /* Collect an initial average */ 994 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 995 u32 mchp, cpu_power; 996 u16 val; 997 998 mcp_samples[i] = read_ptv(ips); 999 1000 val = read_ctv(ips, 0); 1001 ctv1_samples[i] = val; 1002 1003 val = read_ctv(ips, 1); 1004 ctv2_samples[i] = val; 1005 1006 val = read_mgtv(ips); 1007 mch_samples[i] = val; 1008 1009 cpu_power = get_cpu_power(ips, &old_cpu_power, 1010 IPS_SAMPLE_PERIOD); 1011 cpu_samples[i] = cpu_power; 1012 1013 if (ips->read_mch_val) { 1014 mchp = ips->read_mch_val(); 1015 mchp_samples[i] = mchp; 1016 } 1017 1018 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1019 if (kthread_should_stop()) 1020 break; 1021 } 1022 1023 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1024 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1025 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1026 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1027 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1028 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1029 kfree(mcp_samples); 1030 kfree(ctv1_samples); 1031 kfree(ctv2_samples); 1032 kfree(mch_samples); 1033 kfree(cpu_samples); 1034 kfree(mchp_samples); 1035 1036 /* Start the adjustment thread now that we have data */ 1037 wake_up_process(ips->adjust); 1038 1039 /* 1040 * Ok, now we have an initial avg. From here on out, we track the 1041 * running avg using a decaying average calculation. This allows 1042 * us to reduce the sample frequency if the CPU and GPU are idle. 1043 */ 1044 old_cpu_power = thm_readl(THM_CEC); 1045 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1046 last_sample_period = IPS_SAMPLE_PERIOD; 1047 1048 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE); 1049 do { 1050 u32 cpu_val, mch_val; 1051 u16 val; 1052 1053 /* MCP itself */ 1054 val = read_ptv(ips); 1055 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1056 1057 /* Processor 0 */ 1058 val = read_ctv(ips, 0); 1059 ips->ctv1_avg_temp = 1060 update_average_temp(ips->ctv1_avg_temp, val); 1061 /* Power */ 1062 cpu_val = get_cpu_power(ips, &old_cpu_power, 1063 last_sample_period); 1064 ips->cpu_avg_power = 1065 update_average_power(ips->cpu_avg_power, cpu_val); 1066 1067 if (ips->second_cpu) { 1068 /* Processor 1 */ 1069 val = read_ctv(ips, 1); 1070 ips->ctv2_avg_temp = 1071 update_average_temp(ips->ctv2_avg_temp, val); 1072 } 1073 1074 /* MCH */ 1075 val = read_mgtv(ips); 1076 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1077 /* Power */ 1078 if (ips->read_mch_val) { 1079 mch_val = ips->read_mch_val(); 1080 ips->mch_avg_power = 1081 update_average_power(ips->mch_avg_power, 1082 mch_val); 1083 } 1084 1085 /* 1086 * Make sure ME is updating thermal regs. 1087 * Note: 1088 * If it's been more than a second since the last update, 1089 * the ME is probably hung. 1090 */ 1091 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1092 ITV_ME_SEQNO_SHIFT; 1093 if (cur_seqno == last_seqno && 1094 time_after(jiffies, seqno_timestamp + HZ)) { 1095 dev_warn(ips->dev, 1096 "ME failed to update for more than 1s, likely hung\n"); 1097 } else { 1098 seqno_timestamp = get_jiffies_64(); 1099 last_seqno = cur_seqno; 1100 } 1101 1102 last_msecs = jiffies_to_msecs(jiffies); 1103 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1104 1105 __set_current_state(TASK_INTERRUPTIBLE); 1106 mod_timer(&ips->timer, expire); 1107 schedule(); 1108 1109 /* Calculate actual sample period for power averaging */ 1110 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1111 if (!last_sample_period) 1112 last_sample_period = 1; 1113 } while (!kthread_should_stop()); 1114 1115 del_timer_sync(&ips->timer); 1116 1117 dev_dbg(ips->dev, "ips-monitor thread stopped\n"); 1118 1119 return 0; 1120 } 1121 1122 #if 0 1123 #define THM_DUMPW(reg) \ 1124 { \ 1125 u16 val = thm_readw(reg); \ 1126 dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \ 1127 } 1128 #define THM_DUMPL(reg) \ 1129 { \ 1130 u32 val = thm_readl(reg); \ 1131 dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \ 