xref: /openbmc/linux/drivers/platform/x86/intel_ips.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *	Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of temperature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62 
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/sched/loadavg.h>
72 #include <linux/seq_file.h>
73 #include <linux/string.h>
74 #include <linux/tick.h>
75 #include <linux/timer.h>
76 #include <linux/dmi.h>
77 #include <drm/i915_drm.h>
78 #include <asm/msr.h>
79 #include <asm/processor.h>
80 #include "intel_ips.h"
81 
82 #include <linux/io-64-nonatomic-lo-hi.h>
83 
84 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
85 
86 /*
87  * Package level MSRs for monitor/control
88  */
89 #define PLATFORM_INFO	0xce
90 #define   PLATFORM_TDP		(1<<29)
91 #define   PLATFORM_RATIO	(1<<28)
92 
93 #define IA32_MISC_ENABLE	0x1a0
94 #define   IA32_MISC_TURBO_EN	(1ULL<<38)
95 
96 #define TURBO_POWER_CURRENT_LIMIT	0x1ac
97 #define   TURBO_TDC_OVR_EN	(1UL<<31)
98 #define   TURBO_TDC_MASK	(0x000000007fff0000UL)
99 #define   TURBO_TDC_SHIFT	(16)
100 #define   TURBO_TDP_OVR_EN	(1UL<<15)
101 #define   TURBO_TDP_MASK	(0x0000000000003fffUL)
102 
103 /*
104  * Core/thread MSRs for monitoring
105  */
106 #define IA32_PERF_CTL		0x199
107 #define   IA32_PERF_TURBO_DIS	(1ULL<<32)
108 
109 /*
110  * Thermal PCI device regs
111  */
112 #define THM_CFG_TBAR	0x10
113 #define THM_CFG_TBAR_HI	0x14
114 
115 #define THM_TSIU	0x00
116 #define THM_TSE		0x01
117 #define   TSE_EN	0xb8
118 #define THM_TSS		0x02
119 #define THM_TSTR	0x03
120 #define THM_TSTTP	0x04
121 #define THM_TSCO	0x08
122 #define THM_TSES	0x0c
123 #define THM_TSGPEN	0x0d
124 #define   TSGPEN_HOT_LOHI	(1<<1)
125 #define   TSGPEN_CRIT_LOHI	(1<<2)
126 #define THM_TSPC	0x0e
127 #define THM_PPEC	0x10
128 #define THM_CTA		0x12
129 #define THM_PTA		0x14
130 #define   PTA_SLOPE_MASK	(0xff00)
131 #define   PTA_SLOPE_SHIFT	8
132 #define   PTA_OFFSET_MASK	(0x00ff)
133 #define THM_MGTA	0x16
134 #define   MGTA_SLOPE_MASK	(0xff00)
135 #define   MGTA_SLOPE_SHIFT	8
136 #define   MGTA_OFFSET_MASK	(0x00ff)
137 #define THM_TRC		0x1a
138 #define   TRC_CORE2_EN	(1<<15)
139 #define   TRC_THM_EN	(1<<12)
140 #define   TRC_C6_WAR	(1<<8)
141 #define   TRC_CORE1_EN	(1<<7)
142 #define   TRC_CORE_PWR	(1<<6)
143 #define   TRC_PCH_EN	(1<<5)
144 #define   TRC_MCH_EN	(1<<4)
145 #define   TRC_DIMM4	(1<<3)
146 #define   TRC_DIMM3	(1<<2)
147 #define   TRC_DIMM2	(1<<1)
148 #define   TRC_DIMM1	(1<<0)
149 #define THM_TES		0x20
150 #define THM_TEN		0x21
151 #define   TEN_UPDATE_EN	1
152 #define THM_PSC		0x24
153 #define   PSC_NTG	(1<<0) /* No GFX turbo support */
154 #define   PSC_NTPC	(1<<1) /* No CPU turbo support */
155 #define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
156 #define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
157 #define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
158 #define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
159 #define   PSP_PBRT	(1<<4) /* BIOS run time support */
160 #define THM_CTV1	0x30
161 #define   CTV_TEMP_ERROR (1<<15)
162 #define   CTV_TEMP_MASK	0x3f
163 #define   CTV_
164 #define THM_CTV2	0x32
165 #define THM_CEC		0x34 /* undocumented power accumulator in joules */
166 #define THM_AE		0x3f
167 #define THM_HTS		0x50 /* 32 bits */
168 #define   HTS_PCPL_MASK	(0x7fe00000)
169 #define   HTS_PCPL_SHIFT 21
170 #define   HTS_GPL_MASK  (0x001ff000)
171 #define   HTS_GPL_SHIFT 12
172 #define   HTS_PP_MASK	(0x00000c00)
173 #define   HTS_PP_SHIFT  10
174 #define   HTS_PP_DEF	0
175 #define   HTS_PP_PROC	1
176 #define   HTS_PP_BAL	2
177 #define   HTS_PP_GFX	3
178 #define   HTS_PCTD_DIS	(1<<9)
179 #define   HTS_GTD_DIS	(1<<8)
180 #define   HTS_PTL_MASK  (0x000000fe)
181 #define   HTS_PTL_SHIFT 1
182 #define   HTS_NVV	(1<<0)
183 #define THM_HTSHI	0x54 /* 16 bits */
184 #define   HTS2_PPL_MASK		(0x03ff)
185 #define   HTS2_PRST_MASK	(0x3c00)
186 #define   HTS2_PRST_SHIFT	10
187 #define   HTS2_PRST_UNLOADED	0
188 #define   HTS2_PRST_RUNNING	1
189 #define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
190 #define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
191 #define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
192 #define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
193 #define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
194 #define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
195 #define THM_PTL		0x56
196 #define THM_MGTV	0x58
197 #define   TV_MASK	0x000000000000ff00
198 #define   TV_SHIFT	8
199 #define THM_PTV		0x60
200 #define   PTV_MASK	0x00ff
201 #define THM_MMGPC	0x64
202 #define THM_MPPC	0x66
203 #define THM_MPCPC	0x68
204 #define THM_TSPIEN	0x82
205 #define   TSPIEN_AUX_LOHI	(1<<0)
206 #define   TSPIEN_HOT_LOHI	(1<<1)
207 #define   TSPIEN_CRIT_LOHI	(1<<2)
208 #define   TSPIEN_AUX2_LOHI	(1<<3)
209 #define THM_TSLOCK	0x83
210 #define THM_ATR		0x84
211 #define THM_TOF		0x87
212 #define THM_STS		0x98
213 #define   STS_PCPL_MASK		(0x7fe00000)
214 #define   STS_PCPL_SHIFT	21
215 #define   STS_GPL_MASK		(0x001ff000)
216 #define   STS_GPL_SHIFT		12
217 #define   STS_PP_MASK		(0x00000c00)
218 #define   STS_PP_SHIFT		10
219 #define   STS_PP_DEF		0
220 #define   STS_PP_PROC		1
221 #define   STS_PP_BAL		2
222 #define   STS_PP_GFX		3
223 #define   STS_PCTD_DIS		(1<<9)
224 #define   STS_GTD_DIS		(1<<8)
225 #define   STS_PTL_MASK		(0x000000fe)
226 #define   STS_PTL_SHIFT		1
227 #define   STS_NVV		(1<<0)
228 #define THM_SEC		0x9c
229 #define   SEC_ACK	(1<<0)
