xref: /openbmc/linux/drivers/platform/x86/intel_ips.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *	Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62 
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79 
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81 
82 /*
83  * Package level MSRs for monitor/control
84  */
85 #define PLATFORM_INFO	0xce
86 #define   PLATFORM_TDP		(1<<29)
87 #define   PLATFORM_RATIO	(1<<28)
88 
89 #define IA32_MISC_ENABLE	0x1a0
90 #define   IA32_MISC_TURBO_EN	(1ULL<<38)
91 
92 #define TURBO_POWER_CURRENT_LIMIT	0x1ac
93 #define   TURBO_TDC_OVR_EN	(1UL<<31)
94 #define   TURBO_TDC_MASK	(0x000000007fff0000UL)
95 #define   TURBO_TDC_SHIFT	(16)
96 #define   TURBO_TDP_OVR_EN	(1UL<<15)
97 #define   TURBO_TDP_MASK	(0x0000000000003fffUL)
98 
99 /*
100  * Core/thread MSRs for monitoring
101  */
102 #define IA32_PERF_CTL		0x199
103 #define   IA32_PERF_TURBO_DIS	(1ULL<<32)
104 
105 /*
106  * Thermal PCI device regs
107  */
108 #define THM_CFG_TBAR	0x10
109 #define THM_CFG_TBAR_HI	0x14
110 
111 #define THM_TSIU	0x00
112 #define THM_TSE		0x01
113 #define   TSE_EN	0xb8
114 #define THM_TSS		0x02
115 #define THM_TSTR	0x03
116 #define THM_TSTTP	0x04
117 #define THM_TSCO	0x08
118 #define THM_TSES	0x0c
119 #define THM_TSGPEN	0x0d
120 #define   TSGPEN_HOT_LOHI	(1<<1)
121 #define   TSGPEN_CRIT_LOHI	(1<<2)
122 #define THM_TSPC	0x0e
123 #define THM_PPEC	0x10
124 #define THM_CTA		0x12
125 #define THM_PTA		0x14
126 #define   PTA_SLOPE_MASK	(0xff00)
127 #define   PTA_SLOPE_SHIFT	8
128 #define   PTA_OFFSET_MASK	(0x00ff)
129 #define THM_MGTA	0x16
130 #define   MGTA_SLOPE_MASK	(0xff00)
131 #define   MGTA_SLOPE_SHIFT	8
132 #define   MGTA_OFFSET_MASK	(0x00ff)
133 #define THM_TRC		0x1a
134 #define   TRC_CORE2_EN	(1<<15)
135 #define   TRC_THM_EN	(1<<12)
136 #define   TRC_C6_WAR	(1<<8)
137 #define   TRC_CORE1_EN	(1<<7)
138 #define   TRC_CORE_PWR	(1<<6)
139 #define   TRC_PCH_EN	(1<<5)
140 #define   TRC_MCH_EN	(1<<4)
141 #define   TRC_DIMM4	(1<<3)
142 #define   TRC_DIMM3	(1<<2)
143 #define   TRC_DIMM2	(1<<1)
144 #define   TRC_DIMM1	(1<<0)
145 #define THM_TES		0x20
146 #define THM_TEN		0x21
147 #define   TEN_UPDATE_EN	1
148 #define THM_PSC		0x24
149 #define   PSC_NTG	(1<<0) /* No GFX turbo support */
150 #define   PSC_NTPC	(1<<1) /* No CPU turbo support */
151 #define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
152 #define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
153 #define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
154 #define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
155 #define   PSP_PBRT	(1<<4) /* BIOS run time support */
156 #define THM_CTV1	0x30
157 #define   CTV_TEMP_ERROR (1<<15)
158 #define   CTV_TEMP_MASK	0x3f
159 #define   CTV_
160 #define THM_CTV2	0x32
161 #define THM_CEC		0x34 /* undocumented power accumulator in joules */
162 #define THM_AE		0x3f
163 #define THM_HTS		0x50 /* 32 bits */
164 #define   HTS_PCPL_MASK	(0x7fe00000)
165 #define   HTS_PCPL_SHIFT 21
166 #define   HTS_GPL_MASK  (0x001ff000)
167 #define   HTS_GPL_SHIFT 12
168 #define   HTS_PP_MASK	(0x00000c00)
169 #define   HTS_PP_SHIFT  10
170 #define   HTS_PP_DEF	0
171 #define   HTS_PP_PROC	1
172 #define   HTS_PP_BAL	2
173 #define   HTS_PP_GFX	3
174 #define   HTS_PCTD_DIS	(1<<9)
175 #define   HTS_GTD_DIS	(1<<8)
176 #define   HTS_PTL_MASK  (0x000000fe)
177 #define   HTS_PTL_SHIFT 1
178 #define   HTS_NVV	(1<<0)
179 #define THM_HTSHI	0x54 /* 16 bits */
180 #define   HTS2_PPL_MASK		(0x03ff)
181 #define   HTS2_PRST_MASK	(0x3c00)
182 #define   HTS2_PRST_SHIFT	10
183 #define   HTS2_PRST_UNLOADED	0
184 #define   HTS2_PRST_RUNNING	1
185 #define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
186 #define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
187 #define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
188 #define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
189 #define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
190 #define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
191 #define THM_PTL		0x56
192 #define THM_MGTV	0x58
193 #define   TV_MASK	0x000000000000ff00
194 #define   TV_SHIFT	8
195 #define THM_PTV		0x60
196 #define   PTV_MASK	0x00ff
197 #define THM_MMGPC	0x64
198 #define THM_MPPC	0x66
199 #define THM_MPCPC	0x68
200 #define THM_TSPIEN	0x82
201 #define   TSPIEN_AUX_LOHI	(1<<0)
202 #define   TSPIEN_HOT_LOHI	(1<<1)
203 #define   TSPIEN_CRIT_LOHI	(1<<2)
204 #define   TSPIEN_AUX2_LOHI	(1<<3)
205 #define THM_TSLOCK	0x83
206 #define THM_ATR		0x84
207 #define THM_TOF		0x87
208 #define THM_STS		0x98
209 #define   STS_PCPL_MASK		(0x7fe00000)
210 #define   STS_PCPL_SHIFT	21
211 #define   STS_GPL_MASK		(0x001ff000)
212 #define   STS_GPL_SHIFT		12
213 #define   STS_PP_MASK		(0x00000c00)
214 #define   STS_PP_SHIFT		10
215 #define   STS_PP_DEF		0
216 #define   STS_PP_PROC		1
217 #define   STS_PP_BAL		2
218 #define   STS_PP_GFX		3
219 #define   STS_PCTD_DIS		(1<<9)
220 #define   STS_GTD_DIS		(1<<8)
221 #define   STS_PTL_MASK		(0x000000fe)
222 #define   STS_PTL_SHIFT		1
223 #define   STS_NVV		(1<<0)
224 #define THM_SEC		0x9c
225 #define   SEC_ACK	(1<<0)
226 #define THM_TC3		0xa4
227 #define THM_TC1		0xa8
228 #define   STS_PPL_MASK		(0x0003ff00)
229 #define   STS_PPL_SHIFT		16
230 #define THM_TC2		0xac
231 #define THM_DTV		0xb0
232 #define THM_ITV		0xd8
233 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define   ITV_ME_SEQNO_SHIFT (16)
235 #define   ITV_MCH_TEMP_MASK 0x0000ff00
236 #define   ITV_MCH_TEMP_SHIFT (8)
237 #define   ITV_PCH_TEMP_MASK 0x000000ff
238 
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243 
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247 
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
250 
