xref: /openbmc/linux/drivers/platform/x86/intel_ips.c (revision 08157984)
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *	Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62 
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79 
80 #include <asm-generic/io-64-nonatomic-lo-hi.h>
81 
82 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
83 
84 /*
85  * Package level MSRs for monitor/control
86  */
87 #define PLATFORM_INFO	0xce
88 #define   PLATFORM_TDP		(1<<29)
89 #define   PLATFORM_RATIO	(1<<28)
90 
91 #define IA32_MISC_ENABLE	0x1a0
92 #define   IA32_MISC_TURBO_EN	(1ULL<<38)
93 
94 #define TURBO_POWER_CURRENT_LIMIT	0x1ac
95 #define   TURBO_TDC_OVR_EN	(1UL<<31)
96 #define   TURBO_TDC_MASK	(0x000000007fff0000UL)
97 #define   TURBO_TDC_SHIFT	(16)
98 #define   TURBO_TDP_OVR_EN	(1UL<<15)
99 #define   TURBO_TDP_MASK	(0x0000000000003fffUL)
100 
101 /*
102  * Core/thread MSRs for monitoring
103  */
104 #define IA32_PERF_CTL		0x199
105 #define   IA32_PERF_TURBO_DIS	(1ULL<<32)
106 
107 /*
108  * Thermal PCI device regs
109  */
110 #define THM_CFG_TBAR	0x10
111 #define THM_CFG_TBAR_HI	0x14
112 
113 #define THM_TSIU	0x00
114 #define THM_TSE		0x01
115 #define   TSE_EN	0xb8
116 #define THM_TSS		0x02
117 #define THM_TSTR	0x03
118 #define THM_TSTTP	0x04
119 #define THM_TSCO	0x08
120 #define THM_TSES	0x0c
121 #define THM_TSGPEN	0x0d
122 #define   TSGPEN_HOT_LOHI	(1<<1)
123 #define   TSGPEN_CRIT_LOHI	(1<<2)
124 #define THM_TSPC	0x0e
125 #define THM_PPEC	0x10
126 #define THM_CTA		0x12
127 #define THM_PTA		0x14
128 #define   PTA_SLOPE_MASK	(0xff00)
129 #define   PTA_SLOPE_SHIFT	8
130 #define   PTA_OFFSET_MASK	(0x00ff)
131 #define THM_MGTA	0x16
132 #define   MGTA_SLOPE_MASK	(0xff00)
133 #define   MGTA_SLOPE_SHIFT	8
134 #define   MGTA_OFFSET_MASK	(0x00ff)
135 #define THM_TRC		0x1a
136 #define   TRC_CORE2_EN	(1<<15)
137 #define   TRC_THM_EN	(1<<12)
138 #define   TRC_C6_WAR	(1<<8)
139 #define   TRC_CORE1_EN	(1<<7)
140 #define   TRC_CORE_PWR	(1<<6)
141 #define   TRC_PCH_EN	(1<<5)
142 #define   TRC_MCH_EN	(1<<4)
143 #define   TRC_DIMM4	(1<<3)
144 #define   TRC_DIMM3	(1<<2)
145 #define   TRC_DIMM2	(1<<1)
146 #define   TRC_DIMM1	(1<<0)
147 #define THM_TES		0x20
148 #define THM_TEN		0x21
149 #define   TEN_UPDATE_EN	1
150 #define THM_PSC		0x24
151 #define   PSC_NTG	(1<<0) /* No GFX turbo support */
152 #define   PSC_NTPC	(1<<1) /* No CPU turbo support */
153 #define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
154 #define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
155 #define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
156 #define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
157 #define   PSP_PBRT	(1<<4) /* BIOS run time support */
158 #define THM_CTV1	0x30
159 #define   CTV_TEMP_ERROR (1<<15)
160 #define   CTV_TEMP_MASK	0x3f
161 #define   CTV_
162 #define THM_CTV2	0x32
163 #define THM_CEC		0x34 /* undocumented power accumulator in joules */
164 #define THM_AE		0x3f
165 #define THM_HTS		0x50 /* 32 bits */
166 #define   HTS_PCPL_MASK	(0x7fe00000)
167 #define   HTS_PCPL_SHIFT 21
168 #define   HTS_GPL_MASK  (0x001ff000)
169 #define   HTS_GPL_SHIFT 12
170 #define   HTS_PP_MASK	(0x00000c00)
171 #define   HTS_PP_SHIFT  10
172 #define   HTS_PP_DEF	0
173 #define   HTS_PP_PROC	1
174 #define   HTS_PP_BAL	2
175 #define   HTS_PP_GFX	3
176 #define   HTS_PCTD_DIS	(1<<9)
177 #define   HTS_GTD_DIS	(1<<8)
178 #define   HTS_PTL_MASK  (0x000000fe)
179 #define   HTS_PTL_SHIFT 1
180 #define   HTS_NVV	(1<<0)
181 #define THM_HTSHI	0x54 /* 16 bits */
182 #define   HTS2_PPL_MASK		(0x03ff)
183 #define   HTS2_PRST_MASK	(0x3c00)
184 #define   HTS2_PRST_SHIFT	10
185 #define   HTS2_PRST_UNLOADED	0
186 #define   HTS2_PRST_RUNNING	1
187 #define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
188 #define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
189 #define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
190 #define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
191 #define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
192 #define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
193 #define THM_PTL		0x56
194 #define THM_MGTV	0x58
195 #define   TV_MASK	0x000000000000ff00
196 #define   TV_SHIFT	8
197 #define THM_PTV		0x60
198 #define   PTV_MASK	0x00ff
199 #define THM_MMGPC	0x64
200 #define THM_MPPC	0x66
201 #define THM_MPCPC	0x68
202 #define THM_TSPIEN	0x82
203 #define   TSPIEN_AUX_LOHI	(1<<0)
204 #define   TSPIEN_HOT_LOHI	(1<<1)
205 #define   TSPIEN_CRIT_LOHI	(1<<2)
206 #define   TSPIEN_AUX2_LOHI	(1<<3)
207 #define THM_TSLOCK	0x83
208 #define THM_ATR		0x84
209 #define THM_TOF		0x87
210 #define THM_STS		0x98
211 #define   STS_PCPL_MASK		(0x7fe00000)
212 #define   STS_PCPL_SHIFT	21
213 #define   STS_GPL_MASK		(0x001ff000)
214 #define   STS_GPL_SHIFT		12
215 #define   STS_PP_MASK		(0x00000c00)
216 #define   STS_PP_SHIFT		10
217 #define   STS_PP_DEF		0
218 #define   STS_PP_PROC		1
219 #define   STS_PP_BAL		2
220 #define   STS_PP_GFX		3
221 #define   STS_PCTD_DIS		(1<<9)
222 #define   STS_GTD_DIS		(1<<8)
223 #define   STS_PTL_MASK		(0x000000fe)
224 #define   STS_PTL_SHIFT		1
225 #define   STS_NVV		(1<<0)
226 #define THM_SEC		0x9c
227 #define   SEC_ACK	(1<<0)
228 #define THM_TC3		0xa4
229 #define THM_TC1		0xa8
230 #define   STS_PPL_MASK		(0x0003ff00)
231 #define   STS_PPL_SHIFT		16
232 #define THM_TC2		0xac
