1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2009-2010 Intel Corporation 4 * 5 * Authors: 6 * Jesse Barnes <jbarnes@virtuousgeek.org> 7 */ 8 9 /* 10 * Some Intel Ibex Peak based platforms support so-called "intelligent 11 * power sharing", which allows the CPU and GPU to cooperate to maximize 12 * performance within a given TDP (thermal design point). This driver 13 * performs the coordination between the CPU and GPU, monitors thermal and 14 * power statistics in the platform, and initializes power monitoring 15 * hardware. It also provides a few tunables to control behavior. Its 16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 17 * by tracking power and thermal budget; secondarily it can boost turbo 18 * performance by allocating more power or thermal budget to the CPU or GPU 19 * based on available headroom and activity. 20 * 21 * The basic algorithm is driven by a 5s moving average of temperature. If 22 * thermal headroom is available, the CPU and/or GPU power clamps may be 23 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 24 * we scale back the clamp. Aside from trigger events (when we're critically 25 * close or over our TDP) we don't adjust the clamps more than once every 26 * five seconds. 27 * 28 * The thermal device (device 31, function 6) has a set of registers that 29 * are updated by the ME firmware. The ME should also take the clamp values 30 * written to those registers and write them to the CPU, but we currently 31 * bypass that functionality and write the CPU MSR directly. 32 * 33 * UNSUPPORTED: 34 * - dual MCP configs 35 * 36 * TODO: 37 * - handle CPU hotplug 38 * - provide turbo enable/disable api 39 * 40 * Related documents: 41 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 42 * - CDI 401376 - Ibex Peak EDS 43 * - ref 26037, 26641 - IPS BIOS spec 44 * - ref 26489 - Nehalem BIOS writer's guide 45 * - ref 26921 - Ibex Peak BIOS Specification 46 */ 47 48 #include <linux/debugfs.h> 49 #include <linux/delay.h> 50 #include <linux/interrupt.h> 51 #include <linux/kernel.h> 52 #include <linux/kthread.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/sched.h> 56 #include <linux/sched/loadavg.h> 57 #include <linux/seq_file.h> 58 #include <linux/string.h> 59 #include <linux/tick.h> 60 #include <linux/timer.h> 61 #include <linux/dmi.h> 62 #include <drm/i915_drm.h> 63 #include <asm/msr.h> 64 #include <asm/processor.h> 65 #include "intel_ips.h" 66 67 #include <linux/io-64-nonatomic-lo-hi.h> 68 69 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 70 71 /* 72 * Package level MSRs for monitor/control 73 */ 74 #define PLATFORM_INFO 0xce 75 #define PLATFORM_TDP (1<<29) 76 #define PLATFORM_RATIO (1<<28) 77 78 #define IA32_MISC_ENABLE 0x1a0 79 #define IA32_MISC_TURBO_EN (1ULL<<38) 80 81 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 82 #define TURBO_TDC_OVR_EN (1UL<<31) 83 #define TURBO_TDC_MASK (0x000000007fff0000UL) 84 #define TURBO_TDC_SHIFT (16) 85 #define TURBO_TDP_OVR_EN (1UL<<15) 86 #define TURBO_TDP_MASK (0x0000000000003fffUL) 87 88 /* 89 * Core/thread MSRs for monitoring 90 */ 91 #define IA32_PERF_CTL 0x199 92 #define IA32_PERF_TURBO_DIS (1ULL<<32) 93 94 /* 95 * Thermal PCI device regs 96 */ 97 #define THM_CFG_TBAR 0x10 98 #define THM_CFG_TBAR_HI 0x14 99 100 #define THM_TSIU 0x00 101 #define THM_TSE 0x01 102 #define TSE_EN 0xb8 103 #define THM_TSS 0x02 104 #define THM_TSTR 0x03 105 #define THM_TSTTP 0x04 106 #define THM_TSCO 0x08 107 #define THM_TSES 0x0c 108 #define THM_TSGPEN 0x0d 109 #define TSGPEN_HOT_LOHI (1<<1) 110 #define TSGPEN_CRIT_LOHI (1<<2) 111 #define THM_TSPC 0x0e 112 #define THM_PPEC 0x10 113 #define THM_CTA 0x12 114 #define THM_PTA 0x14 115 #define PTA_SLOPE_MASK (0xff00) 116 #define PTA_SLOPE_SHIFT 8 117 #define PTA_OFFSET_MASK (0x00ff) 118 #define THM_MGTA 0x16 119 #define MGTA_SLOPE_MASK (0xff00) 120 #define MGTA_SLOPE_SHIFT 8 121 #define MGTA_OFFSET_MASK (0x00ff) 122 #define THM_TRC 0x1a 123 #define TRC_CORE2_EN (1<<15) 124 #define TRC_THM_EN (1<<12) 125 #define TRC_C6_WAR (1<<8) 126 #define TRC_CORE1_EN (1<<7) 127 #define TRC_CORE_PWR (1<<6) 128 #define TRC_PCH_EN (1<<5) 129 #define TRC_MCH_EN (1<<4) 130 #define TRC_DIMM4 (1<<3) 131 #define TRC_DIMM3 (1<<2) 132 #define TRC_DIMM2 (1<<1) 133 #define TRC_DIMM1 (1<<0) 134 #define THM_TES 0x20 135 #define THM_TEN 0x21 136 #define TEN_UPDATE_EN 1 137 #define THM_PSC 0x24 138 #define PSC_NTG (1<<0) /* No GFX turbo support */ 139 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 140 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 141 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 142 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 143 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 144 #define PSP_PBRT (1<<4) /* BIOS run time support */ 145 #define THM_CTV1 0x30 146 #define CTV_TEMP_ERROR (1<<15) 147 #define CTV_TEMP_MASK 0x3f 148 #define CTV_ 149 #define THM_CTV2 0x32 150 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 151 #define THM_AE 0x3f 152 #define THM_HTS 0x50 /* 32 bits */ 153 #define HTS_PCPL_MASK (0x7fe00000) 154 #define HTS_PCPL_SHIFT 21 155 #define HTS_GPL_MASK (0x001ff000) 156 #define HTS_GPL_SHIFT 12 157 #define HTS_PP_MASK (0x00000c00) 158 #define HTS_PP_SHIFT 10 159 #define HTS_PP_DEF 0 160 #define HTS_PP_PROC 1 161 #define HTS_PP_BAL 2 162 #define HTS_PP_GFX 3 163 #define HTS_PCTD_DIS (1<<9) 164 #define HTS_GTD_DIS (1<<8) 165 #define HTS_PTL_MASK (0x000000fe) 166 #define HTS_PTL_SHIFT 1 167 #define HTS_NVV (1<<0) 168 #define THM_HTSHI 0x54 /* 16 bits */ 169 #define HTS2_PPL_MASK (0x03ff) 170 #define HTS2_PRST_MASK (0x3c00) 171 #define HTS2_PRST_SHIFT 10 172 #define HTS2_PRST_UNLOADED 0 173 #define HTS2_PRST_RUNNING 1 174 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 175 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 176 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 177 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 178 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 179 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 