1 /* 2 * Copyright (c) 2009-2010 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * The full GNU General Public License is included in this distribution in 18 * the file called "COPYING". 19 * 20 * Authors: 21 * Jesse Barnes <jbarnes@virtuousgeek.org> 22 */ 23 24 /* 25 * Some Intel Ibex Peak based platforms support so-called "intelligent 26 * power sharing", which allows the CPU and GPU to cooperate to maximize 27 * performance within a given TDP (thermal design point). This driver 28 * performs the coordination between the CPU and GPU, monitors thermal and 29 * power statistics in the platform, and initializes power monitoring 30 * hardware. It also provides a few tunables to control behavior. Its 31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 32 * by tracking power and thermal budget; secondarily it can boost turbo 33 * performance by allocating more power or thermal budget to the CPU or GPU 34 * based on available headroom and activity. 35 * 36 * The basic algorithm is driven by a 5s moving average of tempurature. If 37 * thermal headroom is available, the CPU and/or GPU power clamps may be 38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 39 * we scale back the clamp. Aside from trigger events (when we're critically 40 * close or over our TDP) we don't adjust the clamps more than once every 41 * five seconds. 42 * 43 * The thermal device (device 31, function 6) has a set of registers that 44 * are updated by the ME firmware. The ME should also take the clamp values 45 * written to those registers and write them to the CPU, but we currently 46 * bypass that functionality and write the CPU MSR directly. 47 * 48 * UNSUPPORTED: 49 * - dual MCP configs 50 * 51 * TODO: 52 * - handle CPU hotplug 53 * - provide turbo enable/disable api 54 * 55 * Related documents: 56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 57 * - CDI 401376 - Ibex Peak EDS 58 * - ref 26037, 26641 - IPS BIOS spec 59 * - ref 26489 - Nehalem BIOS writer's guide 60 * - ref 26921 - Ibex Peak BIOS Specification 61 */ 62 63 #include <linux/debugfs.h> 64 #include <linux/delay.h> 65 #include <linux/interrupt.h> 66 #include <linux/kernel.h> 67 #include <linux/kthread.h> 68 #include <linux/module.h> 69 #include <linux/pci.h> 70 #include <linux/sched.h> 71 #include <linux/seq_file.h> 72 #include <linux/string.h> 73 #include <linux/tick.h> 74 #include <linux/timer.h> 75 #include <drm/i915_drm.h> 76 #include <asm/msr.h> 77 #include <asm/processor.h> 78 #include "intel_ips.h" 79 80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 81 82 /* 83 * Package level MSRs for monitor/control 84 */ 85 #define PLATFORM_INFO 0xce 86 #define PLATFORM_TDP (1<<29) 87 #define PLATFORM_RATIO (1<<28) 88 89 #define IA32_MISC_ENABLE 0x1a0 90 #define IA32_MISC_TURBO_EN (1ULL<<38) 91 92 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 93 #define TURBO_TDC_OVR_EN (1UL<<31) 94 #define TURBO_TDC_MASK (0x000000007fff0000UL) 95 #define TURBO_TDC_SHIFT (16) 96 #define TURBO_TDP_OVR_EN (1UL<<15) 97 #define TURBO_TDP_MASK (0x0000000000003fffUL) 98 99 /* 100 * Core/thread MSRs for monitoring 101 */ 102 #define IA32_PERF_CTL 0x199 103 #define IA32_PERF_TURBO_DIS (1ULL<<32) 104 105 /* 106 * Thermal PCI device regs 107 */ 108 #define THM_CFG_TBAR 0x10 109 #define THM_CFG_TBAR_HI 0x14 110 111 #define THM_TSIU 0x00 112 #define THM_TSE 0x01 113 #define TSE_EN 0xb8 114 #define THM_TSS 0x02 115 #define THM_TSTR 0x03 116 #define THM_TSTTP 0x04 117 #define THM_TSCO 0x08 118 #define THM_TSES 0x0c 119 #define THM_TSGPEN 0x0d 120 #define TSGPEN_HOT_LOHI (1<<1) 121 #define TSGPEN_CRIT_LOHI (1<<2) 122 #define THM_TSPC 0x0e 123 #define THM_PPEC 0x10 124 #define THM_CTA 0x12 125 #define THM_PTA 0x14 126 #define PTA_SLOPE_MASK (0xff00) 127 #define PTA_SLOPE_SHIFT 8 128 #define PTA_OFFSET_MASK (0x00ff) 129 #define THM_MGTA 0x16 130 #define MGTA_SLOPE_MASK (0xff00) 131 #define MGTA_SLOPE_SHIFT 8 132 #define MGTA_OFFSET_MASK (0x00ff) 133 #define THM_TRC 0x1a 134 #define TRC_CORE2_EN (1<<15) 135 #define TRC_THM_EN (1<<12) 136 #define TRC_C6_WAR (1<<8) 137 #define TRC_CORE1_EN (1<<7) 138 #define TRC_CORE_PWR (1<<6) 139 #define TRC_PCH_EN (1<<5) 140 #define TRC_MCH_EN (1<<4) 141 #define TRC_DIMM4 (1<<3) 142 #define TRC_DIMM3 (1<<2) 143 #define TRC_DIMM2 (1<<1) 144 #define TRC_DIMM1 (1<<0) 145 #define THM_TES 0x20 146 #define THM_TEN 0x21 147 #define TEN_UPDATE_EN 1 148 #define THM_PSC 0x24 149 #define PSC_NTG (1<<0) /* No GFX turbo support */ 150 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 151 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 152 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 153 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 154 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 155 #define PSP_PBRT (1<<4) /* BIOS run time support */ 156 #define THM_CTV1 0x30 157 #define CTV_TEMP_ERROR (1<<15) 158 #define CTV_TEMP_MASK 0x3f 159 #define CTV_ 160 #define THM_CTV2 0x32 161 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 162 #define THM_AE 0x3f 163 #define THM_HTS 0x50 /* 32 bits */ 164 #define HTS_PCPL_MASK (0x7fe00000) 165 #define HTS_PCPL_SHIFT 21 166 #define HTS_GPL_MASK (0x001ff000) 167 #define HTS_GPL_SHIFT 12 168 #define HTS_PP_MASK (0x00000c00) 169 #define HTS_PP_SHIFT 10 170 #define HTS_PP_DEF 0 171 #define HTS_PP_PROC 1 172 #define HTS_PP_BAL 2 173 #define HTS_PP_GFX 3 174 #define HTS_PCTD_DIS (1<<9) 175 #define HTS_GTD_DIS (1<<8) 176 #define HTS_PTL_MASK (0x000000fe) 177 #define HTS_PTL_SHIFT 1 178 #define HTS_NVV (1<<0) 179 #define THM_HTSHI 0x54 /* 16 bits */ 180 #define HTS2_PPL_MASK (0x03ff) 181 #define HTS2_PRST_MASK (0x3c00) 182 #define HTS2_PRST_SHIFT 10 183 #define HTS2_PRST_UNLOADED 0 184 #define HTS2_PRST_RUNNING 1 185 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 186 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 187 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 188 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 189 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 190 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 191 #define THM_PTL 0x56 192 #define THM_MGTV 0x58 193 #define TV_MASK 0x000000000000ff00 194 #define TV_SHIFT 