233 #define THM_DTV		0xb0
234 #define THM_ITV		0xd8
235 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
236 #define   ITV_ME_SEQNO_SHIFT (16)
237 #define   ITV_MCH_TEMP_MASK 0x0000ff00
238 #define   ITV_MCH_TEMP_SHIFT (8)
239 #define   ITV_PCH_TEMP_MASK 0x000000ff
240 
241 #define thm_readb(off) readb(ips->regmap + (off))
242 #define thm_readw(off) readw(ips->regmap + (off))
243 #define thm_readl(off) readl(ips->regmap + (off))
244 #define thm_readq(off) readq(ips->regmap + (off))
245 
246 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
247 #define thm_writew(off, val) writew((val), ips->regmap + (off))
248 #define thm_writel(off, val) writel((val), ips->regmap + (off))
249 
250 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
251 static bool late_i915_load = false;
252 
253 /* For initial average collection */
254 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
255 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
256 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
257 
258 /* Per-SKU limits */
259 struct ips_mcp_limits {
260 	int cpu_family;
261 	int cpu_model; /* includes extended model... */
262 	int mcp_power_limit; /* mW units */
263 	int core_power_limit;
264 	int mch_power_limit;
265 	int core_temp_limit; /* degrees C */
266 	int mch_temp_limit;
267 };
268 
269 /* Max temps are -10 degrees C to avoid PROCHOT# */
270 
271 struct ips_mcp_limits ips_sv_limits = {
272 	.mcp_power_limit = 35000,
273 	.core_power_limit = 29000,
274 	.mch_power_limit = 20000,
275 	.core_temp_limit = 95,
276 	.mch_temp_limit = 90
277 };
278 
279 struct ips_mcp_limits ips_lv_limits = {
280 	.mcp_power_limit = 25000,
281 	.core_power_limit = 21000,
282 	.mch_power_limit = 13000,
283 	.core_temp_limit = 95,
284 	.mch_temp_limit = 90
285 };
286 
287 struct ips_mcp_limits ips_ulv_limits = {
288 	.mcp_power_limit = 18000,
289 	.core_power_limit = 14000,
290 	.mch_power_limit = 11000,
291 	.core_temp_limit = 95,
292 	.mch_temp_limit = 90
293 };
294 
295 struct ips_driver {
296 	struct pci_dev *dev;
297 	void *regmap;
298 	struct task_struct *monitor;
299 	struct task_struct *adjust;
300 	struct dentry *debug_root;
301 
302 	/* Average CPU core temps (all averages in .01 degrees C for precision) */
303 	u16 ctv1_avg_temp;
304 	u16 ctv2_avg_temp;
305 	/* GMCH average */
306 	u16 mch_avg_temp;
307 	/* Average for the CPU (both cores?) */
308 	u16 mcp_avg_temp;
309 	/* Average power consumption (in mW) */
310 	u32 cpu_avg_power;
311 	u32 mch_avg_power;
312 
313 	/* Offset values */
314 	u16 cta_val;
315 	u16 pta_val;
316 	u16 mgta_val;
317 
318 	/* Maximums & prefs, protected by turbo status lock */
319 	spinlock_t turbo_status_lock;
320 	u16 mcp_temp_limit;
321 	u16 mcp_power_limit;
322 	u16 core_power_limit;
323 	u16 mch_power_limit;
324 	bool cpu_turbo_enabled;
325 	bool __cpu_turbo_on;
326 	bool gpu_turbo_enabled;
327 	bool __gpu_turbo_on;
328 	bool gpu_preferred;
329 	bool poll_turbo_status;
330 	bool second_cpu;
331 	bool turbo_toggle_allowed;
332 	struct ips_mcp_limits *limits;
333 
334 	/* Optional MCH interfaces for if i915 is in use */
335 	unsigned long (*read_mch_val)(void);
336 	bool (*gpu_raise)(void);
337 	bool (*gpu_lower)(void);
338 	bool (*gpu_busy)(void);
339 	bool (*gpu_turbo_disable)(void);
340 
341 	/* For restoration at unload */
342 	u64 orig_turbo_limit;
343 	u64 orig_turbo_ratios;
344 };
345 
346 static bool
347 ips_gpu_turbo_enabled(struct ips_driver *ips);
348 
349 /**
350  * ips_cpu_busy - is CPU busy?
351  * @ips: IPS driver struct
352  *
353  * Check CPU for load to see whether we should increase its thermal budget.
354  *
355  * RETURNS:
356  * True if the CPU could use more power, false otherwise.
357  */
358 static bool ips_cpu_busy(struct ips_driver *ips)
359 {
360 	if ((avenrun[0] >> FSHIFT) > 1)
361 		return true;
362 
363 	return false;
364 }
365 
366 /**
367  * ips_cpu_raise - raise CPU power clamp
368  * @ips: IPS driver struct
369  *
370  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
371  * this platform.
372  *
373  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
374  * long as we haven't hit the TDP limit for the SKU).
375  */
376 static void ips_cpu_raise(struct ips_driver *ips)
377 {
378 	u64 turbo_override;
379 	u16 cur_tdp_limit, new_tdp_limit;
380 
381 	if (!ips->cpu_turbo_enabled)
382 		return;
383 
384 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
385 
386 	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
387 	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
388 
389 	/* Clamp to SKU TDP limit */
390 	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
391 		new_tdp_limit = cur_tdp_limit;
392 
393 	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
394 
395 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
396 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
397 
398 	turbo_override &= ~TURBO_TDP_MASK;
399 	turbo_override |= new_tdp_limit;
400 
401 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
402 }
403 
404 /**
405  * ips_cpu_lower - lower CPU power clamp
406  * @ips: IPS driver struct
407  *
408  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
409  *
410  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
411  * as low as the platform limits will allow (though we could go lower there
412  * wouldn't be much point).