1132 } 1133 #define THM_DUMPQ(reg) \ 1134 { \ 1135 u64 val = thm_readq(reg); \ 1136 dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \ 1137 } 1138 1139 static void dump_thermal_info(struct ips_driver *ips) 1140 { 1141 u16 ptl; 1142 1143 ptl = thm_readw(THM_PTL); 1144 dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl); 1145 1146 THM_DUMPW(THM_CTA); 1147 THM_DUMPW(THM_TRC); 1148 THM_DUMPW(THM_CTV1); 1149 THM_DUMPL(THM_STS); 1150 THM_DUMPW(THM_PTV); 1151 THM_DUMPQ(THM_MGTV); 1152 } 1153 #endif 1154 1155 /** 1156 * ips_irq_handler - handle temperature triggers and other IPS events 1157 * @irq: irq number 1158 * @arg: unused 1159 * 1160 * Handle temperature limit trigger events, generally by lowering the clamps. 1161 * If we're at a critical limit, we clamp back to the lowest possible value 1162 * to prevent emergency shutdown. 1163 */ 1164 static irqreturn_t ips_irq_handler(int irq, void *arg) 1165 { 1166 struct ips_driver *ips = arg; 1167 u8 tses = thm_readb(THM_TSES); 1168 u8 tes = thm_readb(THM_TES); 1169 1170 if (!tses && !tes) 1171 return IRQ_NONE; 1172 1173 dev_info(ips->dev, "TSES: 0x%02x\n", tses); 1174 dev_info(ips->dev, "TES: 0x%02x\n", tes); 1175 1176 /* STS update from EC? */ 1177 if (tes & 1) { 1178 u32 sts, tc1; 1179 1180 sts = thm_readl(THM_STS); 1181 tc1 = thm_readl(THM_TC1); 1182 1183 if (sts & STS_NVV) { 1184 spin_lock(&ips->turbo_status_lock); 1185 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1186 STS_PCPL_SHIFT; 1187 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1188 STS_GPL_SHIFT; 1189 /* ignore EC CPU vs GPU pref */ 1190 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1191 /* 1192 * Disable turbo for now, until we can figure 1193 * out why the power figures are wrong 1194 */ 1195 ips->cpu_turbo_enabled = false; 1196 if (ips->gpu_busy) 1197 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1198 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1199 STS_PTL_SHIFT; 1200 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1201 STS_PPL_SHIFT; 1202 verify_limits(ips); 1203 spin_unlock(&ips->turbo_status_lock); 1204 1205 thm_writeb(THM_SEC, SEC_ACK); 1206 } 1207 thm_writeb(THM_TES, tes); 1208 } 1209 1210 /* Thermal trip */ 1211 if (tses) { 1212 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n", 1213 tses); 1214 thm_writeb(THM_TSES, tses); 1215 } 1216 1217 return IRQ_HANDLED; 1218 } 1219 1220 #ifndef CONFIG_DEBUG_FS 1221 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1222 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1223 #else 1224 1225 /* Expose current state and limits in debugfs if possible */ 1226 1227 struct ips_debugfs_node { 1228 struct ips_driver *ips; 1229 char *name; 1230 int (*show)(struct seq_file *m, void *data); 1231 }; 1232 1233 static int show_cpu_temp(struct seq_file *m, void *data) 1234 { 1235 struct ips_driver *ips = m->private; 1236 1237 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1238 ips->ctv1_avg_temp % 100); 1239 1240 return 0; 1241 } 1242 1243 static int show_cpu_power(struct seq_file *m, void *data) 1244 { 1245 struct ips_driver *ips = m->private; 1246 1247 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1248 1249 return 0; 1250 } 1251 1252 static int show_cpu_clamp(struct seq_file *m, void *data) 1253 { 1254 u64 turbo_override; 1255 int tdp, tdc; 1256 1257 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1258 1259 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1260 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1261 1262 /* Convert to .1W/A units */ 1263 tdp = tdp * 10 / 8; 1264 tdc = tdc * 10 / 8; 1265 1266 /* Watts Amperes */ 1267 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1268 tdc / 10, tdc % 10); 1269 1270 return 0; 1271 } 1272 1273 static int show_mch_temp(struct seq_file *m, void *data) 1274 { 1275 struct ips_driver *ips = m->private; 1276 1277 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1278 ips->mch_avg_temp % 100); 1279 1280 return 0; 1281 } 1282 1283 static int