230 #define THM_TC3		0xa4
231 #define THM_TC1		0xa8
232 #define   STS_PPL_MASK		(0x0003ff00)
233 #define   STS_PPL_SHIFT		16
234 #define THM_TC2		0xac
235 #define THM_DTV		0xb0
236 #define THM_ITV		0xd8
237 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
238 #define   ITV_ME_SEQNO_SHIFT (16)
239 #define   ITV_MCH_TEMP_MASK 0x0000ff00
240 #define   ITV_MCH_TEMP_SHIFT (8)
241 #define   ITV_PCH_TEMP_MASK 0x000000ff
242 
243 #define thm_readb(off) readb(ips->regmap + (off))
244 #define thm_readw(off) readw(ips->regmap + (off))
245 #define thm_readl(off) readl(ips->regmap + (off))
246 #define thm_readq(off) readq(ips->regmap + (off))
247 
248 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
249 #define thm_writew(off, val) writew((val), ips->regmap + (off))
250 #define thm_writel(off, val) writel((val), ips->regmap + (off))
251 
252 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
253 static bool late_i915_load = false;
254 
255 /* For initial average collection */
256 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
257 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
258 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
259 
260 /* Per-SKU limits */
261 struct ips_mcp_limits {
262 	int cpu_family;
263 	int cpu_model; /* includes extended model... */
264 	int mcp_power_limit; /* mW units */
265 	int core_power_limit;
266 	int mch_power_limit;
267 	int core_temp_limit; /* degrees C */
268 	int mch_temp_limit;
269 };
270 
271 /* Max temps are -10 degrees C to avoid PROCHOT# */
272 
273 static struct ips_mcp_limits ips_sv_limits = {
274 	.mcp_power_limit = 35000,
275 	.core_power_limit = 29000,
276 	.mch_power_limit = 20000,
277 	.core_temp_limit = 95,
278 	.mch_temp_limit = 90
279 };
280 
281 static struct ips_mcp_limits ips_lv_limits = {
282 	.mcp_power_limit = 25000,
283 	.core_power_limit = 21000,
284 	.mch_power_limit = 13000,
285 	.core_temp_limit = 95,
286 	.mch_temp_limit = 90
287 };
288 
289 static struct ips_mcp_limits ips_ulv_limits = {
290 	.mcp_power_limit = 18000,
291 	.core_power_limit = 14000,
292 	.mch_power_limit = 11000,
293 	.core_temp_limit = 95,
294 	.mch_temp_limit = 90
295 };
296 
297 struct ips_driver {
298 	struct pci_dev *dev;
299 	void *regmap;
300 	struct task_struct *monitor;
301 	struct task_struct *adjust;
302 	struct dentry *debug_root;
303 
304 	/* Average CPU core temps (all averages in .01 degrees C for precision) */
305 	u16 ctv1_avg_temp;
306 	u16 ctv2_avg_temp;
307 	/* GMCH average */
308 	u16 mch_avg_temp;
309 	/* Average for the CPU (both cores?) */
310 	u16 mcp_avg_temp;
311 	/* Average power consumption (in mW) */
312 	u32 cpu_avg_power;
313 	u32 mch_avg_power;
314 
315 	/* Offset values */
316 	u16 cta_val;
317 	u16 pta_val;
318 	u16 mgta_val;
319 
320 	/* Maximums & prefs, protected by turbo status lock */
321 	spinlock_t turbo_status_lock;
322 	u16 mcp_temp_limit;
323 	u16 mcp_power_limit;
324 	u16 core_power_limit;
325 	u16 mch_power_limit;
326 	bool cpu_turbo_enabled;
327 	bool __cpu_turbo_on;
328 	bool gpu_turbo_enabled;
329 	bool __gpu_turbo_on;
330 	bool gpu_preferred;
331 	bool poll_turbo_status;
332 	bool second_cpu;
333 	bool turbo_toggle_allowed;
334 	struct ips_mcp_limits *limits;
335 
336 	/* Optional MCH interfaces for if i915 is in use */
337 	unsigned long (*read_mch_val)(void);
338 	bool (*gpu_raise)(void);
339 	bool (*gpu_lower)(void);
340 	bool (*gpu_busy)(void);
341 	bool (*gpu_turbo_disable)(void);
342 
343 	/* For restoration at unload */
344 	u64 orig_turbo_limit;
345 	u64 orig_turbo_ratios;
346 };
347 
348 static bool
349 ips_gpu_turbo_enabled(struct ips_driver *ips);
350 
351 /**
352  * ips_cpu_busy - is CPU busy?
353  * @ips: IPS driver struct
354  *
355  * Check CPU for load to see whether we should increase its thermal budget.
356  *
357  * RETURNS:
358  * True if the CPU could use more power, false otherwise.
359  */
360 static bool ips_cpu_busy(struct ips_driver *ips)
361 {
362 	if ((avenrun[0] >> FSHIFT) > 1)
363 		return true;
364 
365 	return false;
366 }
367 
368 /**
369  * ips_cpu_raise - raise CPU power clamp
370  * @ips: IPS driver struct
371  *
372  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
373  * this platform.
374  *
375  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
376  * long as we haven't hit the TDP limit for the SKU).
377  */
378 static void ips_cpu_raise(struct ips_driver *ips)
379 {
380 	u64 turbo_override;
381 	u16 cur_tdp_limit, new_tdp_limit;
382 
383 	if (!ips->cpu_turbo_enabled)
384 		return;
385 
386 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
387 
388 	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
389 	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
390 
391 	/* Clamp to SKU TDP limit */
392 	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
393 		new_tdp_limit = cur_tdp_limit;
394 
395 	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
396 
397 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
398 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
399 
400 	turbo_override &= ~TURBO_TDP_MASK;
401 	turbo_override |= new_tdp_limit;
402 
403 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
404 }
405 
406 /**
407  * ips_cpu_lower - lower CPU power clamp
408  * @ips: IPS driver struct
409  *
410  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
411  *
412  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
413  * as low as the platform limits will allow (though we could go lower there
414  * wouldn't be much point).