413  */
414 static void ips_cpu_lower(struct ips_driver *ips)
415 {
416 	u64 turbo_override;
417 	u16 cur_limit, new_limit;
418 
419 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
420 
421 	cur_limit = turbo_override & TURBO_TDP_MASK;
422 	new_limit = cur_limit - 8; /* 1W decrease */
423 
424 	/* Clamp to SKU TDP limit */
425 	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
426 		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
427 
428 	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
429 
430 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
431 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
432 
433 	turbo_override &= ~TURBO_TDP_MASK;
434 	turbo_override |= new_limit;
435 
436 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
437 }
438 
439 /**
440  * do_enable_cpu_turbo - internal turbo enable function
441  * @data: unused
442  *
443  * Internal function for actually updating MSRs.  When we enable/disable
444  * turbo, we need to do it on each CPU; this function is the one called
445  * by on_each_cpu() when needed.
446  */
447 static void do_enable_cpu_turbo(void *data)
448 {
449 	u64 perf_ctl;
450 
451 	rdmsrl(IA32_PERF_CTL, perf_ctl);
452 	if (perf_ctl & IA32_PERF_TURBO_DIS) {
453 		perf_ctl &= ~IA32_PERF_TURBO_DIS;
454 		wrmsrl(IA32_PERF_CTL, perf_ctl);
455 	}
456 }
457 
458 /**
459  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
460  * @ips: IPS driver struct
461  *
462  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
463  * all logical threads.
464  */
465 static void ips_enable_cpu_turbo(struct ips_driver *ips)
466 {
467 	/* Already on, no need to mess with MSRs */
468 	if (ips->__cpu_turbo_on)
469 		return;
470 
471 	if (ips->turbo_toggle_allowed)
472 		on_each_cpu(do_enable_cpu_turbo, ips, 1);
473 
474 	ips->__cpu_turbo_on = true;
475 }
476 
477 /**
478  * do_disable_cpu_turbo - internal turbo disable function
479  * @data: unused
480  *
481  * Internal function for actually updating MSRs.  When we enable/disable
482  * turbo, we need to do it on each CPU; this function is the one called
483  * by on_each_cpu() when needed.
484  */
485 static void do_disable_cpu_turbo(void *data)
486 {
487 	u64 perf_ctl;
488 
489 	rdmsrl(IA32_PERF_CTL, perf_ctl);
490 	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
491 		perf_ctl |= IA32_PERF_TURBO_DIS;
492 		wrmsrl(IA32_PERF_CTL, perf_ctl);
493 	}
494 }
495 
496 /**
497  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
498  * @ips: IPS driver struct
499  *
500  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
501  * all logical threads.
502  */
503 static void ips_disable_cpu_turbo(struct ips_driver *ips)
504 {
505 	/* Already off, leave it */
506 	if (!ips->__cpu_turbo_on)
507 		return;
508 
509 	if (ips->turbo_toggle_allowed)
510 		on_each_cpu(do_disable_cpu_turbo, ips, 1);
511 
512 	ips->__cpu_turbo_on = false;
513 }
514 
515 /**
516  * ips_gpu_busy - is GPU busy?
517  * @ips: IPS driver struct
518  *
519  * Check GPU for load to see whether we should increase its thermal budget.
520  * We need to call into the i915 driver in this case.
521  *
522  * RETURNS:
523  * True if the GPU could use more power, false otherwise.
524  */
525 static bool ips_gpu_busy(struct ips_driver *ips)
526 {
527 	if (!ips_gpu_turbo_enabled(ips))
528 		return false;
529 
530 	return ips->gpu_busy();
531 }
532 
533 /**
534  * ips_gpu_raise - raise GPU power clamp
535  * @ips: IPS driver struct
536  *
537  * Raise the GPU frequency/power if possible.  We need to call into the
538  * i915 driver in this case.
539  */
540 static void ips_gpu_raise(struct ips_driver *ips)
541 {
542 	if (!ips_gpu_turbo_enabled(ips))
543 		return;
544 
545 	if (!ips->gpu_raise())
546 		ips->gpu_turbo_enabled = false;
547 
548 	return;
549 }
550 
551 /**
552  * ips_gpu_lower - lower GPU power clamp
553  * @ips: IPS driver struct
554  *
555  * Lower GPU frequency/power if possible.  Need to call i915.
556  */
557 static void ips_gpu_lower(struct ips_driver *ips)
558 {
559 	if (!ips_gpu_turbo_enabled(ips))
560 		return;
561 
562 	if (!ips->gpu_lower())
563 		ips->gpu_turbo_enabled = false;
564 
565 	return;
566 }
567 
568 /**
569  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
570  * @ips: IPS driver struct
571  *
572  * Call into the graphics driver indicating that it can safely use
573  * turbo mode.
574  */
575 static void ips_enable_gpu_turbo(struct ips_driver *ips)
576 {
577 	if (ips->__gpu_turbo_on)
578 		return;
579 	ips->__gpu_turbo_on = true;
580 }
581 
582 /**
583  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
584  * @ips: IPS driver struct
585  *
586  * Request that the graphics driver disable turbo mode.
587  */
588 static void ips_disable_gpu_turbo(struct ips_driver *ips)
589 {
590 	/* Avoid calling i915 if turbo is already disabled */
591 	if (!ips->__gpu_turbo_on)
592 		return;
593 
594 	if (!ips->gpu_turbo_disable())
595 		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
596 	else
597 		ips->__gpu_turbo_on = false;
598 }
599 
600 /**
601  * mcp_exceeded - check whether we're outside our thermal & power limits
602  * @ips: IPS driver struct
603  *
604  * Check whether the MCP is over its thermal or power budget.
605  */
606 static bool mcp_exceeded(struct ips_driver *ips)
607 {
608 	unsigned long flags;
609 	bool ret = false;
610 	u32 temp_limit;
611 	u32 avg_power;
612 
613 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
614 
615 	temp_limit = ips->mcp_temp_limit * 100;
616 	if (ips->mcp_avg_temp > temp_limit)
617 		ret = true;
618 
619 	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
620 	if (avg_power > ips->mcp_power_limit)
621 		ret = true;
622 
623 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
624 
625 	return ret;
626 }
627 
628 /**
629  * cpu_exceeded - check whether a CPU core is outside its limits
630  * @ips: IPS driver struct
631  * @cpu: CPU number to check
632  *
633  * Check a given CPU's average temp or power is over its limit.