180 #define THM_PTL 0x56 181 #define THM_MGTV 0x58 182 #define TV_MASK 0x000000000000ff00 183 #define TV_SHIFT 8 184 #define THM_PTV 0x60 185 #define PTV_MASK 0x00ff 186 #define THM_MMGPC 0x64 187 #define THM_MPPC 0x66 188 #define THM_MPCPC 0x68 189 #define THM_TSPIEN 0x82 190 #define TSPIEN_AUX_LOHI (1<<0) 191 #define TSPIEN_HOT_LOHI (1<<1) 192 #define TSPIEN_CRIT_LOHI (1<<2) 193 #define TSPIEN_AUX2_LOHI (1<<3) 194 #define THM_TSLOCK 0x83 195 #define THM_ATR 0x84 196 #define THM_TOF 0x87 197 #define THM_STS 0x98 198 #define STS_PCPL_MASK (0x7fe00000) 199 #define STS_PCPL_SHIFT 21 200 #define STS_GPL_MASK (0x001ff000) 201 #define STS_GPL_SHIFT 12 202 #define STS_PP_MASK (0x00000c00) 203 #define STS_PP_SHIFT 10 204 #define STS_PP_DEF 0 205 #define STS_PP_PROC 1 206 #define STS_PP_BAL 2 207 #define STS_PP_GFX 3 208 #define STS_PCTD_DIS (1<<9) 209 #define STS_GTD_DIS (1<<8) 210 #define STS_PTL_MASK (0x000000fe) 211 #define STS_PTL_SHIFT 1 212 #define STS_NVV (1<<0) 213 #define THM_SEC 0x9c 214 #define SEC_ACK (1<<0) 215 #define THM_TC3 0xa4 216 #define THM_TC1 0xa8 217 #define STS_PPL_MASK (0x0003ff00) 218 #define STS_PPL_SHIFT 16 219 #define THM_TC2 0xac 220 #define THM_DTV 0xb0 221 #define THM_ITV 0xd8 222 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 223 #define ITV_ME_SEQNO_SHIFT (16) 224 #define ITV_MCH_TEMP_MASK 0x0000ff00 225 #define ITV_MCH_TEMP_SHIFT (8) 226 #define ITV_PCH_TEMP_MASK 0x000000ff 227 228 #define thm_readb(off) readb(ips->regmap + (off)) 229 #define thm_readw(off) readw(ips->regmap + (off)) 230 #define thm_readl(off) readl(ips->regmap + (off)) 231 #define thm_readq(off) readq(ips->regmap + (off)) 232 233 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 234 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 235 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 236 237 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 238 static bool late_i915_load = false; 239 240 /* For initial average collection */ 241 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 242 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 243 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 244 245 /* Per-SKU limits */ 246 struct ips_mcp_limits { 247 int mcp_power_limit; /* mW units */ 248 int core_power_limit; 249 int mch_power_limit; 250 int core_temp_limit; /* degrees C */ 251 int mch_temp_limit; 252 }; 253 254 /* Max temps are -10 degrees C to avoid PROCHOT# */ 255 256 static struct ips_mcp_limits ips_sv_limits = { 257 .mcp_power_limit = 35000, 258 .core_power_limit = 29000, 259 .mch_power_limit = 20000, 260 .core_temp_limit = 95, 261 .mch_temp_limit = 90 262 }; 263 264 static struct ips_mcp_limits ips_lv_limits = { 265 .mcp_power_limit = 25000, 266 .core_power_limit = 21000, 267 .mch_power_limit = 13000, 268 .core_temp_limit = 95, 269 .mch_temp_limit = 90 270 }; 271 272 static struct ips_mcp_limits ips_ulv_limits = { 273 .mcp_power_limit = 18000, 274 .core_power_limit = 14000, 275 .mch_power_limit = 11000, 276 .core_temp_limit = 95, 277 .mch_temp_limit = 90 278 }; 279 280 struct ips_driver { 281 struct device *dev; 282 void __iomem *regmap; 283 int irq; 284 285 struct task_struct *monitor; 286 struct task_struct *adjust; 287 struct dentry *debug_root; 288 struct timer_list timer; 289 290 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 291 u16 ctv1_avg_temp; 292 u16 ctv2_avg_temp; 293 /* GMCH average */ 294 u16 mch_avg_temp; 295 /* Average for the CPU (both cores?) */ 296 u16 mcp_avg_temp; 297 /* Average power consumption (in mW) */ 298 u32 cpu_avg_power; 299 u32 mch_avg_power; 300 301 /* Offset values */ 302 u16 cta_val; 303 u16 pta_val; 304 u16 mgta_val; 305 306 /* Maximums & prefs, protected by turbo status lock */ 307 spinlock_t turbo_status_lock; 308 u16 mcp_temp_limit; 309 u16 mcp_power_limit; 310 u16 core_power_limit; 311 u16 mch_power_limit; 312 bool cpu_turbo_enabled; 313 bool __cpu_turbo_on; 314 bool gpu_turbo_enabled; 315 bool __gpu_turbo_on; 316 bool gpu_preferred; 317 bool poll_turbo_status; 318 bool second_cpu; 319 bool turbo_toggle_allowed; 320 struct ips_mcp_limits *limits; 321 322 /* Optional MCH interfaces for if i915 is in use */ 323 unsigned long (*read_mch_val)(void); 324 bool (*gpu_raise)(void); 325 bool (*gpu_lower)(void); 326 bool (*gpu_busy)(void); 327 bool (*gpu_turbo_disable)(void); 328 329 /* For restoration at unload */ 330 u64 orig_turbo_limit; 331 u64 orig_turbo_ratios; 332 }; 333 334 static bool 335 ips_gpu_turbo_enabled(struct ips_driver *ips); 336 337 /** 338 * ips_cpu_busy - is CPU busy? 339 * @ips: IPS driver struct 340 * 341 * Check CPU for load to see whether we should increase its thermal budget. 342 * 343 * RETURNS: 344 * True if the CPU could use more power, false otherwise. 345 */ 346 static bool ips_cpu_busy(struct ips_driver *ips) 347 { 348 if ((avenrun[0] >> FSHIFT) > 1) 349 return true; 350 351 return false; 352 } 353 354 /** 355 * ips_cpu_raise - raise CPU power clamp 356 * @ips: IPS driver struct 357 * 358 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 359 * this platform. 360 * 361 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 362 * long as we haven't hit the TDP limit for the SKU). 363 */ 364 static void ips_cpu_raise(struct ips_driver *ips) 365 { 366 u64 turbo_override; 367 u16 cur_tdp_limit, new_tdp_limit; 368 369 if (!ips->cpu_turbo_enabled) 370 return; 371 372 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 373 374 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 375 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 376 377 /* Clamp to SKU TDP limit */ 378 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 379 new_tdp_limit = cur_tdp_limit; 380 381 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 382 383 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 384 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 385 386 turbo_override &= ~TURBO_TDP_MASK; 387 turbo_override |= new_tdp_limit; 388 389 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 390 } 391 392 /** 393 * ips_cpu_lower - lower CPU power clamp 394 * @ips: IPS driver struct 395 * 396 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 397 * 398 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 399 * as low as the platform limits will allow (though we could go lower there 400 * wouldn't be much point). 