8 195 #define THM_PTV 0x60 196 #define PTV_MASK 0x00ff 197 #define THM_MMGPC 0x64 198 #define THM_MPPC 0x66 199 #define THM_MPCPC 0x68 200 #define THM_TSPIEN 0x82 201 #define TSPIEN_AUX_LOHI (1<<0) 202 #define TSPIEN_HOT_LOHI (1<<1) 203 #define TSPIEN_CRIT_LOHI (1<<2) 204 #define TSPIEN_AUX2_LOHI (1<<3) 205 #define THM_TSLOCK 0x83 206 #define THM_ATR 0x84 207 #define THM_TOF 0x87 208 #define THM_STS 0x98 209 #define STS_PCPL_MASK (0x7fe00000) 210 #define STS_PCPL_SHIFT 21 211 #define STS_GPL_MASK (0x001ff000) 212 #define STS_GPL_SHIFT 12 213 #define STS_PP_MASK (0x00000c00) 214 #define STS_PP_SHIFT 10 215 #define STS_PP_DEF 0 216 #define STS_PP_PROC 1 217 #define STS_PP_BAL 2 218 #define STS_PP_GFX 3 219 #define STS_PCTD_DIS (1<<9) 220 #define STS_GTD_DIS (1<<8) 221 #define STS_PTL_MASK (0x000000fe) 222 #define STS_PTL_SHIFT 1 223 #define STS_NVV (1<<0) 224 #define THM_SEC 0x9c 225 #define SEC_ACK (1<<0) 226 #define THM_TC3 0xa4 227 #define THM_TC1 0xa8 228 #define STS_PPL_MASK (0x0003ff00) 229 #define STS_PPL_SHIFT 16 230 #define THM_TC2 0xac 231 #define THM_DTV 0xb0 232 #define THM_ITV 0xd8 233 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 234 #define ITV_ME_SEQNO_SHIFT (16) 235 #define ITV_MCH_TEMP_MASK 0x0000ff00 236 #define ITV_MCH_TEMP_SHIFT (8) 237 #define ITV_PCH_TEMP_MASK 0x000000ff 238 239 #define thm_readb(off) readb(ips->regmap + (off)) 240 #define thm_readw(off) readw(ips->regmap + (off)) 241 #define thm_readl(off) readl(ips->regmap + (off)) 242 #define thm_readq(off) readq(ips->regmap + (off)) 243 244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 245 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 246 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 247 248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 249 static bool late_i915_load = false; 250 251 /* For initial average collection */ 252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 255 256 /* Per-SKU limits */ 257 struct ips_mcp_limits { 258 int cpu_family; 259 int cpu_model; /* includes extended model... */ 260 int mcp_power_limit; /* mW units */ 261 int core_power_limit; 262 int mch_power_limit; 263 int core_temp_limit; /* degrees C */ 264 int mch_temp_limit; 265 }; 266 267 /* Max temps are -10 degrees C to avoid PROCHOT# */ 268 269 struct ips_mcp_limits ips_sv_limits = { 270 .mcp_power_limit = 35000, 271 .core_power_limit = 29000, 272 .mch_power_limit = 20000, 273 .core_temp_limit = 95, 274 .mch_temp_limit = 90 275 }; 276 277 struct ips_mcp_limits ips_lv_limits = { 278 .mcp_power_limit = 25000, 279 .core_power_limit = 21000, 280 .mch_power_limit = 13000, 281 .core_temp_limit = 95, 282 .mch_temp_limit = 90 283 }; 284 285 struct ips_mcp_limits ips_ulv_limits = { 286 .mcp_power_limit = 18000, 287 .core_power_limit = 14000, 288 .mch_power_limit = 11000, 289 .core_temp_limit = 95, 290 .mch_temp_limit = 90 291 }; 292 293 struct ips_driver { 294 struct pci_dev *dev; 295 void *regmap; 296 struct task_struct *monitor; 297 struct task_struct *adjust; 298 struct dentry *debug_root; 299 300 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 301 u16 ctv1_avg_temp; 302 u16 ctv2_avg_temp; 303 /* GMCH average */ 304 u16 mch_avg_temp; 305 /* Average for the CPU (both cores?) */ 306 u16 mcp_avg_temp; 307 /* Average power consumption (in mW) */ 308 u32 cpu_avg_power; 309 u32 mch_avg_power; 310 311 /* Offset values */ 312 u16 cta_val; 313 u16 pta_val; 314 u16 mgta_val; 315 316 /* Maximums & prefs, protected by turbo status lock */ 317 spinlock_t turbo_status_lock; 318 u16 mcp_temp_limit; 319 u16 mcp_power_limit; 320 u16 core_power_limit; 321 u16 mch_power_limit; 322 bool cpu_turbo_enabled; 323 bool __cpu_turbo_on; 324 bool gpu_turbo_enabled; 325 bool __gpu_turbo_on; 326 bool gpu_preferred; 327 bool poll_turbo_status; 328 bool second_cpu; 329 bool turbo_toggle_allowed; 330 struct ips_mcp_limits *limits; 331 332 /* Optional MCH interfaces for if i915 is in use */ 333 unsigned long (*read_mch_val)(void); 334 bool (*gpu_raise)(void); 335 bool (*gpu_lower)(void); 336 bool (*gpu_busy)(void); 337 bool (*gpu_turbo_disable)(void); 338 339 /* For restoration at unload */ 340 u64 orig_turbo_limit; 341 u64 orig_turbo_ratios; 342 }; 343 344 static bool 345 ips_gpu_turbo_enabled(struct ips_driver *ips); 346 347 #ifndef readq 348 static inline __u64 readq(const volatile void __iomem *addr) 349 { 350 const volatile u32 __iomem *p = addr; 351 u32 low, high; 352 353 low = readl(p); 354 high = readl(p + 1); 355 356 return low + ((u64)high << 32); 357 } 358 #endif 359 360 /** 361 * ips_cpu_busy - is CPU busy? 362 * @ips: IPS driver struct 363 * 364 * Check CPU for load to see whether we should increase its thermal budget. 365 * 366 * RETURNS: 367 * True if the CPU could use more power, false otherwise. 368 */ 369 static bool ips_cpu_busy(struct ips_driver *ips) 370 { 371 if ((avenrun[0] >> FSHIFT) > 1) 372 return true; 373 374 return false; 375 } 376 377 /** 378 * ips_cpu_raise - raise CPU power clamp 379 * @ips: IPS driver struct 380 * 381 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 382 * this platform. 383 * 384 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 385 * long as we haven't hit the TDP limit for the SKU). 386 */ 387 static void ips_cpu_raise(struct ips_driver *ips) 388 { 389 u64 turbo_override; 390 u16 cur_tdp_limit, new_tdp_limit; 391 392 if (!ips->cpu_turbo_enabled) 393 return; 394 395 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 396 397 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 398 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 399 400 /* Clamp to SKU TDP limit */ 401 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 402 new_tdp_limit = cur_tdp_limit; 403 404 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 405 406 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN; 407 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 408 409 turbo_override &= ~TURBO_TDP_MASK; 410 turbo_override |= new_tdp_limit; 411 412 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 413 } 414 415 /** 416 * ips_cpu_lower - lower CPU power clamp 417 * @ips: IPS driver struct 418 * 419 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 420 * 421 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 422 * as low as the platform limits will allow (though we could go lower there 423 * wouldn't be much point). 