634  */
635 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
636 {
637 	unsigned long flags;
638 	int avg;
639 	bool ret = false;
640 
641 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
642 	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
643 	if (avg > (ips->limits->core_temp_limit * 100))
644 		ret = true;
645 	if (ips->cpu_avg_power > ips->core_power_limit * 100)
646 		ret = true;
647 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
648 
649 	if (ret)
650 		dev_info(&ips->dev->dev,
651 			 "CPU power or thermal limit exceeded\n");
652 
653 	return ret;
654 }
655 
656 /**
657  * mch_exceeded - check whether the GPU is over budget
658  * @ips: IPS driver struct
659  *
660  * Check the MCH temp & power against their maximums.
661  */
662 static bool mch_exceeded(struct ips_driver *ips)
663 {
664 	unsigned long flags;
665 	bool ret = false;
666 
667 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
668 	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
669 		ret = true;
670 	if (ips->mch_avg_power > ips->mch_power_limit)
671 		ret = true;
672 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
673 
674 	return ret;
675 }
676 
677 /**
678  * verify_limits - verify BIOS provided limits
679  * @ips: IPS structure
680  *
681  * BIOS can optionally provide non-default limits for power and temp.  Check
682  * them here and use the defaults if the BIOS values are not provided or
683  * are otherwise unusable.
684  */
685 static void verify_limits(struct ips_driver *ips)
686 {
687 	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
688 	    ips->mcp_power_limit > 35000)
689 		ips->mcp_power_limit = ips->limits->mcp_power_limit;
690 
691 	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
692 	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
693 	    ips->mcp_temp_limit > 150)
694 		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
695 					  ips->limits->mch_temp_limit);
696 }
697 
698 /**
699  * update_turbo_limits - get various limits & settings from regs
700  * @ips: IPS driver struct
701  *
702  * Update the IPS power & temp limits, along with turbo enable flags,
703  * based on latest register contents.
704  *
705  * Used at init time and for runtime BIOS support, which requires polling
706  * the regs for updates (as a result of AC->DC transition for example).
707  *
708  * LOCKING:
709  * Caller must hold turbo_status_lock (outside of init)
710  */
711 static void update_turbo_limits(struct ips_driver *ips)
712 {
713 	u32 hts = thm_readl(THM_HTS);
714 
715 	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
716 	/*
717 	 * Disable turbo for now, until we can figure out why the power figures
718 	 * are wrong
719 	 */
720 	ips->cpu_turbo_enabled = false;
721 
722 	if (ips->gpu_busy)
723 		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
724 
725 	ips->core_power_limit = thm_readw(THM_MPCPC);
726 	ips->mch_power_limit = thm_readw(THM_MMGPC);
727 	ips->mcp_temp_limit = thm_readw(THM_PTL);
728 	ips->mcp_power_limit = thm_readw(THM_MPPC);
729 
730 	verify_limits(ips);
731 	/* Ignore BIOS CPU vs GPU pref */
732 }
733 
734 /**
735  * ips_adjust - adjust power clamp based on thermal state
736  * @data: ips driver structure
737  *
738  * Wake up every 5s or so and check whether we should adjust the power clamp.
739  * Check CPU and GPU load to determine which needs adjustment.  There are
740  * several things to consider here:
741  *   - do we need to adjust up or down?
742  *   - is CPU busy?
743  *   - is GPU busy?
744  *   - is CPU in turbo?
745  *   - is GPU in turbo?
746  *   - is CPU or GPU preferred? (CPU is default)
747  *
748  * So, given the above, we do the following:
749  *   - up (TDP available)
750  *     - CPU not busy, GPU not busy - nothing
751  *     - CPU busy, GPU not busy - adjust CPU up
752  *     - CPU not busy, GPU busy - adjust GPU up
753  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
754  *       non-preferred unit if necessary
755  *   - down (at TDP limit)
756  *     - adjust both CPU and GPU down if possible
757  *
758 		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
759 cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
760 cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
761 cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
762 cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
763  *
764  */
765 static int ips_adjust(void *data)
766 {
767 	struct ips_driver *ips = data;
768 	unsigned long flags;
769 
770 	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
771 
772 	/*
773 	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
774 	 * often isn't recommended due to ME interaction.
775 	 */
776 	do {
777 		bool cpu_busy = ips_cpu_busy(ips);
778 		bool gpu_busy = ips_gpu_busy(ips);
779 
780 		spin_lock_irqsave(&ips->turbo_status_lock, flags);
781 		if (ips->poll_turbo_status)
782 			update_turbo_limits(ips);
783 		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
784 
785 		/* Update turbo status if necessary */
786 		if (ips->cpu_turbo_enabled)
787 			ips_enable_cpu_turbo(ips);
788 		else
789 			ips_disable_cpu_turbo(ips);
790 
791 		if (ips->gpu_turbo_enabled)
792 			ips_enable_gpu_turbo(ips);
793 		else
794 			ips_disable_gpu_turbo(ips);
795 
796 		/* We're outside our comfort zone, crank them down */
797 		if (mcp_exceeded(ips)) {
798 			ips_cpu_lower(ips);
799 			ips_gpu_lower(ips);
800 			goto sleep;
801 		}
802 
803 		if (!cpu_exceeded(ips, 0) && cpu_busy)
804 			ips_cpu_raise(ips);
805 		else
806 			ips_cpu_lower(ips);
807 
808 		if (!mch_exceeded(ips) && gpu_busy)
809 			ips_gpu_raise(ips);
810 		else
811 			ips_gpu_lower(ips);
812 
813 sleep:
814 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
815 	} while (!kthread_should_stop());
816 
817 	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
818 
819 	return 0;
820 }
821 
822 /*
823  * Helpers for reading out temp/power values and calculating their
824  * averages for the decision making and monitoring functions.