415  */
416 static void ips_cpu_lower(struct ips_driver *ips)
417 {
418 	u64 turbo_override;
419 	u16 cur_limit, new_limit;
420 
421 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
422 
423 	cur_limit = turbo_override & TURBO_TDP_MASK;
424 	new_limit = cur_limit - 8; /* 1W decrease */
425 
426 	/* Clamp to SKU TDP limit */
427 	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
428 		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
429 
430 	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
431 
432 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
433 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
434 
435 	turbo_override &= ~TURBO_TDP_MASK;
436 	turbo_override |= new_limit;
437 
438 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
439 }
440 
441 /**
442  * do_enable_cpu_turbo - internal turbo enable function
443  * @data: unused
444  *
445  * Internal function for actually updating MSRs.  When we enable/disable
446  * turbo, we need to do it on each CPU; this function is the one called
447  * by on_each_cpu() when needed.
448  */
449 static void do_enable_cpu_turbo(void *data)
450 {
451 	u64 perf_ctl;
452 
453 	rdmsrl(IA32_PERF_CTL, perf_ctl);
454 	if (perf_ctl & IA32_PERF_TURBO_DIS) {
455 		perf_ctl &= ~IA32_PERF_TURBO_DIS;
456 		wrmsrl(IA32_PERF_CTL, perf_ctl);
457 	}
458 }
459 
460 /**
461  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
462  * @ips: IPS driver struct
463  *
464  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
465  * all logical threads.
466  */
467 static void ips_enable_cpu_turbo(struct ips_driver *ips)
468 {
469 	/* Already on, no need to mess with MSRs */
470 	if (ips->__cpu_turbo_on)
471 		return;
472 
473 	if (ips->turbo_toggle_allowed)
474 		on_each_cpu(do_enable_cpu_turbo, ips, 1);
475 
476 	ips->__cpu_turbo_on = true;
477 }
478 
479 /**
480  * do_disable_cpu_turbo - internal turbo disable function
481  * @data: unused
482  *
483  * Internal function for actually updating MSRs.  When we enable/disable
484  * turbo, we need to do it on each CPU; this function is the one called
485  * by on_each_cpu() when needed.
486  */
487 static void do_disable_cpu_turbo(void *data)
488 {
489 	u64 perf_ctl;
490 
491 	rdmsrl(IA32_PERF_CTL, perf_ctl);
492 	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
493 		perf_ctl |= IA32_PERF_TURBO_DIS;
494 		wrmsrl(IA32_PERF_CTL, perf_ctl);
495 	}
496 }
497 
498 /**
499  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
500  * @ips: IPS driver struct
501  *
502  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
503  * all logical threads.
504  */
505 static void ips_disable_cpu_turbo(struct ips_driver *ips)
506 {
507 	/* Already off, leave it */
508 	if (!ips->__cpu_turbo_on)
509 		return;
510 
511 	if (ips->turbo_toggle_allowed)
512 		on_each_cpu(do_disable_cpu_turbo, ips, 1);
513 
514 	ips->__cpu_turbo_on = false;
515 }
516 
517 /**
518  * ips_gpu_busy - is GPU busy?
519  * @ips: IPS driver struct
520  *
521  * Check GPU for load to see whether we should increase its thermal budget.
522  * We need to call into the i915 driver in this case.
523  *
524  * RETURNS:
525  * True if the GPU could use more power, false otherwise.
526  */
527 static bool ips_gpu_busy(struct ips_driver *ips)
528 {
529 	if (!ips_gpu_turbo_enabled(ips))
530 		return false;
531 
532 	return ips->gpu_busy();
533 }
534 
535 /**
536  * ips_gpu_raise - raise GPU power clamp
537  * @ips: IPS driver struct
538  *
539  * Raise the GPU frequency/power if possible.  We need to call into the
540  * i915 driver in this case.
541  */
542 static void ips_gpu_raise(struct ips_driver *ips)
543 {
544 	if (!ips_gpu_turbo_enabled(ips))
545 		return;
546 
547 	if (!ips->gpu_raise())
548 		ips->gpu_turbo_enabled = false;
549 
550 	return;
551 }
552 
553 /**
554  * ips_gpu_lower - lower GPU power clamp
555  * @ips: IPS driver struct
556  *
557  * Lower GPU frequency/power if possible.  Need to call i915.
558  */
559 static void ips_gpu_lower(struct ips_driver *ips)
560 {
561 	if (!ips_gpu_turbo_enabled(ips))
562 		return;
563 
564 	if (!ips->gpu_lower())
565 		ips->gpu_turbo_enabled = false;
566 
567 	return;
568 }
569 
570 /**
571  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
572  * @ips: IPS driver struct
573  *
574  * Call into the graphics driver indicating that it can safely use
575  * turbo mode.
576  */
577 static void ips_enable_gpu_turbo(struct ips_driver *ips)
578 {
579 	if (ips->__gpu_turbo_on)
580 		return;
581 	ips->__gpu_turbo_on = true;
582 }
583 
584 /**
585  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
586  * @ips: IPS driver struct
587  *
588  * Request that the graphics driver disable turbo mode.
589  */
590 static void ips_disable_gpu_turbo(struct ips_driver *ips)
591 {
592 	/* Avoid calling i915 if turbo is already disabled */
593 	if (!ips->__gpu_turbo_on)
594 		return;
595 
596 	if (!ips->gpu_turbo_disable())
597 		dev_err(&ips->dev->dev, "failed to disable graphics turbo\n");
598 	else
599 		ips->__gpu_turbo_on = false;
600 }
601 
602 /**
603  * mcp_exceeded - check whether we're outside our thermal & power limits
604  * @ips: IPS driver struct
605  *
606  * Check whether the MCP is over its thermal or power budget.
607  */
608 static bool mcp_exceeded(struct ips_driver *ips)
609 {
610 	unsigned long flags;
611 	bool ret = false;
612 	u32 temp_limit;
613 	u32 avg_power;
614 
615 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
616 
617 	temp_limit = ips->mcp_temp_limit * 100;
618 	if (ips->mcp_avg_temp > temp_limit)
619 		ret = true;
620 
621 	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
622 	if (avg_power > ips->mcp_power_limit)
623 		ret = true;
624 
625 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
626 
627 	return ret;
628 }
629 
630 /**
631  * cpu_exceeded - check whether a CPU core is outside its limits
632  * @ips: IPS driver struct
633  * @cpu: CPU number to check
634  *
635  * Check a given CPU's average temp or power is over its limit.