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255 
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258 	int cpu_family;
259 	int cpu_model; /* includes extended model... */
260 	int mcp_power_limit; /* mW units */
261 	int core_power_limit;
262 	int mch_power_limit;
263 	int core_temp_limit; /* degrees C */
264 	int mch_temp_limit;
265 };
266 
267 /* Max temps are -10 degrees C to avoid PROCHOT# */
268 
269 struct ips_mcp_limits ips_sv_limits = {
270 	.mcp_power_limit = 35000,
271 	.core_power_limit = 29000,
272 	.mch_power_limit = 20000,
273 	.core_temp_limit = 95,
274 	.mch_temp_limit = 90
275 };
276 
277 struct ips_mcp_limits ips_lv_limits = {
278 	.mcp_power_limit = 25000,
279 	.core_power_limit = 21000,
280 	.mch_power_limit = 13000,
281 	.core_temp_limit = 95,
282 	.mch_temp_limit = 90
283 };
284 
285 struct ips_mcp_limits ips_ulv_limits = {
286 	.mcp_power_limit = 18000,
287 	.core_power_limit = 14000,
288 	.mch_power_limit = 11000,
289 	.core_temp_limit = 95,
290 	.mch_temp_limit = 90
291 };
292 
293 struct ips_driver {
294 	struct pci_dev *dev;
295 	void *regmap;
296 	struct task_struct *monitor;
297 	struct task_struct *adjust;
298 	struct dentry *debug_root;
299 
300 	/* Average CPU core temps (all averages in .01 degrees C for precision) */
301 	u16 ctv1_avg_temp;
302 	u16 ctv2_avg_temp;
303 	/* GMCH average */
304 	u16 mch_avg_temp;
305 	/* Average for the CPU (both cores?) */
306 	u16 mcp_avg_temp;
307 	/* Average power consumption (in mW) */
308 	u32 cpu_avg_power;
309 	u32 mch_avg_power;
310 
311 	/* Offset values */
312 	u16 cta_val;
313 	u16 pta_val;
314 	u16 mgta_val;
315 
316 	/* Maximums & prefs, protected by turbo status lock */
317 	spinlock_t turbo_status_lock;
318 	u16 mcp_temp_limit;
319 	u16 mcp_power_limit;
320 	u16 core_power_limit;
321 	u16 mch_power_limit;
322 	bool cpu_turbo_enabled;
323 	bool __cpu_turbo_on;
324 	bool gpu_turbo_enabled;
325 	bool __gpu_turbo_on;
326 	bool gpu_preferred;
327 	bool poll_turbo_status;
328 	bool second_cpu;
329 	bool turbo_toggle_allowed;
330 	struct ips_mcp_limits *limits;
331 
332 	/* Optional MCH interfaces for if i915 is in use */
333 	unsigned long (*read_mch_val)(void);
334 	bool (*gpu_raise)(void);
335 	bool (*gpu_lower)(void);
336 	bool (*gpu_busy)(void);
337 	bool (*gpu_turbo_disable)(void);
338 
339 	/* For restoration at unload */
340 	u64 orig_turbo_limit;
341 	u64 orig_turbo_ratios;
342 };
343 
344 static bool
345 ips_gpu_turbo_enabled(struct ips_driver *ips);
346 
347 #ifndef readq
348 static inline __u64 readq(const volatile void __iomem *addr)
349 {
350 	const volatile u32 __iomem *p = addr;
351 	u32 low, high;
352 
353 	low = readl(p);
354 	high = readl(p + 1);
355 
356 	return low + ((u64)high << 32);
357 }
358 #endif
359 
360 /**
361  * ips_cpu_busy - is CPU busy?
362  * @ips: IPS driver struct
363  *
364  * Check CPU for load to see whether we should increase its thermal budget.
365  *
366  * RETURNS:
367  * True if the CPU could use more power, false otherwise.
368  */
369 static bool ips_cpu_busy(struct ips_driver *ips)
370 {
371 	if ((avenrun[0] >> FSHIFT) > 1)
372 		return true;
373 
374 	return false;
375 }
376 
377 /**
378  * ips_cpu_raise - raise CPU power clamp
379  * @ips: IPS driver struct
380  *
381  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
382  * this platform.
383  *
384  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
385  * long as we haven't hit the TDP limit for the SKU).
386  */
387 static void ips_cpu_raise(struct ips_driver *ips)
388 {
389 	u64 turbo_override;
390 	u16 cur_tdp_limit, new_tdp_limit;
391 
392 	if (!ips->cpu_turbo_enabled)
393 		return;
394 
395 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
396 
397 	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
398 	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
399 
400 	/* Clamp to SKU TDP limit */
401 	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
402 		new_tdp_limit = cur_tdp_limit;
403 
404 	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
405 
406 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
407 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
408 
409 	turbo_override &= ~TURBO_TDP_MASK;
410 	turbo_override |= new_tdp_limit;
411 
412 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
413 }
414 
415 /**
416  * ips_cpu_lower - lower CPU power clamp
417  * @ips: IPS driver struct
418  *
419  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
420  *
421  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
422  * as low as the platform limits will allow (though we could go lower there
423  * wouldn't be much point).
424  */
425 static void ips_cpu_lower(struct ips_driver *ips)
426 {
427 	u64 turbo_override;
428 	u16 cur_limit, new_limit;
429 
430 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
431 
432 	cur_limit = turbo_override & TURBO_TDP_MASK;
433 	new_limit = cur_limit - 8; /* 1W decrease */
434 
435 	/* Clamp to SKU TDP limit */
436 	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
437 		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
438 
439 	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
440 
441 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
442 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
443 
444 	turbo_override &= ~TURBO_TDP_MASK;
445 	turbo_override |= new_limit;
446 
447 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
448 }
449 
450 /**
451  * do_enable_cpu_turbo - internal turbo enable function
452  * @data: unused
453  *
454  * Internal function for actually updating MSRs.  When we enable/disable
455  * turbo, we need to do it on each CPU; this function is the one called
456  * by on_each_cpu() when needed.