825  */
826 
827 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
828 {
829 	u64 total = 0;
830 	int i;
831 	u16 avg;
832 
833 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
834 		total += (u64)(array[i] * 100);
835 
836 	do_div(total, IPS_SAMPLE_COUNT);
837 
838 	avg = (u16)total;
839 
840 	return avg;
841 }
842 
843 static u16 read_mgtv(struct ips_driver *ips)
844 {
845 	u16 ret;
846 	u64 slope, offset;
847 	u64 val;
848 
849 	val = thm_readq(THM_MGTV);
850 	val = (val & TV_MASK) >> TV_SHIFT;
851 
852 	slope = offset = thm_readw(THM_MGTA);
853 	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
854 	offset = offset & MGTA_OFFSET_MASK;
855 
856 	ret = ((val * slope + 0x40) >> 7) + offset;
857 
858 	return 0; /* MCH temp reporting buggy */
859 }
860 
861 static u16 read_ptv(struct ips_driver *ips)
862 {
863 	u16 val, slope, offset;
864 
865 	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
866 	offset = ips->pta_val & PTA_OFFSET_MASK;
867 
868 	val = thm_readw(THM_PTV) & PTV_MASK;
869 
870 	return val;
871 }
872 
873 static u16 read_ctv(struct ips_driver *ips, int cpu)
874 {
875 	int reg = cpu ? THM_CTV2 : THM_CTV1;
876 	u16 val;
877 
878 	val = thm_readw(reg);
879 	if (!(val & CTV_TEMP_ERROR))
880 		val = (val) >> 6; /* discard fractional component */
881 	else
882 		val = 0;
883 
884 	return val;
885 }
886 
887 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
888 {
889 	u32 val;
890 	u32 ret;
891 
892 	/*
893 	 * CEC is in joules/65535.  Take difference over time to
894 	 * get watts.
895 	 */
896 	val = thm_readl(THM_CEC);
897 
898 	/* period is in ms and we want mW */
899 	ret = (((val - *last) * 1000) / period);
900 	ret = (ret * 1000) / 65535;
901 	*last = val;
902 
903 	return 0;
904 }
905 
906 static const u16 temp_decay_factor = 2;
907 static u16 update_average_temp(u16 avg, u16 val)
908 {
909 	u16 ret;
910 
911 	/* Multiply by 100 for extra precision */
912 	ret = (val * 100 / temp_decay_factor) +
913 		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
914 	return ret;
915 }
916 
917 static const u16 power_decay_factor = 2;
918 static u16 update_average_power(u32 avg, u32 val)
919 {
920 	u32 ret;
921 
922 	ret = (val / power_decay_factor) +
923 		(((power_decay_factor - 1) * avg) / power_decay_factor);
924 
925 	return ret;
926 }
927 
928 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
929 {
930 	u64 total = 0;
931 	u32 avg;
932 	int i;
933 
934 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
935 		total += array[i];
936 
937 	do_div(total, IPS_SAMPLE_COUNT);
938 	avg = (u32)total;
939 
940 	return avg;
941 }
942 
943 static void monitor_timeout(unsigned long arg)
944 {
945 	wake_up_process((struct task_struct *)arg);
946 }
947 
948 /**
949  * ips_monitor - temp/power monitoring thread
950  * @data: ips driver structure
951  *
952  * This is the main function for the IPS driver.  It monitors power and
953  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
954  *
955  * We keep a 5s moving average of power consumption and tempurature.  Using
956  * that data, along with CPU vs GPU preference, we adjust the power clamps
957  * up or down.
958  */
959 static int ips_monitor(void *data)
960 {
961 	struct ips_driver *ips = data;
962 	struct timer_list timer;
963 	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
964 	int i;
965 	u32 *cpu_samples, *mchp_samples, old_cpu_power;
966 	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
967 	u8 cur_seqno, last_seqno;
968 
969 	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
970 	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971 	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972 	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973 	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974 	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975 	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
976 			!cpu_samples || !mchp_samples) {
977 		dev_err(&ips->dev->dev,
978 			"failed to allocate sample array, ips disabled\n");
979 		kfree(mcp_samples);
980 		kfree(ctv1_samples);
981 		kfree(ctv2_samples);
982 		kfree(mch_samples);
983 		kfree(cpu_samples);
984 		kfree(mchp_samples);
985 		return -ENOMEM;
986 	}
987 
988 	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
989 		ITV_ME_SEQNO_SHIFT;
990 	seqno_timestamp = get_jiffies_64();
991 
992 	old_cpu_power = thm_readl(THM_CEC);
993 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
994 
995 	/* Collect an initial average */
996 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
997 		u32 mchp, cpu_power;
998 		u16 val;
999 
1000 		mcp_samples[i] = read_ptv(ips);
1001 
1002 		val = read_ctv(ips, 0);
1003 		ctv1_samples[i] = val;
1004 
1005 		val = read_ctv(ips, 1);
1006 		ctv2_samples[i] = val;
1007 
1008 		val = read_mgtv(ips);
1009 		mch_samples[i] = val;
1010 
1011 		cpu_power = get_cpu_power(ips, &old_cpu_power,
1012 					  IPS_SAMPLE_PERIOD);
1013 		cpu_samples[i] = cpu_power;
1014 
1015 		if (ips->read_mch_val) {
1016 			mchp = ips->read_mch_val();
1017 			mchp_samples[i] = mchp;
1018 		}
1019 
1020 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1021 		if (kthread_should_stop())
1022 			break;
1023 	}
1024 
1025 	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1026 	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1027 	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1028 	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1029 	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1030 	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1031 	kfree(mcp_samples);
1032 	kfree(ctv1_samples);
1033 	kfree(ctv2_samples);
1034 	kfree(mch_samples);
1035 	kfree(cpu_samples);
1036 	kfree(mchp_samples);
1037 
1038 	/* Start the adjustment thread now that we have data */
1039 	wake_up_process(ips->adjust);
1040 
1041 	/*
1042 	 * Ok, now we have an initial avg.  From here on out, we track the
1043 	 * running avg using a decaying average calculation.  This allows
1044 	 * us to reduce the sample frequency if the CPU and GPU are idle.
