1 /* 2 * Copyright (c) 2009-2010 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * The full GNU General Public License is included in this distribution in 18 * the file called "COPYING". 19 * 20 * Authors: 21 * Jesse Barnes <jbarnes@virtuousgeek.org> 22 */ 23 24 /* 25 * Some Intel Ibex Peak based platforms support so-called "intelligent 26 * power sharing", which allows the CPU and GPU to cooperate to maximize 27 * performance within a given TDP (thermal design point). This driver 28 * performs the coordination between the CPU and GPU, monitors thermal and 29 * power statistics in the platform, and initializes power monitoring 30 * hardware. It also provides a few tunables to control behavior. Its 31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 32 * by tracking power and thermal budget; secondarily it can boost turbo 33 * performance by allocating more power or thermal budget to the CPU or GPU 34 * based on available headroom and activity. 35 * 36 * The basic algorithm is driven by a 5s moving average of tempurature. If 37 * thermal headroom is available, the CPU and/or GPU power clamps may be 38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 39 * we scale back the clamp. Aside from trigger events (when we're critically 40 * close or over our TDP) we don't adjust the clamps more than once every 41 * five seconds. 42 * 43 * The thermal device (device 31, function 6) has a set of registers that 44 * are updated by the ME firmware. The ME should also take the clamp values 45 * written to those registers and write them to the CPU, but we currently 46 * bypass that functionality and write the CPU MSR directly. 47 * 48 * UNSUPPORTED: 49 * - dual MCP configs 50 * 51 * TODO: 52 * - handle CPU hotplug 53 * - provide turbo enable/disable api 54 * 55 * Related documents: 56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 57 * - CDI 401376 - Ibex Peak EDS 58 * - ref 26037, 26641 - IPS BIOS spec 59 * - ref 26489 - Nehalem BIOS writer's guide 60 * - ref 26921 - Ibex Peak BIOS Specification 61 */ 62 63 #include <linux/debugfs.h> 64 #include <linux/delay.h> 65 #include <linux/interrupt.h> 66 #include <linux/kernel.h> 67 #include <linux/kthread.h> 68 #include <linux/module.h> 69 #include <linux/pci.h> 70 #include <linux/sched.h> 71 #include <linux/seq_file.h> 72 #include <linux/string.h> 73 #include <linux/tick.h> 74 #include <linux/timer.h> 75 #include <drm/i915_drm.h> 76 #include <asm/msr.h> 77 #include <asm/processor.h> 78 #include "intel_ips.h" 79 80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 81 82 /* 83 * Package level MSRs for monitor/control 84 */ 85 #define PLATFORM_INFO 0xce 86 #define PLATFORM_TDP (1<<29) 87 #define PLATFORM_RATIO (1<<28) 88 89 #define IA32_MISC_ENABLE 0x1a0 90 #define IA32_MISC_TURBO_EN (1ULL<<38) 91 92 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 93 #define TURBO_TDC_OVR_EN (1UL<<31) 94 #define TURBO_TDC_MASK (0x000000007fff0000UL) 95 #define TURBO_TDC_SHIFT (16) 96 #define TURBO_TDP_OVR_EN (1UL<<15) 97 #define TURBO_TDP_MASK (0x0000000000003fffUL) 98 99 /* 100 * Core/thread MSRs for monitoring 101 */ 102 #define IA32_PERF_CTL 0x199 103 #define IA32_PERF_TURBO_DIS (1ULL<<32) 104 105 /* 106 * Thermal PCI device regs 107 */ 108 #define THM_CFG_TBAR 0x10 109 #define THM_CFG_TBAR_HI 0x14 110 111 #define THM_TSIU 0x00 112 #define THM_TSE 0x01 113 #define TSE_EN 0xb8 114 #define THM_TSS 0x02 115 #define THM_TSTR 0x03 116 #define THM_TSTTP 0x04 117 #define THM_TSCO 0x08 118 #define THM_TSES 0x0c 119 #define THM_TSGPEN 0x0d 120 #define TSGPEN_HOT_LOHI (1<<1) 121 #define TSGPEN_CRIT_LOHI (1<<2) 122 #define THM_TSPC 0x0e 123 #define THM_PPEC 0x10 124 #define THM_CTA 0x12 125 #define THM_PTA 0x14 126 #define PTA_SLOPE_MASK (0xff00) 127 #define PTA_SLOPE_SHIFT 8 128 #define PTA_OFFSET_MASK (0x00ff) 129 #define THM_MGTA 0x16 130 #define MGTA_SLOPE_MASK (0xff00) 131 #define MGTA_SLOPE_SHIFT 8 132 #define MGTA_OFFSET_MASK (0x00ff) 133 #define THM_TRC 0x1a 134 #define TRC_CORE2_EN (1<<15) 135 #define TRC_THM_EN (1<<12) 136 #define TRC_C6_WAR (1<<8) 137 #define TRC_CORE1_EN (1<<7) 138 #define TRC_CORE_PWR (1<<6) 139 #define TRC_PCH_EN (1<<5) 140 #define TRC_MCH_EN (1<<4) 141 #define TRC_DIMM4 (1<<3) 142 #define TRC_DIMM3 (1<<2) 143 #define TRC_DIMM2 (1<<1) 144 #define TRC_DIMM1 (1<<0) 145 #define THM_TES 0x20 146 #define THM_TEN 0x21 147 #define TEN_UPDATE_EN 1 148 #define THM_PSC 0x24 149 #define PSC_NTG (1<<0) /* No GFX turbo support */ 150 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 151 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 152 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 153 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 154 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 155 #define PSP_PBRT (1<<4) /* BIOS run time support */ 156 #define THM_CTV1 0x30 157 #define CTV_TEMP_ERROR (1<<15) 158 #define CTV_TEMP_MASK 0x3f 159 #define CTV_ 160 #define THM_CTV2 0x32 161 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 162 #define THM_AE 0x3f 163 #define THM_HTS 0x50 /* 32 bits */ 164 #define HTS_PCPL_MASK (0x7fe00000) 165 #define HTS_PCPL_SHIFT 21 166 #define HTS_GPL_MASK (0x001ff000) 167 #define HTS_GPL_SHIFT 12 168 #define HTS_PP_MASK (0x00000c00) 169 #define HTS_PP_SHIFT 10 170 #define HTS_PP_DEF 0 171 #define HTS_PP_PROC 1 172 #define HTS_PP_BAL 2 173 #define HTS_PP_GFX 3 174 #define HTS_PCTD_DIS (1<<9) 175 #define HTS_GTD_DIS (1<<8) 176 #define HTS_PTL_MASK (0x000000fe) 177 #define HTS_PTL_SHIFT 1 178 #define HTS_NVV (1<<0) 179 #define THM_HTSHI 0x54 /* 16 bits */ 180 #define HTS2_PPL_MASK (0x03ff) 181 #define HTS2_PRST_MASK (0x3c00) 182 #define HTS2_PRST_SHIFT 10 183 #define HTS2_PRST_UNLOADED 0 184 #define HTS2_PRST_RUNNING 1 185 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 186 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 187 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 188 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 189 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 190 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 191 #define THM_PTL 0x56 192 #define THM_MGTV 0x58 193 #define TV_MASK 