401 */ 402 static void ips_cpu_lower(struct ips_driver *ips) 403 { 404 u64 turbo_override; 405 u16 cur_limit, new_limit; 406 407 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 408 409 cur_limit = turbo_override & TURBO_TDP_MASK; 410 new_limit = cur_limit - 8; /* 1W decrease */ 411 412 /* Clamp to SKU TDP limit */ 413 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 414 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 415 416 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 417 418 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 419 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 420 421 turbo_override &= ~TURBO_TDP_MASK; 422 turbo_override |= new_limit; 423 424 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 425 } 426 427 /** 428 * do_enable_cpu_turbo - internal turbo enable function 429 * @data: unused 430 * 431 * Internal function for actually updating MSRs. When we enable/disable 432 * turbo, we need to do it on each CPU; this function is the one called 433 * by on_each_cpu() when needed. 434 */ 435 static void do_enable_cpu_turbo(void *data) 436 { 437 u64 perf_ctl; 438 439 rdmsrl(IA32_PERF_CTL, perf_ctl); 440 if (perf_ctl & IA32_PERF_TURBO_DIS) { 441 perf_ctl &= ~IA32_PERF_TURBO_DIS; 442 wrmsrl(IA32_PERF_CTL, perf_ctl); 443 } 444 } 445 446 /** 447 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 448 * @ips: IPS driver struct 449 * 450 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 451 * all logical threads. 452 */ 453 static void ips_enable_cpu_turbo(struct ips_driver *ips) 454 { 455 /* Already on, no need to mess with MSRs */ 456 if (ips->__cpu_turbo_on) 457 return; 458 459 if (ips->turbo_toggle_allowed) 460 on_each_cpu(do_enable_cpu_turbo, ips, 1); 461 462 ips->__cpu_turbo_on = true; 463 } 464 465 /** 466 * do_disable_cpu_turbo - internal turbo disable function 467 * @data: unused 468 * 469 * Internal function for actually updating MSRs. When we enable/disable 470 * turbo, we need to do it on each CPU; this function is the one called 471 * by on_each_cpu() when needed. 472 */ 473 static void do_disable_cpu_turbo(void *data) 474 { 475 u64 perf_ctl; 476 477 rdmsrl(IA32_PERF_CTL, perf_ctl); 478 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 479 perf_ctl |= IA32_PERF_TURBO_DIS; 480 wrmsrl(IA32_PERF_CTL, perf_ctl); 481 } 482 } 483 484 /** 485 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 486 * @ips: IPS driver struct 487 * 488 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 489 * all logical threads. 490 */ 491 static void ips_disable_cpu_turbo(struct ips_driver *ips) 492 { 493 /* Already off, leave it */ 494 if (!ips->__cpu_turbo_on) 495 return; 496 497 if (ips->turbo_toggle_allowed) 498 on_each_cpu(do_disable_cpu_turbo, ips, 1); 499 500 ips->__cpu_turbo_on = false; 501 } 502 503 /** 504 * ips_gpu_busy - is GPU busy? 505 * @ips: IPS driver struct 506 * 507 * Check GPU for load to see whether we should increase its thermal budget. 508 * We need to call into the i915 driver in this case. 509 * 510 * RETURNS: 511 * True if the GPU could use more power, false otherwise. 512 */ 513 static bool ips_gpu_busy(struct ips_driver *ips) 514 { 515 if (!ips_gpu_turbo_enabled(ips)) 516 return false; 517 518 return ips->gpu_busy(); 519 } 520 521 /** 522 * ips_gpu_raise - raise GPU power clamp 523 * @ips: IPS driver struct 524 * 525 * Raise the GPU frequency/power if possible. We need to call into the 526 * i915 driver in this case. 527 */ 528 static void ips_gpu_raise(struct ips_driver *ips) 529 { 530 if (!ips_gpu_turbo_enabled(ips)) 531 return; 532 533 if (!ips->gpu_raise()) 534 ips->gpu_turbo_enabled = false; 535 536 return; 537 } 538 539 /** 540 * ips_gpu_lower - lower GPU power clamp 541 * @ips: IPS driver struct 542 * 543 * Lower GPU frequency/power if possible. Need to call i915. 544 */ 545 static void ips_gpu_lower(struct ips_driver *ips) 546 { 547 if (!ips_gpu_turbo_enabled(ips)) 548 return; 549 550 if (!ips->gpu_lower()) 551 ips->gpu_turbo_enabled = false; 552 553 return; 554 } 555 556 /** 557 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 558 * @ips: IPS driver struct 559 * 560 * Call into the graphics driver indicating that it can safely use 561 * turbo mode. 562 */ 563 static void ips_enable_gpu_turbo(struct ips_driver *ips) 564 { 565 if (ips->__gpu_turbo_on) 566 return; 567 ips->__gpu_turbo_on = true; 568 } 569 570 /** 571 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 572 * @ips: IPS driver struct 573 * 574 * Request that the graphics driver disable turbo mode. 575 */ 576 static void ips_disable_gpu_turbo(struct ips_driver *ips) 577 { 578 /* Avoid calling i915 if turbo is already disabled */ 579 if (!ips->__gpu_turbo_on) 580 return; 581 582 if (!ips->gpu_turbo_disable()) 583 dev_err(ips->dev, "failed to disable graphics turbo\n"); 584 else 585 ips->__gpu_turbo_on = false; 586 } 587 588 /** 589 * mcp_exceeded - check whether we're outside our thermal & power limits 590 * @ips: IPS driver struct 591 * 592 * Check whether the MCP is over its thermal or power budget. 593 */ 594 static bool mcp_exceeded(struct ips_driver *ips) 595 { 596 unsigned long flags; 597 bool ret = false; 598 u32 temp_limit; 599 u32 avg_power; 600 601 spin_lock_irqsave(&ips->turbo_status_lock, flags); 602 603 temp_limit = ips->mcp_temp_limit * 100; 604 if (ips->mcp_avg_temp > temp_limit) 605 ret = true; 606 607 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 608 if (avg_power > ips->mcp_power_limit) 609 ret = true; 610 611 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 612 613 return ret; 614 } 615 616 /** 617 * cpu_exceeded - check whether a CPU core is outside its limits 618 * @ips: IPS driver struct 619 * @cpu: CPU number to check 620 * 621 * Check a given CPU's average temp or power is over its limit. 