1 /* 2 * Copyright (c) 2009-2010 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * The full GNU General Public License is included in this distribution in 18 * the file called "COPYING". 19 * 20 * Authors: 21 * Jesse Barnes <jbarnes@virtuousgeek.org> 22 */ 23 24 /* 25 * Some Intel Ibex Peak based platforms support so-called "intelligent 26 * power sharing", which allows the CPU and GPU to cooperate to maximize 27 * performance within a given TDP (thermal design point). This driver 28 * performs the coordination between the CPU and GPU, monitors thermal and 29 * power statistics in the platform, and initializes power monitoring 30 * hardware. It also provides a few tunables to control behavior. Its 31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 32 * by tracking power and thermal budget; secondarily it can boost turbo 33 * performance by allocating more power or thermal budget to the CPU or GPU 34 * based on available headroom and activity. 35 * 36 * The basic algorithm is driven by a 5s moving average of temperature. If 37 * thermal headroom is available, the CPU and/or GPU power clamps may be 38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 39 * we scale back the clamp. Aside from trigger events (when we're critically 40 * close or over our TDP) we don't adjust the clamps more than once every 41 * five seconds. 42 * 43 * The thermal device (device 31, function 6) has a set of registers that 44 * are updated by the ME firmware. The ME should also take the clamp values 45 * written to those registers and write them to the CPU, but we currently 46 * bypass that functionality and write the CPU MSR directly. 47 * 48 * UNSUPPORTED: 49 * - dual MCP configs 50 * 51 * TODO: 52 * - handle CPU hotplug 53 * - provide turbo enable/disable api 54 * 55 * Related documents: 56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 57 * - CDI 401376 - Ibex Peak EDS 58 * - ref 26037, 26641 - IPS BIOS spec 59 * - ref 26489 - Nehalem BIOS writer's guide 60 * - ref 26921 - Ibex Peak BIOS Specification 61 */ 62 63 #include <linux/debugfs.h> 64 #include <linux/delay.h> 65 #include <linux/interrupt.h> 66 #include <linux/kernel.h> 67 #include <linux/kthread.h> 68 #include <linux/module.h> 69 #include <linux/pci.h> 70 #include <linux/sched.h> 71 #include <linux/seq_file.h> 72 #include <linux/string.h> 73 #include <linux/tick.h> 74 #include <linux/timer.h> 75 #include <linux/dmi.h> 76 #include <drm/i915_drm.h> 77 #include <asm/msr.h> 78 #include <asm/processor.h> 79 #include "intel_ips.h" 80 81 #include <linux/io-64-nonatomic-lo-hi.h> 82 83 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 84 85 /* 86 * Package level MSRs for monitor/control 87 */ 88 #define PLATFORM_INFO 0xce 89 #define PLATFORM_TDP (1<<29) 90 #define PLATFORM_RATIO (1<<28) 91 92 #define IA32_MISC_ENABLE 0x1a0 93 #define IA32_MISC_TURBO_EN (1ULL<<38) 94 95 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 96 #define TURBO_TDC_OVR_EN (1UL<<31) 97 #define TURBO_TDC_MASK (0x000000007fff0000UL) 98 #define TURBO_TDC_SHIFT (16) 99 #define TURBO_TDP_OVR_EN (1UL<<15) 100 #define TURBO_TDP_MASK (0x0000000000003fffUL) 101 102 /* 103 * Core/thread MSRs for monitoring 104 */ 105 #define IA32_PERF_CTL 0x199 106 #define IA32_PERF_TURBO_DIS (1ULL<<32) 107 108 /* 109 * Thermal PCI device regs 110 */ 111 #define THM_CFG_TBAR 0x10 112 #define THM_CFG_TBAR_HI 0x14 113 114 #define THM_TSIU 0x00 115 #define THM_TSE 0x01 116 #define TSE_EN 0xb8 117 #define THM_TSS 0x02 118 #define THM_TSTR 0x03 119 #define THM_TSTTP 0x04 120 #define THM_TSCO 0x08 121 #define THM_TSES 0x0c 122 #define THM_TSGPEN 0x0d 123 #define TSGPEN_HOT_LOHI (1<<1) 124 #define TSGPEN_CRIT_LOHI (1<<2) 125 #define THM_TSPC 0x0e 126 #define THM_PPEC 0x10 127 #define THM_CTA 0x12 128 #define THM_PTA 0x14 129 #define PTA_SLOPE_MASK (0xff00) 130 #define PTA_SLOPE_SHIFT 8 131 #define PTA_OFFSET_MASK (0x00ff) 132 #define THM_MGTA 0x16 133 #define MGTA_SLOPE_MASK (0xff00) 134 #define MGTA_SLOPE_SHIFT 8 135 #define MGTA_OFFSET_MASK (0x00ff) 136 #define THM_TRC 0x1a 137 #define TRC_CORE2_EN (1<<15) 138 #define TRC_THM_EN (1<<12) 139 #define TRC_C6_WAR (1<<8) 140 #define TRC_CORE1_EN (1<<7) 141 #define TRC_CORE_PWR (1<<6) 142 #define TRC_PCH_EN (1<<5) 143 #define TRC_MCH_EN (1<<4) 144 #define TRC_DIMM4 (1<<3) 145 #define TRC_DIMM3 (1<<2) 146 #define TRC_DIMM2 (1<<1) 147 #define TRC_DIMM1 (1<<0) 148 #define THM_TES 0x20 149 #define THM_TEN 0x21 150 #define TEN_UPDATE_EN 1 151 #define THM_PSC 0x24 152 #define PSC_NTG (1<<0) /* No GFX turbo support */ 153 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 154 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 155 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 156 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 157 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 158 #define PSP_PBRT (1<<4) /* BIOS run time support */ 159 #define THM_CTV1 0x30 160 #define CTV_TEMP_ERROR (1<<15) 161 #define CTV_TEMP_MASK 0x3f 162 #define CTV_ 163 #define THM_CTV2 0x32 164 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 165 #define THM_AE 0x3f 166 #define THM_HTS 0x50 /* 32 bits */ 167 #define HTS_PCPL_MASK (0x7fe00000) 168 #define HTS_PCPL_SHIFT 21 169 #define HTS_GPL_MASK (0x001ff000) 170 #define HTS_GPL_SHIFT 12 171 #define HTS_PP_MASK (0x00000c00) 172 #define HTS_PP_SHIFT 10 173 #define HTS_PP_DEF 0 174 #define HTS_PP_PROC 1 175 #define HTS_PP_BAL 2 176 #define HTS_PP_GFX 3 177 #define HTS_PCTD_DIS (1<<9) 178 #define HTS_GTD_DIS (1<<8) 179 #define HTS_PTL_MASK (0x000000fe) 180 #define HTS_PTL_SHIFT 1 181 #define HTS_NVV (1<<0) 182 #define THM_HTSHI 0x54 /* 16 bits */ 183 #define HTS2_PPL_MASK (0x03ff) 184 #define HTS2_PRST_MASK (0x3c00) 185 #define HTS2_PRST_SHIFT 10 186 #define HTS2_PRST_UNLOADED 0 187 #define HTS2_PRST_RUNNING 1 188 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 189 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 190 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 191 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 192 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 193 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 