457  */
458 static void do_enable_cpu_turbo(void *data)
459 {
460 	u64 perf_ctl;
461 
462 	rdmsrl(IA32_PERF_CTL, perf_ctl);
463 	if (perf_ctl & IA32_PERF_TURBO_DIS) {
464 		perf_ctl &= ~IA32_PERF_TURBO_DIS;
465 		wrmsrl(IA32_PERF_CTL, perf_ctl);
466 	}
467 }
468 
469 /**
470  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
471  * @ips: IPS driver struct
472  *
473  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
474  * all logical threads.
475  */
476 static void ips_enable_cpu_turbo(struct ips_driver *ips)
477 {
478 	/* Already on, no need to mess with MSRs */
479 	if (ips->__cpu_turbo_on)
480 		return;
481 
482 	if (ips->turbo_toggle_allowed)
483 		on_each_cpu(do_enable_cpu_turbo, ips, 1);
484 
485 	ips->__cpu_turbo_on = true;
486 }
487 
488 /**
489  * do_disable_cpu_turbo - internal turbo disable function
490  * @data: unused
491  *
492  * Internal function for actually updating MSRs.  When we enable/disable
493  * turbo, we need to do it on each CPU; this function is the one called
494  * by on_each_cpu() when needed.
495  */
496 static void do_disable_cpu_turbo(void *data)
497 {
498 	u64 perf_ctl;
499 
500 	rdmsrl(IA32_PERF_CTL, perf_ctl);
501 	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
502 		perf_ctl |= IA32_PERF_TURBO_DIS;
503 		wrmsrl(IA32_PERF_CTL, perf_ctl);
504 	}
505 }
506 
507 /**
508  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
509  * @ips: IPS driver struct
510  *
511  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
512  * all logical threads.
513  */
514 static void ips_disable_cpu_turbo(struct ips_driver *ips)
515 {
516 	/* Already off, leave it */
517 	if (!ips->__cpu_turbo_on)
518 		return;
519 
520 	if (ips->turbo_toggle_allowed)
521 		on_each_cpu(do_disable_cpu_turbo, ips, 1);
522 
523 	ips->__cpu_turbo_on = false;
524 }
525 
526 /**
527  * ips_gpu_busy - is GPU busy?
528  * @ips: IPS driver struct
529  *
530  * Check GPU for load to see whether we should increase its thermal budget.
531  * We need to call into the i915 driver in this case.
532  *
533  * RETURNS:
534  * True if the GPU could use more power, false otherwise.
535  */
536 static bool ips_gpu_busy(struct ips_driver *ips)
537 {
538 	if (!ips_gpu_turbo_enabled(ips))
539 		return false;
540 
541 	return ips->gpu_busy();
542 }
543 
544 /**
545  * ips_gpu_raise - raise GPU power clamp
546  * @ips: IPS driver struct
547  *
548  * Raise the GPU frequency/power if possible.  We need to call into the
549  * i915 driver in this case.
550  */
551 static void ips_gpu_raise(struct ips_driver *ips)
552 {
553 	if (!ips_gpu_turbo_enabled(ips))
554 		return;
555 
556 	if (!ips->gpu_raise())
557 		ips->gpu_turbo_enabled = false;
558 
559 	return;
560 }
561 
562 /**
563  * ips_gpu_lower - lower GPU power clamp
564  * @ips: IPS driver struct
565  *
566  * Lower GPU frequency/power if possible.  Need to call i915.
567  */
568 static void ips_gpu_lower(struct ips_driver *ips)
569 {
570 	if (!ips_gpu_turbo_enabled(ips))
571 		return;
572 
573 	if (!ips->gpu_lower())
574 		ips->gpu_turbo_enabled = false;
575 
576 	return;
577 }
578 
579 /**
580  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
581  * @ips: IPS driver struct
582  *
583  * Call into the graphics driver indicating that it can safely use
584  * turbo mode.
585  */
586 static void ips_enable_gpu_turbo(struct ips_driver *ips)
587 {
588 	if (ips->__gpu_turbo_on)
589 		return;
590 	ips->__gpu_turbo_on = true;
591 }
592 
593 /**
594  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
595  * @ips: IPS driver struct
596  *
597  * Request that the graphics driver disable turbo mode.
598  */
599 static void ips_disable_gpu_turbo(struct ips_driver *ips)
600 {
601 	/* Avoid calling i915 if turbo is already disabled */
602 	if (!ips->__gpu_turbo_on)
603 		return;
604 
605 	if (!ips->gpu_turbo_disable())
606 		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
607 	else
608 		ips->__gpu_turbo_on = false;
609 }
610 
611 /**
612  * mcp_exceeded - check whether we're outside our thermal & power limits
613  * @ips: IPS driver struct
614  *
615  * Check whether the MCP is over its thermal or power budget.
616  */
617 static bool mcp_exceeded(struct ips_driver *ips)
618 {
619 	unsigned long flags;
620 	bool ret = false;
621 	u32 temp_limit;
622 	u32 avg_power;
623 	const char *msg = "MCP limit exceeded: ";
624 
625 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
626 
627 	temp_limit = ips->mcp_temp_limit * 100;
628 	if (ips->mcp_avg_temp > temp_limit) {
629 		dev_info(&ips->dev->dev,
630 			"%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
631 			temp_limit);
632 		ret = true;
633 	}
634 
635 	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
636 	if (avg_power > ips->mcp_power_limit) {
637 		dev_info(&ips->dev->dev,
638 			"%sAvg power %u, limit %u\n", msg, avg_power,
639 			ips->mcp_power_limit);
640 		ret = true;
641 	}
642 
643 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
644 
645 	return ret;
646 }
647 
648 /**
649  * cpu_exceeded - check whether a CPU core is outside its limits
650  * @ips: IPS driver struct
651  * @cpu: CPU number to check
652  *
653  * Check a given CPU's average temp or power is over its limit.
654  */
655 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
656 {
657 	unsigned long flags;
658 	int avg;
659 	bool ret = false;
660 
661 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
662 	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
663 	if (avg > (ips->limits->core_temp_limit * 100))
664 		ret = true;
665 	if (ips->cpu_avg_power > ips->core_power_limit * 100)
666 		ret = true;
667 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
668 
669 	if (ret)
670 		dev_info(&ips->dev->dev,
671 			 "CPU power or thermal limit exceeded\n");
672 
673 	return ret;
674 }
675 
676 /**
677  * mch_exceeded - check whether the GPU is over budget
678  * @ips: IPS driver struct
679  *
680  * Check the MCH temp & power against their maximums.