636  */
637 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
638 {
639 	unsigned long flags;
640 	int avg;
641 	bool ret = false;
642 
643 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
644 	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
645 	if (avg > (ips->limits->core_temp_limit * 100))
646 		ret = true;
647 	if (ips->cpu_avg_power > ips->core_power_limit * 100)
648 		ret = true;
649 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
650 
651 	if (ret)
652 		dev_info(&ips->dev->dev,
653 			 "CPU power or thermal limit exceeded\n");
654 
655 	return ret;
656 }
657 
658 /**
659  * mch_exceeded - check whether the GPU is over budget
660  * @ips: IPS driver struct
661  *
662  * Check the MCH temp & power against their maximums.
663  */
664 static bool mch_exceeded(struct ips_driver *ips)
665 {
666 	unsigned long flags;
667 	bool ret = false;
668 
669 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
670 	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
671 		ret = true;
672 	if (ips->mch_avg_power > ips->mch_power_limit)
673 		ret = true;
674 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
675 
676 	return ret;
677 }
678 
679 /**
680  * verify_limits - verify BIOS provided limits
681  * @ips: IPS structure
682  *
683  * BIOS can optionally provide non-default limits for power and temp.  Check
684  * them here and use the defaults if the BIOS values are not provided or
685  * are otherwise unusable.
686  */
687 static void verify_limits(struct ips_driver *ips)
688 {
689 	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
690 	    ips->mcp_power_limit > 35000)
691 		ips->mcp_power_limit = ips->limits->mcp_power_limit;
692 
693 	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
694 	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
695 	    ips->mcp_temp_limit > 150)
696 		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
697 					  ips->limits->mch_temp_limit);
698 }
699 
700 /**
701  * update_turbo_limits - get various limits & settings from regs
702  * @ips: IPS driver struct
703  *
704  * Update the IPS power & temp limits, along with turbo enable flags,
705  * based on latest register contents.
706  *
707  * Used at init time and for runtime BIOS support, which requires polling
708  * the regs for updates (as a result of AC->DC transition for example).
709  *
710  * LOCKING:
711  * Caller must hold turbo_status_lock (outside of init)
712  */
713 static void update_turbo_limits(struct ips_driver *ips)
714 {
715 	u32 hts = thm_readl(THM_HTS);
716 
717 	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
718 	/*
719 	 * Disable turbo for now, until we can figure out why the power figures
720 	 * are wrong
721 	 */
722 	ips->cpu_turbo_enabled = false;
723 
724 	if (ips->gpu_busy)
725 		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
726 
727 	ips->core_power_limit = thm_readw(THM_MPCPC);
728 	ips->mch_power_limit = thm_readw(THM_MMGPC);
729 	ips->mcp_temp_limit = thm_readw(THM_PTL);
730 	ips->mcp_power_limit = thm_readw(THM_MPPC);
731 
732 	verify_limits(ips);
733 	/* Ignore BIOS CPU vs GPU pref */
734 }
735 
736 /**
737  * ips_adjust - adjust power clamp based on thermal state
738  * @data: ips driver structure
739  *
740  * Wake up every 5s or so and check whether we should adjust the power clamp.
741  * Check CPU and GPU load to determine which needs adjustment.  There are
742  * several things to consider here:
743  *   - do we need to adjust up or down?
744  *   - is CPU busy?
745  *   - is GPU busy?
746  *   - is CPU in turbo?
747  *   - is GPU in turbo?
748  *   - is CPU or GPU preferred? (CPU is default)
749  *
750  * So, given the above, we do the following:
751  *   - up (TDP available)
752  *     - CPU not busy, GPU not busy - nothing
753  *     - CPU busy, GPU not busy - adjust CPU up
754  *     - CPU not busy, GPU busy - adjust GPU up
755  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
756  *       non-preferred unit if necessary
757  *   - down (at TDP limit)
758  *     - adjust both CPU and GPU down if possible
759  *
760 		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
761 cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
762 cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
763 cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
764 cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
765  *
766  */
767 static int ips_adjust(void *data)
768 {
769 	struct ips_driver *ips = data;
770 	unsigned long flags;
771 
772 	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
773 
774 	/*
775 	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
776 	 * often isn't recommended due to ME interaction.
777 	 */
778 	do {
779 		bool cpu_busy = ips_cpu_busy(ips);
780 		bool gpu_busy = ips_gpu_busy(ips);
781 
782 		spin_lock_irqsave(&ips->turbo_status_lock, flags);
783 		if (ips->poll_turbo_status)
784 			update_turbo_limits(ips);
785 		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
786 
787 		/* Update turbo status if necessary */
788 		if (ips->cpu_turbo_enabled)
789 			ips_enable_cpu_turbo(ips);
790 		else
791 			ips_disable_cpu_turbo(ips);
792 
793 		if (ips->gpu_turbo_enabled)
794 			ips_enable_gpu_turbo(ips);
795 		else
796 			ips_disable_gpu_turbo(ips);
797 
798 		/* We're outside our comfort zone, crank them down */
799 		if (mcp_exceeded(ips)) {
800 			ips_cpu_lower(ips);
801 			ips_gpu_lower(ips);
802 			goto sleep;
803 		}
804 
805 		if (!cpu_exceeded(ips, 0) && cpu_busy)
806 			ips_cpu_raise(ips);
807 		else
808 			ips_cpu_lower(ips);
809 
810 		if (!mch_exceeded(ips) && gpu_busy)
811 			ips_gpu_raise(ips);
812 		else
813 			ips_gpu_lower(ips);
814 
815 sleep:
816 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
817 	} while (!kthread_should_stop());
818 
819 	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
820 
821 	return 0;
822 }
823 
824 /*
825  * Helpers for reading out temp/power values and calculating their
826  * averages for the decision making and monitoring functions.
827  */
828 
829 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
830 {
831 	u64 total = 0;
832 	int i;
833 	u16 avg;
834 
835 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
836 		total += (u64)(array[i] * 100);
837 
838 	do_div(total, IPS_SAMPLE_COUNT);
839 
840 	avg = (u16)total;
841 
842 	return avg;
843 }
844 
845 static u16 read_mgtv(struct ips_driver *ips)
846 {
847 	u16 ret;
848 	u64 slope, offset;
849 	u64 val;
850 
851 	val = thm_readq(THM_MGTV);
852 	val = (val & TV_MASK) >> TV_SHIFT;
853 
854 	slope = offset = thm_readw(THM_MGTA);
855 	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
856 	offset = offset & MGTA_OFFSET_MASK;
857 
858 	ret = ((val * slope + 0x40) >> 7) + offset;
859 
860 	return 0; /* MCH temp reporting buggy */
861 }
862 
863 static u16 read_ptv(struct ips_driver *ips)
864 {
865 	u16 val, slope, offset;
866 
867 	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
868 	offset = ips->pta_val & PTA_OFFSET_MASK;
869 
870 	val = thm_readw(THM_PTV) & PTV_MASK;
871 
872 	return val;
873 }
874 
875 static u16 read_ctv(struct ips_driver *ips, int cpu)
876 {
877 	int reg = cpu ? THM_CTV2 : THM_CTV1;
878 	u16 val;
879 
880 	val = thm_readw(reg);
881 	if (!(val & CTV_TEMP_ERROR))
882 		val = (val) >> 6; /* discard fractional component */
883 	else
884 		val = 0;
885 
886 	return val;
887 }
888 
889 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
890 {
891 	u32 val;
892 	u32 ret;
893 
894 	/*
895 	 * CEC is in joules/65535.  Take difference over time to
896 	 * get watts.