194 #define THM_PTL 0x56 195 #define THM_MGTV 0x58 196 #define TV_MASK 0x000000000000ff00 197 #define TV_SHIFT 8 198 #define THM_PTV 0x60 199 #define PTV_MASK 0x00ff 200 #define THM_MMGPC 0x64 201 #define THM_MPPC 0x66 202 #define THM_MPCPC 0x68 203 #define THM_TSPIEN 0x82 204 #define TSPIEN_AUX_LOHI (1<<0) 205 #define TSPIEN_HOT_LOHI (1<<1) 206 #define TSPIEN_CRIT_LOHI (1<<2) 207 #define TSPIEN_AUX2_LOHI (1<<3) 208 #define THM_TSLOCK 0x83 209 #define THM_ATR 0x84 210 #define THM_TOF 0x87 211 #define THM_STS 0x98 212 #define STS_PCPL_MASK (0x7fe00000) 213 #define STS_PCPL_SHIFT 21 214 #define STS_GPL_MASK (0x001ff000) 215 #define STS_GPL_SHIFT 12 216 #define STS_PP_MASK (0x00000c00) 217 #define STS_PP_SHIFT 10 218 #define STS_PP_DEF 0 219 #define STS_PP_PROC 1 220 #define STS_PP_BAL 2 221 #define STS_PP_GFX 3 222 #define STS_PCTD_DIS (1<<9) 223 #define STS_GTD_DIS (1<<8) 224 #define STS_PTL_MASK (0x000000fe) 225 #define STS_PTL_SHIFT 1 226 #define STS_NVV (1<<0) 227 #define THM_SEC 0x9c 228 #define SEC_ACK (1<<0) 229 #define THM_TC3 0xa4 230 #define THM_TC1 0xa8 231 #define STS_PPL_MASK (0x0003ff00) 232 #define STS_PPL_SHIFT 16 233 #define THM_TC2 0xac 234 #define THM_DTV 0xb0 235 #define THM_ITV 0xd8 236 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 237 #define ITV_ME_SEQNO_SHIFT (16) 238 #define ITV_MCH_TEMP_MASK 0x0000ff00 239 #define ITV_MCH_TEMP_SHIFT (8) 240 #define ITV_PCH_TEMP_MASK 0x000000ff 241 242 #define thm_readb(off) readb(ips->regmap + (off)) 243 #define thm_readw(off) readw(ips->regmap + (off)) 244 #define thm_readl(off) readl(ips->regmap + (off)) 245 #define thm_readq(off) readq(ips->regmap + (off)) 246 247 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 248 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 249 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 250 251 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 252 static bool late_i915_load = false; 253 254 /* For initial average collection */ 255 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 256 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 257 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 258 259 /* Per-SKU limits */ 260 struct ips_mcp_limits { 261 int cpu_family; 262 int cpu_model; /* includes extended model... */ 263 int mcp_power_limit; /* mW units */ 264 int core_power_limit; 265 int mch_power_limit; 266 int core_temp_limit; /* degrees C */ 267 int mch_temp_limit; 268 }; 269 270 /* Max temps are -10 degrees C to avoid PROCHOT# */ 271 272 static struct ips_mcp_limits ips_sv_limits = { 273 .mcp_power_limit = 35000, 274 .core_power_limit = 29000, 275 .mch_power_limit = 20000, 276 .core_temp_limit = 95, 277 .mch_temp_limit = 90 278 }; 279 280 static struct ips_mcp_limits ips_lv_limits = { 281 .mcp_power_limit = 25000, 282 .core_power_limit = 21000, 283 .mch_power_limit = 13000, 284 .core_temp_limit = 95, 285 .mch_temp_limit = 90 286 }; 287 288 static struct ips_mcp_limits ips_ulv_limits = { 289 .mcp_power_limit = 18000, 290 .core_power_limit = 14000, 291 .mch_power_limit = 11000, 292 .core_temp_limit = 95, 293 .mch_temp_limit = 90 294 }; 295 296 struct ips_driver { 297 struct pci_dev *dev; 298 void *regmap; 299 struct task_struct *monitor; 300 struct task_struct *adjust; 301 struct dentry *debug_root; 302 303 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 304 u16 ctv1_avg_temp; 305 u16 ctv2_avg_temp; 306 /* GMCH average */ 307 u16 mch_avg_temp; 308 /* Average for the CPU (both cores?) */ 309 u16 mcp_avg_temp; 310 /* Average power consumption (in mW) */ 311 u32 cpu_avg_power; 312 u32 mch_avg_power; 313 314 /* Offset values */ 315 u16 cta_val; 316 u16 pta_val; 317 u16 mgta_val; 318 319 /* Maximums & prefs, protected by turbo status lock */ 320 spinlock_t turbo_status_lock; 321 u16 mcp_temp_limit; 322 u16 mcp_power_limit; 323 u16 core_power_limit; 324 u16 mch_power_limit; 325 bool cpu_turbo_enabled; 326 bool __cpu_turbo_on; 327 bool gpu_turbo_enabled; 328 bool __gpu_turbo_on; 329 bool gpu_preferred; 330 bool poll_turbo_status; 331 bool second_cpu; 332 bool turbo_toggle_allowed; 333 struct ips_mcp_limits *limits; 334 335 /* Optional MCH interfaces for if i915 is in use */ 336 unsigned long (*read_mch_val)(void); 337 bool (*gpu_raise)(void); 338 bool (*gpu_lower)(void); 339 bool (*gpu_busy)(void); 340 bool (*gpu_turbo_disable)(void); 341 342 /* For restoration at unload */ 343 u64 orig_turbo_limit; 344 u64 orig_turbo_ratios; 345 }; 346 347 static bool 348 ips_gpu_turbo_enabled(struct ips_driver *ips); 349 350 /** 351 * ips_cpu_busy - is CPU busy? 352 * @ips: IPS driver struct 353 * 354 * Check CPU for load to see whether we should increase its thermal budget. 355 * 356 * RETURNS: 357 * True if the CPU could use more power, false otherwise. 358 */ 359 static bool ips_cpu_busy(struct ips_driver *ips) 360 { 361 if ((avenrun[0] >> FSHIFT) > 1) 362 return true; 363 364 return false; 365 } 366 367 /** 368 * ips_cpu_raise - raise CPU power clamp 369 * @ips: IPS driver struct 370 * 371 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 372 * this platform. 373 * 374 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 375 * long as we haven't hit the TDP limit for the SKU). 376 */ 377 static void ips_cpu_raise(struct ips_driver *ips) 378 { 379 u64 turbo_override; 380 u16 cur_tdp_limit, new_tdp_limit; 381 382 if (!ips->cpu_turbo_enabled) 383 return; 384 385 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 386 387 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 388 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 389 390 /* Clamp to SKU TDP limit */ 391 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 392 new_tdp_limit = cur_tdp_limit; 393 394 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 395 396 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 397 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 398 399 turbo_override &= ~TURBO_TDP_MASK; 400 turbo_override |= new_tdp_limit; 401 402 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 403 } 404 405 /** 406 * ips_cpu_lower - lower CPU power clamp 407 * @ips: IPS driver struct 408 * 409 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 410 * 411 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 412 * as low as the platform limits will allow (though we could go lower there 413 * wouldn't be much point). 