681  */
682 static bool mch_exceeded(struct ips_driver *ips)
683 {
684 	unsigned long flags;
685 	bool ret = false;
686 
687 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
688 	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
689 		ret = true;
690 	if (ips->mch_avg_power > ips->mch_power_limit)
691 		ret = true;
692 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
693 
694 	return ret;
695 }
696 
697 /**
698  * verify_limits - verify BIOS provided limits
699  * @ips: IPS structure
700  *
701  * BIOS can optionally provide non-default limits for power and temp.  Check
702  * them here and use the defaults if the BIOS values are not provided or
703  * are otherwise unusable.
704  */
705 static void verify_limits(struct ips_driver *ips)
706 {
707 	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
708 	    ips->mcp_power_limit > 35000)
709 		ips->mcp_power_limit = ips->limits->mcp_power_limit;
710 
711 	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
712 	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
713 	    ips->mcp_temp_limit > 150)
714 		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
715 					  ips->limits->mch_temp_limit);
716 }
717 
718 /**
719  * update_turbo_limits - get various limits & settings from regs
720  * @ips: IPS driver struct
721  *
722  * Update the IPS power & temp limits, along with turbo enable flags,
723  * based on latest register contents.
724  *
725  * Used at init time and for runtime BIOS support, which requires polling
726  * the regs for updates (as a result of AC->DC transition for example).
727  *
728  * LOCKING:
729  * Caller must hold turbo_status_lock (outside of init)
730  */
731 static void update_turbo_limits(struct ips_driver *ips)
732 {
733 	u32 hts = thm_readl(THM_HTS);
734 
735 	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
736 	/*
737 	 * Disable turbo for now, until we can figure out why the power figures
738 	 * are wrong
739 	 */
740 	ips->cpu_turbo_enabled = false;
741 
742 	if (ips->gpu_busy)
743 		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
744 
745 	ips->core_power_limit = thm_readw(THM_MPCPC);
746 	ips->mch_power_limit = thm_readw(THM_MMGPC);
747 	ips->mcp_temp_limit = thm_readw(THM_PTL);
748 	ips->mcp_power_limit = thm_readw(THM_MPPC);
749 
750 	verify_limits(ips);
751 	/* Ignore BIOS CPU vs GPU pref */
752 }
753 
754 /**
755  * ips_adjust - adjust power clamp based on thermal state
756  * @data: ips driver structure
757  *
758  * Wake up every 5s or so and check whether we should adjust the power clamp.
759  * Check CPU and GPU load to determine which needs adjustment.  There are
760  * several things to consider here:
761  *   - do we need to adjust up or down?
762  *   - is CPU busy?
763  *   - is GPU busy?
764  *   - is CPU in turbo?
765  *   - is GPU in turbo?
766  *   - is CPU or GPU preferred? (CPU is default)
767  *
768  * So, given the above, we do the following:
769  *   - up (TDP available)
770  *     - CPU not busy, GPU not busy - nothing
771  *     - CPU busy, GPU not busy - adjust CPU up
772  *     - CPU not busy, GPU busy - adjust GPU up
773  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
774  *       non-preferred unit if necessary
775  *   - down (at TDP limit)
776  *     - adjust both CPU and GPU down if possible
777  *
778 		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
779 cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
780 cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
781 cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
782 cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
783  *
784  */
785 static int ips_adjust(void *data)
786 {
787 	struct ips_driver *ips = data;
788 	unsigned long flags;
789 
790 	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
791 
792 	/*
793 	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
794 	 * often isn't recommended due to ME interaction.
795 	 */
796 	do {
797 		bool cpu_busy = ips_cpu_busy(ips);
798 		bool gpu_busy = ips_gpu_busy(ips);
799 
800 		spin_lock_irqsave(&ips->turbo_status_lock, flags);
801 		if (ips->poll_turbo_status)
802 			update_turbo_limits(ips);
803 		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
804 
805 		/* Update turbo status if necessary */
806 		if (ips->cpu_turbo_enabled)
807 			ips_enable_cpu_turbo(ips);
808 		else
809 			ips_disable_cpu_turbo(ips);
810 
811 		if (ips->gpu_turbo_enabled)
812 			ips_enable_gpu_turbo(ips);
813 		else
814 			ips_disable_gpu_turbo(ips);
815 
816 		/* We're outside our comfort zone, crank them down */
817 		if (mcp_exceeded(ips)) {
818 			ips_cpu_lower(ips);
819 			ips_gpu_lower(ips);
820 			goto sleep;
821 		}
822 
823 		if (!cpu_exceeded(ips, 0) && cpu_busy)
824 			ips_cpu_raise(ips);
825 		else
826 			ips_cpu_lower(ips);
827 
828 		if (!mch_exceeded(ips) && gpu_busy)
829 			ips_gpu_raise(ips);
830 		else
831 			ips_gpu_lower(ips);
832 
833 sleep:
834 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
835 	} while (!kthread_should_stop());
836 
837 	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
838 
839 	return 0;
840 }
841 
842 /*
843  * Helpers for reading out temp/power values and calculating their
844  * averages for the decision making and monitoring functions.
845  */
846 
847 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
848 {
849 	u64 total = 0;
850 	int i;
851 	u16 avg;
852 
853 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
854 		total += (u64)(array[i] * 100);
855 
856 	do_div(total, IPS_SAMPLE_COUNT);
857 
858 	avg = (u16)total;
859 
860 	return avg;
861 }
862 
863 static u16 read_mgtv(struct ips_driver *ips)
864 {
865 	u16 ret;
866 	u64 slope, offset;
867 	u64 val;
868 
869 	val = thm_readq(THM_MGTV);
870 	val = (val & TV_MASK) >> TV_SHIFT;
871 
872 	slope = offset = thm_readw(THM_MGTA);
873 	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
874 	offset = offset & MGTA_OFFSET_MASK;
875 
876 	ret = ((val * slope + 0x40) >> 7) + offset;
877 
878 	return 0; /* MCH temp reporting buggy */
879 }
880 
881 static u16 read_ptv(struct ips_driver *ips)
882 {
883 	u16 val, slope, offset;
884 
885 	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
886 	offset = ips->pta_val & PTA_OFFSET_MASK;
887 
888 	val = thm_readw(THM_PTV) & PTV_MASK;
889 
890 	return val;
891 }
892 
893 static u16 read_ctv(struct ips_driver *ips, int cpu)
894 {
895 	int reg = cpu ? THM_CTV2 : THM_CTV1;
896 	u16 val;
897 
898 	val = thm_readw(reg);
899 	if (!(val & CTV_TEMP_ERROR))
900 		val = (val) >> 6; /* discard fractional component */
901 	else
902 		val = 0;
903 
904 	return val;
905 }
906 
907 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
908 {
909 	u32 val;
910 	u32 ret;
911 
912 	/*
913 	 * CEC is in joules/65535.  Take difference over time to
914 	 * get watts.