show_mch_power(struct seq_file *m, void *data) 1284 { 1285 struct ips_driver *ips = m->private; 1286 1287 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1288 1289 return 0; 1290 } 1291 1292 static struct ips_debugfs_node ips_debug_files[] = { 1293 { NULL, "cpu_temp", show_cpu_temp }, 1294 { NULL, "cpu_power", show_cpu_power }, 1295 { NULL, "cpu_clamp", show_cpu_clamp }, 1296 { NULL, "mch_temp", show_mch_temp }, 1297 { NULL, "mch_power", show_mch_power }, 1298 }; 1299 1300 static int ips_debugfs_open(struct inode *inode, struct file *file) 1301 { 1302 struct ips_debugfs_node *node = inode->i_private; 1303 1304 return single_open(file, node->show, node->ips); 1305 } 1306 1307 static const struct file_operations ips_debugfs_ops = { 1308 .owner = THIS_MODULE, 1309 .open = ips_debugfs_open, 1310 .read = seq_read, 1311 .llseek = seq_lseek, 1312 .release = single_release, 1313 }; 1314 1315 static void ips_debugfs_cleanup(struct ips_driver *ips) 1316 { 1317 if (ips->debug_root) 1318 debugfs_remove_recursive(ips->debug_root); 1319 return; 1320 } 1321 1322 static void ips_debugfs_init(struct ips_driver *ips) 1323 { 1324 int i; 1325 1326 ips->debug_root = debugfs_create_dir("ips", NULL); 1327 if (!ips->debug_root) { 1328 dev_err(ips->dev, "failed to create debugfs entries: %ld\n", 1329 PTR_ERR(ips->debug_root)); 1330 return; 1331 } 1332 1333 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { 1334 struct dentry *ent; 1335 struct ips_debugfs_node *node = &ips_debug_files[i]; 1336 1337 node->ips = ips; 1338 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, 1339 ips->debug_root, node, 1340 &ips_debugfs_ops); 1341 if (!ent) { 1342 dev_err(ips->dev, "failed to create debug file: %ld\n", 1343 PTR_ERR(ent)); 1344 goto err_cleanup; 1345 } 1346 } 1347 1348 return; 1349 1350 err_cleanup: 1351 ips_debugfs_cleanup(ips); 1352 return; 1353 } 1354 #endif /* CONFIG_DEBUG_FS */ 1355 1356 /** 1357 * ips_detect_cpu - detect whether CPU supports IPS 1358 * 1359 * Walk our list and see if we're on a supported CPU. If we find one, 1360 * return the limits for it. 1361 */ 1362 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1363 { 1364 u64 turbo_power, misc_en; 1365 struct ips_mcp_limits *limits = NULL; 1366 u16 tdp; 1367 1368 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1369 dev_info(ips->dev, "Non-IPS CPU detected.\n"); 1370 return NULL; 1371 } 1372 1373 rdmsrl(IA32_MISC_ENABLE, misc_en); 1374 /* 1375 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1376 * turbo manually or we'll get an illegal MSR access, even though 1377 * turbo will still be available. 1378 */ 1379 if (misc_en & IA32_MISC_TURBO_EN) 1380 ips->turbo_toggle_allowed = true; 1381 else 1382 ips->turbo_toggle_allowed = false; 1383 1384 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1385 limits = &ips_sv_limits; 1386 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1387 limits = &ips_lv_limits; 1388 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1389 limits = &ips_ulv_limits; 1390 else { 1391 dev_info(ips->dev, "No CPUID match found.\n"); 1392 return NULL; 1393 } 1394 1395 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1396 tdp = turbo_power & TURBO_TDP_MASK; 1397 1398 /* Sanity check TDP against CPU */ 1399 if (limits->core_power_limit != (tdp / 8) * 1000) { 1400 dev_info(ips->dev, 1401 "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1402 tdp / 8, limits->core_power_limit / 1000); 1403 limits->core_power_limit = (tdp / 8) * 1000; 1404 } 1405 1406 return limits; 1407 } 1408 1409 /** 1410 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1411 * @ips: IPS driver 1412 * 1413 * The i915 driver exports several interfaces to allow the IPS driver to 1414 * monitor and control graphics turbo mode. If we can find them, we can 1415 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1416 * thermal and power limits in the MCP. 1417 */ 1418 static bool ips_get_i915_syms(struct ips_driver *ips) 1419 { 1420 ips->read_mch_val = symbol_get(i915_read_mch_val); 1421 if (!ips->read_mch_val) 1422 goto out_err; 1423 ips->gpu_raise = symbol_get(i915_gpu_raise); 1424 if (!ips->gpu_raise) 1425 goto out_put_mch; 1426 ips->gpu_lower = symbol_get(i915_gpu_lower); 1427 if (!ips->gpu_lower) 1428 goto out_put_raise; 1429 ips->gpu_busy = symbol_get(i915_gpu_busy); 1430 if (!ips->gpu_busy) 1431 goto out_put_lower; 1432 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1433 if (!ips->gpu_turbo_disable) 1434 goto out_put_busy; 1435 1436 return true; 1437 1438 out_put_busy: 1439 symbol_put(i915_gpu_busy); 1440 out_put_lower: 1441 symbol_put(i915_gpu_lower); 1442 out_put_raise: 1443 symbol_put(i915_gpu_raise); 1444 out_put_mch: 1445 symbol_put(i915_read_mch_val); 1446 out_err: 1447 return false; 1448 } 1449 1450 static bool 1451 ips_gpu_turbo_enabled(struct ips_driver *ips) 1452 { 1453 if (!ips->gpu_busy && late_i915_load) { 1454 if (ips_get_i915_syms(ips)) { 1455 dev_info(ips->dev, 1456 "i915 driver attached, reenabling gpu turbo\n"); 1457 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1458 } 1459 } 1460 1461 return ips->gpu_turbo_enabled; 1462 } 1463 1464 void 1465 ips_link_to_i915_driver(void) 1466 { 1467 /* We can't cleanly get at the various ips_driver structs from 1468 * this caller (the i915 driver), so just set a flag saying 1469 * that it's time to try getting the symbols again. 1470 */ 1471 late_i915_load = true; 1472 } 1473 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1474 1475 static const struct pci_device_id ips_id_table[] = { 1476 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1477 { 0, } 1478 }; 1479 1480 MODULE_DEVICE_TABLE(pci, ips_id_table); 1481 1482 static int ips_blacklist_callback(const struct dmi_system_id *id) 1483 { 1484 pr_info("Blacklisted intel_ips for %s\n", id->ident); 1485 return 1; 1486 } 1487 1488 static const struct dmi_system_id ips_blacklist[] = { 1489 { 1490 .callback = ips_blacklist_callback, 1491 .ident = "HP ProBook", 1492 .matches = { 1493 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 1494 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), 1495 }, 1496 }, 1497 { } /* terminating entry */ 1498 }; 1499 1500 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1501 { 1502 u64 platform_info; 1503 struct ips_driver *ips; 1504 u32 hts; 1505 int ret = 0; 1506 u16 htshi, trc, trc_required_mask; 1507 u8 tse; 1508 1509 if (dmi_check_system(ips_blacklist)) 1510 return -ENODEV; 1511 1512 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL); 1513 if (!ips) 1514 return -ENOMEM; 1515 1516 spin_lock_init(&ips->turbo_status_lock); 1517 ips->dev = &dev->dev; 1518 1519 ips->limits = ips_detect_cpu(ips); 1520 if (!ips->limits) { 1521 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1522 return -ENXIO; 1523 } 1524 1525 ret = pcim_enable_device(dev); 1526 if (ret) { 1527 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1528 return ret; 1529 } 1530 1531 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev)); 1532 if (ret) { 1533 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1534 return ret; 1535 } 1536 ips->regmap = pcim_iomap_table(dev)[0]; 1537 1538 pci_set_drvdata(dev, ips); 1539 1540 tse = thm_readb(THM_TSE); 1541 if (tse != TSE_EN) { 1542 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1543 return -ENXIO; 1544 } 1545 1546 trc = thm_readw(THM_TRC); 1547 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1548 if ((trc & trc_required_mask) != trc_required_mask) { 1549 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1550 return -ENXIO; 1551 } 1552 1553 if (trc & TRC_CORE2_EN) 1554 ips->second_cpu = true; 1555 1556 update_turbo_limits(ips); 1557 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1558 ips->mcp_power_limit / 10); 1559 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1560 ips->core_power_limit / 10); 1561 /* BIOS may update limits at runtime */ 1562 if (thm_readl(THM_PSC) & PSP_PBRT) 1563 ips->poll_turbo_status = true; 1564 1565 if (!ips_get_i915_syms(ips)) { 1566 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); 1567 ips->gpu_turbo_enabled = false; 1568 } else { 1569 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1570 ips->gpu_turbo_enabled = true; 1571 } 1572 1573 /* 1574 * Check PLATFORM_INFO MSR to make sure this chip is 1575 * turbo capable. 