414 */ 415 static void ips_cpu_lower(struct ips_driver *ips) 416 { 417 u64 turbo_override; 418 u16 cur_limit, new_limit; 419 420 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 421 422 cur_limit = turbo_override & TURBO_TDP_MASK; 423 new_limit = cur_limit - 8; /* 1W decrease */ 424 425 /* Clamp to SKU TDP limit */ 426 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 427 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 428 429 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 430 431 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 432 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 433 434 turbo_override &= ~TURBO_TDP_MASK; 435 turbo_override |= new_limit; 436 437 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 438 } 439 440 /** 441 * do_enable_cpu_turbo - internal turbo enable function 442 * @data: unused 443 * 444 * Internal function for actually updating MSRs. When we enable/disable 445 * turbo, we need to do it on each CPU; this function is the one called 446 * by on_each_cpu() when needed. 447 */ 448 static void do_enable_cpu_turbo(void *data) 449 { 450 u64 perf_ctl; 451 452 rdmsrl(IA32_PERF_CTL, perf_ctl); 453 if (perf_ctl & IA32_PERF_TURBO_DIS) { 454 perf_ctl &= ~IA32_PERF_TURBO_DIS; 455 wrmsrl(IA32_PERF_CTL, perf_ctl); 456 } 457 } 458 459 /** 460 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 461 * @ips: IPS driver struct 462 * 463 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 464 * all logical threads. 465 */ 466 static void ips_enable_cpu_turbo(struct ips_driver *ips) 467 { 468 /* Already on, no need to mess with MSRs */ 469 if (ips->__cpu_turbo_on) 470 return; 471 472 if (ips->turbo_toggle_allowed) 473 on_each_cpu(do_enable_cpu_turbo, ips, 1); 474 475 ips->__cpu_turbo_on = true; 476 } 477 478 /** 479 * do_disable_cpu_turbo - internal turbo disable function 480 * @data: unused 481 * 482 * Internal function for actually updating MSRs. When we enable/disable 483 * turbo, we need to do it on each CPU; this function is the one called 484 * by on_each_cpu() when needed. 485 */ 486 static void do_disable_cpu_turbo(void *data) 487 { 488 u64 perf_ctl; 489 490 rdmsrl(IA32_PERF_CTL, perf_ctl); 491 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 492 perf_ctl |= IA32_PERF_TURBO_DIS; 493 wrmsrl(IA32_PERF_CTL, perf_ctl); 494 } 495 } 496 497 /** 498 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 499 * @ips: IPS driver struct 500 * 501 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 502 * all logical threads. 503 */ 504 static void ips_disable_cpu_turbo(struct ips_driver *ips) 505 { 506 /* Already off, leave it */ 507 if (!ips->__cpu_turbo_on) 508 return; 509 510 if (ips->turbo_toggle_allowed) 511 on_each_cpu(do_disable_cpu_turbo, ips, 1); 512 513 ips->__cpu_turbo_on = false; 514 } 515 516 /** 517 * ips_gpu_busy - is GPU busy? 518 * @ips: IPS driver struct 519 * 520 * Check GPU for load to see whether we should increase its thermal budget. 521 * We need to call into the i915 driver in this case. 522 * 523 * RETURNS: 524 * True if the GPU could use more power, false otherwise. 525 */ 526 static bool ips_gpu_busy(struct ips_driver *ips) 527 { 528 if (!ips_gpu_turbo_enabled(ips)) 529 return false; 530 531 return ips->gpu_busy(); 532 } 533 534 /** 535 * ips_gpu_raise - raise GPU power clamp 536 * @ips: IPS driver struct 537 * 538 * Raise the GPU frequency/power if possible. We need to call into the 539 * i915 driver in this case. 540 */ 541 static void ips_gpu_raise(struct ips_driver *ips) 542 { 543 if (!ips_gpu_turbo_enabled(ips)) 544 return; 545 546 if (!ips->gpu_raise()) 547 ips->gpu_turbo_enabled = false; 548 549 return; 550 } 551 552 /** 553 * ips_gpu_lower - lower GPU power clamp 554 * @ips: IPS driver struct 555 * 556 * Lower GPU frequency/power if possible. Need to call i915. 557 */ 558 static void ips_gpu_lower(struct ips_driver *ips) 559 { 560 if (!ips_gpu_turbo_enabled(ips)) 561 return; 562 563 if (!ips->gpu_lower()) 564 ips->gpu_turbo_enabled = false; 565 566 return; 567 } 568 569 /** 570 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 571 * @ips: IPS driver struct 572 * 573 * Call into the graphics driver indicating that it can safely use 574 * turbo mode. 575 */ 576 static void ips_enable_gpu_turbo(struct ips_driver *ips) 577 { 578 if (ips->__gpu_turbo_on) 579 return; 580 ips->__gpu_turbo_on = true; 581 } 582 583 /** 584 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 585 * @ips: IPS driver struct 586 * 587 * Request that the graphics driver disable turbo mode. 588 */ 589 static void ips_disable_gpu_turbo(struct ips_driver *ips) 590 { 591 /* Avoid calling i915 if turbo is already disabled */ 592 if (!ips->__gpu_turbo_on) 593 return; 594 595 if (!ips->gpu_turbo_disable()) 596 dev_err(&ips->dev->dev, "failed to disable graphics turbo\n"); 597 else 598 ips->__gpu_turbo_on = false; 599 } 600 601 /** 602 * mcp_exceeded - check whether we're outside our thermal & power limits 603 * @ips: IPS driver struct 604 * 605 * Check whether the MCP is over its thermal or power budget. 606 */ 607 static bool mcp_exceeded(struct ips_driver *ips) 608 { 609 unsigned long flags; 610 bool ret = false; 611 u32 temp_limit; 612 u32 avg_power; 613 614 spin_lock_irqsave(&ips->turbo_status_lock, flags); 615 616 temp_limit = ips->mcp_temp_limit * 100; 617 if (ips->mcp_avg_temp > temp_limit) 618 ret = true; 619 620 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 621 if (avg_power > ips->mcp_power_limit) 622 ret = true; 623 624 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 625 626 return ret; 627 } 628 629 /** 630 * cpu_exceeded - check whether a CPU core is outside its limits 631 * @ips: IPS driver struct 632 * @cpu: CPU number to check 633 * 634 * Check a given CPU's average temp or power is over its limit. 