424 */ 425 static void ips_cpu_lower(struct ips_driver *ips) 426 { 427 u64 turbo_override; 428 u16 cur_limit, new_limit; 429 430 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 431 432 cur_limit = turbo_override & TURBO_TDP_MASK; 433 new_limit = cur_limit - 8; /* 1W decrease */ 434 435 /* Clamp to SKU TDP limit */ 436 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 437 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 438 439 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 440 441 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN; 442 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 443 444 turbo_override &= ~TURBO_TDP_MASK; 445 turbo_override |= new_limit; 446 447 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 448 } 449 450 /** 451 * do_enable_cpu_turbo - internal turbo enable function 452 * @data: unused 453 * 454 * Internal function for actually updating MSRs. When we enable/disable 455 * turbo, we need to do it on each CPU; this function is the one called 456 * by on_each_cpu() when needed. 457 */ 458 static void do_enable_cpu_turbo(void *data) 459 { 460 u64 perf_ctl; 461 462 rdmsrl(IA32_PERF_CTL, perf_ctl); 463 if (perf_ctl & IA32_PERF_TURBO_DIS) { 464 perf_ctl &= ~IA32_PERF_TURBO_DIS; 465 wrmsrl(IA32_PERF_CTL, perf_ctl); 466 } 467 } 468 469 /** 470 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 471 * @ips: IPS driver struct 472 * 473 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 474 * all logical threads. 475 */ 476 static void ips_enable_cpu_turbo(struct ips_driver *ips) 477 { 478 /* Already on, no need to mess with MSRs */ 479 if (ips->__cpu_turbo_on) 480 return; 481 482 if (ips->turbo_toggle_allowed) 483 on_each_cpu(do_enable_cpu_turbo, ips, 1); 484 485 ips->__cpu_turbo_on = true; 486 } 487 488 /** 489 * do_disable_cpu_turbo - internal turbo disable function 490 * @data: unused 491 * 492 * Internal function for actually updating MSRs. When we enable/disable 493 * turbo, we need to do it on each CPU; this function is the one called 494 * by on_each_cpu() when needed. 495 */ 496 static void do_disable_cpu_turbo(void *data) 497 { 498 u64 perf_ctl; 499 500 rdmsrl(IA32_PERF_CTL, perf_ctl); 501 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 502 perf_ctl |= IA32_PERF_TURBO_DIS; 503 wrmsrl(IA32_PERF_CTL, perf_ctl); 504 } 505 } 506 507 /** 508 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 509 * @ips: IPS driver struct 510 * 511 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 512 * all logical threads. 513 */ 514 static void ips_disable_cpu_turbo(struct ips_driver *ips) 515 { 516 /* Already off, leave it */ 517 if (!ips->__cpu_turbo_on) 518 return; 519 520 if (ips->turbo_toggle_allowed) 521 on_each_cpu(do_disable_cpu_turbo, ips, 1); 522 523 ips->__cpu_turbo_on = false; 524 } 525 526 /** 527 * ips_gpu_busy - is GPU busy? 528 * @ips: IPS driver struct 529 * 530 * Check GPU for load to see whether we should increase its thermal budget. 531 * We need to call into the i915 driver in this case. 532 * 533 * RETURNS: 534 * True if the GPU could use more power, false otherwise. 535 */ 536 static bool ips_gpu_busy(struct ips_driver *ips) 537 { 538 if (!ips_gpu_turbo_enabled(ips)) 539 return false; 540 541 return ips->gpu_busy(); 542 } 543 544 /** 545 * ips_gpu_raise - raise GPU power clamp 546 * @ips: IPS driver struct 547 * 548 * Raise the GPU frequency/power if possible. We need to call into the 549 * i915 driver in this case. 550 */ 551 static void ips_gpu_raise(struct ips_driver *ips) 552 { 553 if (!ips_gpu_turbo_enabled(ips)) 554 return; 555 556 if (!ips->gpu_raise()) 557 ips->gpu_turbo_enabled = false; 558 559 return; 560 } 561 562 /** 563 * ips_gpu_lower - lower GPU power clamp 564 * @ips: IPS driver struct 565 * 566 * Lower GPU frequency/power if possible. Need to call i915. 567 */ 568 static void ips_gpu_lower(struct ips_driver *ips) 569 { 570 if (!ips_gpu_turbo_enabled(ips)) 571 return; 572 573 if (!ips->gpu_lower()) 574 ips->gpu_turbo_enabled = false; 575 576 return; 577 } 578 579 /** 580 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 581 * @ips: IPS driver struct 582 * 583 * Call into the graphics driver indicating that it can safely use 584 * turbo mode. 585 */ 586 static void ips_enable_gpu_turbo(struct ips_driver *ips) 587 { 588 if (ips->__gpu_turbo_on) 589 return; 590 ips->__gpu_turbo_on = true; 591 } 592 593 /** 594 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 595 * @ips: IPS driver struct 596 * 597 * Request that the graphics driver disable turbo mode. 598 */ 599 static void ips_disable_gpu_turbo(struct ips_driver *ips) 600 { 601 /* Avoid calling i915 if turbo is already disabled */ 602 if (!ips->__gpu_turbo_on) 603 return; 604 605 if (!ips->gpu_turbo_disable()) 606 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n"); 607 else 608 ips->__gpu_turbo_on = false; 609 } 610 611 /** 612 * mcp_exceeded - check whether we're outside our thermal & power limits 613 * @ips: IPS driver struct 614 * 615 * Check whether the MCP is over its thermal or power budget. 616 */ 617 static bool mcp_exceeded(struct ips_driver *ips) 618 { 619 unsigned long flags; 620 bool ret = false; 621 u32 temp_limit; 622 u32 avg_power; 623 const char *msg = "MCP limit exceeded: "; 624 625 spin_lock_irqsave(&ips->turbo_status_lock, flags); 626 627 temp_limit = ips->mcp_temp_limit * 100; 628 if (ips->mcp_avg_temp > temp_limit) { 629 dev_info(&ips->dev->dev, 630 "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp, 631 temp_limit); 632 ret = true; 633 } 634 635 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 636 if (avg_power > ips->mcp_power_limit) { 637 dev_info(&ips->dev->dev, 638 "%sAvg power %u, limit %u\n", msg, avg_power, 639 ips->mcp_power_limit); 640 ret = true; 641 } 642 643 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 644 645 return ret; 646 } 647 648 /** 649 * cpu_exceeded - check whether a CPU core is outside its limits 650 * @ips: IPS driver struct 651 * @cpu: CPU number to check 652 * 653 * Check a given CPU's average temp or power is over its limit. 