0x000000000000ff00 194 #define TV_SHIFT 8 195 #define THM_PTV 0x60 196 #define PTV_MASK 0x00ff 197 #define THM_MMGPC 0x64 198 #define THM_MPPC 0x66 199 #define THM_MPCPC 0x68 200 #define THM_TSPIEN 0x82 201 #define TSPIEN_AUX_LOHI (1<<0) 202 #define TSPIEN_HOT_LOHI (1<<1) 203 #define TSPIEN_CRIT_LOHI (1<<2) 204 #define TSPIEN_AUX2_LOHI (1<<3) 205 #define THM_TSLOCK 0x83 206 #define THM_ATR 0x84 207 #define THM_TOF 0x87 208 #define THM_STS 0x98 209 #define STS_PCPL_MASK (0x7fe00000) 210 #define STS_PCPL_SHIFT 21 211 #define STS_GPL_MASK (0x001ff000) 212 #define STS_GPL_SHIFT 12 213 #define STS_PP_MASK (0x00000c00) 214 #define STS_PP_SHIFT 10 215 #define STS_PP_DEF 0 216 #define STS_PP_PROC 1 217 #define STS_PP_BAL 2 218 #define STS_PP_GFX 3 219 #define STS_PCTD_DIS (1<<9) 220 #define STS_GTD_DIS (1<<8) 221 #define STS_PTL_MASK (0x000000fe) 222 #define STS_PTL_SHIFT 1 223 #define STS_NVV (1<<0) 224 #define THM_SEC 0x9c 225 #define SEC_ACK (1<<0) 226 #define THM_TC3 0xa4 227 #define THM_TC1 0xa8 228 #define STS_PPL_MASK (0x0003ff00) 229 #define STS_PPL_SHIFT 16 230 #define THM_TC2 0xac 231 #define THM_DTV 0xb0 232 #define THM_ITV 0xd8 233 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 234 #define ITV_ME_SEQNO_SHIFT (16) 235 #define ITV_MCH_TEMP_MASK 0x0000ff00 236 #define ITV_MCH_TEMP_SHIFT (8) 237 #define ITV_PCH_TEMP_MASK 0x000000ff 238 239 #define thm_readb(off) readb(ips->regmap + (off)) 240 #define thm_readw(off) readw(ips->regmap + (off)) 241 #define thm_readl(off) readl(ips->regmap + (off)) 242 #define thm_readq(off) readq(ips->regmap + (off)) 243 244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 245 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 246 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 247 248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 249 static bool late_i915_load = false; 250 251 /* For initial average collection */ 252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 255 256 /* Per-SKU limits */ 257 struct ips_mcp_limits { 258 int cpu_family; 259 int cpu_model; /* includes extended model... */ 260 int mcp_power_limit; /* mW units */ 261 int core_power_limit; 262 int mch_power_limit; 263 int core_temp_limit; /* degrees C */ 264 int mch_temp_limit; 265 }; 266 267 /* Max temps are -10 degrees C to avoid PROCHOT# */ 268 269 struct ips_mcp_limits ips_sv_limits = { 270 .mcp_power_limit = 35000, 271 .core_power_limit = 29000, 272 .mch_power_limit = 20000, 273 .core_temp_limit = 95, 274 .mch_temp_limit = 90 275 }; 276 277 struct ips_mcp_limits ips_lv_limits = { 278 .mcp_power_limit = 25000, 279 .core_power_limit = 21000, 280 .mch_power_limit = 13000, 281 .core_temp_limit = 95, 282 .mch_temp_limit = 90 283 }; 284 285 struct ips_mcp_limits ips_ulv_limits = { 286 .mcp_power_limit = 18000, 287 .core_power_limit = 14000, 288 .mch_power_limit = 11000, 289 .core_temp_limit = 95, 290 .mch_temp_limit = 90 291 }; 292 293 struct ips_driver { 294 struct pci_dev *dev; 295 void *regmap; 296 struct task_struct *monitor; 297 struct task_struct *adjust; 298 struct dentry *debug_root; 299 300 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 301 u16 ctv1_avg_temp; 302 u16 ctv2_avg_temp; 303 /* GMCH average */ 304 u16 mch_avg_temp; 305 /* Average for the CPU (both cores?) */ 306 u16 mcp_avg_temp; 307 /* Average power consumption (in mW) */ 308 u32 cpu_avg_power; 309 u32 mch_avg_power; 310 311 /* Offset values */ 312 u16 cta_val; 313 u16 pta_val; 314 u16 mgta_val; 315 316 /* Maximums & prefs, protected by turbo status lock */ 317 spinlock_t turbo_status_lock; 318 u16 mcp_temp_limit; 319 u16 mcp_power_limit; 320 u16 core_power_limit; 321 u16 mch_power_limit; 322 bool cpu_turbo_enabled; 323 bool __cpu_turbo_on; 324 bool gpu_turbo_enabled; 325 bool __gpu_turbo_on; 326 bool gpu_preferred; 327 bool poll_turbo_status; 328 bool second_cpu; 329 bool turbo_toggle_allowed; 330 struct ips_mcp_limits *limits; 331 332 /* Optional MCH interfaces for if i915 is in use */ 333 unsigned long (*read_mch_val)(void); 334 bool (*gpu_raise)(void); 335 bool (*gpu_lower)(void); 336 bool (*gpu_busy)(void); 337 bool (*gpu_turbo_disable)(void); 338 339 /* For restoration at unload */ 340 u64 orig_turbo_limit; 341 u64 orig_turbo_ratios; 342 }; 343 344 static bool 345 ips_gpu_turbo_enabled(struct ips_driver *ips); 346 347 /** 348 * ips_cpu_busy - is CPU busy? 349 * @ips: IPS driver struct 350 * 351 * Check CPU for load to see whether we should increase its thermal budget. 352 * 353 * RETURNS: 354 * True if the CPU could use more power, false otherwise. 355 */ 356 static bool ips_cpu_busy(struct ips_driver *ips) 357 { 358 if ((avenrun[0] >> FSHIFT) > 1) 359 return true; 360 361 return false; 362 } 363 364 /** 365 * ips_cpu_raise - raise CPU power clamp 366 * @ips: IPS driver struct 367 * 368 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 369 * this platform. 370 * 371 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 372 * long as we haven't hit the TDP limit for the SKU). 373 */ 374 static void ips_cpu_raise(struct ips_driver *ips) 375 { 376 u64 turbo_override; 377 u16 cur_tdp_limit, new_tdp_limit; 378 379 if (!ips->cpu_turbo_enabled) 380 return; 381 382 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 383 384 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 385 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 386 387 /* Clamp to SKU TDP limit */ 388 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 389 new_tdp_limit = cur_tdp_limit; 390 391 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 392 393 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN; 394 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 395 396 turbo_override &= ~TURBO_TDP_MASK; 397 turbo_override |= new_tdp_limit; 398 399 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 400 } 401 402 /** 403 * ips_cpu_lower - lower CPU power clamp 404 * @ips: IPS driver struct 405 * 406 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 407 * 408 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 409 * as low as the platform limits will allow (though we could go lower there 410 * wouldn't be much point). 