635 */ 636 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 637 { 638 unsigned long flags; 639 int avg; 640 bool ret = false; 641 642 spin_lock_irqsave(&ips->turbo_status_lock, flags); 643 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 644 if (avg > (ips->limits->core_temp_limit * 100)) 645 ret = true; 646 if (ips->cpu_avg_power > ips->core_power_limit * 100) 647 ret = true; 648 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 649 650 if (ret) 651 dev_info(&ips->dev->dev, 652 "CPU power or thermal limit exceeded\n"); 653 654 return ret; 655 } 656 657 /** 658 * mch_exceeded - check whether the GPU is over budget 659 * @ips: IPS driver struct 660 * 661 * Check the MCH temp & power against their maximums. 662 */ 663 static bool mch_exceeded(struct ips_driver *ips) 664 { 665 unsigned long flags; 666 bool ret = false; 667 668 spin_lock_irqsave(&ips->turbo_status_lock, flags); 669 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 670 ret = true; 671 if (ips->mch_avg_power > ips->mch_power_limit) 672 ret = true; 673 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 674 675 return ret; 676 } 677 678 /** 679 * verify_limits - verify BIOS provided limits 680 * @ips: IPS structure 681 * 682 * BIOS can optionally provide non-default limits for power and temp. Check 683 * them here and use the defaults if the BIOS values are not provided or 684 * are otherwise unusable. 685 */ 686 static void verify_limits(struct ips_driver *ips) 687 { 688 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 689 ips->mcp_power_limit > 35000) 690 ips->mcp_power_limit = ips->limits->mcp_power_limit; 691 692 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 693 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 694 ips->mcp_temp_limit > 150) 695 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 696 ips->limits->mch_temp_limit); 697 } 698 699 /** 700 * update_turbo_limits - get various limits & settings from regs 701 * @ips: IPS driver struct 702 * 703 * Update the IPS power & temp limits, along with turbo enable flags, 704 * based on latest register contents. 705 * 706 * Used at init time and for runtime BIOS support, which requires polling 707 * the regs for updates (as a result of AC->DC transition for example). 708 * 709 * LOCKING: 710 * Caller must hold turbo_status_lock (outside of init) 711 */ 712 static void update_turbo_limits(struct ips_driver *ips) 713 { 714 u32 hts = thm_readl(THM_HTS); 715 716 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 717 /* 718 * Disable turbo for now, until we can figure out why the power figures 719 * are wrong 720 */ 721 ips->cpu_turbo_enabled = false; 722 723 if (ips->gpu_busy) 724 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 725 726 ips->core_power_limit = thm_readw(THM_MPCPC); 727 ips->mch_power_limit = thm_readw(THM_MMGPC); 728 ips->mcp_temp_limit = thm_readw(THM_PTL); 729 ips->mcp_power_limit = thm_readw(THM_MPPC); 730 731 verify_limits(ips); 732 /* Ignore BIOS CPU vs GPU pref */ 733 } 734 735 /** 736 * ips_adjust - adjust power clamp based on thermal state 737 * @data: ips driver structure 738 * 739 * Wake up every 5s or so and check whether we should adjust the power clamp. 740 * Check CPU and GPU load to determine which needs adjustment. There are 741 * several things to consider here: 742 * - do we need to adjust up or down? 743 * - is CPU busy? 744 * - is GPU busy? 745 * - is CPU in turbo? 746 * - is GPU in turbo? 747 * - is CPU or GPU preferred? (CPU is default) 748 * 749 * So, given the above, we do the following: 750 * - up (TDP available) 751 * - CPU not busy, GPU not busy - nothing 752 * - CPU busy, GPU not busy - adjust CPU up 753 * - CPU not busy, GPU busy - adjust GPU up 754 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 755 * non-preferred unit if necessary 756 * - down (at TDP limit) 757 * - adjust both CPU and GPU down if possible 758 * 759 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 760 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing 761 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 762 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 763 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 764 * 765 */ 766 static int ips_adjust(void *data) 767 { 768 struct ips_driver *ips = data; 769 unsigned long flags; 770 771 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n"); 772 773 /* 774 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 775 * often isn't recommended due to ME interaction. 776 */ 777 do { 778 bool cpu_busy = ips_cpu_busy(ips); 779 bool gpu_busy = ips_gpu_busy(ips); 780 781 spin_lock_irqsave(&ips->turbo_status_lock, flags); 782 if (ips->poll_turbo_status) 783 update_turbo_limits(ips); 784 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 785 786 /* Update turbo status if necessary */ 787 if (ips->cpu_turbo_enabled) 788 ips_enable_cpu_turbo(ips); 789 else 790 ips_disable_cpu_turbo(ips); 791 792 if (ips->gpu_turbo_enabled) 793 ips_enable_gpu_turbo(ips); 794 else 795 ips_disable_gpu_turbo(ips); 796 797 /* We're outside our comfort zone, crank them down */ 798 if (mcp_exceeded(ips)) { 799 ips_cpu_lower(ips); 800 ips_gpu_lower(ips); 801 goto sleep; 802 } 803 804 if (!cpu_exceeded(ips, 0) && cpu_busy) 805 ips_cpu_raise(ips); 806 else 807 ips_cpu_lower(ips); 808 809 if (!mch_exceeded(ips) && gpu_busy) 810 ips_gpu_raise(ips); 811 else 812 ips_gpu_lower(ips); 813 814 sleep: 815 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 816 } while (!kthread_should_stop()); 817 818 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n"); 819 820 return 0; 821 } 822 823 /* 824 * Helpers for reading out temp/power values and calculating their 825 * averages for the decision making and monitoring functions. 