622 */ 623 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 624 { 625 unsigned long flags; 626 int avg; 627 bool ret = false; 628 629 spin_lock_irqsave(&ips->turbo_status_lock, flags); 630 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 631 if (avg > (ips->limits->core_temp_limit * 100)) 632 ret = true; 633 if (ips->cpu_avg_power > ips->core_power_limit * 100) 634 ret = true; 635 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 636 637 if (ret) 638 dev_info(ips->dev, "CPU power or thermal limit exceeded\n"); 639 640 return ret; 641 } 642 643 /** 644 * mch_exceeded - check whether the GPU is over budget 645 * @ips: IPS driver struct 646 * 647 * Check the MCH temp & power against their maximums. 648 */ 649 static bool mch_exceeded(struct ips_driver *ips) 650 { 651 unsigned long flags; 652 bool ret = false; 653 654 spin_lock_irqsave(&ips->turbo_status_lock, flags); 655 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 656 ret = true; 657 if (ips->mch_avg_power > ips->mch_power_limit) 658 ret = true; 659 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 660 661 return ret; 662 } 663 664 /** 665 * verify_limits - verify BIOS provided limits 666 * @ips: IPS structure 667 * 668 * BIOS can optionally provide non-default limits for power and temp. Check 669 * them here and use the defaults if the BIOS values are not provided or 670 * are otherwise unusable. 671 */ 672 static void verify_limits(struct ips_driver *ips) 673 { 674 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 675 ips->mcp_power_limit > 35000) 676 ips->mcp_power_limit = ips->limits->mcp_power_limit; 677 678 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 679 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 680 ips->mcp_temp_limit > 150) 681 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 682 ips->limits->mch_temp_limit); 683 } 684 685 /** 686 * update_turbo_limits - get various limits & settings from regs 687 * @ips: IPS driver struct 688 * 689 * Update the IPS power & temp limits, along with turbo enable flags, 690 * based on latest register contents. 691 * 692 * Used at init time and for runtime BIOS support, which requires polling 693 * the regs for updates (as a result of AC->DC transition for example). 694 * 695 * LOCKING: 696 * Caller must hold turbo_status_lock (outside of init) 697 */ 698 static void update_turbo_limits(struct ips_driver *ips) 699 { 700 u32 hts = thm_readl(THM_HTS); 701 702 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 703 /* 704 * Disable turbo for now, until we can figure out why the power figures 705 * are wrong 706 */ 707 ips->cpu_turbo_enabled = false; 708 709 if (ips->gpu_busy) 710 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 711 712 ips->core_power_limit = thm_readw(THM_MPCPC); 713 ips->mch_power_limit = thm_readw(THM_MMGPC); 714 ips->mcp_temp_limit = thm_readw(THM_PTL); 715 ips->mcp_power_limit = thm_readw(THM_MPPC); 716 717 verify_limits(ips); 718 /* Ignore BIOS CPU vs GPU pref */ 719 } 720 721 /** 722 * ips_adjust - adjust power clamp based on thermal state 723 * @data: ips driver structure 724 * 725 * Wake up every 5s or so and check whether we should adjust the power clamp. 726 * Check CPU and GPU load to determine which needs adjustment. There are 727 * several things to consider here: 728 * - do we need to adjust up or down? 729 * - is CPU busy? 730 * - is GPU busy? 731 * - is CPU in turbo? 732 * - is GPU in turbo? 733 * - is CPU or GPU preferred? (CPU is default) 734 * 735 * So, given the above, we do the following: 736 * - up (TDP available) 737 * - CPU not busy, GPU not busy - nothing 738 * - CPU busy, GPU not busy - adjust CPU up 739 * - CPU not busy, GPU busy - adjust GPU up 740 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 741 * non-preferred unit if necessary 742 * - down (at TDP limit) 743 * - adjust both CPU and GPU down if possible 744 * 745 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 746 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing 747 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 748 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 749 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 750 * 751 */ 752 static int ips_adjust(void *data) 753 { 754 struct ips_driver *ips = data; 755 unsigned long flags; 756 757 dev_dbg(ips->dev, "starting ips-adjust thread\n"); 758 759 /* 760 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 761 * often isn't recommended due to ME interaction. 762 */ 763 do { 764 bool cpu_busy = ips_cpu_busy(ips); 765 bool gpu_busy = ips_gpu_busy(ips); 766 767 spin_lock_irqsave(&ips->turbo_status_lock, flags); 768 if (ips->poll_turbo_status) 769 update_turbo_limits(ips); 770 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 771 772 /* Update turbo status if necessary */ 773 if (ips->cpu_turbo_enabled) 774 ips_enable_cpu_turbo(ips); 775 else 776 ips_disable_cpu_turbo(ips); 777 778 if (ips->gpu_turbo_enabled) 779 ips_enable_gpu_turbo(ips); 780 else 781 ips_disable_gpu_turbo(ips); 782 783 /* We're outside our comfort zone, crank them down */ 784 if (mcp_exceeded(ips)) { 785 ips_cpu_lower(ips); 786 ips_gpu_lower(ips); 787 goto sleep; 788 } 789 790 if (!cpu_exceeded(ips, 0) && cpu_busy) 791 ips_cpu_raise(ips); 792 else 793 ips_cpu_lower(ips); 794 795 if (!mch_exceeded(ips) && gpu_busy) 796 ips_gpu_raise(ips); 797 else 798 ips_gpu_lower(ips); 799 800 sleep: 801 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 802 } while (!kthread_should_stop()); 803 804 dev_dbg(ips->dev, "ips-adjust thread stopped\n"); 805 806 return 0; 807 } 808 809 /* 810 * Helpers for reading out temp/power values and calculating their 811 * averages for the decision making and monitoring functions. 