1576 */ 1577 rdmsrl(PLATFORM_INFO, platform_info); 1578 if (!(platform_info & PLATFORM_TDP)) { 1579 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1580 return -ENODEV; 1581 } 1582 1583 /* 1584 * IRQ handler for ME interaction 1585 * Note: don't use MSI here as the PCH has bugs. 1586 */ 1587 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY); 1588 if (ret < 0) 1589 return ret; 1590 1591 ips->irq = pci_irq_vector(dev, 0); 1592 1593 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips); 1594 if (ret) { 1595 dev_err(&dev->dev, "request irq failed, aborting\n"); 1596 return ret; 1597 } 1598 1599 /* Enable aux, hot & critical interrupts */ 1600 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1601 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1602 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1603 1604 /* Collect adjustment values */ 1605 ips->cta_val = thm_readw(THM_CTA); 1606 ips->pta_val = thm_readw(THM_PTA); 1607 ips->mgta_val = thm_readw(THM_MGTA); 1608 1609 /* Save turbo limits & ratios */ 1610 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1611 1612 ips_disable_cpu_turbo(ips); 1613 ips->cpu_turbo_enabled = false; 1614 1615 /* Create thermal adjust thread */ 1616 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1617 if (IS_ERR(ips->adjust)) { 1618 dev_err(&dev->dev, 1619 "failed to create thermal adjust thread, aborting\n"); 1620 ret = -ENOMEM; 1621 goto error_free_irq; 1622 1623 } 1624 1625 /* 1626 * Set up the work queue and monitor thread. The monitor thread 1627 * will wake up ips_adjust thread. 1628 */ 1629 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1630 if (IS_ERR(ips->monitor)) { 1631 dev_err(&dev->dev, 1632 "failed to create thermal monitor thread, aborting\n"); 1633 ret = -ENOMEM; 1634 goto error_thread_cleanup; 1635 } 1636 1637 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1638 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1639 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1640 1641 thm_writew(THM_HTSHI, htshi); 1642 thm_writel(THM_HTS, hts); 1643 1644 ips_debugfs_init(ips); 1645 1646 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1647 ips->mcp_temp_limit); 1648 return ret; 1649 1650 error_thread_cleanup: 1651 kthread_stop(ips->adjust); 1652 error_free_irq: 1653 free_irq(ips->irq, ips); 1654 pci_free_irq_vectors(dev); 1655 return ret; 1656 } 1657 1658 static void ips_remove(struct pci_dev *dev) 1659 { 1660 struct ips_driver *ips = pci_get_drvdata(dev); 1661 u64 turbo_override; 1662 1663 if (!ips) 1664 return; 1665 1666 ips_debugfs_cleanup(ips); 1667 1668 /* Release i915 driver */ 1669 if (ips->read_mch_val) 1670 symbol_put(i915_read_mch_val); 1671 if (ips->gpu_raise) 1672 symbol_put(i915_gpu_raise); 1673 if (ips->gpu_lower) 1674 symbol_put(i915_gpu_lower); 1675 if (ips->gpu_busy) 1676 symbol_put(i915_gpu_busy); 1677 if (ips->gpu_turbo_disable) 1678 symbol_put(i915_gpu_turbo_disable); 1679 1680 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1681 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1682 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1683 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1684 1685 free_irq(ips->irq, ips); 1686 pci_free_irq_vectors(dev); 1687 if (ips->adjust) 1688 kthread_stop(ips->adjust); 1689 if (ips->monitor) 1690 kthread_stop(ips->monitor); 1691 dev_dbg(&dev->dev, "IPS driver removed\n"); 1692 } 1693 1694 static struct pci_driver ips_pci_driver = { 1695 .name = "intel ips", 1696 .id_table = ips_id_table, 1697 .probe = ips_probe, 1698 .remove = ips_remove, 1699 }; 1700 1701 module_pci_driver(ips_pci_driver); 1702 1703 MODULE_LICENSE("GPL"); 1704 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1705 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1706