897 	 */
898 	val = thm_readl(THM_CEC);
899 
900 	/* period is in ms and we want mW */
901 	ret = (((val - *last) * 1000) / period);
902 	ret = (ret * 1000) / 65535;
903 	*last = val;
904 
905 	return 0;
906 }
907 
908 static const u16 temp_decay_factor = 2;
909 static u16 update_average_temp(u16 avg, u16 val)
910 {
911 	u16 ret;
912 
913 	/* Multiply by 100 for extra precision */
914 	ret = (val * 100 / temp_decay_factor) +
915 		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
916 	return ret;
917 }
918 
919 static const u16 power_decay_factor = 2;
920 static u16 update_average_power(u32 avg, u32 val)
921 {
922 	u32 ret;
923 
924 	ret = (val / power_decay_factor) +
925 		(((power_decay_factor - 1) * avg) / power_decay_factor);
926 
927 	return ret;
928 }
929 
930 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
931 {
932 	u64 total = 0;
933 	u32 avg;
934 	int i;
935 
936 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
937 		total += array[i];
938 
939 	do_div(total, IPS_SAMPLE_COUNT);
940 	avg = (u32)total;
941 
942 	return avg;
943 }
944 
945 static void monitor_timeout(unsigned long arg)
946 {
947 	wake_up_process((struct task_struct *)arg);
948 }
949 
950 /**
951  * ips_monitor - temp/power monitoring thread
952  * @data: ips driver structure
953  *
954  * This is the main function for the IPS driver.  It monitors power and
955  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
956  *
957  * We keep a 5s moving average of power consumption and tempurature.  Using
958  * that data, along with CPU vs GPU preference, we adjust the power clamps
959  * up or down.
960  */
961 static int ips_monitor(void *data)
962 {
963 	struct ips_driver *ips = data;
964 	struct timer_list timer;
965 	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
966 	int i;
967 	u32 *cpu_samples, *mchp_samples, old_cpu_power;
968 	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
969 	u8 cur_seqno, last_seqno;
970 
971 	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972 	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973 	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974 	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975 	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976 	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
977 	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
978 			!cpu_samples || !mchp_samples) {
979 		dev_err(&ips->dev->dev,
980 			"failed to allocate sample array, ips disabled\n");
981 		kfree(mcp_samples);
982 		kfree(ctv1_samples);
983 		kfree(ctv2_samples);
984 		kfree(mch_samples);
985 		kfree(cpu_samples);
986 		kfree(mchp_samples);
987 		return -ENOMEM;
988 	}
989 
990 	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
991 		ITV_ME_SEQNO_SHIFT;
992 	seqno_timestamp = get_jiffies_64();
993 
994 	old_cpu_power = thm_readl(THM_CEC);
995 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
996 
997 	/* Collect an initial average */
998 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
999 		u32 mchp, cpu_power;
1000 		u16 val;
1001 
1002 		mcp_samples[i] = read_ptv(ips);
1003 
1004 		val = read_ctv(ips, 0);
1005 		ctv1_samples[i] = val;
1006 
1007 		val = read_ctv(ips, 1);
1008 		ctv2_samples[i] = val;
1009 
1010 		val = read_mgtv(ips);
1011 		mch_samples[i] = val;
1012 
1013 		cpu_power = get_cpu_power(ips, &old_cpu_power,
1014 					  IPS_SAMPLE_PERIOD);
1015 		cpu_samples[i] = cpu_power;
1016 
1017 		if (ips->read_mch_val) {
1018 			mchp = ips->read_mch_val();
1019 			mchp_samples[i] = mchp;
1020 		}
1021 
1022 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1023 		if (kthread_should_stop())
1024 			break;
1025 	}
1026 
1027 	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1028 	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1029 	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1030 	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1031 	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1032 	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1033 	kfree(mcp_samples);
1034 	kfree(ctv1_samples);
1035 	kfree(ctv2_samples);
1036 	kfree(mch_samples);
1037 	kfree(cpu_samples);
1038 	kfree(mchp_samples);
1039 
1040 	/* Start the adjustment thread now that we have data */
1041 	wake_up_process(ips->adjust);
1042 
1043 	/*
1044 	 * Ok, now we have an initial avg.  From here on out, we track the
1045 	 * running avg using a decaying average calculation.  This allows
1046 	 * us to reduce the sample frequency if the CPU and GPU are idle.
1047 	 */
1048 	old_cpu_power = thm_readl(THM_CEC);
1049 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1050 	last_sample_period = IPS_SAMPLE_PERIOD;
1051 
1052 	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1053 					(unsigned long)current);
1054 	do {
1055 		u32 cpu_val, mch_val;
1056 		u16 val;
1057 
1058 		/* MCP itself */
1059 		val = read_ptv(ips);
1060 		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1061 
1062 		/* Processor 0 */
1063 		val = read_ctv(ips, 0);
1064 		ips->ctv1_avg_temp =
1065 			update_average_temp(ips->ctv1_avg_temp, val);
1066 		/* Power */
1067 		cpu_val = get_cpu_power(ips, &old_cpu_power,
1068 					last_sample_period);
1069 		ips->cpu_avg_power =
1070 			update_average_power(ips->cpu_avg_power, cpu_val);
1071 
1072 		if (ips->second_cpu) {
1073 			/* Processor 1 */
1074 			val = read_ctv(ips, 1);
1075 			ips->ctv2_avg_temp =
1076 				update_average_temp(ips->ctv2_avg_temp, val);
1077 		}
1078 
1079 		/* MCH */
1080 		val = read_mgtv(ips);
1081 		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1082 		/* Power */
1083 		if (ips->read_mch_val) {
1084 			mch_val = ips->read_mch_val();
1085 			ips->mch_avg_power =
1086 				update_average_power(ips->mch_avg_power,
1087 						     mch_val);
1088 		}
1089 
1090 		/*
1091 		 * Make sure ME is updating thermal regs.
1092 		 * Note:
1093 		 * If it's been more than a second since the last update,
1094 		 * the ME is probably hung.