411 */ 412 static void ips_cpu_lower(struct ips_driver *ips) 413 { 414 u64 turbo_override; 415 u16 cur_limit, new_limit; 416 417 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 418 419 cur_limit = turbo_override & TURBO_TDP_MASK; 420 new_limit = cur_limit - 8; /* 1W decrease */ 421 422 /* Clamp to SKU TDP limit */ 423 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 424 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 425 426 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 427 428 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN; 429 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 430 431 turbo_override &= ~TURBO_TDP_MASK; 432 turbo_override |= new_limit; 433 434 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 435 } 436 437 /** 438 * do_enable_cpu_turbo - internal turbo enable function 439 * @data: unused 440 * 441 * Internal function for actually updating MSRs. When we enable/disable 442 * turbo, we need to do it on each CPU; this function is the one called 443 * by on_each_cpu() when needed. 444 */ 445 static void do_enable_cpu_turbo(void *data) 446 { 447 u64 perf_ctl; 448 449 rdmsrl(IA32_PERF_CTL, perf_ctl); 450 if (perf_ctl & IA32_PERF_TURBO_DIS) { 451 perf_ctl &= ~IA32_PERF_TURBO_DIS; 452 wrmsrl(IA32_PERF_CTL, perf_ctl); 453 } 454 } 455 456 /** 457 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 458 * @ips: IPS driver struct 459 * 460 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 461 * all logical threads. 462 */ 463 static void ips_enable_cpu_turbo(struct ips_driver *ips) 464 { 465 /* Already on, no need to mess with MSRs */ 466 if (ips->__cpu_turbo_on) 467 return; 468 469 if (ips->turbo_toggle_allowed) 470 on_each_cpu(do_enable_cpu_turbo, ips, 1); 471 472 ips->__cpu_turbo_on = true; 473 } 474 475 /** 476 * do_disable_cpu_turbo - internal turbo disable function 477 * @data: unused 478 * 479 * Internal function for actually updating MSRs. When we enable/disable 480 * turbo, we need to do it on each CPU; this function is the one called 481 * by on_each_cpu() when needed. 482 */ 483 static void do_disable_cpu_turbo(void *data) 484 { 485 u64 perf_ctl; 486 487 rdmsrl(IA32_PERF_CTL, perf_ctl); 488 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 489 perf_ctl |= IA32_PERF_TURBO_DIS; 490 wrmsrl(IA32_PERF_CTL, perf_ctl); 491 } 492 } 493 494 /** 495 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 496 * @ips: IPS driver struct 497 * 498 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 499 * all logical threads. 500 */ 501 static void ips_disable_cpu_turbo(struct ips_driver *ips) 502 { 503 /* Already off, leave it */ 504 if (!ips->__cpu_turbo_on) 505 return; 506 507 if (ips->turbo_toggle_allowed) 508 on_each_cpu(do_disable_cpu_turbo, ips, 1); 509 510 ips->__cpu_turbo_on = false; 511 } 512 513 /** 514 * ips_gpu_busy - is GPU busy? 515 * @ips: IPS driver struct 516 * 517 * Check GPU for load to see whether we should increase its thermal budget. 518 * We need to call into the i915 driver in this case. 519 * 520 * RETURNS: 521 * True if the GPU could use more power, false otherwise. 522 */ 523 static bool ips_gpu_busy(struct ips_driver *ips) 524 { 525 if (!ips_gpu_turbo_enabled(ips)) 526 return false; 527 528 return ips->gpu_busy(); 529 } 530 531 /** 532 * ips_gpu_raise - raise GPU power clamp 533 * @ips: IPS driver struct 534 * 535 * Raise the GPU frequency/power if possible. We need to call into the 536 * i915 driver in this case. 537 */ 538 static void ips_gpu_raise(struct ips_driver *ips) 539 { 540 if (!ips_gpu_turbo_enabled(ips)) 541 return; 542 543 if (!ips->gpu_raise()) 544 ips->gpu_turbo_enabled = false; 545 546 return; 547 } 548 549 /** 550 * ips_gpu_lower - lower GPU power clamp 551 * @ips: IPS driver struct 552 * 553 * Lower GPU frequency/power if possible. Need to call i915. 554 */ 555 static void ips_gpu_lower(struct ips_driver *ips) 556 { 557 if (!ips_gpu_turbo_enabled(ips)) 558 return; 559 560 if (!ips->gpu_lower()) 561 ips->gpu_turbo_enabled = false; 562 563 return; 564 } 565 566 /** 567 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 568 * @ips: IPS driver struct 569 * 570 * Call into the graphics driver indicating that it can safely use 571 * turbo mode. 572 */ 573 static void ips_enable_gpu_turbo(struct ips_driver *ips) 574 { 575 if (ips->__gpu_turbo_on) 576 return; 577 ips->__gpu_turbo_on = true; 578 } 579 580 /** 581 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 582 * @ips: IPS driver struct 583 * 584 * Request that the graphics driver disable turbo mode. 585 */ 586 static void ips_disable_gpu_turbo(struct ips_driver *ips) 587 { 588 /* Avoid calling i915 if turbo is already disabled */ 589 if (!ips->__gpu_turbo_on) 590 return; 591 592 if (!ips->gpu_turbo_disable()) 593 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n"); 594 else 595 ips->__gpu_turbo_on = false; 596 } 597 598 /** 599 * mcp_exceeded - check whether we're outside our thermal & power limits 600 * @ips: IPS driver struct 601 * 602 * Check whether the MCP is over its thermal or power budget. 603 */ 604 static bool mcp_exceeded(struct ips_driver *ips) 605 { 606 unsigned long flags; 607 bool ret = false; 608 u32 temp_limit; 609 u32 avg_power; 610 const char *msg = "MCP limit exceeded: "; 611 612 spin_lock_irqsave(&ips->turbo_status_lock, flags); 613 614 temp_limit = ips->mcp_temp_limit * 100; 615 if (ips->mcp_avg_temp > temp_limit) { 616 dev_info(&ips->dev->dev, 617 "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp, 618 temp_limit); 619 ret = true; 620 } 621 622 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 623 if (avg_power > ips->mcp_power_limit) { 624 dev_info(&ips->dev->dev, 625 "%sAvg power %u, limit %u\n", msg, avg_power, 626 ips->mcp_power_limit); 627 ret = true; 628 } 629 630 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 631 632 return ret; 633 } 634 635 /** 636 * cpu_exceeded - check whether a CPU core is outside its limits 637 * @ips: IPS driver struct 638 * @cpu: CPU number to check 639 * 640 * Check a given CPU's average temp or power is over its limit. 