915 	 */
916 	val = thm_readl(THM_CEC);
917 
918 	/* period is in ms and we want mW */
919 	ret = (((val - *last) * 1000) / period);
920 	ret = (ret * 1000) / 65535;
921 	*last = val;
922 
923 	return 0;
924 }
925 
926 static const u16 temp_decay_factor = 2;
927 static u16 update_average_temp(u16 avg, u16 val)
928 {
929 	u16 ret;
930 
931 	/* Multiply by 100 for extra precision */
932 	ret = (val * 100 / temp_decay_factor) +
933 		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
934 	return ret;
935 }
936 
937 static const u16 power_decay_factor = 2;
938 static u16 update_average_power(u32 avg, u32 val)
939 {
940 	u32 ret;
941 
942 	ret = (val / power_decay_factor) +
943 		(((power_decay_factor - 1) * avg) / power_decay_factor);
944 
945 	return ret;
946 }
947 
948 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
949 {
950 	u64 total = 0;
951 	u32 avg;
952 	int i;
953 
954 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
955 		total += array[i];
956 
957 	do_div(total, IPS_SAMPLE_COUNT);
958 	avg = (u32)total;
959 
960 	return avg;
961 }
962 
963 static void monitor_timeout(unsigned long arg)
964 {
965 	wake_up_process((struct task_struct *)arg);
966 }
967 
968 /**
969  * ips_monitor - temp/power monitoring thread
970  * @data: ips driver structure
971  *
972  * This is the main function for the IPS driver.  It monitors power and
973  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
974  *
975  * We keep a 5s moving average of power consumption and tempurature.  Using
976  * that data, along with CPU vs GPU preference, we adjust the power clamps
977  * up or down.
978  */
979 static int ips_monitor(void *data)
980 {
981 	struct ips_driver *ips = data;
982 	struct timer_list timer;
983 	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
984 	int i;
985 	u32 *cpu_samples, *mchp_samples, old_cpu_power;
986 	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
987 	u8 cur_seqno, last_seqno;
988 
989 	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
990 	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
991 	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
992 	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
993 	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
994 	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
995 	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
996 			!cpu_samples || !mchp_samples) {
997 		dev_err(&ips->dev->dev,
998 			"failed to allocate sample array, ips disabled\n");
999 		kfree(mcp_samples);
1000 		kfree(ctv1_samples);
1001 		kfree(ctv2_samples);
1002 		kfree(mch_samples);
1003 		kfree(cpu_samples);
1004 		kfree(mchp_samples);
1005 		return -ENOMEM;
1006 	}
1007 
1008 	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1009 		ITV_ME_SEQNO_SHIFT;
1010 	seqno_timestamp = get_jiffies_64();
1011 
1012 	old_cpu_power = thm_readl(THM_CEC);
1013 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1014 
1015 	/* Collect an initial average */
1016 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1017 		u32 mchp, cpu_power;
1018 		u16 val;
1019 
1020 		mcp_samples[i] = read_ptv(ips);
1021 
1022 		val = read_ctv(ips, 0);
1023 		ctv1_samples[i] = val;
1024 
1025 		val = read_ctv(ips, 1);
1026 		ctv2_samples[i] = val;
1027 
1028 		val = read_mgtv(ips);
1029 		mch_samples[i] = val;
1030 
1031 		cpu_power = get_cpu_power(ips, &old_cpu_power,
1032 					  IPS_SAMPLE_PERIOD);
1033 		cpu_samples[i] = cpu_power;
1034 
1035 		if (ips->read_mch_val) {
1036 			mchp = ips->read_mch_val();
1037 			mchp_samples[i] = mchp;
1038 		}
1039 
1040 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1041 		if (kthread_should_stop())
1042 			break;
1043 	}
1044 
1045 	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1046 	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1047 	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1048 	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1049 	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1050 	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1051 	kfree(mcp_samples);
1052 	kfree(ctv1_samples);
1053 	kfree(ctv2_samples);
1054 	kfree(mch_samples);
1055 	kfree(cpu_samples);
1056 	kfree(mchp_samples);
1057 
1058 	/* Start the adjustment thread now that we have data */
1059 	wake_up_process(ips->adjust);
1060 
1061 	/*
1062 	 * Ok, now we have an initial avg.  From here on out, we track the
1063 	 * running avg using a decaying average calculation.  This allows
1064 	 * us to reduce the sample frequency if the CPU and GPU are idle.
1065 	 */
1066 	old_cpu_power = thm_readl(THM_CEC);
1067 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1068 	last_sample_period = IPS_SAMPLE_PERIOD;
1069 
1070 	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1071 					(unsigned long)current);
1072 	do {
1073 		u32 cpu_val, mch_val;
1074 		u16 val;
1075 
1076 		/* MCP itself */
1077 		val = read_ptv(ips);
1078 		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1079 
1080 		/* Processor 0 */
1081 		val = read_ctv(ips, 0);
1082 		ips->ctv1_avg_temp =
1083 			update_average_temp(ips->ctv1_avg_temp, val);
1084 		/* Power */
1085 		cpu_val = get_cpu_power(ips, &old_cpu_power,
1086 					last_sample_period);
1087 		ips->cpu_avg_power =
1088 			update_average_power(ips->cpu_avg_power, cpu_val);
1089 
1090 		if (ips->second_cpu) {
1091 			/* Processor 1 */
1092 			val = read_ctv(ips, 1);
1093 			ips->ctv2_avg_temp =
1094 				update_average_temp(ips->ctv2_avg_temp, val);
1095 		}
1096 
1097 		/* MCH */
1098 		val = read_mgtv(ips);
1099 		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1100 		/* Power */
1101 		if (ips->read_mch_val) {
1102 			mch_val = ips->read_mch_val();
1103 			ips->mch_avg_power =
1104 				update_average_power(ips->mch_avg_power,
1105 						     mch_val);
1106 		}
1107 
1108 		/*
1109 		 * Make sure ME is updating thermal regs.
1110 		 * Note:
1111 		 * If it's been more than a second since the last update,
1112 		 * the ME is probably hung.