1095 		 */
1096 		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1097 			ITV_ME_SEQNO_SHIFT;
1098 		if (cur_seqno == last_seqno &&
1099 		    time_after(jiffies, seqno_timestamp + HZ)) {
1100 			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1101 		} else {
1102 			seqno_timestamp = get_jiffies_64();
1103 			last_seqno = cur_seqno;
1104 		}
1105 
1106 		last_msecs = jiffies_to_msecs(jiffies);
1107 		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1108 
1109 		__set_current_state(TASK_INTERRUPTIBLE);
1110 		mod_timer(&timer, expire);
1111 		schedule();
1112 
1113 		/* Calculate actual sample period for power averaging */
1114 		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1115 		if (!last_sample_period)
1116 			last_sample_period = 1;
1117 	} while (!kthread_should_stop());
1118 
1119 	del_timer_sync(&timer);
1120 	destroy_timer_on_stack(&timer);
1121 
1122 	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1123 
1124 	return 0;
1125 }
1126 
1127 #if 0
1128 #define THM_DUMPW(reg) \
1129 	{ \
1130 	u16 val = thm_readw(reg); \
1131 	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1132 	}
1133 #define THM_DUMPL(reg) \
1134 	{ \
1135 	u32 val = thm_readl(reg); \
1136 	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1137 	}
1138 #define THM_DUMPQ(reg) \
1139 	{ \
1140 	u64 val = thm_readq(reg); \
1141 	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1142 	}
1143 
1144 static void dump_thermal_info(struct ips_driver *ips)
1145 {
1146 	u16 ptl;
1147 
1148 	ptl = thm_readw(THM_PTL);
1149 	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1150 
1151 	THM_DUMPW(THM_CTA);
1152 	THM_DUMPW(THM_TRC);
1153 	THM_DUMPW(THM_CTV1);
1154 	THM_DUMPL(THM_STS);
1155 	THM_DUMPW(THM_PTV);
1156 	THM_DUMPQ(THM_MGTV);
1157 }
1158 #endif
1159 
1160 /**
1161  * ips_irq_handler - handle temperature triggers and other IPS events
1162  * @irq: irq number
1163  * @arg: unused
1164  *
1165  * Handle temperature limit trigger events, generally by lowering the clamps.
1166  * If we're at a critical limit, we clamp back to the lowest possible value
1167  * to prevent emergency shutdown.
1168  */
1169 static irqreturn_t ips_irq_handler(int irq, void *arg)
1170 {
1171 	struct ips_driver *ips = arg;
1172 	u8 tses = thm_readb(THM_TSES);
1173 	u8 tes = thm_readb(THM_TES);
1174 
1175 	if (!tses && !tes)
1176 		return IRQ_NONE;
1177 
1178 	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1179 	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1180 
1181 	/* STS update from EC? */
1182 	if (tes & 1) {
1183 		u32 sts, tc1;
1184 
1185 		sts = thm_readl(THM_STS);
1186 		tc1 = thm_readl(THM_TC1);
1187 
1188 		if (sts & STS_NVV) {
1189 			spin_lock(&ips->turbo_status_lock);
1190 			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1191 				STS_PCPL_SHIFT;
1192 			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1193 				STS_GPL_SHIFT;
1194 			/* ignore EC CPU vs GPU pref */
1195 			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1196 			/*
1197 			 * Disable turbo for now, until we can figure
1198 			 * out why the power figures are wrong
1199 			 */
1200 			ips->cpu_turbo_enabled = false;
1201 			if (ips->gpu_busy)
1202 				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1203 			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1204 				STS_PTL_SHIFT;
1205 			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1206 				STS_PPL_SHIFT;
1207 			verify_limits(ips);
1208 			spin_unlock(&ips->turbo_status_lock);
1209 
1210 			thm_writeb(THM_SEC, SEC_ACK);
1211 		}
1212 		thm_writeb(THM_TES, tes);
1213 	}
1214 
1215 	/* Thermal trip */
1216 	if (tses) {
1217 		dev_warn(&ips->dev->dev,
1218 			 "thermal trip occurred, tses: 0x%04x\n", tses);
1219 		thm_writeb(THM_TSES, tses);
1220 	}
1221 
1222 	return IRQ_HANDLED;
1223 }
1224 
1225 #ifndef CONFIG_DEBUG_FS
1226 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1227 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1228 #else
1229 
1230 /* Expose current state and limits in debugfs if possible */
1231 
1232 struct ips_debugfs_node {
1233 	struct ips_driver *ips;
1234 	char *name;
1235 	int (*show)(struct seq_file *m, void *data);
1236 };
1237 
1238 static int show_cpu_temp(struct seq_file *m, void *data)
1239 {
1240 	struct ips_driver *ips = m->private;
1241 
1242 	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1243 		   ips->ctv1_avg_temp % 100);
1244 
1245 	return 0;
1246 }
1247 
1248 static int show_cpu_power(struct seq_file *m, void *data)
1249 {
1250 	struct ips_driver *ips = m->private;
1251 
1252 	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1253 
1254 	return 0;
1255 }
1256 
1257 static int show_cpu_clamp(struct seq_file *m, void *data)
1258 {
1259 	u64 turbo_override;
1260 	int tdp, tdc;
1261 
1262 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1263 
1264 	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1265 	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1266 
1267 	/* Convert to .1W/A units */
1268 	tdp = tdp * 10 / 8;
1269 	tdc = tdc * 10 / 8;
1270 
1271 	/* Watts Amperes */
1272 	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1273 		   tdc / 10, tdc % 10);
1274 
1275 	return 0;
1276 }
1277 
1278 static int show_mch_temp(struct seq_file *m, void *data)
1279 {
1280 	struct ips_driver *ips = m->private;
1281 
1282 	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1283 		   ips->mch_avg_temp % 100);
1284 
1285 	return 0;
1286 }
1287 
1288 static int show_mch_power(struct seq_file *m, void *data)
1289 {
1290 	struct ips_driver *ips = m->private;
1291 
1292 	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1293 
1294 	return 0;
1295 }
1296 
1297 static struct ips_debugfs_node ips_debug_files[] = {
1298 	{ NULL, "cpu_temp", show_cpu_temp },
1299 	{ NULL, "cpu_power", show_cpu_power },
1300 	{ NULL, "cpu_clamp", show_cpu_clamp },
1301 	{ NULL, "mch_temp", show_mch_temp },
1302 	{ NULL, "mch_power", show_mch_power },
1303 };
1304 
1305 static int ips_debugfs_open(struct inode *inode, struct file *file)
1306 {
1307 	struct ips_debugfs_node *node = inode->i_private;
1308 
1309 	return single_open(file, node->show, node->ips);
1310 }
1311 
1312 static const struct file_operations ips_debugfs_ops = {
1313 	.owner = THIS_MODULE,
1314 	.open = ips_debugfs_open,
1315 	.read = seq_read,
1316 	.llseek = seq_lseek,
1317 	.release = single_release,
1318 };
1319 
1320 static void ips_debugfs_cleanup(struct ips_driver *ips)
1321 {
1322 	if (ips->debug_root)
1323 		debugfs_remove_recursive(ips->debug_root);
1324 	return;
1325 }
1326 
1327 static void ips_debugfs_init(struct ips_driver *ips)
1328 {
1329 	int i;
1330 
1331 	ips->debug_root = debugfs_create_dir("ips", NULL);
1332 	if (!ips->debug_root) {
1333 		dev_err(&ips->dev->dev,
1334 			"failed to create debugfs entries: %ld\n",
1335 			PTR_ERR(ips->debug_root));
1336 		return;
1337 	}
1338 
1339 	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1340 		struct dentry *ent;
1341 		struct ips_debugfs_node *node = &ips_debug_files[i];
1342 
1343 		node->ips = ips;
1344 		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1345 					  ips->debug_root, node,
1346 					  &ips_debugfs_ops);
1347 		if (!ent) {
1348 			dev_err(&ips->dev->dev,
1349 				"failed to create debug file: %ld\n",
1350 				PTR_ERR(ent));
1351 			goto err_cleanup;
1352 		}
1353 	}
1354 
1355 	return;
1356 
1357 err_cleanup:
1358 	ips_debugfs_cleanup(ips);
1359 	return;
1360 }
1361 #endif /* CONFIG_DEBUG_FS */
1362 
1363 /**
1364  * ips_detect_cpu - detect whether CPU supports IPS
1365  *
1366  * Walk our list and see if we're on a supported CPU.  If we find one,
1367  * return the limits for it.