641 */ 642 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 643 { 644 unsigned long flags; 645 int avg; 646 bool ret = false; 647 648 spin_lock_irqsave(&ips->turbo_status_lock, flags); 649 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 650 if (avg > (ips->limits->core_temp_limit * 100)) 651 ret = true; 652 if (ips->cpu_avg_power > ips->core_power_limit * 100) 653 ret = true; 654 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 655 656 if (ret) 657 dev_info(&ips->dev->dev, 658 "CPU power or thermal limit exceeded\n"); 659 660 return ret; 661 } 662 663 /** 664 * mch_exceeded - check whether the GPU is over budget 665 * @ips: IPS driver struct 666 * 667 * Check the MCH temp & power against their maximums. 668 */ 669 static bool mch_exceeded(struct ips_driver *ips) 670 { 671 unsigned long flags; 672 bool ret = false; 673 674 spin_lock_irqsave(&ips->turbo_status_lock, flags); 675 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 676 ret = true; 677 if (ips->mch_avg_power > ips->mch_power_limit) 678 ret = true; 679 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 680 681 return ret; 682 } 683 684 /** 685 * verify_limits - verify BIOS provided limits 686 * @ips: IPS structure 687 * 688 * BIOS can optionally provide non-default limits for power and temp. Check 689 * them here and use the defaults if the BIOS values are not provided or 690 * are otherwise unusable. 691 */ 692 static void verify_limits(struct ips_driver *ips) 693 { 694 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 695 ips->mcp_power_limit > 35000) 696 ips->mcp_power_limit = ips->limits->mcp_power_limit; 697 698 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 699 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 700 ips->mcp_temp_limit > 150) 701 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 702 ips->limits->mch_temp_limit); 703 } 704 705 /** 706 * update_turbo_limits - get various limits & settings from regs 707 * @ips: IPS driver struct 708 * 709 * Update the IPS power & temp limits, along with turbo enable flags, 710 * based on latest register contents. 711 * 712 * Used at init time and for runtime BIOS support, which requires polling 713 * the regs for updates (as a result of AC->DC transition for example). 714 * 715 * LOCKING: 716 * Caller must hold turbo_status_lock (outside of init) 717 */ 718 static void update_turbo_limits(struct ips_driver *ips) 719 { 720 u32 hts = thm_readl(THM_HTS); 721 722 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 723 /* 724 * Disable turbo for now, until we can figure out why the power figures 725 * are wrong 726 */ 727 ips->cpu_turbo_enabled = false; 728 729 if (ips->gpu_busy) 730 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 731 732 ips->core_power_limit = thm_readw(THM_MPCPC); 733 ips->mch_power_limit = thm_readw(THM_MMGPC); 734 ips->mcp_temp_limit = thm_readw(THM_PTL); 735 ips->mcp_power_limit = thm_readw(THM_MPPC); 736 737 verify_limits(ips); 738 /* Ignore BIOS CPU vs GPU pref */ 739 } 740 741 /** 742 * ips_adjust - adjust power clamp based on thermal state 743 * @data: ips driver structure 744 * 745 * Wake up every 5s or so and check whether we should adjust the power clamp. 746 * Check CPU and GPU load to determine which needs adjustment. There are 747 * several things to consider here: 748 * - do we need to adjust up or down? 749 * - is CPU busy? 750 * - is GPU busy? 751 * - is CPU in turbo? 752 * - is GPU in turbo? 753 * - is CPU or GPU preferred? (CPU is default) 754 * 755 * So, given the above, we do the following: 756 * - up (TDP available) 757 * - CPU not busy, GPU not busy - nothing 758 * - CPU busy, GPU not busy - adjust CPU up 759 * - CPU not busy, GPU busy - adjust GPU up 760 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 761 * non-preferred unit if necessary 762 * - down (at TDP limit) 763 * - adjust both CPU and GPU down if possible 764 * 765 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 766 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing 767 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 768 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 769 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 770 * 771 */ 772 static int ips_adjust(void *data) 773 { 774 struct ips_driver *ips = data; 775 unsigned long flags; 776 777 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n"); 778 779 /* 780 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 781 * often isn't recommended due to ME interaction. 782 */ 783 do { 784 bool cpu_busy = ips_cpu_busy(ips); 785 bool gpu_busy = ips_gpu_busy(ips); 786 787 spin_lock_irqsave(&ips->turbo_status_lock, flags); 788 if (ips->poll_turbo_status) 789 update_turbo_limits(ips); 790 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 791 792 /* Update turbo status if necessary */ 793 if (ips->cpu_turbo_enabled) 794 ips_enable_cpu_turbo(ips); 795 else 796 ips_disable_cpu_turbo(ips); 797 798 if (ips->gpu_turbo_enabled) 799 ips_enable_gpu_turbo(ips); 800 else 801 ips_disable_gpu_turbo(ips); 802 803 /* We're outside our comfort zone, crank them down */ 804 if (mcp_exceeded(ips)) { 805 ips_cpu_lower(ips); 806 ips_gpu_lower(ips); 807 goto sleep; 808 } 809 810 if (!cpu_exceeded(ips, 0) && cpu_busy) 811 ips_cpu_raise(ips); 812 else 813 ips_cpu_lower(ips); 814 815 if (!mch_exceeded(ips) && gpu_busy) 816 ips_gpu_raise(ips); 817 else 818 ips_gpu_lower(ips); 819 820 sleep: 821 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 822 } while (!kthread_should_stop()); 823 824 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n"); 825 826 return 0; 827 } 828 829 /* 830 * Helpers for reading out temp/power values and calculating their 831 * averages for the decision making and monitoring functions. 