826 */ 827 828 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 829 { 830 u64 total = 0; 831 int i; 832 u16 avg; 833 834 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 835 total += (u64)(array[i] * 100); 836 837 do_div(total, IPS_SAMPLE_COUNT); 838 839 avg = (u16)total; 840 841 return avg; 842 } 843 844 static u16 read_mgtv(struct ips_driver *ips) 845 { 846 u16 ret; 847 u64 slope, offset; 848 u64 val; 849 850 val = thm_readq(THM_MGTV); 851 val = (val & TV_MASK) >> TV_SHIFT; 852 853 slope = offset = thm_readw(THM_MGTA); 854 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 855 offset = offset & MGTA_OFFSET_MASK; 856 857 ret = ((val * slope + 0x40) >> 7) + offset; 858 859 return 0; /* MCH temp reporting buggy */ 860 } 861 862 static u16 read_ptv(struct ips_driver *ips) 863 { 864 u16 val, slope, offset; 865 866 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; 867 offset = ips->pta_val & PTA_OFFSET_MASK; 868 869 val = thm_readw(THM_PTV) & PTV_MASK; 870 871 return val; 872 } 873 874 static u16 read_ctv(struct ips_driver *ips, int cpu) 875 { 876 int reg = cpu ? THM_CTV2 : THM_CTV1; 877 u16 val; 878 879 val = thm_readw(reg); 880 if (!(val & CTV_TEMP_ERROR)) 881 val = (val) >> 6; /* discard fractional component */ 882 else 883 val = 0; 884 885 return val; 886 } 887 888 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 889 { 890 u32 val; 891 u32 ret; 892 893 /* 894 * CEC is in joules/65535. Take difference over time to 895 * get watts. 896 */ 897 val = thm_readl(THM_CEC); 898 899 /* period is in ms and we want mW */ 900 ret = (((val - *last) * 1000) / period); 901 ret = (ret * 1000) / 65535; 902 *last = val; 903 904 return 0; 905 } 906 907 static const u16 temp_decay_factor = 2; 908 static u16 update_average_temp(u16 avg, u16 val) 909 { 910 u16 ret; 911 912 /* Multiply by 100 for extra precision */ 913 ret = (val * 100 / temp_decay_factor) + 914 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 915 return ret; 916 } 917 918 static const u16 power_decay_factor = 2; 919 static u16 update_average_power(u32 avg, u32 val) 920 { 921 u32 ret; 922 923 ret = (val / power_decay_factor) + 924 (((power_decay_factor - 1) * avg) / power_decay_factor); 925 926 return ret; 927 } 928 929 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 930 { 931 u64 total = 0; 932 u32 avg; 933 int i; 934 935 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 936 total += array[i]; 937 938 do_div(total, IPS_SAMPLE_COUNT); 939 avg = (u32)total; 940 941 return avg; 942 } 943 944 static void monitor_timeout(unsigned long arg) 945 { 946 wake_up_process((struct task_struct *)arg); 947 } 948 949 /** 950 * ips_monitor - temp/power monitoring thread 951 * @data: ips driver structure 952 * 953 * This is the main function for the IPS driver. It monitors power and 954 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. 955 * 956 * We keep a 5s moving average of power consumption and tempurature. Using 957 * that data, along with CPU vs GPU preference, we adjust the power clamps 958 * up or down. 959 */ 960 static int ips_monitor(void *data) 961 { 962 struct ips_driver *ips = data; 963 struct timer_list timer; 964 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 965 int i; 966 u32 *cpu_samples, *mchp_samples, old_cpu_power; 967 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 968 u8 cur_seqno, last_seqno; 969 970 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 971 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 972 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 973 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); 974 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 975 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); 976 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 977 !cpu_samples || !mchp_samples) { 978 dev_err(&ips->dev->dev, 979 "failed to allocate sample array, ips disabled\n"); 980 kfree(mcp_samples); 981 kfree(ctv1_samples); 982 kfree(ctv2_samples); 983 kfree(mch_samples); 984 kfree(cpu_samples); 985 kfree(mchp_samples); 986 return -ENOMEM; 987 } 988 989 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 990 ITV_ME_SEQNO_SHIFT; 991 seqno_timestamp = get_jiffies_64(); 992 993 old_cpu_power = thm_readl(THM_CEC); 994 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 995 996 /* Collect an initial average */ 997 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 998 u32 mchp, cpu_power; 999 u16 val; 1000 1001 mcp_samples[i] = read_ptv(ips); 1002 1003 val = read_ctv(ips, 0); 1004 ctv1_samples[i] = val; 1005 1006 val = read_ctv(ips, 1); 1007 ctv2_samples[i] = val; 1008 1009 val = read_mgtv(ips); 1010 mch_samples[i] = val; 1011 1012 cpu_power = get_cpu_power(ips, &old_cpu_power, 1013 IPS_SAMPLE_PERIOD); 1014 cpu_samples[i] = cpu_power; 1015 1016 if (ips->read_mch_val) { 1017 mchp = ips->read_mch_val(); 1018 mchp_samples[i] = mchp; 1019 } 1020 1021 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1022 if (kthread_should_stop()) 1023 break; 1024 } 1025 1026 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1027 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1028 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1029 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1030 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1031 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1032 kfree(mcp_samples); 1033 kfree(ctv1_samples); 1034 kfree(ctv2_samples); 1035 kfree(mch_samples); 1036 kfree(cpu_samples); 1037 kfree(mchp_samples); 1038 1039 /* Start the adjustment thread now that we have data */ 1040 wake_up_process(ips->adjust); 1041 1042 /* 1043 * Ok, now we have an initial avg. From here on out, we track the 1044 * running avg using a decaying average calculation. This allows 1045 * us to reduce the sample frequency if the CPU and GPU are idle. 1046 */ 1047 old_cpu_power = thm_readl(THM_CEC); 1048 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1049 last_sample_period = IPS_SAMPLE_PERIOD; 1050 1051 setup_deferrable_timer_on_stack(&timer, monitor_timeout, 1052 (unsigned long)current); 1053 do { 1054 u32 cpu_val, mch_val; 1055 u16 val; 1056 1057 /* MCP itself */ 1058 val = read_ptv(ips); 1059 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1060 1061 /* Processor 0 */ 1062 val = read_ctv(ips, 0); 1063 ips->ctv1_avg_temp = 1064 update_average_temp(ips->ctv1_avg_temp, val); 1065 /* Power */ 1066 cpu_val = get_cpu_power(ips, &old_cpu_power, 1067 last_sample_period); 1068 ips->cpu_avg_power = 1069 update_average_power(ips->cpu_avg_power, cpu_val); 1070 1071 if (ips->second_cpu) { 1072 /* Processor 1 */ 1073 val = read_ctv(ips, 1); 1074 ips->ctv2_avg_temp = 1075 update_average_temp(ips->ctv2_avg_temp, val); 