1113 		 */
1114 		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1115 			ITV_ME_SEQNO_SHIFT;
1116 		if (cur_seqno == last_seqno &&
1117 		    time_after(jiffies, seqno_timestamp + HZ)) {
1118 			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1119 		} else {
1120 			seqno_timestamp = get_jiffies_64();
1121 			last_seqno = cur_seqno;
1122 		}
1123 
1124 		last_msecs = jiffies_to_msecs(jiffies);
1125 		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1126 
1127 		__set_current_state(TASK_INTERRUPTIBLE);
1128 		mod_timer(&timer, expire);
1129 		schedule();
1130 
1131 		/* Calculate actual sample period for power averaging */
1132 		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1133 		if (!last_sample_period)
1134 			last_sample_period = 1;
1135 	} while (!kthread_should_stop());
1136 
1137 	del_timer_sync(&timer);
1138 	destroy_timer_on_stack(&timer);
1139 
1140 	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1141 
1142 	return 0;
1143 }
1144 
1145 #if 0
1146 #define THM_DUMPW(reg) \
1147 	{ \
1148 	u16 val = thm_readw(reg); \
1149 	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1150 	}
1151 #define THM_DUMPL(reg) \
1152 	{ \
1153 	u32 val = thm_readl(reg); \
1154 	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1155 	}
1156 #define THM_DUMPQ(reg) \
1157 	{ \
1158 	u64 val = thm_readq(reg); \
1159 	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1160 	}
1161 
1162 static void dump_thermal_info(struct ips_driver *ips)
1163 {
1164 	u16 ptl;
1165 
1166 	ptl = thm_readw(THM_PTL);
1167 	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1168 
1169 	THM_DUMPW(THM_CTA);
1170 	THM_DUMPW(THM_TRC);
1171 	THM_DUMPW(THM_CTV1);
1172 	THM_DUMPL(THM_STS);
1173 	THM_DUMPW(THM_PTV);
1174 	THM_DUMPQ(THM_MGTV);
1175 }
1176 #endif
1177 
1178 /**
1179  * ips_irq_handler - handle temperature triggers and other IPS events
1180  * @irq: irq number
1181  * @arg: unused
1182  *
1183  * Handle temperature limit trigger events, generally by lowering the clamps.
1184  * If we're at a critical limit, we clamp back to the lowest possible value
1185  * to prevent emergency shutdown.
1186  */
1187 static irqreturn_t ips_irq_handler(int irq, void *arg)
1188 {
1189 	struct ips_driver *ips = arg;
1190 	u8 tses = thm_readb(THM_TSES);
1191 	u8 tes = thm_readb(THM_TES);
1192 
1193 	if (!tses && !tes)
1194 		return IRQ_NONE;
1195 
1196 	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1197 	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1198 
1199 	/* STS update from EC? */
1200 	if (tes & 1) {
1201 		u32 sts, tc1;
1202 
1203 		sts = thm_readl(THM_STS);
1204 		tc1 = thm_readl(THM_TC1);
1205 
1206 		if (sts & STS_NVV) {
1207 			spin_lock(&ips->turbo_status_lock);
1208 			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1209 				STS_PCPL_SHIFT;
1210 			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1211 				STS_GPL_SHIFT;
1212 			/* ignore EC CPU vs GPU pref */
1213 			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1214 			/*
1215 			 * Disable turbo for now, until we can figure
1216 			 * out why the power figures are wrong
1217 			 */
1218 			ips->cpu_turbo_enabled = false;
1219 			if (ips->gpu_busy)
1220 				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1221 			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1222 				STS_PTL_SHIFT;
1223 			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1224 				STS_PPL_SHIFT;
1225 			verify_limits(ips);
1226 			spin_unlock(&ips->turbo_status_lock);
1227 
1228 			thm_writeb(THM_SEC, SEC_ACK);
1229 		}
1230 		thm_writeb(THM_TES, tes);
1231 	}
1232 
1233 	/* Thermal trip */
1234 	if (tses) {
1235 		dev_warn(&ips->dev->dev,
1236 			 "thermal trip occurred, tses: 0x%04x\n", tses);
1237 		thm_writeb(THM_TSES, tses);
1238 	}
1239 
1240 	return IRQ_HANDLED;
1241 }
1242 
1243 #ifndef CONFIG_DEBUG_FS
1244 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1245 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1246 #else
1247 
1248 /* Expose current state and limits in debugfs if possible */
1249 
1250 struct ips_debugfs_node {
1251 	struct ips_driver *ips;
1252 	char *name;
1253 	int (*show)(struct seq_file *m, void *data);
1254 };
1255 
1256 static int show_cpu_temp(struct seq_file *m, void *data)
1257 {
1258 	struct ips_driver *ips = m->private;
1259 
1260 	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1261 		   ips->ctv1_avg_temp % 100);
1262 
1263 	return 0;
1264 }
1265 
1266 static int show_cpu_power(struct seq_file *m, void *data)
1267 {
1268 	struct ips_driver *ips = m->private;
1269 
1270 	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1271 
1272 	return 0;
1273 }
1274 
1275 static int show_cpu_clamp(struct seq_file *m, void *data)
1276 {
1277 	u64 turbo_override;
1278 	int tdp, tdc;
1279 
1280 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1281 
1282 	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1283 	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1284 
1285 	/* Convert to .1W/A units */
1286 	tdp = tdp * 10 / 8;
1287 	tdc = tdc * 10 / 8;
1288 
1289 	/* Watts Amperes */
1290 	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1291 		   tdc / 10, tdc % 10);
1292 
1293 	return 0;
1294 }
1295 
1296 static int show_mch_temp(struct seq_file *m, void *data)
1297 {
1298 	struct ips_driver *ips = m->private;
1299 
1300 	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1301 		   ips->mch_avg_temp % 100);
1302 
1303 	return 0;
1304 }
1305 
1306 static int show_mch_power(struct seq_file *m, void *data)
1307 {
1308 	struct ips_driver *ips = m->private;
1309 
1310 	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1311 
1312 	return 0;
1313 }
1314 
1315 static struct ips_debugfs_node ips_debug_files[] = {
1316 	{ NULL, "cpu_temp", show_cpu_temp },
1317 	{ NULL, "cpu_power", show_cpu_power },
1318 	{ NULL, "cpu_clamp", show_cpu_clamp },
1319 	{ NULL, "mch_temp", show_mch_temp },
1320 	{ NULL, "mch_power", show_mch_power },
1321 };
1322 
1323 static int ips_debugfs_open(struct inode *inode, struct file *file)
1324 {
1325 	struct ips_debugfs_node *node = inode->i_private;
1326 
1327 	return single_open(file, node->show, node->ips);
1328 }
1329 
1330 static const struct file_operations ips_debugfs_ops = {
1331 	.owner = THIS_MODULE,
1332 	.open = ips_debugfs_open,
1333 	.read = seq_read,
1334 	.llseek = seq_lseek,
1335 	.release = single_release,
1336 };
1337 
1338 static void ips_debugfs_cleanup(struct ips_driver *ips)
1339 {
1340 	if (ips->debug_root)
1341 		debugfs_remove_recursive(ips->debug_root);
1342 	return;
1343 }
1344 
1345 static void ips_debugfs_init(struct ips_driver *ips)
1346 {
1347 	int i;
1348 
1349 	ips->debug_root = debugfs_create_dir("ips", NULL);
1350 	if (!ips->debug_root) {
1351 		dev_err(&ips->dev->dev,
1352 			"failed to create debugfs entries: %ld\n",
1353 			PTR_ERR(ips->debug_root));
1354 		return;
1355 	}
1356 
1357 	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1358 		struct dentry *ent;
1359 		struct ips_debugfs_node *node = &ips_debug_files[i];
1360 
1361 		node->ips = ips;
1362 		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1363 					  ips->debug_root, node,
1364 					  &ips_debugfs_ops);
1365 		if (!ent) {
1366 			dev_err(&ips->dev->dev,
1367 				"failed to create debug file: %ld\n",
1368 				PTR_ERR(ent));
1369 			goto err_cleanup;
1370 		}
1371 	}
1372 
1373 	return;
1374 
1375 err_cleanup:
1376 	ips_debugfs_cleanup(ips);
1377 	return;
1378 }
1379 #endif /* CONFIG_DEBUG_FS */
1380 
1381 /**
1382  * ips_detect_cpu - detect whether CPU supports IPS
1383  *
1384  * Walk our list and see if we're on a supported CPU.  If we find one,
1385  * return the limits for it.