654 */ 655 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 656 { 657 unsigned long flags; 658 int avg; 659 bool ret = false; 660 661 spin_lock_irqsave(&ips->turbo_status_lock, flags); 662 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 663 if (avg > (ips->limits->core_temp_limit * 100)) 664 ret = true; 665 if (ips->cpu_avg_power > ips->core_power_limit * 100) 666 ret = true; 667 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 668 669 if (ret) 670 dev_info(&ips->dev->dev, 671 "CPU power or thermal limit exceeded\n"); 672 673 return ret; 674 } 675 676 /** 677 * mch_exceeded - check whether the GPU is over budget 678 * @ips: IPS driver struct 679 * 680 * Check the MCH temp & power against their maximums. 681 */ 682 static bool mch_exceeded(struct ips_driver *ips) 683 { 684 unsigned long flags; 685 bool ret = false; 686 687 spin_lock_irqsave(&ips->turbo_status_lock, flags); 688 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 689 ret = true; 690 if (ips->mch_avg_power > ips->mch_power_limit) 691 ret = true; 692 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 693 694 return ret; 695 } 696 697 /** 698 * verify_limits - verify BIOS provided limits 699 * @ips: IPS structure 700 * 701 * BIOS can optionally provide non-default limits for power and temp. Check 702 * them here and use the defaults if the BIOS values are not provided or 703 * are otherwise unusable. 704 */ 705 static void verify_limits(struct ips_driver *ips) 706 { 707 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 708 ips->mcp_power_limit > 35000) 709 ips->mcp_power_limit = ips->limits->mcp_power_limit; 710 711 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 712 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 713 ips->mcp_temp_limit > 150) 714 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 715 ips->limits->mch_temp_limit); 716 } 717 718 /** 719 * update_turbo_limits - get various limits & settings from regs 720 * @ips: IPS driver struct 721 * 722 * Update the IPS power & temp limits, along with turbo enable flags, 723 * based on latest register contents. 724 * 725 * Used at init time and for runtime BIOS support, which requires polling 726 * the regs for updates (as a result of AC->DC transition for example). 727 * 728 * LOCKING: 729 * Caller must hold turbo_status_lock (outside of init) 730 */ 731 static void update_turbo_limits(struct ips_driver *ips) 732 { 733 u32 hts = thm_readl(THM_HTS); 734 735 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 736 /* 737 * Disable turbo for now, until we can figure out why the power figures 738 * are wrong 739 */ 740 ips->cpu_turbo_enabled = false; 741 742 if (ips->gpu_busy) 743 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 744 745 ips->core_power_limit = thm_readw(THM_MPCPC); 746 ips->mch_power_limit = thm_readw(THM_MMGPC); 747 ips->mcp_temp_limit = thm_readw(THM_PTL); 748 ips->mcp_power_limit = thm_readw(THM_MPPC); 749 750 verify_limits(ips); 751 /* Ignore BIOS CPU vs GPU pref */ 752 } 753 754 /** 755 * ips_adjust - adjust power clamp based on thermal state 756 * @data: ips driver structure 757 * 758 * Wake up every 5s or so and check whether we should adjust the power clamp. 759 * Check CPU and GPU load to determine which needs adjustment. There are 760 * several things to consider here: 761 * - do we need to adjust up or down? 762 * - is CPU busy? 763 * - is GPU busy? 764 * - is CPU in turbo? 765 * - is GPU in turbo? 766 * - is CPU or GPU preferred? (CPU is default) 767 * 768 * So, given the above, we do the following: 769 * - up (TDP available) 770 * - CPU not busy, GPU not busy - nothing 771 * - CPU busy, GPU not busy - adjust CPU up 772 * - CPU not busy, GPU busy - adjust GPU up 773 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 774 * non-preferred unit if necessary 775 * - down (at TDP limit) 776 * - adjust both CPU and GPU down if possible 777 * 778 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 779 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing 780 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 781 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 782 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 783 * 784 */ 785 static int ips_adjust(void *data) 786 { 787 struct ips_driver *ips = data; 788 unsigned long flags; 789 790 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n"); 791 792 /* 793 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 794 * often isn't recommended due to ME interaction. 795 */ 796 do { 797 bool cpu_busy = ips_cpu_busy(ips); 798 bool gpu_busy = ips_gpu_busy(ips); 799 800 spin_lock_irqsave(&ips->turbo_status_lock, flags); 801 if (ips->poll_turbo_status) 802 update_turbo_limits(ips); 803 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 804 805 /* Update turbo status if necessary */ 806 if (ips->cpu_turbo_enabled) 807 ips_enable_cpu_turbo(ips); 808 else 809 ips_disable_cpu_turbo(ips); 810 811 if (ips->gpu_turbo_enabled) 812 ips_enable_gpu_turbo(ips); 813 else 814 ips_disable_gpu_turbo(ips); 815 816 /* We're outside our comfort zone, crank them down */ 817 if (mcp_exceeded(ips)) { 818 ips_cpu_lower(ips); 819 ips_gpu_lower(ips); 820 goto sleep; 821 } 822 823 if (!cpu_exceeded(ips, 0) && cpu_busy) 824 ips_cpu_raise(ips); 825 else 826 ips_cpu_lower(ips); 827 828 if (!mch_exceeded(ips) && gpu_busy) 829 ips_gpu_raise(ips); 830 else 831 ips_gpu_lower(ips); 832 833 sleep: 834 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 835 } while (!kthread_should_stop()); 836 837 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n"); 838 839 return 0; 840 } 841 842 /* 843 * Helpers for reading out temp/power values and calculating their 844 * averages for the decision making and monitoring functions. 