1368  */
1369 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1370 {
1371 	u64 turbo_power, misc_en;
1372 	struct ips_mcp_limits *limits = NULL;
1373 	u16 tdp;
1374 
1375 	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1376 		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1377 		goto out;
1378 	}
1379 
1380 	rdmsrl(IA32_MISC_ENABLE, misc_en);
1381 	/*
1382 	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1383 	 * turbo manually or we'll get an illegal MSR access, even though
1384 	 * turbo will still be available.
1385 	 */
1386 	if (misc_en & IA32_MISC_TURBO_EN)
1387 		ips->turbo_toggle_allowed = true;
1388 	else
1389 		ips->turbo_toggle_allowed = false;
1390 
1391 	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1392 		limits = &ips_sv_limits;
1393 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1394 		limits = &ips_lv_limits;
1395 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1396 		limits = &ips_ulv_limits;
1397 	else {
1398 		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1399 		goto out;
1400 	}
1401 
1402 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1403 	tdp = turbo_power & TURBO_TDP_MASK;
1404 
1405 	/* Sanity check TDP against CPU */
1406 	if (limits->core_power_limit != (tdp / 8) * 1000) {
1407 		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1408 			 tdp / 8, limits->core_power_limit / 1000);
1409 		limits->core_power_limit = (tdp / 8) * 1000;
1410 	}
1411 
1412 out:
1413 	return limits;
1414 }
1415 
1416 /**
1417  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1418  * @ips: IPS driver
1419  *
1420  * The i915 driver exports several interfaces to allow the IPS driver to
1421  * monitor and control graphics turbo mode.  If we can find them, we can
1422  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1423  * thermal and power limits in the MCP.
1424  */
1425 static bool ips_get_i915_syms(struct ips_driver *ips)
1426 {
1427 	ips->read_mch_val = symbol_get(i915_read_mch_val);
1428 	if (!ips->read_mch_val)
1429 		goto out_err;
1430 	ips->gpu_raise = symbol_get(i915_gpu_raise);
1431 	if (!ips->gpu_raise)
1432 		goto out_put_mch;
1433 	ips->gpu_lower = symbol_get(i915_gpu_lower);
1434 	if (!ips->gpu_lower)
1435 		goto out_put_raise;
1436 	ips->gpu_busy = symbol_get(i915_gpu_busy);
1437 	if (!ips->gpu_busy)
1438 		goto out_put_lower;
1439 	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1440 	if (!ips->gpu_turbo_disable)
1441 		goto out_put_busy;
1442 
1443 	return true;
1444 
1445 out_put_busy:
1446 	symbol_put(i915_gpu_busy);
1447 out_put_lower:
1448 	symbol_put(i915_gpu_lower);
1449 out_put_raise:
1450 	symbol_put(i915_gpu_raise);
1451 out_put_mch:
1452 	symbol_put(i915_read_mch_val);
1453 out_err:
1454 	return false;
1455 }
1456 
1457 static bool
1458 ips_gpu_turbo_enabled(struct ips_driver *ips)
1459 {
1460 	if (!ips->gpu_busy && late_i915_load) {
1461 		if (ips_get_i915_syms(ips)) {
1462 			dev_info(&ips->dev->dev,
1463 				 "i915 driver attached, reenabling gpu turbo\n");
1464 			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1465 		}
1466 	}
1467 
1468 	return ips->gpu_turbo_enabled;
1469 }
1470 
1471 void
1472 ips_link_to_i915_driver(void)
1473 {
1474 	/* We can't cleanly get at the various ips_driver structs from
1475 	 * this caller (the i915 driver), so just set a flag saying
1476 	 * that it's time to try getting the symbols again.