1045 	 */
1046 	old_cpu_power = thm_readl(THM_CEC);
1047 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1048 	last_sample_period = IPS_SAMPLE_PERIOD;
1049 
1050 	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1051 					(unsigned long)current);
1052 	do {
1053 		u32 cpu_val, mch_val;
1054 		u16 val;
1055 
1056 		/* MCP itself */
1057 		val = read_ptv(ips);
1058 		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1059 
1060 		/* Processor 0 */
1061 		val = read_ctv(ips, 0);
1062 		ips->ctv1_avg_temp =
1063 			update_average_temp(ips->ctv1_avg_temp, val);
1064 		/* Power */
1065 		cpu_val = get_cpu_power(ips, &old_cpu_power,
1066 					last_sample_period);
1067 		ips->cpu_avg_power =
1068 			update_average_power(ips->cpu_avg_power, cpu_val);
1069 
1070 		if (ips->second_cpu) {
1071 			/* Processor 1 */
1072 			val = read_ctv(ips, 1);
1073 			ips->ctv2_avg_temp =
1074 				update_average_temp(ips->ctv2_avg_temp, val);
1075 		}
1076 
1077 		/* MCH */
1078 		val = read_mgtv(ips);
1079 		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1080 		/* Power */
1081 		if (ips->read_mch_val) {
1082 			mch_val = ips->read_mch_val();
1083 			ips->mch_avg_power =
1084 				update_average_power(ips->mch_avg_power,
1085 						     mch_val);
1086 		}
1087 
1088 		/*
1089 		 * Make sure ME is updating thermal regs.
1090 		 * Note:
1091 		 * If it's been more than a second since the last update,
1092 		 * the ME is probably hung.
1093 		 */
1094 		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1095 			ITV_ME_SEQNO_SHIFT;
1096 		if (cur_seqno == last_seqno &&
1097 		    time_after(jiffies, seqno_timestamp + HZ)) {
1098 			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1099 		} else {
1100 			seqno_timestamp = get_jiffies_64();
1101 			last_seqno = cur_seqno;
1102 		}
1103 
1104 		last_msecs = jiffies_to_msecs(jiffies);
1105 		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1106 
1107 		__set_current_state(TASK_INTERRUPTIBLE);
1108 		mod_timer(&timer, expire);
1109 		schedule();
1110 
1111 		/* Calculate actual sample period for power averaging */
1112 		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1113 		if (!last_sample_period)
1114 			last_sample_period = 1;
1115 	} while (!kthread_should_stop());
1116 
1117 	del_timer_sync(&timer);
1118 	destroy_timer_on_stack(&timer);
1119 
1120 	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1121 
1122 	return 0;
1123 }
1124 
1125 #if 0
1126 #define THM_DUMPW(reg) \
1127 	{ \
1128 	u16 val = thm_readw(reg); \
1129 	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1130 	}
1131 #define THM_DUMPL(reg) \
1132 	{ \
1133 	u32 val = thm_readl(reg); \
1134 	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1135 	}
1136 #define THM_DUMPQ(reg) \
1137 	{ \
1138 	u64 val = thm_readq(reg); \
1139 	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1140 	}
1141 
1142 static void dump_thermal_info(struct ips_driver *ips)
1143 {
1144 	u16 ptl;
1145 
1146 	ptl = thm_readw(THM_PTL);
1147 	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1148 
1149 	THM_DUMPW(THM_CTA);
1150 	THM_DUMPW(THM_TRC);
1151 	THM_DUMPW(THM_CTV1);
1152 	THM_DUMPL(THM_STS);
1153 	THM_DUMPW(THM_PTV);
1154 	THM_DUMPQ(THM_MGTV);
1155 }
1156 #endif
1157 
1158 /**
1159  * ips_irq_handler - handle temperature triggers and other IPS events
1160  * @irq: irq number
1161  * @arg: unused
1162  *
1163  * Handle temperature limit trigger events, generally by lowering the clamps.
1164  * If we're at a critical limit, we clamp back to the lowest possible value
1165  * to prevent emergency shutdown.
1166  */
1167 static irqreturn_t ips_irq_handler(int irq, void *arg)
1168 {
1169 	struct ips_driver *ips = arg;
1170 	u8 tses = thm_readb(THM_TSES);
1171 	u8 tes = thm_readb(THM_TES);
1172 
1173 	if (!tses && !tes)
1174 		return IRQ_NONE;
1175 
1176 	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1177 	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1178 
1179 	/* STS update from EC? */
1180 	if (tes & 1) {
1181 		u32 sts, tc1;
1182 
1183 		sts = thm_readl(THM_STS);
1184 		tc1 = thm_readl(THM_TC1);
1185 
1186 		if (sts & STS_NVV) {
1187 			spin_lock(&ips->turbo_status_lock);
1188 			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1189 				STS_PCPL_SHIFT;
1190 			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1191 				STS_GPL_SHIFT;
1192 			/* ignore EC CPU vs GPU pref */
1193 			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1194 			/*
1195 			 * Disable turbo for now, until we can figure
1196 			 * out why the power figures are wrong
1197 			 */
1198 			ips->cpu_turbo_enabled = false;
1199 			if (ips->gpu_busy)
1200 				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1201 			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1202 				STS_PTL_SHIFT;
1203 			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1204 				STS_PPL_SHIFT;
1205 			verify_limits(ips);
1206 			spin_unlock(&ips->turbo_status_lock);
1207 
1208 			thm_writeb(THM_SEC, SEC_ACK);
1209 		}
1210 		thm_writeb(THM_TES, tes);
1211 	}
1212 
1213 	/* Thermal trip */
1214 	if (tses) {
1215 		dev_warn(&ips->dev->dev,
1216 			 "thermal trip occurred, tses: 0x%04x\n", tses);
1217 		thm_writeb(THM_TSES, tses);
1218 	}
1219 
1220 	return IRQ_HANDLED;
1221 }
1222 
1223 #ifndef CONFIG_DEBUG_FS
1224 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1225 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1226 #else
1227 
1228 /* Expose current state and limits in debugfs if possible */
1229 
1230 struct ips_debugfs_node {
1231 	struct ips_driver *ips;
1232 	char *name;
1233 	int (*show)(struct seq_file *m, void *data);
1234 };
1235 
1236 static int show_cpu_temp(struct seq_file *m, void *data)
1237 {
1238 	struct ips_driver *ips = m->private;
1239 
1240 	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1241 		   ips->ctv1_avg_temp % 100);
1242 
1243 	return 0;
1244 }
1245 
1246 static int show_cpu_power(struct seq_file *m, void *data)
1247 {
1248 	struct ips_driver *ips = m->private;
1249 
1250 	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1251 
1252 	return 0;
1253 }
1254 
1255 static int show_cpu_clamp(struct seq_file *m, void *data)
1256 {
1257 	u64 turbo_override;
1258 	int tdp, tdc;
1259 