832 */ 833 834 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 835 { 836 u64 total = 0; 837 int i; 838 u16 avg; 839 840 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 841 total += (u64)(array[i] * 100); 842 843 do_div(total, IPS_SAMPLE_COUNT); 844 845 avg = (u16)total; 846 847 return avg; 848 } 849 850 static u16 read_mgtv(struct ips_driver *ips) 851 { 852 u16 ret; 853 u64 slope, offset; 854 u64 val; 855 856 val = thm_readq(THM_MGTV); 857 val = (val & TV_MASK) >> TV_SHIFT; 858 859 slope = offset = thm_readw(THM_MGTA); 860 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 861 offset = offset & MGTA_OFFSET_MASK; 862 863 ret = ((val * slope + 0x40) >> 7) + offset; 864 865 return 0; /* MCH temp reporting buggy */ 866 } 867 868 static u16 read_ptv(struct ips_driver *ips) 869 { 870 u16 val, slope, offset; 871 872 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; 873 offset = ips->pta_val & PTA_OFFSET_MASK; 874 875 val = thm_readw(THM_PTV) & PTV_MASK; 876 877 return val; 878 } 879 880 static u16 read_ctv(struct ips_driver *ips, int cpu) 881 { 882 int reg = cpu ? THM_CTV2 : THM_CTV1; 883 u16 val; 884 885 val = thm_readw(reg); 886 if (!(val & CTV_TEMP_ERROR)) 887 val = (val) >> 6; /* discard fractional component */ 888 else 889 val = 0; 890 891 return val; 892 } 893 894 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 895 { 896 u32 val; 897 u32 ret; 898 899 /* 900 * CEC is in joules/65535. Take difference over time to 901 * get watts. 902 */ 903 val = thm_readl(THM_CEC); 904 905 /* period is in ms and we want mW */ 906 ret = (((val - *last) * 1000) / period); 907 ret = (ret * 1000) / 65535; 908 *last = val; 909 910 return 0; 911 } 912 913 static const u16 temp_decay_factor = 2; 914 static u16 update_average_temp(u16 avg, u16 val) 915 { 916 u16 ret; 917 918 /* Multiply by 100 for extra precision */ 919 ret = (val * 100 / temp_decay_factor) + 920 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 921 return ret; 922 } 923 924 static const u16 power_decay_factor = 2; 925 static u16 update_average_power(u32 avg, u32 val) 926 { 927 u32 ret; 928 929 ret = (val / power_decay_factor) + 930 (((power_decay_factor - 1) * avg) / power_decay_factor); 931 932 return ret; 933 } 934 935 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 936 { 937 u64 total = 0; 938 u32 avg; 939 int i; 940 941 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 942 total += array[i]; 943 944 do_div(total, IPS_SAMPLE_COUNT); 945 avg = (u32)total; 946 947 return avg; 948 } 949 950 static void monitor_timeout(unsigned long arg) 951 { 952 wake_up_process((struct task_struct *)arg); 953 } 954 955 /** 956 * ips_monitor - temp/power monitoring thread 957 * @data: ips driver structure 958 * 959 * This is the main function for the IPS driver. It monitors power and 960 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. 961 * 962 * We keep a 5s moving average of power consumption and tempurature. Using 963 * that data, along with CPU vs GPU preference, we adjust the power clamps 964 * up or down. 965 */ 966 static int ips_monitor(void *data) 967 { 968 struct ips_driver *ips = data; 969 struct timer_list timer; 970 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 971 int i; 972 u32 *cpu_samples, *mchp_samples, old_cpu_power; 973 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 974 u8 cur_seqno, last_seqno; 975 976 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 977 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 978 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 979 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 980 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 981 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 982 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 983 !cpu_samples || !mchp_samples) { 984 dev_err(&ips->dev->dev, 985 "failed to allocate sample array, ips disabled\n"); 986 kfree(mcp_samples); 987 kfree(ctv1_samples); 988 kfree(ctv2_samples); 989 kfree(mch_samples); 990 kfree(cpu_samples); 991 kfree(mchp_samples); 992 return -ENOMEM; 993 } 994 995 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 996 ITV_ME_SEQNO_SHIFT; 997 seqno_timestamp = get_jiffies_64(); 998 999 old_cpu_power = thm_readl(THM_CEC); 1000 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1001 1002 /* Collect an initial average */ 1003 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 1004 u32 mchp, cpu_power; 1005 u16 val; 1006 1007 mcp_samples[i] = read_ptv(ips); 1008 1009 val = read_ctv(ips, 0); 1010 ctv1_samples[i] = val; 1011 1012 val = read_ctv(ips, 1); 1013 ctv2_samples[i] = val; 1014 1015 val = read_mgtv(ips); 1016 mch_samples[i] = val; 1017 1018 cpu_power = get_cpu_power(ips, &old_cpu_power, 1019 IPS_SAMPLE_PERIOD); 1020 cpu_samples[i] = cpu_power; 1021 1022 if (ips->read_mch_val) { 1023 mchp = ips->read_mch_val(); 1024 mchp_samples[i] = mchp; 1025 } 1026 1027 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1028 if (kthread_should_stop()) 1029 break; 1030 } 1031 1032 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1033 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1034 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1035 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1036 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1037 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1038 kfree(mcp_samples); 1039 kfree(ctv1_samples); 1040 kfree(ctv2_samples); 1041 kfree(mch_samples); 1042 kfree(cpu_samples); 1043 kfree(mchp_samples); 1044 1045 /* Start the adjustment thread now that we have data */ 1046 wake_up_process(ips->adjust); 1047 1048 /* 1049 * Ok, now we have an initial avg. From here on out, we track the 1050 * running avg using a decaying average calculation. This allows 1051 * us to reduce the sample frequency if the CPU and GPU are idle. 1052 */ 1053 old_cpu_power = thm_readl(THM_CEC); 1054 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1055 last_sample_period = IPS_SAMPLE_PERIOD; 1056 1057 setup_deferrable_timer_on_stack(&timer, monitor_timeout, 1058 (unsigned long)current); 1059 do { 1060 u32 cpu_val, mch_val; 1061 u16 val; 1062 1063 /* MCP itself */ 1064 val = read_ptv(ips); 1065 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1066 1067 /* Processor 0 */ 1068 val = read_ctv(ips, 0); 1069 ips->ctv1_avg_temp = 1070 update_average_temp(ips->ctv1_avg_temp, val); 1071 /* Power */ 1072 cpu_val = get_cpu_power(ips, &old_cpu_power, 1073 last_sample_period); 1074 ips->cpu_avg_power = 1075 update_average_power(ips->cpu_avg_power, cpu_val); 1076 1077 if (ips->second_cpu) { 1078 /* Processor 1 */ 1079 val = read_ctv(ips, 1); 1080 ips->ctv2_avg_temp = 1081 