845 */ 846 847 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 848 { 849 u64 total = 0; 850 int i; 851 u16 avg; 852 853 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 854 total += (u64)(array[i] * 100); 855 856 do_div(total, IPS_SAMPLE_COUNT); 857 858 avg = (u16)total; 859 860 return avg; 861 } 862 863 static u16 read_mgtv(struct ips_driver *ips) 864 { 865 u16 ret; 866 u64 slope, offset; 867 u64 val; 868 869 val = thm_readq(THM_MGTV); 870 val = (val & TV_MASK) >> TV_SHIFT; 871 872 slope = offset = thm_readw(THM_MGTA); 873 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 874 offset = offset & MGTA_OFFSET_MASK; 875 876 ret = ((val * slope + 0x40) >> 7) + offset; 877 878 return 0; /* MCH temp reporting buggy */ 879 } 880 881 static u16 read_ptv(struct ips_driver *ips) 882 { 883 u16 val, slope, offset; 884 885 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; 886 offset = ips->pta_val & PTA_OFFSET_MASK; 887 888 val = thm_readw(THM_PTV) & PTV_MASK; 889 890 return val; 891 } 892 893 static u16 read_ctv(struct ips_driver *ips, int cpu) 894 { 895 int reg = cpu ? THM_CTV2 : THM_CTV1; 896 u16 val; 897 898 val = thm_readw(reg); 899 if (!(val & CTV_TEMP_ERROR)) 900 val = (val) >> 6; /* discard fractional component */ 901 else 902 val = 0; 903 904 return val; 905 } 906 907 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 908 { 909 u32 val; 910 u32 ret; 911 912 /* 913 * CEC is in joules/65535. Take difference over time to 914 * get watts. 915 */ 916 val = thm_readl(THM_CEC); 917 918 /* period is in ms and we want mW */ 919 ret = (((val - *last) * 1000) / period); 920 ret = (ret * 1000) / 65535; 921 *last = val; 922 923 return 0; 924 } 925 926 static const u16 temp_decay_factor = 2; 927 static u16 update_average_temp(u16 avg, u16 val) 928 { 929 u16 ret; 930 931 /* Multiply by 100 for extra precision */ 932 ret = (val * 100 / temp_decay_factor) + 933 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 934 return ret; 935 } 936 937 static const u16 power_decay_factor = 2; 938 static u16 update_average_power(u32 avg, u32 val) 939 { 940 u32 ret; 941 942 ret = (val / power_decay_factor) + 943 (((power_decay_factor - 1) * avg) / power_decay_factor); 944 945 return ret; 946 } 947 948 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 949 { 950 u64 total = 0; 951 u32 avg; 952 int i; 953 954 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 955 total += array[i]; 956 957 do_div(total, IPS_SAMPLE_COUNT); 958 avg = (u32)total; 959 960 return avg; 961 } 962 963 static void monitor_timeout(unsigned long arg) 964 { 965 wake_up_process((struct task_struct *)arg); 966 } 967 968 /** 969 * ips_monitor - temp/power monitoring thread 970 * @data: ips driver structure 971 * 972 * This is the main function for the IPS driver. It monitors power and 973 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. 974 * 975 * We keep a 5s moving average of power consumption and tempurature. Using 976 * that data, along with CPU vs GPU preference, we adjust the power clamps 977 * up or down. 978 */ 979 static int ips_monitor(void *data) 980 { 981 struct ips_driver *ips = data; 982 struct timer_list timer; 983 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 984 int i; 985 u32 *cpu_samples, *mchp_samples, old_cpu_power; 986 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 987 u8 cur_seqno, last_seqno; 988 989 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 990 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 991 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 992 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 993 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 994 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 995 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 996 !cpu_samples || !mchp_samples) { 997 dev_err(&ips->dev->dev, 998 "failed to allocate sample array, ips disabled\n"); 999 kfree(mcp_samples); 1000 kfree(ctv1_samples); 1001 kfree(ctv2_samples); 1002 kfree(mch_samples); 1003 kfree(cpu_samples); 1004 kfree(mchp_samples); 1005 return -ENOMEM; 1006 } 1007 1008 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1009 ITV_ME_SEQNO_SHIFT; 1010 seqno_timestamp = get_jiffies_64(); 1011 1012 old_cpu_power = thm_readl(THM_CEC); 1013 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1014 1015 /* Collect an initial average */ 1016 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 1017 u32 mchp, cpu_power; 1018 u16 val; 1019 1020 mcp_samples[i] = read_ptv(ips); 1021 1022 val = read_ctv(ips, 0); 1023 ctv1_samples[i] = val; 1024 1025 val = read_ctv(ips, 1); 1026 ctv2_samples[i] = val; 1027 1028 val = read_mgtv(ips); 1029 mch_samples[i] = val; 1030 1031 cpu_power = get_cpu_power(ips, &old_cpu_power, 1032 IPS_SAMPLE_PERIOD); 1033 cpu_samples[i] = cpu_power; 1034 1035 if (ips->read_mch_val) { 1036 mchp = ips->read_mch_val(); 1037 mchp_samples[i] = mchp; 1038 } 1039 1040 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1041 if (kthread_should_stop()) 1042 break; 1043 } 1044 1045 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1046 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1047 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1048 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1049 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1050 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1051 kfree(mcp_samples); 1052 kfree(ctv1_samples); 1053 kfree(ctv2_samples); 1054 kfree(mch_samples); 1055 kfree(cpu_samples); 1056 kfree(mchp_samples); 1057 1058 /* Start the adjustment thread now that we have data */ 1059 wake_up_process(ips->adjust); 1060 1061 /* 1062 * Ok, now we have an initial avg. From here on out, we track the 1063 * running avg using a decaying average calculation. This allows 1064 * us to reduce the sample frequency if the CPU and GPU are idle. 1065 */ 1066 old_cpu_power = thm_readl(THM_CEC); 1067 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1068 last_sample_period = IPS_SAMPLE_PERIOD; 1069 1070 setup_deferrable_timer_on_stack(&timer, monitor_timeout, 1071 (unsigned long)current); 1072 do { 1073 u32 cpu_val, mch_val; 1074 u16 val; 1075 1076 /* MCP itself */ 1077 val = read_ptv(ips); 1078 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1079 1080 /* Processor 0 */ 1081 val = read_ctv(ips, 0); 1082 ips->ctv1_avg_temp = 1083 update_average_temp(ips->ctv1_avg_temp, val); 1084 /* Power */ 1085 cpu_val = get_cpu_power(ips, &old_cpu_power, 1086 last_sample_period); 1087 ips->cpu_avg_power = 1088 update_average_power(ips->cpu_avg_power, cpu_val); 1089 1090 if (ips->second_cpu) { 