1260 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1261 
1262 	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1263 	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1264 
1265 	/* Convert to .1W/A units */
1266 	tdp = tdp * 10 / 8;
1267 	tdc = tdc * 10 / 8;
1268 
1269 	/* Watts Amperes */
1270 	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1271 		   tdc / 10, tdc % 10);
1272 
1273 	return 0;
1274 }
1275 
1276 static int show_mch_temp(struct seq_file *m, void *data)
1277 {
1278 	struct ips_driver *ips = m->private;
1279 
1280 	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1281 		   ips->mch_avg_temp % 100);
1282 
1283 	return 0;
1284 }
1285 
1286 static int show_mch_power(struct seq_file *m, void *data)
1287 {
1288 	struct ips_driver *ips = m->private;
1289 
1290 	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1291 
1292 	return 0;
1293 }
1294 
1295 static struct ips_debugfs_node ips_debug_files[] = {
1296 	{ NULL, "cpu_temp", show_cpu_temp },
1297 	{ NULL, "cpu_power", show_cpu_power },
1298 	{ NULL, "cpu_clamp", show_cpu_clamp },
1299 	{ NULL, "mch_temp", show_mch_temp },
1300 	{ NULL, "mch_power", show_mch_power },
1301 };
1302 
1303 static int ips_debugfs_open(struct inode *inode, struct file *file)
1304 {
1305 	struct ips_debugfs_node *node = inode->i_private;
1306 
1307 	return single_open(file, node->show, node->ips);
1308 }
1309 
1310 static const struct file_operations ips_debugfs_ops = {
1311 	.owner = THIS_MODULE,
1312 	.open = ips_debugfs_open,
1313 	.read = seq_read,
1314 	.llseek = seq_lseek,
1315 	.release = single_release,
1316 };
1317 
1318 static void ips_debugfs_cleanup(struct ips_driver *ips)
1319 {
1320 	if (ips->debug_root)
1321 		debugfs_remove_recursive(ips->debug_root);
1322 	return;
1323 }
1324 
1325 static void ips_debugfs_init(struct ips_driver *ips)
1326 {
1327 	int i;
1328 
1329 	ips->debug_root = debugfs_create_dir("ips", NULL);
1330 	if (!ips->debug_root) {
1331 		dev_err(&ips->dev->dev,
1332 			"failed to create debugfs entries: %ld\n",
1333 			PTR_ERR(ips->debug_root));
1334 		return;
1335 	}
1336 
1337 	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1338 		struct dentry *ent;
1339 		struct ips_debugfs_node *node = &ips_debug_files[i];
1340 
1341 		node->ips = ips;
1342 		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1343 					  ips->debug_root, node,
1344 					  &ips_debugfs_ops);
1345 		if (!ent) {
1346 			dev_err(&ips->dev->dev,
1347 				"failed to create debug file: %ld\n",
1348 				PTR_ERR(ent));
1349 			goto err_cleanup;
1350 		}
1351 	}
1352 
1353 	return;
1354 
1355 err_cleanup:
1356 	ips_debugfs_cleanup(ips);
1357 	return;
1358 }
1359 #endif /* CONFIG_DEBUG_FS */
1360 
1361 /**
1362  * ips_detect_cpu - detect whether CPU supports IPS
1363  *
1364  * Walk our list and see if we're on a supported CPU.  If we find one,
1365  * return the limits for it.
1366  */
1367 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1368 {
1369 	u64 turbo_power, misc_en;
1370 	struct ips_mcp_limits *limits = NULL;
1371 	u16 tdp;
1372 
1373 	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1374 		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1375 		goto out;
1376 	}
1377 
1378 	rdmsrl(IA32_MISC_ENABLE, misc_en);
1379 	/*
1380 	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1381 	 * turbo manually or we'll get an illegal MSR access, even though
1382 	 * turbo will still be available.
1383 	 */
1384 	if (misc_en & IA32_MISC_TURBO_EN)
1385 		ips->turbo_toggle_allowed = true;
1386 	else
1387 		ips->turbo_toggle_allowed = false;
1388 
1389 	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1390 		limits = &ips_sv_limits;
1391 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1392 		limits = &ips_lv_limits;
1393 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1394 		limits = &ips_ulv_limits;
1395 	else {
1396 		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1397 		goto out;
1398 	}
1399 
1400 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1401 	tdp = turbo_power & TURBO_TDP_MASK;
1402 
1403 	/* Sanity check TDP against CPU */
1404 	if (limits->core_power_limit != (tdp / 8) * 1000) {
1405 		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1406 			 tdp / 8, limits->core_power_limit / 1000);
1407 		limits->core_power_limit = (tdp / 8) * 1000;
1408 	}
1409 
1410 out:
1411 	return limits;
1412 }
1413 
1414 /**
1415  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1416  * @ips: IPS driver
1417  *
1418  * The i915 driver exports several interfaces to allow the IPS driver to
1419  * monitor and control graphics turbo mode.  If we can find them, we can
1420  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1421  * thermal and power limits in the MCP.
1422  */
1423 static bool ips_get_i915_syms(struct ips_driver *ips)
1424 {
1425 	ips->read_mch_val = symbol_get(i915_read_mch_val);
1426 	if (!ips->read_mch_val)
1427 		goto out_err;
1428 	ips->gpu_raise = symbol_get(i915_gpu_raise);
1429 	if (!ips->gpu_raise)
1430 		goto out_put_mch;
1431 	ips->gpu_lower = symbol_get(i915_gpu_lower);
1432 	if (!ips->gpu_lower)
1433 		goto out_put_raise;
1434 	ips->gpu_busy = symbol_get(i915_gpu_busy);
1435 	if (!ips->gpu_busy)
1436 		goto out_put_lower;
1437 	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1438 	if (!ips->gpu_turbo_disable)
1439 		goto out_put_busy;
1440 
1441 	return true;
1442 
1443 out_put_busy:
1444 	symbol_put(i915_gpu_busy);
1445 out_put_lower:
1446 	symbol_put(i915_gpu_lower);
1447 out_put_raise:
1448 	symbol_put(i915_gpu_raise);
1449 out_put_mch:
1450 	symbol_put(i915_read_mch_val);
1451 out_err:
1452 	return false;
1453 }
1454 
1455 static bool
1456 ips_gpu_turbo_enabled(struct ips_driver *ips)
1457 {
1458 	if (!ips->gpu_busy && late_i915_load) {
1459 		if (ips_get_i915_syms(ips)) {
1460 			dev_info(&ips->dev->dev,
1461 				 "i915 driver attached, reenabling gpu turbo\n");
1462 			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1463 		}
1464 	}
1465 
1466 	return ips->gpu_turbo_enabled;
1467 }
1468 
1469 void
1470 ips_link_to_i915_driver(void)
1471 {
1472 	/* We can't cleanly get at the various ips_driver structs from
1473 	 * this caller (the i915 driver), so just set a flag saying
1474 	 * that it's time to try getting the symbols again.