1076 } 1077 1078 /* MCH */ 1079 val = read_mgtv(ips); 1080 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1081 /* Power */ 1082 if (ips->read_mch_val) { 1083 mch_val = ips->read_mch_val(); 1084 ips->mch_avg_power = 1085 update_average_power(ips->mch_avg_power, 1086 mch_val); 1087 } 1088 1089 /* 1090 * Make sure ME is updating thermal regs. 1091 * Note: 1092 * If it's been more than a second since the last update, 1093 * the ME is probably hung. 1094 */ 1095 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1096 ITV_ME_SEQNO_SHIFT; 1097 if (cur_seqno == last_seqno && 1098 time_after(jiffies, seqno_timestamp + HZ)) { 1099 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n"); 1100 } else { 1101 seqno_timestamp = get_jiffies_64(); 1102 last_seqno = cur_seqno; 1103 } 1104 1105 last_msecs = jiffies_to_msecs(jiffies); 1106 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1107 1108 __set_current_state(TASK_INTERRUPTIBLE); 1109 mod_timer(&timer, expire); 1110 schedule(); 1111 1112 /* Calculate actual sample period for power averaging */ 1113 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1114 if (!last_sample_period) 1115 last_sample_period = 1; 1116 } while (!kthread_should_stop()); 1117 1118 del_timer_sync(&timer); 1119 destroy_timer_on_stack(&timer); 1120 1121 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n"); 1122 1123 return 0; 1124 } 1125 1126 #if 0 1127 #define THM_DUMPW(reg) \ 1128 { \ 1129 u16 val = thm_readw(reg); \ 1130 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \ 1131 } 1132 #define THM_DUMPL(reg) \ 1133 { \ 1134 u32 val = thm_readl(reg); \ 1135 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \ 1136 } 1137 #define THM_DUMPQ(reg) \ 1138 { \ 1139 u64 val = thm_readq(reg); \ 1140 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \ 1141 } 1142 1143 static void dump_thermal_info(struct ips_driver *ips) 1144 { 1145 u16 ptl; 1146 1147 ptl = thm_readw(THM_PTL); 1148 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl); 1149 1150 THM_DUMPW(THM_CTA); 1151 THM_DUMPW(THM_TRC); 1152 THM_DUMPW(THM_CTV1); 1153 THM_DUMPL(THM_STS); 1154 THM_DUMPW(THM_PTV); 1155 THM_DUMPQ(THM_MGTV); 1156 } 1157 #endif 1158 1159 /** 1160 * ips_irq_handler - handle temperature triggers and other IPS events 1161 * @irq: irq number 1162 * @arg: unused 1163 * 1164 * Handle temperature limit trigger events, generally by lowering the clamps. 1165 * If we're at a critical limit, we clamp back to the lowest possible value 1166 * to prevent emergency shutdown. 1167 */ 1168 static irqreturn_t ips_irq_handler(int irq, void *arg) 1169 { 1170 struct ips_driver *ips = arg; 1171 u8 tses = thm_readb(THM_TSES); 1172 u8 tes = thm_readb(THM_TES); 1173 1174 if (!tses && !tes) 1175 return IRQ_NONE; 1176 1177 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses); 1178 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes); 1179 1180 /* STS update from EC? */ 1181 if (tes & 1) { 1182 u32 sts, tc1; 1183 1184 sts = thm_readl(THM_STS); 1185 tc1 = thm_readl(THM_TC1); 1186 1187 if (sts & STS_NVV) { 1188 spin_lock(&ips->turbo_status_lock); 1189 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1190 STS_PCPL_SHIFT; 1191 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1192 STS_GPL_SHIFT; 1193 /* ignore EC CPU vs GPU pref */ 1194 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1195 /* 1196 * Disable turbo for now, until we can figure 1197 * out why the power figures are wrong 1198 */ 1199 ips->cpu_turbo_enabled = false; 1200 if (ips->gpu_busy) 1201 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1202 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1203 STS_PTL_SHIFT; 1204 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1205 STS_PPL_SHIFT; 1206 verify_limits(ips); 1207 spin_unlock(&ips->turbo_status_lock); 1208 1209 thm_writeb(THM_SEC, SEC_ACK); 1210 } 1211 thm_writeb(THM_TES, tes); 1212 } 1213 1214 /* Thermal trip */ 1215 if (tses) { 1216 dev_warn(&ips->dev->dev, 1217 "thermal trip occurred, tses: 0x%04x\n", tses); 1218 thm_writeb(THM_TSES, tses); 1219 } 1220 1221 return IRQ_HANDLED; 1222 } 1223 1224 #ifndef CONFIG_DEBUG_FS 1225 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1226 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1227 #else 1228 1229 /* Expose current state and limits in debugfs if possible */ 1230 1231 struct ips_debugfs_node { 1232 struct ips_driver *ips; 1233 char *name; 1234 int (*show)(struct seq_file *m, void *data); 1235 }; 1236 1237 static int show_cpu_temp(struct seq_file *m, void *data) 1238 { 1239 struct ips_driver *ips = m->private; 1240 1241 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1242 ips->ctv1_avg_temp % 100); 1243 1244 return 0; 1245 } 1246 1247 static int show_cpu_power(struct seq_file *m, void *data) 1248 { 1249 struct ips_driver *ips = m->private; 1250 1251 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1252 1253 return 0; 1254 } 1255 1256 static int show_cpu_clamp(struct seq_file *m, void *data) 1257 { 1258 u64 turbo_override; 1259 int tdp, tdc; 1260 1261 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1262 1263 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1264 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1265 1266 /* Convert to .1W/A units */ 1267 tdp = tdp * 10 / 8; 1268 tdc = tdc * 10 / 8; 1269 1270 /* Watts Amperes */ 1271 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1272 tdc / 10, tdc % 10); 1273 1274 return 0; 1275 } 1276 1277 static int show_mch_temp(struct seq_file *m, void *data) 1278 { 1279 struct ips_driver *ips = m->private; 1280 1281 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1282 ips->mch_avg_temp % 100); 1283 1284 return 0; 1285 } 1286 1287 static int show_mch_power(struct seq_file *m, void *data) 1288 { 1289 struct ips_driver *ips = m->private; 1290 1291 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1292 1293 return 0; 1294 } 1295 1296 static struct ips_debugfs_node ips_debug_files[] = { 1297 { NULL, "cpu_temp", show_cpu_temp }, 1298 { NULL, "cpu_power", show_cpu_power }, 1299 { NULL, "cpu_clamp", show_cpu_clamp }, 1300 { NULL, "mch_temp", show_mch_temp }, 