1091 /* Processor 1 */ 1092 val = read_ctv(ips, 1); 1093 ips->ctv2_avg_temp = 1094 update_average_temp(ips->ctv2_avg_temp, val); 1095 } 1096 1097 /* MCH */ 1098 val = read_mgtv(ips); 1099 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1100 /* Power */ 1101 if (ips->read_mch_val) { 1102 mch_val = ips->read_mch_val(); 1103 ips->mch_avg_power = 1104 update_average_power(ips->mch_avg_power, 1105 mch_val); 1106 } 1107 1108 /* 1109 * Make sure ME is updating thermal regs. 1110 * Note: 1111 * If it's been more than a second since the last update, 1112 * the ME is probably hung. 1113 */ 1114 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1115 ITV_ME_SEQNO_SHIFT; 1116 if (cur_seqno == last_seqno && 1117 time_after(jiffies, seqno_timestamp + HZ)) { 1118 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n"); 1119 } else { 1120 seqno_timestamp = get_jiffies_64(); 1121 last_seqno = cur_seqno; 1122 } 1123 1124 last_msecs = jiffies_to_msecs(jiffies); 1125 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1126 1127 __set_current_state(TASK_INTERRUPTIBLE); 1128 mod_timer(&timer, expire); 1129 schedule(); 1130 1131 /* Calculate actual sample period for power averaging */ 1132 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1133 if (!last_sample_period) 1134 last_sample_period = 1; 1135 } while (!kthread_should_stop()); 1136 1137 del_timer_sync(&timer); 1138 destroy_timer_on_stack(&timer); 1139 1140 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n"); 1141 1142 return 0; 1143 } 1144 1145 #if 0 1146 #define THM_DUMPW(reg) \ 1147 { \ 1148 u16 val = thm_readw(reg); \ 1149 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \ 1150 } 1151 #define THM_DUMPL(reg) \ 1152 { \ 1153 u32 val = thm_readl(reg); \ 1154 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \ 1155 } 1156 #define THM_DUMPQ(reg) \ 1157 { \ 1158 u64 val = thm_readq(reg); \ 1159 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \ 1160 } 1161 1162 static void dump_thermal_info(struct ips_driver *ips) 1163 { 1164 u16 ptl; 1165 1166 ptl = thm_readw(THM_PTL); 1167 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl); 1168 1169 THM_DUMPW(THM_CTA); 1170 THM_DUMPW(THM_TRC); 1171 THM_DUMPW(THM_CTV1); 1172 THM_DUMPL(THM_STS); 1173 THM_DUMPW(THM_PTV); 1174 THM_DUMPQ(THM_MGTV); 1175 } 1176 #endif 1177 1178 /** 1179 * ips_irq_handler - handle temperature triggers and other IPS events 1180 * @irq: irq number 1181 * @arg: unused 1182 * 1183 * Handle temperature limit trigger events, generally by lowering the clamps. 1184 * If we're at a critical limit, we clamp back to the lowest possible value 1185 * to prevent emergency shutdown. 1186 */ 1187 static irqreturn_t ips_irq_handler(int irq, void *arg) 1188 { 1189 struct ips_driver *ips = arg; 1190 u8 tses = thm_readb(THM_TSES); 1191 u8 tes = thm_readb(THM_TES); 1192 1193 if (!tses && !tes) 1194 return IRQ_NONE; 1195 1196 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses); 1197 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes); 1198 1199 /* STS update from EC? */ 1200 if (tes & 1) { 1201 u32 sts, tc1; 1202 1203 sts = thm_readl(THM_STS); 1204 tc1 = thm_readl(THM_TC1); 1205 1206 if (sts & STS_NVV) { 1207 spin_lock(&ips->turbo_status_lock); 1208 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1209 STS_PCPL_SHIFT; 1210 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1211 STS_GPL_SHIFT; 1212 /* ignore EC CPU vs GPU pref */ 1213 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1214 /* 1215 * Disable turbo for now, until we can figure 1216 * out why the power figures are wrong 1217 */ 1218 ips->cpu_turbo_enabled = false; 1219 if (ips->gpu_busy) 1220 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1221 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1222 STS_PTL_SHIFT; 1223 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1224 STS_PPL_SHIFT; 1225 verify_limits(ips); 1226 spin_unlock(&ips->turbo_status_lock); 1227 1228 thm_writeb(THM_SEC, SEC_ACK); 1229 } 1230 thm_writeb(THM_TES, tes); 1231 } 1232 1233 /* Thermal trip */ 1234 if (tses) { 1235 dev_warn(&ips->dev->dev, 1236 "thermal trip occurred, tses: 0x%04x\n", tses); 1237 thm_writeb(THM_TSES, tses); 1238 } 1239 1240 return IRQ_HANDLED; 1241 } 1242 1243 #ifndef CONFIG_DEBUG_FS 1244 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1245 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1246 #else 1247 1248 /* Expose current state and limits in debugfs if possible */ 1249 1250 struct ips_debugfs_node { 1251 struct ips_driver *ips; 1252 char *name; 1253 int (*show)(struct seq_file *m, void *data); 1254 }; 1255 1256 static int show_cpu_temp(struct seq_file *m, void *data) 1257 { 1258 struct ips_driver *ips = m->private; 1259 1260 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1261 ips->ctv1_avg_temp % 100); 1262 1263 return 0; 1264 } 1265 1266 static int show_cpu_power(struct seq_file *m, void *data) 1267 { 1268 struct ips_driver *ips = m->private; 1269 1270 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1271 1272 return 0; 1273 } 1274 1275 static int show_cpu_clamp(struct seq_file *m, void *data) 1276 { 1277 u64 turbo_override; 1278 int tdp, tdc; 1279 1280 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1281 1282 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1283 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1284 1285 /* Convert to .1W/A units */ 1286 tdp = tdp * 10 / 8; 1287 tdc = tdc * 10 / 8; 1288 1289 /* Watts Amperes */ 1290 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1291 tdc / 10, tdc % 10); 1292 1293 return 0; 1294 } 1295 1296 static int show_mch_temp(struct seq_file *m, void *data) 1297 { 1298 struct ips_driver *ips = m->private; 1299 1300 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1301 ips->mch_avg_temp % 100); 1302 1303 return 0; 1304 } 1305 1306 static int show_mch_power(struct seq_file *m, void *data) 1307 { 1308 struct ips_driver *ips = m->private; 1309 1310 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1311 1312 return 0; 1313 } 1314 1315 static struct ips_debugfs_node ips_debug_files[] = { 1316 { NULL, "cpu_temp", show_cpu_temp }, 1317 { NULL, "cpu_power", show_cpu_power }, 1318 { NULL, "cpu_clamp", show_cpu_clamp }, 1319 { NULL, "mch_temp", show_mch_temp }, 1320 { NULL, "mch_power", show_mch_power }, 1321 }; 1322 1323 static int ips_debugfs_open(struct inode *inode, struct file *file) 1324 { 1325 struct ips_debugfs_node *node = inode->i_private; 1326 1327 return single_open(file, node->show, node->ips); 1328 } 1329 1330 static const struct file_operations ips_debugfs_ops = { 1331 .owner = THIS_MODULE, 1332 .open = ips_debugfs_open, 1333 .read = seq_read, 1334 .llseek = seq_lseek, 1335 .release = single_release, 1336 }; 1337 1338 static void ips_debugfs_cleanup(struct ips_driver *ips) 1339 { 1340 if (ips->debug_root) 1341 debugfs_remove_recursive(ips->debug_root); 1342 return; 1343 } 1344 1345 static void ips_debugfs_init(struct ips_driver *ips) 1346 { 1347 int i; 1348 1349 ips->debug_root = debugfs_create_dir("ips", NULL); 1350 if (!ips->debug_root) { 1351 dev_err(&ips->dev->dev, 1352 "failed to create debugfs entries: %ld\n", 1353 PTR_ERR(ips->debug_root)); 1354 return; 1355 } 1356 1357 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { 1358 struct dentry *ent; 1359 struct ips_debugfs_node *node = &ips_debug_files[i]; 1360 1361 node->ips = ips; 1362 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, 1363 ips->debug_root, node, 1364 &ips_debugfs_ops); 1365 if (!ent) { 1366 dev_err(&ips->dev->dev, 1367 "failed to create debug file: %ld\n", 1368 PTR_ERR(ent)); 1369 goto err_cleanup; 1370 } 1371 } 1372 1373 return; 1374 1375 err_cleanup: 1376 ips_debugfs_cleanup(ips); 1377 return; 1378 } 1379 #endif /* CONFIG_DEBUG_FS */ 1380 1381 /** 1382 * ips_detect_cpu - detect whether CPU supports IPS 1383 * 1384 * Walk our list and see if we're on a supported CPU. If we find one, 1385 * return the limits for it. 1386 */ 1387 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1388 { 1389 u64 turbo_power, misc_en; 1390 struct ips_mcp_limits *limits = NULL; 1391 u16 tdp; 1392 1393 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1394 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n"); 1395 goto out; 1396 } 1397 1398 rdmsrl(IA32_MISC_ENABLE, misc_en); 1399 /* 1400 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1401 * turbo manually or we'll get an illegal MSR access, even though 1402 * turbo will still be available. 1403 */ 1404 if (misc_en & IA32_MISC_TURBO_EN) 1405 ips->turbo_toggle_allowed = true; 1406 else 1407 ips->turbo_toggle_allowed = false; 1408 1409 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1410 limits = &ips_sv_limits; 1411 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1412 limits = &ips_lv_limits; 1413 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1414 limits = &ips_ulv_limits; 1415 else { 1416 dev_info(&ips->dev->dev, "No CPUID match found.\n"); 1417 goto out; 1418 } 1419 1420 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1421 tdp = turbo_power & TURBO_TDP_MASK; 1422 1423 /* Sanity check TDP against CPU */ 1424 if (limits->core_power_limit != (tdp / 8) * 1000) { 1425 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1426 tdp / 8, limits->core_power_limit / 1000); 1427 limits->core_power_limit = (tdp / 8) * 1000; 1428 } 1429 1430 out: 1431 return limits; 1432 } 1433 1434 /** 1435 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1436 * @ips: IPS driver 1437 * 1438 * The i915 driver exports several interfaces to allow the IPS driver to 1439 * monitor and control graphics turbo mode. If we can find them, we can 1440 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1441 * thermal and power limits in the MCP. 1442 */ 1443 static bool ips_get_i915_syms(struct ips_driver *ips) 1444 { 1445 ips->read_mch_val = symbol_get(i915_read_mch_val); 1446 if (!ips->read_mch_val) 1447 goto out_err; 1448 ips->gpu_raise = symbol_get(i915_gpu_raise); 1449 if (!ips->gpu_raise) 1450 goto out_put_mch; 1451 ips->gpu_lower = symbol_get(i915_gpu_lower); 1452 if (!ips->gpu_lower) 1453 goto out_put_raise; 1454 ips->gpu_busy = symbol_get(i915_gpu_busy); 1455 if (!ips->gpu_busy) 1456 goto out_put_lower; 1457 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1458 if (!ips->gpu_turbo_disable) 1459 goto out_put_busy; 1460 1461 return true; 1462 1463 out_put_busy: 1464 symbol_put(i915_gpu_busy); 1465 out_put_lower: 1466 symbol_put(i915_gpu_lower); 1467 out_put_raise: 1468 symbol_put(i915_gpu_raise); 1469 out_put_mch: 1470 symbol_put(i915_read_mch_val); 1471 out_err: 1472 return false; 1473 } 1474 1475 static bool 1476 ips_gpu_turbo_enabled(struct ips_driver *ips) 1477 { 1478 if (!ips->gpu_busy && late_i915_load) { 1479 if (ips_get_i915_syms(ips)) { 1480 dev_info(&ips->dev->dev, 1481 "i915 driver attached, reenabling gpu turbo\n"); 1482 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1483 } 1484 } 1485 1486 return ips->gpu_turbo_enabled; 1487 } 1488 1489 void 1490 ips_link_to_i915_driver(void) 1491 { 1492 /* We can't cleanly get at the various ips_driver structs from 1493 * this caller (the i915 driver), so just set a flag saying 1494 * that it's time to try getting the symbols again. 1495 */ 1496 late_i915_load = true; 1497 } 1498 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1499 1500 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = { 1501 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 1502 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1503 { 0, } 1504 }; 1505 1506 MODULE_DEVICE_TABLE(pci, ips_id_table); 1507 1508 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1509 { 1510 u64 platform_info; 1511 struct ips_driver *ips; 1512 u32 hts; 1513 int ret = 0; 1514 u16 htshi, trc, trc_required_mask; 1515 u8 tse; 1516 1517 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL); 1518 if (!ips) 1519 return -ENOMEM; 1520 1521 pci_set_drvdata(dev, ips); 1522 ips->dev = dev; 1523 1524 ips->limits = ips_detect_cpu(ips); 1525 if (!ips->limits) { 1526 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1527 ret = -ENXIO; 1528 goto error_free; 1529 } 1530 1531 spin_lock_init(&ips->turbo_status_lock); 1532 1533 ret = pci_enable_device(dev); 1534 if (ret) { 1535 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1536 goto error_free; 1537 } 1538 1539 if (!pci_resource_start(dev, 0)) { 1540 dev_err(&dev->dev, "TBAR