812 */ 813 814 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 815 { 816 u64 total = 0; 817 int i; 818 u16 avg; 819 820 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 821 total += (u64)(array[i] * 100); 822 823 do_div(total, IPS_SAMPLE_COUNT); 824 825 avg = (u16)total; 826 827 return avg; 828 } 829 830 static u16 read_mgtv(struct ips_driver *ips) 831 { 832 u16 ret; 833 u64 slope, offset; 834 u64 val; 835 836 val = thm_readq(THM_MGTV); 837 val = (val & TV_MASK) >> TV_SHIFT; 838 839 slope = offset = thm_readw(THM_MGTA); 840 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 841 offset = offset & MGTA_OFFSET_MASK; 842 843 ret = ((val * slope + 0x40) >> 7) + offset; 844 845 return 0; /* MCH temp reporting buggy */ 846 } 847 848 static u16 read_ptv(struct ips_driver *ips) 849 { 850 u16 val; 851 852 val = thm_readw(THM_PTV) & PTV_MASK; 853 854 return val; 855 } 856 857 static u16 read_ctv(struct ips_driver *ips, int cpu) 858 { 859 int reg = cpu ? THM_CTV2 : THM_CTV1; 860 u16 val; 861 862 val = thm_readw(reg); 863 if (!(val & CTV_TEMP_ERROR)) 864 val = (val) >> 6; /* discard fractional component */ 865 else 866 val = 0; 867 868 return val; 869 } 870 871 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 872 { 873 u32 val; 874 u32 ret; 875 876 /* 877 * CEC is in joules/65535. Take difference over time to 878 * get watts. 879 */ 880 val = thm_readl(THM_CEC); 881 882 /* period is in ms and we want mW */ 883 ret = (((val - *last) * 1000) / period); 884 ret = (ret * 1000) / 65535; 885 *last = val; 886 887 return 0; 888 } 889 890 static const u16 temp_decay_factor = 2; 891 static u16 update_average_temp(u16 avg, u16 val) 892 { 893 u16 ret; 894 895 /* Multiply by 100 for extra precision */ 896 ret = (val * 100 / temp_decay_factor) + 897 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 898 return ret; 899 } 900 901 static const u16 power_decay_factor = 2; 902 static u16 update_average_power(u32 avg, u32 val) 903 { 904 u32 ret; 905 906 ret = (val / power_decay_factor) + 907 (((power_decay_factor - 1) * avg) / power_decay_factor); 908 909 return ret; 910 } 911 912 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 913 { 914 u64 total = 0; 915 u32 avg; 916 int i; 917 918 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 919 total += array[i]; 920 921 do_div(total, IPS_SAMPLE_COUNT); 922 avg = (u32)total; 923 924 return avg; 925 } 926 927 static void monitor_timeout(struct timer_list *t) 928 { 929 struct ips_driver *ips = from_timer(ips, t, timer); 930 wake_up_process(ips->monitor); 931 } 932 933 /** 934 * ips_monitor - temp/power monitoring thread 935 * @data: ips driver structure 936 * 937 * This is the main function for the IPS driver. It monitors power and 938 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. 939 * 940 * We keep a 5s moving average of power consumption and tempurature. Using 941 * that data, along with CPU vs GPU preference, we adjust the power clamps 942 * up or down. 943 */ 944 static int ips_monitor(void *data) 945 { 946 struct ips_driver *ips = data; 947 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 948 int i; 949 u32 *cpu_samples, *mchp_samples, old_cpu_power; 950 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 951 u8 cur_seqno, last_seqno; 952 953 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 954 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 955 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 956 mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 957 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL); 958 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL); 959 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 960 !cpu_samples || !mchp_samples) { 961 dev_err(ips->dev, 962 "failed to allocate sample array, ips disabled\n"); 963 kfree(mcp_samples); 964 kfree(ctv1_samples); 965 kfree(ctv2_samples); 966 kfree(mch_samples); 967 kfree(cpu_samples); 968 kfree(mchp_samples); 969 return -ENOMEM; 970 } 971 972 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 973 ITV_ME_SEQNO_SHIFT; 974 seqno_timestamp = get_jiffies_64(); 975 976 old_cpu_power = thm_readl(THM_CEC); 977 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 978 979 /* Collect an initial average */ 980 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 981 u32 mchp, cpu_power; 982 u16 val; 983 984 mcp_samples[i] = read_ptv(ips); 985 986 val = read_ctv(ips, 0); 987 ctv1_samples[i] = val; 988 989 val = read_ctv(ips, 1); 990 ctv2_samples[i] = val; 991 992 val = read_mgtv(ips); 993 mch_samples[i] = val; 994 995 cpu_power = get_cpu_power(ips, &old_cpu_power, 996 IPS_SAMPLE_PERIOD); 997 cpu_samples[i] = cpu_power; 998 999 if (ips->read_mch_val) { 1000 mchp = ips->read_mch_val(); 1001 mchp_samples[i] = mchp; 1002 } 1003 1004 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1005 if (kthread_should_stop()) 1006 break; 1007 } 1008 1009 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1010 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1011 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1012 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1013 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1014 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1015 kfree(mcp_samples); 1016 kfree(ctv1_samples); 1017 kfree(ctv2_samples); 1018 kfree(mch_samples); 1019 kfree(cpu_samples); 1020 kfree(mchp_samples); 1021 1022 /* Start the adjustment thread now that we have data */ 1023 wake_up_process(ips->adjust); 1024 1025 /* 1026 * Ok, now we have an initial avg. From here on out, we track the 1027 * running avg using a decaying average calculation. This allows 1028 * us to reduce the sample frequency if the CPU and GPU are idle. 1029 */ 1030 old_cpu_power = thm_readl(THM_CEC); 1031 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1032 last_sample_period = IPS_SAMPLE_PERIOD; 1033 1034 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE); 1035 do { 1036 u32 cpu_val, mch_val; 1037 u16 val; 1038 1039 /* MCP itself */ 1040 val = read_ptv(ips); 1041 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1042 1043 /* Processor 0 */ 1044 val = read_ctv(ips, 0); 1045 ips->ctv1_avg_temp = 1046 update_average_temp(ips->ctv1_avg_temp, val); 