update_average_temp(ips->ctv2_avg_temp, val); 1082 } 1083 1084 /* MCH */ 1085 val = read_mgtv(ips); 1086 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1087 /* Power */ 1088 if (ips->read_mch_val) { 1089 mch_val = ips->read_mch_val(); 1090 ips->mch_avg_power = 1091 update_average_power(ips->mch_avg_power, 1092 mch_val); 1093 } 1094 1095 /* 1096 * Make sure ME is updating thermal regs. 1097 * Note: 1098 * If it's been more than a second since the last update, 1099 * the ME is probably hung. 1100 */ 1101 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1102 ITV_ME_SEQNO_SHIFT; 1103 if (cur_seqno == last_seqno && 1104 time_after(jiffies, seqno_timestamp + HZ)) { 1105 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n"); 1106 } else { 1107 seqno_timestamp = get_jiffies_64(); 1108 last_seqno = cur_seqno; 1109 } 1110 1111 last_msecs = jiffies_to_msecs(jiffies); 1112 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1113 1114 __set_current_state(TASK_UNINTERRUPTIBLE); 1115 mod_timer(&timer, expire); 1116 schedule(); 1117 1118 /* Calculate actual sample period for power averaging */ 1119 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1120 if (!last_sample_period) 1121 last_sample_period = 1; 1122 } while (!kthread_should_stop()); 1123 1124 del_timer_sync(&timer); 1125 destroy_timer_on_stack(&timer); 1126 1127 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n"); 1128 1129 return 0; 1130 } 1131 1132 #if 0 1133 #define THM_DUMPW(reg) \ 1134 { \ 1135 u16 val = thm_readw(reg); \ 1136 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \ 1137 } 1138 #define THM_DUMPL(reg) \ 1139 { \ 1140 u32 val = thm_readl(reg); \ 1141 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \ 1142 } 1143 #define THM_DUMPQ(reg) \ 1144 { \ 1145 u64 val = thm_readq(reg); \ 1146 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \ 1147 } 1148 1149 static void dump_thermal_info(struct ips_driver *ips) 1150 { 1151 u16 ptl; 1152 1153 ptl = thm_readw(THM_PTL); 1154 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl); 1155 1156 THM_DUMPW(THM_CTA); 1157 THM_DUMPW(THM_TRC); 1158 THM_DUMPW(THM_CTV1); 1159 THM_DUMPL(THM_STS); 1160 THM_DUMPW(THM_PTV); 1161 THM_DUMPQ(THM_MGTV); 1162 } 1163 #endif 1164 1165 /** 1166 * ips_irq_handler - handle temperature triggers and other IPS events 1167 * @irq: irq number 1168 * @arg: unused 1169 * 1170 * Handle temperature limit trigger events, generally by lowering the clamps. 1171 * If we're at a critical limit, we clamp back to the lowest possible value 1172 * to prevent emergency shutdown. 1173 */ 1174 static irqreturn_t ips_irq_handler(int irq, void *arg) 1175 { 1176 struct ips_driver *ips = arg; 1177 u8 tses = thm_readb(THM_TSES); 1178 u8 tes = thm_readb(THM_TES); 1179 1180 if (!tses && !tes) 1181 return IRQ_NONE; 1182 1183 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses); 1184 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes); 1185 1186 /* STS update from EC? */ 1187 if (tes & 1) { 1188 u32 sts, tc1; 1189 1190 sts = thm_readl(THM_STS); 1191 tc1 = thm_readl(THM_TC1); 1192 1193 if (sts & STS_NVV) { 1194 spin_lock(&ips->turbo_status_lock); 1195 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1196 STS_PCPL_SHIFT; 1197 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1198 STS_GPL_SHIFT; 1199 /* ignore EC CPU vs GPU pref */ 1200 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1201 /* 1202 * Disable turbo for now, until we can figure 1203 * out why the power figures are wrong 1204 */ 1205 ips->cpu_turbo_enabled = false; 1206 if (ips->gpu_busy) 1207 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1208 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1209 STS_PTL_SHIFT; 1210 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1211 STS_PPL_SHIFT; 1212 verify_limits(ips); 1213 spin_unlock(&ips->turbo_status_lock); 1214 1215 thm_writeb(THM_SEC, SEC_ACK); 1216 } 1217 thm_writeb(THM_TES, tes); 1218 } 1219 1220 /* Thermal trip */ 1221 if (tses) { 1222 dev_warn(&ips->dev->dev, 1223 "thermal trip occurred, tses: 0x%04x\n", tses); 1224 thm_writeb(THM_TSES, tses); 1225 } 1226 1227 return IRQ_HANDLED; 1228 } 1229 1230 #ifndef CONFIG_DEBUG_FS 1231 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1232 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1233 #else 1234 1235 /* Expose current state and limits in debugfs if possible */ 1236 1237 struct ips_debugfs_node { 1238 struct ips_driver *ips; 1239 char *name; 1240 int (*show)(struct seq_file *m, void *data); 1241 }; 1242 1243 static int show_cpu_temp(struct seq_file *m, void *data) 1244 { 1245 struct ips_driver *ips = m->private; 1246 1247 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1248 ips->ctv1_avg_temp % 100); 1249 1250 return 0; 1251 } 1252 1253 static int show_cpu_power(struct seq_file *m, void *data) 1254 { 1255 struct ips_driver *ips = m->private; 1256 1257 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1258 1259 return 0; 1260 } 1261 1262 static int show_cpu_clamp(struct seq_file *m, void *data) 1263 { 1264 u64 turbo_override; 1265 int tdp, tdc; 1266 1267 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1268 1269 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1270 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1271 1272 /* Convert to .1W/A units */ 1273 tdp = tdp * 10 / 8; 1274 tdc = tdc * 10 / 8; 1275 1276 /* Watts Amperes */ 1277 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1278 tdc / 10, tdc % 10); 1279 1280 return 0; 1281 } 1282 1283 static int show_mch_temp(struct seq_file *m, void *data) 1284 { 1285 struct ips_driver *ips = m->private; 1286 1287 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1288 ips->mch_avg_temp % 100); 1289 1290 return 0; 1291 } 1292 1293 static int show_mch_power(struct seq_file *m, void *data) 1294 { 1295 struct ips_driver *ips = m->private; 1296 1297 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1298 1299 return 0; 1300 } 1301 1302 static struct ips_debugfs_node ips_debug_files[] = { 1303 { NULL, "cpu_temp", show_cpu_temp }, 1304 { NULL, "cpu_power", show_cpu_power }, 1305 { NULL, "cpu_clamp", show_cpu_clamp }, 1306 { NULL, "mch_temp", show_mch_temp }, 1307 { NULL, "mch_power", show_mch_power }, 1308 }; 1309 1310 static int ips_debugfs_open(struct inode *inode, struct file *file) 1311 { 1312 struct ips_debugfs_node *node = inode->i_private; 1313 1314 return single_open(file, node->show, node->ips); 1315 } 1316 1317 static const struct file_operations ips_debugfs_ops = { 1318 .owner = THIS_MODULE, 1319 .open = ips_debugfs_open, 1320 .read = seq_read, 1321 .llseek = seq_lseek, 1322 .release = single_release, 1323 }; 1324 1325 static void ips_debugfs_cleanup(struct ips_driver *ips) 1326 { 1327 if (ips->debug_root) 1328 debugfs_remove_recursive(ips->debug_root); 1329 return; 1330 } 1331 1332 static void ips_debugfs_init(struct ips_driver *ips) 1333 { 1334 int i; 1335 1336 ips->debug_root = debugfs_create_dir("ips", NULL); 1337 if (!ips->debug_root) { 1338 dev_err(&ips->dev->dev, 1339 "failed to create debugfs entries: %ld\n", 1340 PTR_ERR(ips->debug_root)); 1341 return; 1342 } 1343 1344 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { 1345 struct dentry *ent; 1346 struct ips_debugfs_node *node = &ips_debug_files[i]; 1347 1348 node->ips = ips; 1349 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, 1350 ips->debug_root, node, 1351 &ips_debugfs_ops); 1352 if (!ent) { 1353 dev_err(&ips->dev->dev, 1354 "failed to create debug file: %ld\n", 1355 PTR_ERR(ent)); 1356 goto err_cleanup; 1357 } 1358 } 1359 1360 return; 1361 1362 err_cleanup: 1363 ips_debugfs_cleanup(ips); 1364 return; 1365 } 1366 #endif /* CONFIG_DEBUG_FS */ 1367 1368 /** 1369 * ips_detect_cpu - detect whether CPU supports IPS 1370 * 1371 * Walk our list and see if we're on a supported CPU. If we find one, 1372 * return the limits for it. 1373 */ 1374 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1375 { 1376 u64 turbo_power, misc_en; 1377 struct ips_mcp_limits *limits = NULL; 1378 u16 tdp; 1379 1380 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1381 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n"); 1382 goto out; 1383 } 1384 1385 rdmsrl(IA32_MISC_ENABLE, misc_en); 1386 /* 1387 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1388 * turbo manually or we'll get an illegal MSR access, even though 1389 * turbo will still be available. 1390 */ 1391 if (misc_en & IA32_MISC_TURBO_EN) 1392 ips->turbo_toggle_allowed = true; 1393 else 1394 ips->turbo_toggle_allowed = false; 1395 1396 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1397 limits = &ips_sv_limits; 1398 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1399 limits = &ips_lv_limits; 1400 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1401 limits = &ips_ulv_limits; 1402 else { 1403 dev_info(&ips->dev->dev, "No CPUID match found.\n"); 1404 goto out; 1405 } 1406 1407 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1408 tdp = turbo_power & TURBO_TDP_MASK; 1409 1410 /* Sanity check TDP against CPU */ 1411 if (limits->core_power_limit != (tdp / 8) * 1000) { 1412 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1413 tdp / 8, limits->core_power_limit / 1000); 1414 limits->core_power_limit = (tdp / 8) * 1000; 1415 } 1416 1417 out: 1418 return limits; 1419 } 1420 1421 /** 1422 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1423 * @ips: IPS driver 1424 * 1425 * The i915 driver exports several interfaces to allow the IPS driver to 1426 * monitor and control graphics turbo mode. If we can find them, we can 1427 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1428 * thermal and power limits in the MCP. 1429 */ 1430 static bool ips_get_i915_syms(struct ips_driver *ips) 1431 { 1432 ips->read_mch_val = symbol_get(i915_read_mch_val); 1433 if (!ips->read_mch_val) 1434 goto out_err; 1435 ips->gpu_raise = symbol_get(i915_gpu_raise); 1436 if (!ips->gpu_raise) 1437 goto out_put_mch; 1438 ips->gpu_lower = symbol_get(i915_gpu_lower); 1439 if (!ips->gpu_lower) 1440 goto out_put_raise; 1441 ips->gpu_busy = symbol_get(i915_gpu_busy); 1442 if (!ips->gpu_busy) 1443 goto out_put_lower; 1444 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1445 if (!ips->gpu_turbo_disable) 1446 goto out_put_busy; 1447 1448 return true; 1449 1450 out_put_busy: 1451 symbol_put(i915_gpu_busy); 1452 out_put_lower: 1453 symbol_put(i915_gpu_lower); 1454 out_put_raise: 1455 symbol_put(i915_gpu_raise); 1456 out_put_mch: 1457 symbol_put(i915_read_mch_val); 1458 out_err: 1459 return false; 1460 } 1461 1462 static bool 1463 ips_gpu_turbo_enabled(struct ips_driver *ips) 1464 { 1465 if (!ips->gpu_busy && late_i915_load) { 1466 if (ips_get_i915_syms(ips)) { 1467 dev_info(&ips->dev->dev, 1468 "i915 driver attached, reenabling gpu turbo\n"); 1469 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1470 } 1471 } 1472 1473 return ips->gpu_turbo_enabled; 1474 } 1475 1476 void 1477 ips_link_to_i915_driver() 1478 { 1479 /* We can't cleanly get at the various ips_driver structs from 1480 * this caller (the i915 driver), so just set a flag saying 1481 * that it's time to try getting the symbols again. 1482 */ 1483 late_i915_load = true; 1484 } 1485 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1486 1487 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = { 1488 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 1489 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1490 { 0, } 1491 }; 1492 1493 MODULE_DEVICE_TABLE(pci, ips_id_table); 1494 1495 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1496 { 1497 u64 platform_info; 1498 struct ips_driver *ips; 1499 u32 hts; 1500 int ret = 0; 1501 u16 htshi, trc, trc_required_mask; 1502 u8 tse; 1503 1504 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL); 1505 if (!ips) 1506 return -ENOMEM; 1507 1508 pci_set_drvdata(dev, ips); 1509 ips->dev = dev; 1510 1511 ips->limits = ips_detect_cpu(ips); 1512 if (!ips->limits) { 1513 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1514 ret = -ENXIO; 1515 goto error_free; 1516 } 1517 1518 spin_lock_init(&ips->turbo_status_lock); 1519 1520 ret = pci_enable_device(dev); 1521 if (ret) { 1522 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1523 goto error_free; 1524 } 1525 1526 if (!pci_resource_start(dev, 0)) { 1527 dev_err(&dev->dev, "TBAR not assigned, aborting\n"); 1528 