1386  */
1387 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1388 {
1389 	u64 turbo_power, misc_en;
1390 	struct ips_mcp_limits *limits = NULL;
1391 	u16 tdp;
1392 
1393 	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1394 		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1395 		goto out;
1396 	}
1397 
1398 	rdmsrl(IA32_MISC_ENABLE, misc_en);
1399 	/*
1400 	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1401 	 * turbo manually or we'll get an illegal MSR access, even though
1402 	 * turbo will still be available.
1403 	 */
1404 	if (misc_en & IA32_MISC_TURBO_EN)
1405 		ips->turbo_toggle_allowed = true;
1406 	else
1407 		ips->turbo_toggle_allowed = false;
1408 
1409 	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1410 		limits = &ips_sv_limits;
1411 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1412 		limits = &ips_lv_limits;
1413 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1414 		limits = &ips_ulv_limits;
1415 	else {
1416 		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1417 		goto out;
1418 	}
1419 
1420 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1421 	tdp = turbo_power & TURBO_TDP_MASK;
1422 
1423 	/* Sanity check TDP against CPU */
1424 	if (limits->core_power_limit != (tdp / 8) * 1000) {
1425 		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1426 			 tdp / 8, limits->core_power_limit / 1000);
1427 		limits->core_power_limit = (tdp / 8) * 1000;
1428 	}
1429 
1430 out:
1431 	return limits;
1432 }
1433 
1434 /**
1435  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1436  * @ips: IPS driver
1437  *
1438  * The i915 driver exports several interfaces to allow the IPS driver to
1439  * monitor and control graphics turbo mode.  If we can find them, we can
1440  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1441  * thermal and power limits in the MCP.
1442  */
1443 static bool ips_get_i915_syms(struct ips_driver *ips)
1444 {
1445 	ips->read_mch_val = symbol_get(i915_read_mch_val);
1446 	if (!ips->read_mch_val)
1447 		goto out_err;
1448 	ips->gpu_raise = symbol_get(i915_gpu_raise);
1449 	if (!ips->gpu_raise)
1450 		goto out_put_mch;
1451 	ips->gpu_lower = symbol_get(i915_gpu_lower);
1452 	if (!ips->gpu_lower)
1453 		goto out_put_raise;
1454 	ips->gpu_busy = symbol_get(i915_gpu_busy);
1455 	if (!ips->gpu_busy)
1456 		goto out_put_lower;
1457 	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1458 	if (!ips->gpu_turbo_disable)
1459 		goto out_put_busy;
1460 
1461 	return true;
1462 
1463 out_put_busy:
1464 	symbol_put(i915_gpu_busy);
1465 out_put_lower:
1466 	symbol_put(i915_gpu_lower);
1467 out_put_raise:
1468 	symbol_put(i915_gpu_raise);
1469 out_put_mch:
1470 	symbol_put(i915_read_mch_val);
1471 out_err:
1472 	return false;
1473 }
1474 
1475 static bool
1476 ips_gpu_turbo_enabled(struct ips_driver *ips)
1477 {
1478 	if (!ips->gpu_busy && late_i915_load) {
1479 		if (ips_get_i915_syms(ips)) {
1480 			dev_info(&ips->dev->dev,
1481 				 "i915 driver attached, reenabling gpu turbo\n");
1482 			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1483 		}
1484 	}
1485 
1486 	return ips->gpu_turbo_enabled;
1487 }
1488 
1489 void
1490 ips_link_to_i915_driver(void)
1491 {
1492 	/* We can't cleanly get at the various ips_driver structs from
1493 	 * this caller (the i915 driver), so just set a flag saying
1494 	 * that it's time to try getting the symbols again.
1495 	 */
1496 	late_i915_load = true;
1497 }
1498 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1499 
1500 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1501 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1502 		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1503 	{ 0, }
1504 };
1505 
1506 MODULE_DEVICE_TABLE(pci, ips_id_table);
1507 
1508 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1509 {
1510 	u64 platform_info;
1511 	struct ips_driver *ips;
1512 	u32 hts;
1513 	int ret = 0;
1514 	u16 htshi, trc, trc_required_mask;
1515 	u8 tse;
1516 
1517 	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1518 	if (!ips)
1519 		return -ENOMEM;
1520 
1521 	pci_set_drvdata(dev, ips);
1522 	ips->dev = dev;
1523 
1524 	ips->limits = ips_detect_cpu(ips);
1525 	if (!ips->limits) {
1526 		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1527 		ret = -ENXIO;
1528 		goto error_free;
1529 	}
1530 
1531 	spin_lock_init(&ips->turbo_status_lock);
1532 
1533 	ret = pci_enable_device(dev);
1534 	if (ret) {
1535 		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1536 		goto error_free;
1537 	}
1538 
1539 	if (!pci_resource_start(dev, 0)) {
1540 		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1541 		ret = -ENXIO;
1542 		goto error_free;
1543 	}
1544 
1545 	ret = pci_request_regions(dev, "ips thermal sensor");
1546 	if (ret) {
1547 		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1548 		goto error_free;
1549 	}
1550 
1551 
1552 	ips->regmap = ioremap(pci_resource_start(dev, 0),
1553 			      pci_resource_len(dev, 0));
1554 	if (!ips->regmap) {
1555 		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1556 		ret = -EBUSY;
1557 		goto error_release;
1558 	}
1559 
1560 	tse = thm_readb(THM_TSE);
1561 	if (tse != TSE_EN) {
1562 		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1563 		ret = -ENXIO;
1564 		goto error_unmap;
1565 	}
1566 
1567 	trc = thm_readw(THM_TRC);
1568 	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1569 	if ((trc & trc_required_mask) != trc_required_mask) {
1570 		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1571 		ret = -ENXIO;
1572 		goto error_unmap;
1573 	}
1574 
1575 	if (trc & TRC_CORE2_EN)
1576 		ips->second_cpu = true;
1577 
1578 	update_turbo_limits(ips);
1579 	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1580 		ips->mcp_power_limit / 10);
1581 	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1582 		ips->core_power_limit / 10);
1583 	/* BIOS may update limits at runtime */
1584 	if (thm_readl(THM_PSC) & PSP_PBRT)
1585 		ips->poll_turbo_status = true;
1586 
1587 	if (!ips_get_i915_syms(ips)) {
1588 		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1589 		ips->gpu_turbo_enabled = false;
1590 	} else {
1591 		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1592 		ips->gpu_turbo_enabled = true;
1593 	}
1594 
1595 	/*
1596 	 * Check PLATFORM_INFO MSR to make sure this chip is
1597 	 * turbo capable.