1047 /* Power */ 1048 cpu_val = get_cpu_power(ips, &old_cpu_power, 1049 last_sample_period); 1050 ips->cpu_avg_power = 1051 update_average_power(ips->cpu_avg_power, cpu_val); 1052 1053 if (ips->second_cpu) { 1054 /* Processor 1 */ 1055 val = read_ctv(ips, 1); 1056 ips->ctv2_avg_temp = 1057 update_average_temp(ips->ctv2_avg_temp, val); 1058 } 1059 1060 /* MCH */ 1061 val = read_mgtv(ips); 1062 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1063 /* Power */ 1064 if (ips->read_mch_val) { 1065 mch_val = ips->read_mch_val(); 1066 ips->mch_avg_power = 1067 update_average_power(ips->mch_avg_power, 1068 mch_val); 1069 } 1070 1071 /* 1072 * Make sure ME is updating thermal regs. 1073 * Note: 1074 * If it's been more than a second since the last update, 1075 * the ME is probably hung. 1076 */ 1077 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1078 ITV_ME_SEQNO_SHIFT; 1079 if (cur_seqno == last_seqno && 1080 time_after(jiffies, seqno_timestamp + HZ)) { 1081 dev_warn(ips->dev, 1082 "ME failed to update for more than 1s, likely hung\n"); 1083 } else { 1084 seqno_timestamp = get_jiffies_64(); 1085 last_seqno = cur_seqno; 1086 } 1087 1088 last_msecs = jiffies_to_msecs(jiffies); 1089 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1090 1091 __set_current_state(TASK_INTERRUPTIBLE); 1092 mod_timer(&ips->timer, expire); 1093 schedule(); 1094 1095 /* Calculate actual sample period for power averaging */ 1096 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1097 if (!last_sample_period) 1098 last_sample_period = 1; 1099 } while (!kthread_should_stop()); 1100 1101 del_timer_sync(&ips->timer); 1102 1103 dev_dbg(ips->dev, "ips-monitor thread stopped\n"); 1104 1105 return 0; 1106 } 1107 1108 #if 0 1109 #define THM_DUMPW(reg) \ 1110 { \ 1111 u16 val = thm_readw(reg); \ 1112 dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \ 1113 } 1114 #define THM_DUMPL(reg) \ 1115 { \ 1116 u32 val = thm_readl(reg); \ 1117 dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \ 1118 } 1119 #define THM_DUMPQ(reg) \ 1120 { \ 1121 u64 val = thm_readq(reg); \ 1122 dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \ 1123 } 1124 1125 static void dump_thermal_info(struct ips_driver *ips) 1126 { 1127 u16 ptl; 1128 1129 ptl = thm_readw(THM_PTL); 1130 dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl); 1131 1132 THM_DUMPW(THM_CTA); 1133 THM_DUMPW(THM_TRC); 1134 THM_DUMPW(THM_CTV1); 1135 THM_DUMPL(THM_STS); 1136 THM_DUMPW(THM_PTV); 1137 THM_DUMPQ(THM_MGTV); 1138 } 1139 #endif 1140 1141 /** 1142 * ips_irq_handler - handle temperature triggers and other IPS events 1143 * @irq: irq number 1144 * @arg: unused 1145 * 1146 * Handle temperature limit trigger events, generally by lowering the clamps. 1147 * If we're at a critical limit, we clamp back to the lowest possible value 1148 * to prevent emergency shutdown. 1149 */ 1150 static irqreturn_t ips_irq_handler(int irq, void *arg) 1151 { 1152 struct ips_driver *ips = arg; 1153 u8 tses = thm_readb(THM_TSES); 1154 u8 tes = thm_readb(THM_TES); 1155 1156 if (!tses && !tes) 1157 return IRQ_NONE; 1158 1159 dev_info(ips->dev, "TSES: 0x%02x\n", tses); 1160 dev_info(ips->dev, "TES: 0x%02x\n", tes); 1161 1162 /* STS update from EC? */ 1163 if (tes & 1) { 1164 u32 sts, tc1; 1165 1166 sts = thm_readl(THM_STS); 1167 tc1 = thm_readl(THM_TC1); 1168 1169 if (sts & STS_NVV) { 1170 spin_lock(&ips->turbo_status_lock); 1171 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1172 STS_PCPL_SHIFT; 1173 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1174 STS_GPL_SHIFT; 1175 /* ignore EC CPU vs GPU pref */ 1176 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1177 /* 1178 * Disable turbo for now, until we can figure 1179 * out why the power figures are wrong 1180 */ 1181 ips->cpu_turbo_enabled = false; 1182 if (ips->gpu_busy) 1183 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1184 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1185 STS_PTL_SHIFT; 1186 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1187 STS_PPL_SHIFT; 1188 verify_limits(ips); 1189 spin_unlock(&ips->turbo_status_lock); 1190 1191 thm_writeb(THM_SEC, SEC_ACK); 1192 } 1193 thm_writeb(THM_TES, tes); 1194 } 1195 1196 /* Thermal trip */ 1197 if (tses) { 1198 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n", 1199 tses); 1200 thm_writeb(THM_TSES, tses); 1201 } 1202 1203 return IRQ_HANDLED; 1204 } 1205 1206 #ifndef CONFIG_DEBUG_FS 1207 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1208 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1209 #else 1210 1211 /* Expose current state and limits in debugfs if possible */ 1212 1213 struct ips_debugfs_node { 1214 struct ips_driver *ips; 1215 char *name; 1216 int (*show)(struct seq_file *m, void *data); 1217 }; 1218 1219 static int show_cpu_temp(struct seq_file *m, void *data) 1220 { 1221 struct ips_driver *ips = m->private; 1222 1223 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1224 ips->ctv1_avg_temp % 100); 1225 1226 return 0; 1227 } 1228 1229 static int show_cpu_power(struct seq_file *m, void *data) 1230 { 1231 struct ips_driver *ips = m->private; 1232 1233 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1234 1235 return 0; 1236 } 1237 1238 static int show_cpu_clamp(struct seq_file *m, void *data) 1239 { 1240 u64 turbo_override; 1241 int tdp, tdc; 1242 1243 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1244 1245 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1246 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1247 1248 /* Convert to .1W/A units */ 1249 tdp = tdp * 10 / 8; 1250 tdc = tdc * 10 / 8; 1251 1252 /* Watts Amperes */ 1253 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1254 tdc / 10, tdc % 10); 1255 1256 return 0; 1257 } 1258 1259 static int show_mch_temp(struct seq_file *m, void *data) 1260 { 1261 struct ips_driver *ips = m->private; 1262 1263 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1264 ips->mch_avg_temp % 100); 1265 1266 return 0; 1267 } 1268 1269 static int show_mch_power(struct