1301 { NULL, "mch_power", show_mch_power }, 1302 }; 1303 1304 static int ips_debugfs_open(struct inode *inode, struct file *file) 1305 { 1306 struct ips_debugfs_node *node = inode->i_private; 1307 1308 return single_open(file, node->show, node->ips); 1309 } 1310 1311 static const struct file_operations ips_debugfs_ops = { 1312 .owner = THIS_MODULE, 1313 .open = ips_debugfs_open, 1314 .read = seq_read, 1315 .llseek = seq_lseek, 1316 .release = single_release, 1317 }; 1318 1319 static void ips_debugfs_cleanup(struct ips_driver *ips) 1320 { 1321 if (ips->debug_root) 1322 debugfs_remove_recursive(ips->debug_root); 1323 return; 1324 } 1325 1326 static void ips_debugfs_init(struct ips_driver *ips) 1327 { 1328 int i; 1329 1330 ips->debug_root = debugfs_create_dir("ips", NULL); 1331 if (!ips->debug_root) { 1332 dev_err(&ips->dev->dev, 1333 "failed to create debugfs entries: %ld\n", 1334 PTR_ERR(ips->debug_root)); 1335 return; 1336 } 1337 1338 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { 1339 struct dentry *ent; 1340 struct ips_debugfs_node *node = &ips_debug_files[i]; 1341 1342 node->ips = ips; 1343 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, 1344 ips->debug_root, node, 1345 &ips_debugfs_ops); 1346 if (!ent) { 1347 dev_err(&ips->dev->dev, 1348 "failed to create debug file: %ld\n", 1349 PTR_ERR(ent)); 1350 goto err_cleanup; 1351 } 1352 } 1353 1354 return; 1355 1356 err_cleanup: 1357 ips_debugfs_cleanup(ips); 1358 return; 1359 } 1360 #endif /* CONFIG_DEBUG_FS */ 1361 1362 /** 1363 * ips_detect_cpu - detect whether CPU supports IPS 1364 * 1365 * Walk our list and see if we're on a supported CPU. If we find one, 1366 * return the limits for it. 1367 */ 1368 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1369 { 1370 u64 turbo_power, misc_en; 1371 struct ips_mcp_limits *limits = NULL; 1372 u16 tdp; 1373 1374 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1375 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n"); 1376 goto out; 1377 } 1378 1379 rdmsrl(IA32_MISC_ENABLE, misc_en); 1380 /* 1381 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1382 * turbo manually or we'll get an illegal MSR access, even though 1383 * turbo will still be available. 1384 */ 1385 if (misc_en & IA32_MISC_TURBO_EN) 1386 ips->turbo_toggle_allowed = true; 1387 else 1388 ips->turbo_toggle_allowed = false; 1389 1390 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1391 limits = &ips_sv_limits; 1392 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1393 limits = &ips_lv_limits; 1394 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1395 limits = &ips_ulv_limits; 1396 else { 1397 dev_info(&ips->dev->dev, "No CPUID match found.\n"); 1398 goto out; 1399 } 1400 1401 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1402 tdp = turbo_power & TURBO_TDP_MASK; 1403 1404 /* Sanity check TDP against CPU */ 1405 if (limits->core_power_limit != (tdp / 8) * 1000) { 1406 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1407 tdp / 8, limits->core_power_limit / 1000); 1408 limits->core_power_limit = (tdp / 8) * 1000; 1409 } 1410 1411 out: 1412 return limits; 1413 } 1414 1415 /** 1416 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1417 * @ips: IPS driver 1418 * 1419 * The i915 driver exports several interfaces to allow the IPS driver to 1420 * monitor and control graphics turbo mode. If we can find them, we can 1421 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1422 * thermal and power limits in the MCP. 1423 */ 1424 static bool ips_get_i915_syms(struct ips_driver *ips) 1425 { 1426 ips->read_mch_val = symbol_get(i915_read_mch_val); 1427 if (!ips->read_mch_val) 1428 goto out_err; 1429 ips->gpu_raise = symbol_get(i915_gpu_raise); 1430 if (!ips->gpu_raise) 1431 goto out_put_mch; 1432 ips->gpu_lower = symbol_get(i915_gpu_lower); 1433 if (!ips->gpu_lower) 1434 goto out_put_raise; 1435 ips->gpu_busy = symbol_get(i915_gpu_busy); 1436 if (!ips->gpu_busy) 1437 goto out_put_lower; 1438 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1439 if (!ips->gpu_turbo_disable) 1440 goto out_put_busy; 1441 1442 return true; 1443 1444 out_put_busy: 1445 symbol_put(i915_gpu_busy); 1446 out_put_lower: 1447 symbol_put(i915_gpu_lower); 1448 out_put_raise: 1449 symbol_put(i915_gpu_raise); 1450 out_put_mch: 1451 symbol_put(i915_read_mch_val); 1452 out_err: 1453 return false; 1454 } 1455 1456 static bool 1457 ips_gpu_turbo_enabled(struct ips_driver *ips) 1458 { 1459 if (!ips->gpu_busy && late_i915_load) { 1460 if (ips_get_i915_syms(ips)) { 1461 dev_info(&ips->dev->dev, 1462 "i915 driver attached, reenabling gpu turbo\n"); 1463 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1464 } 1465 } 1466 1467 return ips->gpu_turbo_enabled; 1468 } 1469 1470 void 1471 ips_link_to_i915_driver(void) 1472 { 1473 /* We can't cleanly get at the various ips_driver structs from 1474 * this caller (the i915 driver), so just set a flag saying 1475 * that it's time to try getting the symbols again. 1476 */ 1477 late_i915_load = true; 1478 } 1479 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1480 1481 static const struct pci_device_id ips_id_table[] = { 1482 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 1483 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1484 { 0, } 1485 }; 1486 1487 MODULE_DEVICE_TABLE(pci, ips_id_table); 1488 1489 static int ips_blacklist_callback(const struct dmi_system_id *id) 1490 { 1491 pr_info("Blacklisted intel_ips for %s\n", id->ident); 1492 return 1; 1493 } 1494 1495 static const struct dmi_system_id ips_blacklist[] = { 1496 { 1497 .callback = ips_blacklist_callback, 1498 .ident = "HP ProBook", 1499 .matches = { 1500 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 1501 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), 1502 }, 1503 }, 1504 { } /* terminating entry */ 1505 }; 1506 1507 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1508 { 1509 u64 platform_info; 1510 struct ips_driver *ips; 1511 u32 hts; 1512 int ret = 0; 1513 u16 htshi, trc, trc_required_mask; 1514 u8 tse; 1515 1516 if (dmi_check_system(ips_blacklist)) 1517 return -ENODEV; 1518 1519 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL); 