1598 	 */
1599 	rdmsrl(PLATFORM_INFO, platform_info);
1600 	if (!(platform_info & PLATFORM_TDP)) {
1601 		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1602 		ret = -ENODEV;
1603 		goto error_unmap;
1604 	}
1605 
1606 	/*
1607 	 * IRQ handler for ME interaction
1608 	 * Note: don't use MSI here as the PCH has bugs.
1609 	 */
1610 	pci_disable_msi(dev);
1611 	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1612 			  ips);
1613 	if (ret) {
1614 		dev_err(&dev->dev, "request irq failed, aborting\n");
1615 		goto error_unmap;
1616 	}
1617 
1618 	/* Enable aux, hot & critical interrupts */
1619 	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1620 		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1621 	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1622 
1623 	/* Collect adjustment values */
1624 	ips->cta_val = thm_readw(THM_CTA);
1625 	ips->pta_val = thm_readw(THM_PTA);
1626 	ips->mgta_val = thm_readw(THM_MGTA);
1627 
1628 	/* Save turbo limits & ratios */
1629 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1630 
1631 	ips_disable_cpu_turbo(ips);
1632 	ips->cpu_turbo_enabled = false;
1633 
1634 	/* Create thermal adjust thread */
1635 	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1636 	if (IS_ERR(ips->adjust)) {
1637 		dev_err(&dev->dev,
1638 			"failed to create thermal adjust thread, aborting\n");
1639 		ret = -ENOMEM;
1640 		goto error_free_irq;
1641 
1642 	}
1643 
1644 	/*
1645 	 * Set up the work queue and monitor thread. The monitor thread
1646 	 * will wake up ips_adjust thread.
1647 	 */
1648 	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1649 	if (IS_ERR(ips->monitor)) {
1650 		dev_err(&dev->dev,
1651 			"failed to create thermal monitor thread, aborting\n");
1652 		ret = -ENOMEM;
1653 		goto error_thread_cleanup;
1654 	}
1655 
1656 	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1657 		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1658 	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1659 
1660 	thm_writew(THM_HTSHI, htshi);
1661 	thm_writel(THM_HTS, hts);
1662 
1663 	ips_debugfs_init(ips);
1664 
1665 	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1666 		 ips->mcp_temp_limit);
1667 	return ret;
1668 
1669 error_thread_cleanup:
1670 	kthread_stop(ips->adjust);
1671 error_free_irq:
1672 	free_irq(ips->dev->irq, ips);
1673 error_unmap:
1674 	iounmap(ips->regmap);
1675 error_release:
1676 	pci_release_regions(dev);
1677 error_free:
1678 	kfree(ips);
1679 	return ret;
1680 }
1681 
1682 static void ips_remove(struct pci_dev *dev)
1683 {
1684 	struct ips_driver *ips = pci_get_drvdata(dev);
1685 	u64 turbo_override;
1686 
1687 	if (!ips)
1688 		return;
1689 
1690 	ips_debugfs_cleanup(ips);
1691 
1692 	/* Release i915 driver */
1693 	if (ips->read_mch_val)
1694 		symbol_put(i915_read_mch_val);
1695 	if (ips->gpu_raise)
1696 		symbol_put(i915_gpu_raise);
1697 	if (ips->gpu_lower)
1698 		symbol_put(i915_gpu_lower);
1699 	if (ips->gpu_busy)
1700 		symbol_put(i915_gpu_busy);
1701 	if (ips->gpu_turbo_disable)
1702 		symbol_put(i915_gpu_turbo_disable);
1703 
1704 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1705 	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1706 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1708 
1709 	free_irq(ips->dev->irq, ips);
1710 	if (ips->adjust)
1711 		kthread_stop(ips->adjust);
1712 	if (ips->monitor)
1713 		kthread_stop(ips->monitor);
1714 	iounmap(ips->regmap);
1715 	pci_release_regions(dev);
1716 	kfree(ips);
1717 	dev_dbg(&dev->dev, "IPS driver removed\n");
1718 }
1719 
1720 #ifdef CONFIG_PM
1721 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1722 {
1723 	return 0;
1724 }
1725 
1726 static int ips_resume(struct pci_dev *dev)
1727 {
1728 	return 0;
1729 }
1730 #else
1731 #define ips_suspend NULL
1732 #define ips_resume NULL
1733 #endif /* CONFIG_PM */
1734 
1735 static void ips_shutdown(struct pci_dev *dev)
1736 {
1737 }
1738 
1739 static struct pci_driver ips_pci_driver = {
1740 	.name = "intel ips",
1741 	.id_table = ips_id_table,
1742 	.probe = ips_probe,
1743 	.remove = ips_remove,
1744 	.suspend = ips_suspend,
1745 	.resume = ips_resume,
1746 	.shutdown = ips_shutdown,
1747 };
1748 
1749 static int __init ips_init(void)
1750 {
1751 	return pci_register_driver(&ips_pci_driver);
1752 }
1753 module_init(ips_init);
1754 
1755 static void ips_exit(void)
1756 {
1757 	pci_unregister_driver(&ips_pci_driver);
1758 	return;
1759 }
1760 module_exit(ips_exit);
1761 
1762 MODULE_LICENSE("GPL");
1763 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1764 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1765