ret = -ENXIO; 1529 goto error_free; 1530 } 1531 1532 ret = pci_request_regions(dev, "ips thermal sensor"); 1533 if (ret) { 1534 dev_err(&dev->dev, "thermal resource busy, aborting\n"); 1535 goto error_free; 1536 } 1537 1538 1539 ips->regmap = ioremap(pci_resource_start(dev, 0), 1540 pci_resource_len(dev, 0)); 1541 if (!ips->regmap) { 1542 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1543 ret = -EBUSY; 1544 goto error_release; 1545 } 1546 1547 tse = thm_readb(THM_TSE); 1548 if (tse != TSE_EN) { 1549 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1550 ret = -ENXIO; 1551 goto error_unmap; 1552 } 1553 1554 trc = thm_readw(THM_TRC); 1555 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1556 if ((trc & trc_required_mask) != trc_required_mask) { 1557 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1558 ret = -ENXIO; 1559 goto error_unmap; 1560 } 1561 1562 if (trc & TRC_CORE2_EN) 1563 ips->second_cpu = true; 1564 1565 update_turbo_limits(ips); 1566 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1567 ips->mcp_power_limit / 10); 1568 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1569 ips->core_power_limit / 10); 1570 /* BIOS may update limits at runtime */ 1571 if (thm_readl(THM_PSC) & PSP_PBRT) 1572 ips->poll_turbo_status = true; 1573 1574 if (!ips_get_i915_syms(ips)) { 1575 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n"); 1576 ips->gpu_turbo_enabled = false; 1577 } else { 1578 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1579 ips->gpu_turbo_enabled = true; 1580 } 1581 1582 /* 1583 * Check PLATFORM_INFO MSR to make sure this chip is 1584 * turbo capable. 1585 */ 1586 rdmsrl(PLATFORM_INFO, platform_info); 1587 if (!(platform_info & PLATFORM_TDP)) { 1588 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1589 ret = -ENODEV; 1590 goto error_unmap; 1591 } 1592 1593 /* 1594 * IRQ handler for ME interaction 1595 * Note: don't use MSI here as the PCH has bugs. 1596 */ 1597 pci_disable_msi(dev); 1598 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips", 1599 ips); 1600 if (ret) { 1601 dev_err(&dev->dev, "request irq failed, aborting\n"); 1602 goto error_unmap; 1603 } 1604 1605 /* Enable aux, hot & critical interrupts */ 1606 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1607 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1608 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1609 1610 /* Collect adjustment values */ 1611 ips->cta_val = thm_readw(THM_CTA); 1612 ips->pta_val = thm_readw(THM_PTA); 1613 ips->mgta_val = thm_readw(THM_MGTA); 1614 1615 /* Save turbo limits & ratios */ 1616 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1617 1618 ips_disable_cpu_turbo(ips); 1619 ips->cpu_turbo_enabled = false; 1620 1621 /* Create thermal adjust thread */ 1622 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1623 if (IS_ERR(ips->adjust)) { 1624 dev_err(&dev->dev, 1625 "failed to create thermal adjust thread, aborting\n"); 1626 ret = -ENOMEM; 1627 goto error_free_irq; 1628 1629 } 1630 1631 /* 1632 * Set up the work queue and monitor thread. The monitor thread 1633 * will wake up ips_adjust thread. 1634 */ 1635 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1636 if (IS_ERR(ips->monitor)) { 1637 dev_err(&dev->dev, 1638 "failed to create thermal monitor thread, aborting\n"); 1639 ret = -ENOMEM; 1640 goto error_thread_cleanup; 1641 } 1642 1643 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1644 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1645 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1646 1647 thm_writew(THM_HTSHI, htshi); 1648 thm_writel(THM_HTS, hts); 1649 1650 ips_debugfs_init(ips); 1651 1652 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1653 ips->mcp_temp_limit); 1654 return ret; 1655 1656 error_thread_cleanup: 1657 kthread_stop(ips->adjust); 1658 error_free_irq: 1659 free_irq(ips->dev->irq, ips); 1660 error_unmap: 1661 iounmap(ips->regmap); 1662 error_release: 1663 pci_release_regions(dev); 1664 error_free: 1665 kfree(ips); 1666 return ret; 1667 } 1668 1669 static void ips_remove(struct pci_dev *dev) 1670 { 1671 struct ips_driver *ips = pci_get_drvdata(dev); 1672 u64 turbo_override; 1673 1674 if (!ips) 1675 return; 1676 1677 ips_debugfs_cleanup(ips); 1678 1679 /* Release i915 driver */ 1680 if (ips->read_mch_val) 1681 symbol_put(i915_read_mch_val); 1682 if (ips->gpu_raise) 1683 symbol_put(i915_gpu_raise); 1684 if (ips->gpu_lower) 1685 symbol_put(i915_gpu_lower); 1686 if (ips->gpu_busy) 1687 symbol_put(i915_gpu_busy); 1688 if (ips->gpu_turbo_disable) 1689 symbol_put(i915_gpu_turbo_disable); 1690 1691 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1692 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1693 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1694 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1695 1696 free_irq(ips->dev->irq, ips); 1697 if (ips->adjust) 1698 kthread_stop(ips->adjust); 1699 if (ips->monitor) 1700 kthread_stop(ips->monitor); 1701 iounmap(ips->regmap); 1702 pci_release_regions(dev); 1703 kfree(ips); 1704 dev_dbg(&dev->dev, "IPS driver removed\n"); 1705 } 1706 1707 #ifdef CONFIG_PM 1708 static int ips_suspend(struct pci_dev *dev, pm_message_t state) 1709 { 1710 return 0; 1711 } 1712 1713 static int ips_resume(struct pci_dev *dev) 1714 { 1715 return 0; 1716 } 1717 #else 1718 #define ips_suspend NULL 1719 #define ips_resume NULL 1720 #endif /* CONFIG_PM */ 1721 1722 static void ips_shutdown(struct pci_dev *dev) 1723 { 1724 } 1725 1726 static struct pci_driver ips_pci_driver = { 1727 .name = "intel ips", 1728 .id_table = ips_id_table, 1729 .probe = ips_probe, 1730 .remove = ips_remove, 1731 .suspend = ips_suspend, 1732 .resume = ips_resume, 1733 .shutdown = ips_shutdown, 1734 }; 1735 1736 static int __init ips_init(void) 1737 { 1738 return pci_register_driver(&ips_pci_driver); 1739 } 1740 module_init(ips_init); 1741 1742 static void ips_exit(void) 1743 { 1744 pci_unregister_driver(&ips_pci_driver); 1745 return; 1746 } 1747 module_exit(ips_exit); 1748 1749 MODULE_LICENSE("GPL"); 1750 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1751 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1752