seq_file *m, void *data) 1270 { 1271 struct ips_driver *ips = m->private; 1272 1273 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1274 1275 return 0; 1276 } 1277 1278 static struct ips_debugfs_node ips_debug_files[] = { 1279 { NULL, "cpu_temp", show_cpu_temp }, 1280 { NULL, "cpu_power", show_cpu_power }, 1281 { NULL, "cpu_clamp", show_cpu_clamp }, 1282 { NULL, "mch_temp", show_mch_temp }, 1283 { NULL, "mch_power", show_mch_power }, 1284 }; 1285 1286 static int ips_debugfs_open(struct inode *inode, struct file *file) 1287 { 1288 struct ips_debugfs_node *node = inode->i_private; 1289 1290 return single_open(file, node->show, node->ips); 1291 } 1292 1293 static const struct file_operations ips_debugfs_ops = { 1294 .owner = THIS_MODULE, 1295 .open = ips_debugfs_open, 1296 .read = seq_read, 1297 .llseek = seq_lseek, 1298 .release = single_release, 1299 }; 1300 1301 static void ips_debugfs_cleanup(struct ips_driver *ips) 1302 { 1303 if (ips->debug_root) 1304 debugfs_remove_recursive(ips->debug_root); 1305 return; 1306 } 1307 1308 static void ips_debugfs_init(struct ips_driver *ips) 1309 { 1310 int i; 1311 1312 ips->debug_root = debugfs_create_dir("ips", NULL); 1313 if (!ips->debug_root) { 1314 dev_err(ips->dev, "failed to create debugfs entries: %ld\n", 1315 PTR_ERR(ips->debug_root)); 1316 return; 1317 } 1318 1319 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { 1320 struct dentry *ent; 1321 struct ips_debugfs_node *node = &ips_debug_files[i]; 1322 1323 node->ips = ips; 1324 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, 1325 ips->debug_root, node, 1326 &ips_debugfs_ops); 1327 if (!ent) { 1328 dev_err(ips->dev, "failed to create debug file: %ld\n", 1329 PTR_ERR(ent)); 1330 goto err_cleanup; 1331 } 1332 } 1333 1334 return; 1335 1336 err_cleanup: 1337 ips_debugfs_cleanup(ips); 1338 return; 1339 } 1340 #endif /* CONFIG_DEBUG_FS */ 1341 1342 /** 1343 * ips_detect_cpu - detect whether CPU supports IPS 1344 * 1345 * Walk our list and see if we're on a supported CPU. If we find one, 1346 * return the limits for it. 1347 */ 1348 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1349 { 1350 u64 turbo_power, misc_en; 1351 struct ips_mcp_limits *limits = NULL; 1352 u16 tdp; 1353 1354 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1355 dev_info(ips->dev, "Non-IPS CPU detected.\n"); 1356 return NULL; 1357 } 1358 1359 rdmsrl(IA32_MISC_ENABLE, misc_en); 1360 /* 1361 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1362 * turbo manually or we'll get an illegal MSR access, even though 1363 * turbo will still be available. 1364 */ 1365 if (misc_en & IA32_MISC_TURBO_EN) 1366 ips->turbo_toggle_allowed = true; 1367 else 1368 ips->turbo_toggle_allowed = false; 1369 1370 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1371 limits = &ips_sv_limits; 1372 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1373 limits = &ips_lv_limits; 1374 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1375 limits = &ips_ulv_limits; 1376 else { 1377 dev_info(ips->dev, "No CPUID match found.\n"); 1378 return NULL; 1379 } 1380 1381 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1382 tdp = turbo_power & TURBO_TDP_MASK; 1383 1384 /* Sanity check TDP against CPU */ 1385 if (limits->core_power_limit != (tdp / 8) * 1000) { 1386 dev_info(ips->dev, 1387 "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1388 tdp / 8, limits->core_power_limit / 1000); 1389 limits->core_power_limit = (tdp / 8) * 1000; 1390 } 1391 1392 return limits; 1393 } 1394 1395 /** 1396 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1397 * @ips: IPS driver 1398 * 1399 * The i915 driver exports several interfaces to allow the IPS driver to 1400 * monitor and control graphics turbo mode. If we can find them, we can 1401 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1402 * thermal and power limits in the MCP. 1403 */ 1404 static bool ips_get_i915_syms(struct ips_driver *ips) 1405 { 1406 ips->read_mch_val = symbol_get(i915_read_mch_val); 1407 if (!ips->read_mch_val) 1408 goto out_err; 1409 ips->gpu_raise = symbol_get(i915_gpu_raise); 1410 if (!ips->gpu_raise) 1411 goto out_put_mch; 1412 ips->gpu_lower = symbol_get(i915_gpu_lower); 1413 if (!ips->gpu_lower) 1414 goto out_put_raise; 1415 ips->gpu_busy = symbol_get(i915_gpu_busy); 1416 if (!ips->gpu_busy) 1417 goto out_put_lower; 1418 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1419 if (!ips->gpu_turbo_disable) 1420 goto out_put_busy; 1421 1422 return true; 1423 1424 out_put_busy: 1425 symbol_put(i915_gpu_busy); 1426 out_put_lower: 1427 symbol_put(i915_gpu_lower); 1428 out_put_raise: 1429 symbol_put(i915_gpu_raise); 1430 out_put_mch: 1431 symbol_put(i915_read_mch_val); 1432 out_err: 1433 return false; 1434 } 1435 1436 static bool 1437 ips_gpu_turbo_enabled(struct ips_driver *ips) 1438 { 1439 if (!ips->gpu_busy && late_i915_load) { 1440 if (ips_get_i915_syms(ips)) { 1441 dev_info(ips->dev, 1442 "i915 driver attached, reenabling gpu turbo\n"); 1443 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1444 } 1445 } 1446 1447 return ips->gpu_turbo_enabled; 1448 } 1449 1450 void 1451 ips_link_to_i915_driver(void) 1452 { 1453 /* We can't cleanly get at the various ips_driver structs from 1454 * this caller (the i915 driver), so just set a flag saying 1455 * that it's time to try getting the symbols again. 