not assigned, aborting\n"); 1541 ret = -ENXIO; 1542 goto error_free; 1543 } 1544 1545 ret = pci_request_regions(dev, "ips thermal sensor"); 1546 if (ret) { 1547 dev_err(&dev->dev, "thermal resource busy, aborting\n"); 1548 goto error_free; 1549 } 1550 1551 1552 ips->regmap = ioremap(pci_resource_start(dev, 0), 1553 pci_resource_len(dev, 0)); 1554 if (!ips->regmap) { 1555 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1556 ret = -EBUSY; 1557 goto error_release; 1558 } 1559 1560 tse = thm_readb(THM_TSE); 1561 if (tse != TSE_EN) { 1562 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1563 ret = -ENXIO; 1564 goto error_unmap; 1565 } 1566 1567 trc = thm_readw(THM_TRC); 1568 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1569 if ((trc & trc_required_mask) != trc_required_mask) { 1570 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1571 ret = -ENXIO; 1572 goto error_unmap; 1573 } 1574 1575 if (trc & TRC_CORE2_EN) 1576 ips->second_cpu = true; 1577 1578 update_turbo_limits(ips); 1579 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1580 ips->mcp_power_limit / 10); 1581 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1582 ips->core_power_limit / 10); 1583 /* BIOS may update limits at runtime */ 1584 if (thm_readl(THM_PSC) & PSP_PBRT) 1585 ips->poll_turbo_status = true; 1586 1587 if (!ips_get_i915_syms(ips)) { 1588 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n"); 1589 ips->gpu_turbo_enabled = false; 1590 } else { 1591 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1592 ips->gpu_turbo_enabled = true; 1593 } 1594 1595 /* 1596 * Check PLATFORM_INFO MSR to make sure this chip is 1597 * turbo capable. 1598 */ 1599 rdmsrl(PLATFORM_INFO, platform_info); 1600 if (!(platform_info & PLATFORM_TDP)) { 1601 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1602 ret = -ENODEV; 1603 goto error_unmap; 1604 } 1605 1606 /* 1607 * IRQ handler for ME interaction 1608 * Note: don't use MSI here as the PCH has bugs. 1609 */ 1610 pci_disable_msi(dev); 1611 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips", 1612 ips); 1613 if (ret) { 1614 dev_err(&dev->dev, "request irq failed, aborting\n"); 1615 goto error_unmap; 1616 } 1617 1618 /* Enable aux, hot & critical interrupts */ 1619 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1620 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1621 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1622 1623 /* Collect adjustment values */ 1624 ips->cta_val = thm_readw(THM_CTA); 1625 ips->pta_val = thm_readw(THM_PTA); 1626 ips->mgta_val = thm_readw(THM_MGTA); 1627 1628 /* Save turbo limits & ratios */ 1629 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1630 1631 ips_disable_cpu_turbo(ips); 1632 ips->cpu_turbo_enabled = false; 1633 1634 /* Create thermal adjust thread */ 1635 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1636 if (IS_ERR(ips->adjust)) { 1637 dev_err(&dev->dev, 1638 "failed to create thermal adjust thread, aborting\n"); 1639 ret = -ENOMEM; 1640 goto error_free_irq; 1641 1642 } 1643 1644 /* 1645 * Set up the work queue and monitor thread. The monitor thread 1646 * will wake up ips_adjust thread. 1647 */ 1648 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1649 if (IS_ERR(ips->monitor)) { 1650 dev_err(&dev->dev, 1651 "failed to create thermal monitor thread, aborting\n"); 1652 ret = -ENOMEM; 1653 goto error_thread_cleanup; 1654 } 1655 1656 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1657 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1658 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1659 1660 thm_writew(THM_HTSHI, htshi); 1661 thm_writel(THM_HTS, hts); 1662 1663 ips_debugfs_init(ips); 1664 1665 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1666 ips->mcp_temp_limit); 1667 return ret; 1668 1669 error_thread_cleanup: 1670 kthread_stop(ips->adjust); 1671 error_free_irq: 1672 free_irq(ips->dev->irq, ips); 1673 error_unmap: 1674 iounmap(ips->regmap); 1675 error_release: 1676 pci_release_regions(dev); 1677 error_free: 1678 kfree(ips); 1679 return ret; 1680 } 1681 1682 static void ips_remove(struct pci_dev *dev) 1683 { 1684 struct ips_driver *ips = pci_get_drvdata(dev); 1685 u64 turbo_override; 1686 1687 if (!ips) 1688 return; 1689 1690 ips_debugfs_cleanup(ips); 1691 1692 /* Release i915 driver */ 1693 if (ips->read_mch_val) 1694 symbol_put(i915_read_mch_val); 1695 if (ips->gpu_raise) 1696 symbol_put(i915_gpu_raise); 1697 if (ips->gpu_lower) 1698 symbol_put(i915_gpu_lower); 1699 if (ips->gpu_busy) 1700 symbol_put(i915_gpu_busy); 1701 if (ips->gpu_turbo_disable) 1702 symbol_put(i915_gpu_turbo_disable); 1703 1704 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1705 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1706 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1707 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1708 1709 free_irq(ips->dev->irq, ips); 1710 if (ips->adjust) 1711 kthread_stop(ips->adjust); 1712 if (ips->monitor) 1713 kthread_stop(ips->monitor); 1714 iounmap(ips->regmap); 1715 pci_release_regions(dev); 1716 kfree(ips); 1717 dev_dbg(&dev->dev, "IPS driver removed\n"); 1718 } 1719 1720 #ifdef CONFIG_PM 1721 static int ips_suspend(struct pci_dev *dev, pm_message_t state) 1722 { 1723 return 0; 1724 } 1725 1726 static int ips_resume(struct pci_dev *dev) 1727 { 1728 return 0; 1729 } 1730 #else 1731 #define ips_suspend NULL 1732 #define ips_resume NULL 1733 #endif /* CONFIG_PM */ 1734 1735 static void ips_shutdown(struct pci_dev *dev) 1736 { 1737 } 1738 1739 static struct pci_driver ips_pci_driver = { 1740 .name = "intel ips", 1741 .id_table = ips_id_table, 1742 .probe = ips_probe, 1743 .remove = ips_remove, 1744 .suspend = ips_suspend, 1745 .resume = ips_resume, 1746 .shutdown = ips_shutdown, 1747 }; 1748 1749 static int __init ips_init(void) 1750 { 1751 return pci_register_driver(&ips_pci_driver); 1752 } 1753 module_init(ips_init); 1754 1755 static void ips_exit(void) 1756 { 1757 pci_unregister_driver(&ips_pci_driver); 1758 return; 1759 } 1760 module_exit(ips_exit); 1761 1762 MODULE_LICENSE("GPL"); 1763 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1764 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1765