1520 if (!ips) 1521 return -ENOMEM; 1522 1523 pci_set_drvdata(dev, ips); 1524 ips->dev = dev; 1525 1526 ips->limits = ips_detect_cpu(ips); 1527 if (!ips->limits) { 1528 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1529 ret = -ENXIO; 1530 goto error_free; 1531 } 1532 1533 spin_lock_init(&ips->turbo_status_lock); 1534 1535 ret = pci_enable_device(dev); 1536 if (ret) { 1537 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1538 goto error_free; 1539 } 1540 1541 if (!pci_resource_start(dev, 0)) { 1542 dev_err(&dev->dev, "TBAR not assigned, aborting\n"); 1543 ret = -ENXIO; 1544 goto error_free; 1545 } 1546 1547 ret = pci_request_regions(dev, "ips thermal sensor"); 1548 if (ret) { 1549 dev_err(&dev->dev, "thermal resource busy, aborting\n"); 1550 goto error_free; 1551 } 1552 1553 1554 ips->regmap = ioremap(pci_resource_start(dev, 0), 1555 pci_resource_len(dev, 0)); 1556 if (!ips->regmap) { 1557 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1558 ret = -EBUSY; 1559 goto error_release; 1560 } 1561 1562 tse = thm_readb(THM_TSE); 1563 if (tse != TSE_EN) { 1564 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1565 ret = -ENXIO; 1566 goto error_unmap; 1567 } 1568 1569 trc = thm_readw(THM_TRC); 1570 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1571 if ((trc & trc_required_mask) != trc_required_mask) { 1572 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1573 ret = -ENXIO; 1574 goto error_unmap; 1575 } 1576 1577 if (trc & TRC_CORE2_EN) 1578 ips->second_cpu = true; 1579 1580 update_turbo_limits(ips); 1581 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1582 ips->mcp_power_limit / 10); 1583 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1584 ips->core_power_limit / 10); 1585 /* BIOS may update limits at runtime */ 1586 if (thm_readl(THM_PSC) & PSP_PBRT) 1587 ips->poll_turbo_status = true; 1588 1589 if (!ips_get_i915_syms(ips)) { 1590 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); 1591 ips->gpu_turbo_enabled = false; 1592 } else { 1593 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1594 ips->gpu_turbo_enabled = true; 1595 } 1596 1597 /* 1598 * Check PLATFORM_INFO MSR to make sure this chip is 1599 * turbo capable. 1600 */ 1601 rdmsrl(PLATFORM_INFO, platform_info); 1602 if (!(platform_info & PLATFORM_TDP)) { 1603 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1604 ret = -ENODEV; 1605 goto error_unmap; 1606 } 1607 1608 /* 1609 * IRQ handler for ME interaction 1610 * Note: don't use MSI here as the PCH has bugs. 1611 */ 1612 pci_disable_msi(dev); 1613 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips", 1614 ips); 1615 if (ret) { 1616 dev_err(&dev->dev, "request irq failed, aborting\n"); 1617 goto error_unmap; 1618 } 1619 1620 /* Enable aux, hot & critical interrupts */ 1621 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1622 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1623 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1624 1625 /* Collect adjustment values */ 1626 ips->cta_val = thm_readw(THM_CTA); 1627 ips->pta_val = thm_readw(THM_PTA); 1628 ips->mgta_val = thm_readw(THM_MGTA); 1629 1630 /* Save turbo limits & ratios */ 1631 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1632 1633 ips_disable_cpu_turbo(ips); 1634 ips->cpu_turbo_enabled = false; 1635 1636 /* Create thermal adjust thread */ 1637 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1638 if (IS_ERR(ips->adjust)) { 1639 dev_err(&dev->dev, 1640 "failed to create thermal adjust thread, aborting\n"); 1641 ret = -ENOMEM; 1642 goto error_free_irq; 1643 1644 } 1645 1646 /* 1647 * Set up the work queue and monitor thread. The monitor thread 1648 * will wake up ips_adjust thread. 1649 */ 1650 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1651 if (IS_ERR(ips->monitor)) { 1652 dev_err(&dev->dev, 1653 "failed to create thermal monitor thread, aborting\n"); 1654 ret = -ENOMEM; 1655 goto error_thread_cleanup; 1656 } 1657 1658 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1659 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1660 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1661 1662 thm_writew(THM_HTSHI, htshi); 1663 thm_writel(THM_HTS, hts); 1664 1665 ips_debugfs_init(ips); 1666 1667 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1668 ips->mcp_temp_limit); 1669 return ret; 1670 1671 error_thread_cleanup: 1672 kthread_stop(ips->adjust); 1673 error_free_irq: 1674 free_irq(ips->dev->irq, ips); 1675 error_unmap: 1676 iounmap(ips->regmap); 1677 error_release: 1678 pci_release_regions(dev); 1679 error_free: 1680 kfree(ips); 1681 return ret; 1682 } 1683 1684 static void ips_remove(struct pci_dev *dev) 1685 { 1686 struct ips_driver *ips = pci_get_drvdata(dev); 1687 u64 turbo_override; 1688 1689 if (!ips) 1690 return; 1691 1692 ips_debugfs_cleanup(ips); 1693 1694 /* Release i915 driver */ 1695 if (ips->read_mch_val) 1696 symbol_put(i915_read_mch_val); 1697 if (ips->gpu_raise) 1698 symbol_put(i915_gpu_raise); 1699 if (ips->gpu_lower) 1700 symbol_put(i915_gpu_lower); 1701 if (ips->gpu_busy) 1702 symbol_put(i915_gpu_busy); 1703 if (ips->gpu_turbo_disable) 1704 symbol_put(i915_gpu_turbo_disable); 1705 1706 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1707 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1708 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1709 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1710 1711 free_irq(ips->dev->irq, ips); 1712 if (ips->adjust) 1713 kthread_stop(ips->adjust); 1714 if (ips->monitor) 1715 kthread_stop(ips->monitor); 1716 iounmap(ips->regmap); 1717 pci_release_regions(dev); 1718 kfree(ips); 1719 dev_dbg(&dev->dev, "IPS driver removed\n"); 1720 } 1721 1722 static void ips_shutdown(struct pci_dev *dev) 1723 { 1724 } 1725 1726 static struct pci_driver ips_pci_driver = { 1727 .name = "intel ips", 1728 .id_table = ips_id_table, 1729 .probe = ips_probe, 1730 .remove = ips_remove, 1731 .shutdown = ips_shutdown, 1732 }; 1733 1734 module_pci_driver(ips_pci_driver); 1735 1736 MODULE_LICENSE("GPL"); 1737 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1738 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1739