1477 	 */
1478 	late_i915_load = true;
1479 }
1480 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1481 
1482 static const struct pci_device_id ips_id_table[] = {
1483 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1484 		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1485 	{ 0, }
1486 };
1487 
1488 MODULE_DEVICE_TABLE(pci, ips_id_table);
1489 
1490 static int ips_blacklist_callback(const struct dmi_system_id *id)
1491 {
1492 	pr_info("Blacklisted intel_ips for %s\n", id->ident);
1493 	return 1;
1494 }
1495 
1496 static const struct dmi_system_id ips_blacklist[] = {
1497 	{
1498 		.callback = ips_blacklist_callback,
1499 		.ident = "HP ProBook",
1500 		.matches = {
1501 			DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1502 			DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1503 		},
1504 	},
1505 	{ }	/* terminating entry */
1506 };
1507 
1508 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1509 {
1510 	u64 platform_info;
1511 	struct ips_driver *ips;
1512 	u32 hts;
1513 	int ret = 0;
1514 	u16 htshi, trc, trc_required_mask;
1515 	u8 tse;
1516 
1517 	if (dmi_check_system(ips_blacklist))
1518 		return -ENODEV;
1519 
1520 	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1521 	if (!ips)
1522 		return -ENOMEM;
1523 
1524 	pci_set_drvdata(dev, ips);
1525 	ips->dev = dev;
1526 
1527 	ips->limits = ips_detect_cpu(ips);
1528 	if (!ips->limits) {
1529 		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1530 		ret = -ENXIO;
1531 		goto error_free;
1532 	}
1533 
1534 	spin_lock_init(&ips->turbo_status_lock);
1535 
1536 	ret = pci_enable_device(dev);
1537 	if (ret) {
1538 		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1539 		goto error_free;
1540 	}
1541 
1542 	if (!pci_resource_start(dev, 0)) {
1543 		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1544 		ret = -ENXIO;
1545 		goto error_free;
1546 	}
1547 
1548 	ret = pci_request_regions(dev, "ips thermal sensor");
1549 	if (ret) {
1550 		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1551 		goto error_free;
1552 	}
1553 
1554 
1555 	ips->regmap = ioremap(pci_resource_start(dev, 0),
1556 			      pci_resource_len(dev, 0));
1557 	if (!ips->regmap) {
1558 		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1559 		ret = -EBUSY;
1560 		goto error_release;
1561 	}
1562 
1563 	tse = thm_readb(THM_TSE);
1564 	if (tse != TSE_EN) {
1565 		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1566 		ret = -ENXIO;
1567 		goto error_unmap;
1568 	}
1569 
1570 	trc = thm_readw(THM_TRC);
1571 	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1572 	if ((trc & trc_required_mask) != trc_required_mask) {
1573 		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1574 		ret = -ENXIO;
1575 		goto error_unmap;
1576 	}
1577 
1578 	if (trc & TRC_CORE2_EN)
1579 		ips->second_cpu = true;
1580 
1581 	update_turbo_limits(ips);
1582 	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1583 		ips->mcp_power_limit / 10);
1584 	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1585 		ips->core_power_limit / 10);
1586 	/* BIOS may update limits at runtime */
1587 	if (thm_readl(THM_PSC) & PSP_PBRT)
1588 		ips->poll_turbo_status = true;
1589 
1590 	if (!ips_get_i915_syms(ips)) {
1591 		dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1592 		ips->gpu_turbo_enabled = false;
1593 	} else {
1594 		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1595 		ips->gpu_turbo_enabled = true;
1596 	}
1597 
1598 	/*
1599 	 * Check PLATFORM_INFO MSR to make sure this chip is
1600 	 * turbo capable.
1601 	 */
1602 	rdmsrl(PLATFORM_INFO, platform_info);
1603 	if (!(platform_info & PLATFORM_TDP)) {
1604 		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1605 		ret = -ENODEV;
1606 		goto error_unmap;
1607 	}
1608 
1609 	/*
1610 	 * IRQ handler for ME interaction
1611 	 * Note: don't use MSI here as the PCH has bugs.
1612 	 */
1613 	pci_disable_msi(dev);
1614 	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1615 			  ips);
1616 	if (ret) {
1617 		dev_err(&dev->dev, "request irq failed, aborting\n");
1618 		goto error_unmap;
1619 	}
1620 
1621 	/* Enable aux, hot & critical interrupts */
1622 	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1623 		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1624 	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1625 
1626 	/* Collect adjustment values */
1627 	ips->cta_val = thm_readw(THM_CTA);
1628 	ips->pta_val = thm_readw(THM_PTA);
1629 	ips->mgta_val = thm_readw(THM_MGTA);
1630 
1631 	/* Save turbo limits & ratios */
1632 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1633 
1634 	ips_disable_cpu_turbo(ips);
1635 	ips->cpu_turbo_enabled = false;
1636 
1637 	/* Create thermal adjust thread */
1638 	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1639 	if (IS_ERR(ips->adjust)) {
1640 		dev_err(&dev->dev,
1641 			"failed to create thermal adjust thread, aborting\n");
1642 		ret = -ENOMEM;
1643 		goto error_free_irq;
1644 
1645 	}
1646 
1647 	/*
1648 	 * Set up the work queue and monitor thread. The monitor thread
1649 	 * will wake up ips_adjust thread.
1650 	 */
1651 	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1652 	if (IS_ERR(ips->monitor)) {
1653 		dev_err(&dev->dev,
1654 			"failed to create thermal monitor thread, aborting\n");
1655 		ret = -ENOMEM;
1656 		goto error_thread_cleanup;
1657 	}
1658 
1659 	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1660 		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1661 	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1662 
1663 	thm_writew(THM_HTSHI, htshi);
1664 	thm_writel(THM_HTS, hts);
1665 
1666 	ips_debugfs_init(ips);
1667 
1668 	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1669 		 ips->mcp_temp_limit);
1670 	return ret;
1671 
1672 error_thread_cleanup:
1673 	kthread_stop(ips->adjust);
1674 error_free_irq:
1675 	free_irq(ips->dev->irq, ips);
1676 error_unmap:
1677 	iounmap(ips->regmap);
1678 error_release:
1679 	pci_release_regions(dev);
1680 error_free:
1681 	kfree(ips);
1682 	return ret;
1683 }
1684 
1685 static void ips_remove(struct pci_dev *dev)
1686 {
1687 	struct ips_driver *ips = pci_get_drvdata(dev);
1688 	u64 turbo_override;
1689 
1690 	if (!ips)
1691 		return;
1692 
1693 	ips_debugfs_cleanup(ips);
1694 
1695 	/* Release i915 driver */
1696 	if (ips->read_mch_val)
1697 		symbol_put(i915_read_mch_val);
1698 	if (ips->gpu_raise)
1699 		symbol_put(i915_gpu_raise);
1700 	if (ips->gpu_lower)
1701 		symbol_put(i915_gpu_lower);
1702 	if (ips->gpu_busy)
1703 		symbol_put(i915_gpu_busy);
1704 	if (ips->gpu_turbo_disable)
1705 		symbol_put(i915_gpu_turbo_disable);
1706 
1707 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1708 	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1709 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1710 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1711 
1712 	free_irq(ips->dev->irq, ips);
1713 	if (ips->adjust)
1714 		kthread_stop(ips->adjust);
1715 	if (ips->monitor)
1716 		kthread_stop(ips->monitor);
1717 	iounmap(ips->regmap);
1718 	pci_release_regions(dev);
1719 	kfree(ips);
1720 	dev_dbg(&dev->dev, "IPS driver removed\n");
1721 }
1722 
1723 static void ips_shutdown(struct pci_dev *dev)
1724 {
1725 }
1726 
1727 static struct pci_driver ips_pci_driver = {
1728 	.name = "intel ips",
1729 	.id_table = ips_id_table,
1730 	.probe = ips_probe,
1731 	.remove = ips_remove,
1732 	.shutdown = ips_shutdown,
1733 };
1734 
1735 module_pci_driver(ips_pci_driver);
1736 
1737 MODULE_LICENSE("GPL");
1738 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1739 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1740