1456 */ 1457 late_i915_load = true; 1458 } 1459 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1460 1461 static const struct pci_device_id ips_id_table[] = { 1462 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1463 { 0, } 1464 }; 1465 1466 MODULE_DEVICE_TABLE(pci, ips_id_table); 1467 1468 static int ips_blacklist_callback(const struct dmi_system_id *id) 1469 { 1470 pr_info("Blacklisted intel_ips for %s\n", id->ident); 1471 return 1; 1472 } 1473 1474 static const struct dmi_system_id ips_blacklist[] = { 1475 { 1476 .callback = ips_blacklist_callback, 1477 .ident = "HP ProBook", 1478 .matches = { 1479 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 1480 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), 1481 }, 1482 }, 1483 { } /* terminating entry */ 1484 }; 1485 1486 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1487 { 1488 u64 platform_info; 1489 struct ips_driver *ips; 1490 u32 hts; 1491 int ret = 0; 1492 u16 htshi, trc, trc_required_mask; 1493 u8 tse; 1494 1495 if (dmi_check_system(ips_blacklist)) 1496 return -ENODEV; 1497 1498 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL); 1499 if (!ips) 1500 return -ENOMEM; 1501 1502 spin_lock_init(&ips->turbo_status_lock); 1503 ips->dev = &dev->dev; 1504 1505 ips->limits = ips_detect_cpu(ips); 1506 if (!ips->limits) { 1507 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1508 return -ENXIO; 1509 } 1510 1511 ret = pcim_enable_device(dev); 1512 if (ret) { 1513 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1514 return ret; 1515 } 1516 1517 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev)); 1518 if (ret) { 1519 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1520 return ret; 1521 } 1522 ips->regmap = pcim_iomap_table(dev)[0]; 1523 1524 pci_set_drvdata(dev, ips); 1525 1526 tse = thm_readb(THM_TSE); 1527 if (tse != TSE_EN) { 1528 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1529 return -ENXIO; 1530 } 1531 1532 trc = thm_readw(THM_TRC); 1533 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1534 if ((trc & trc_required_mask) != trc_required_mask) { 1535 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1536 return -ENXIO; 1537 } 1538 1539 if (trc & TRC_CORE2_EN) 1540 ips->second_cpu = true; 1541 1542 update_turbo_limits(ips); 1543 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1544 ips->mcp_power_limit / 10); 1545 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1546 ips->core_power_limit / 10); 1547 /* BIOS may update limits at runtime */ 1548 if (thm_readl(THM_PSC) & PSP_PBRT) 1549 ips->poll_turbo_status = true; 1550 1551 if (!ips_get_i915_syms(ips)) { 1552 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); 1553 ips->gpu_turbo_enabled = false; 1554 } else { 1555 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1556 ips->gpu_turbo_enabled = true; 1557 } 1558 1559 /* 1560 * Check PLATFORM_INFO MSR to make sure this chip is 1561 * turbo capable. 1562 */ 1563 rdmsrl(PLATFORM_INFO, platform_info); 1564 if (!(platform_info & PLATFORM_TDP)) { 1565 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1566 return -ENODEV; 1567 } 1568 1569 /* 1570 * IRQ handler for ME interaction 1571 * Note: don't use MSI here as the PCH has bugs. 1572 */ 1573 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY); 1574 if (ret < 0) 1575 return ret; 1576 1577 ips->irq = pci_irq_vector(dev, 0); 1578 1579 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips); 1580 if (ret) { 1581 dev_err(&dev->dev, "request irq failed, aborting\n"); 1582 return ret; 1583 } 1584 1585 /* Enable aux, hot & critical interrupts */ 1586 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1587 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1588 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1589 1590 /* Collect adjustment values */ 1591 ips->cta_val = thm_readw(THM_CTA); 1592 ips->pta_val = thm_readw(THM_PTA); 1593 ips->mgta_val = thm_readw(THM_MGTA); 1594 1595 /* Save turbo limits & ratios */ 1596 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1597 1598 ips_disable_cpu_turbo(ips); 1599 ips->cpu_turbo_enabled = false; 1600 1601 /* Create thermal adjust thread */ 1602 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1603 if (IS_ERR(ips->adjust)) { 1604 dev_err(&dev->dev, 1605 "failed to create thermal adjust thread, aborting\n"); 1606 ret = -ENOMEM; 1607 goto error_free_irq; 1608 1609 } 1610 1611 /* 1612 * Set up the work queue and monitor thread. The monitor thread 1613 * will wake up ips_adjust thread. 1614 */ 1615 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1616 if (IS_ERR(ips->monitor)) { 1617 dev_err(&dev->dev, 1618 "failed to create thermal monitor thread, aborting\n"); 1619 ret = -ENOMEM; 1620 goto error_thread_cleanup; 1621 } 1622 1623 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1624 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1625 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1626 1627 thm_writew(THM_HTSHI, htshi); 1628 thm_writel(THM_HTS, hts); 1629 1630 ips_debugfs_init(ips); 1631 1632 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1633 ips->mcp_temp_limit); 1634 return ret; 1635 1636 error_thread_cleanup: 1637 kthread_stop(ips->adjust); 1638 error_free_irq: 1639 free_irq(ips->irq, ips); 1640 pci_free_irq_vectors(dev); 1641 return ret; 1642 } 1643 1644 static void ips_remove(struct pci_dev *dev) 1645 { 1646 struct ips_driver *ips = pci_get_drvdata(dev); 1647 u64 turbo_override; 1648 1649 if (!ips) 1650 return; 1651 1652 ips_debugfs_cleanup(ips); 1653 1654 /* Release i915 driver */ 1655 if (ips->read_mch_val) 1656 symbol_put(i915_read_mch_val); 1657 if (ips->gpu_raise) 1658 symbol_put(i915_gpu_raise); 1659 if (ips->gpu_lower) 1660 symbol_put(i915_gpu_lower); 1661 if (ips->gpu_busy) 1662 symbol_put(i915_gpu_busy); 1663 if (ips->gpu_turbo_disable) 1664 symbol_put(i915_gpu_turbo_disable); 1665 1666 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1667 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1668 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1669 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1670 1671 free_irq(ips->irq, ips); 1672 pci_free_irq_vectors(dev); 1673 if (ips->adjust) 1674 kthread_stop(ips->adjust); 1675 if (ips->monitor) 1676 kthread_stop(ips->monitor); 1677 dev_dbg(&dev->dev, "IPS driver removed\n"); 1678 } 1679 1680 static struct pci_driver ips_pci_driver = { 1681 .name = "intel ips", 1682 .id_table = ips_id_table, 1683 .probe = ips_probe, 1684 .remove = ips_remove, 1685 }; 1686 1687 module_pci_driver(ips_pci_driver); 1688 1689 MODULE_LICENSE("GPL v2"); 1690 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1691 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1692