1475 	 */
1476 	late_i915_load = true;
1477 }
1478 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1479 
1480 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1481 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1482 		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1483 	{ 0, }
1484 };
1485 
1486 MODULE_DEVICE_TABLE(pci, ips_id_table);
1487 
1488 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1489 {
1490 	u64 platform_info;
1491 	struct ips_driver *ips;
1492 	u32 hts;
1493 	int ret = 0;
1494 	u16 htshi, trc, trc_required_mask;
1495 	u8 tse;
1496 
1497 	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1498 	if (!ips)
1499 		return -ENOMEM;
1500 
1501 	pci_set_drvdata(dev, ips);
1502 	ips->dev = dev;
1503 
1504 	ips->limits = ips_detect_cpu(ips);
1505 	if (!ips->limits) {
1506 		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1507 		ret = -ENXIO;
1508 		goto error_free;
1509 	}
1510 
1511 	spin_lock_init(&ips->turbo_status_lock);
1512 
1513 	ret = pci_enable_device(dev);
1514 	if (ret) {
1515 		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1516 		goto error_free;
1517 	}
1518 
1519 	if (!pci_resource_start(dev, 0)) {
1520 		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1521 		ret = -ENXIO;
1522 		goto error_free;
1523 	}
1524 
1525 	ret = pci_request_regions(dev, "ips thermal sensor");
1526 	if (ret) {
1527 		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1528 		goto error_free;
1529 	}
1530 
1531 
1532 	ips->regmap = ioremap(pci_resource_start(dev, 0),
1533 			      pci_resource_len(dev, 0));
1534 	if (!ips->regmap) {
1535 		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1536 		ret = -EBUSY;
1537 		goto error_release;
1538 	}
1539 
1540 	tse = thm_readb(THM_TSE);
1541 	if (tse != TSE_EN) {
1542 		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1543 		ret = -ENXIO;
1544 		goto error_unmap;
1545 	}
1546 
1547 	trc = thm_readw(THM_TRC);
1548 	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1549 	if ((trc & trc_required_mask) != trc_required_mask) {
1550 		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1551 		ret = -ENXIO;
1552 		goto error_unmap;
1553 	}
1554 
1555 	if (trc & TRC_CORE2_EN)
1556 		ips->second_cpu = true;
1557 
1558 	update_turbo_limits(ips);
1559 	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1560 		ips->mcp_power_limit / 10);
1561 	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1562 		ips->core_power_limit / 10);
1563 	/* BIOS may update limits at runtime */
1564 	if (thm_readl(THM_PSC) & PSP_PBRT)
1565 		ips->poll_turbo_status = true;
1566 
1567 	if (!ips_get_i915_syms(ips)) {
1568 		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1569 		ips->gpu_turbo_enabled = false;
1570 	} else {
1571 		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1572 		ips->gpu_turbo_enabled = true;
1573 	}
1574 
1575 	/*
1576 	 * Check PLATFORM_INFO MSR to make sure this chip is
1577 	 * turbo capable.
1578 	 */
1579 	rdmsrl(PLATFORM_INFO, platform_info);
1580 	if (!(platform_info & PLATFORM_TDP)) {
1581 		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1582 		ret = -ENODEV;
1583 		goto error_unmap;
1584 	}
1585 
1586 	/*
1587 	 * IRQ handler for ME interaction
1588 	 * Note: don't use MSI here as the PCH has bugs.
1589 	 */
1590 	pci_disable_msi(dev);
1591 	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1592 			  ips);
1593 	if (ret) {
1594 		dev_err(&dev->dev, "request irq failed, aborting\n");
1595 		goto error_unmap;
1596 	}
1597 
1598 	/* Enable aux, hot & critical interrupts */
1599 	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1600 		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1601 	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1602 
1603 	/* Collect adjustment values */
1604 	ips->cta_val = thm_readw(THM_CTA);
1605 	ips->pta_val = thm_readw(THM_PTA);
1606 	ips->mgta_val = thm_readw(THM_MGTA);
1607 
1608 	/* Save turbo limits & ratios */
1609 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1610 
1611 	ips_disable_cpu_turbo(ips);
1612 	ips->cpu_turbo_enabled = false;
1613 
1614 	/* Create thermal adjust thread */
1615 	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1616 	if (IS_ERR(ips->adjust)) {
1617 		dev_err(&dev->dev,
1618 			"failed to create thermal adjust thread, aborting\n");
1619 		ret = -ENOMEM;
1620 		goto error_free_irq;
1621 
1622 	}
1623 
1624 	/*
1625 	 * Set up the work queue and monitor thread. The monitor thread
1626 	 * will wake up ips_adjust thread.
1627 	 */
1628 	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1629 	if (IS_ERR(ips->monitor)) {
1630 		dev_err(&dev->dev,
1631 			"failed to create thermal monitor thread, aborting\n");
1632 		ret = -ENOMEM;
1633 		goto error_thread_cleanup;
1634 	}
1635 
1636 	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1637 		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1638 	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1639 
1640 	thm_writew(THM_HTSHI, htshi);
1641 	thm_writel(THM_HTS, hts);
1642 
1643 	ips_debugfs_init(ips);
1644 
1645 	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1646 		 ips->mcp_temp_limit);
1647 	return ret;
1648 
1649 error_thread_cleanup:
1650 	kthread_stop(ips->adjust);
1651 error_free_irq:
1652 	free_irq(ips->dev->irq, ips);
1653 error_unmap:
1654 	iounmap(ips->regmap);
1655 error_release:
1656 	pci_release_regions(dev);
1657 error_free:
1658 	kfree(ips);
1659 	return ret;
1660 }
1661 
1662 static void ips_remove(struct pci_dev *dev)
1663 {
1664 	struct ips_driver *ips = pci_get_drvdata(dev);
1665 	u64 turbo_override;
1666 
1667 	if (!ips)
1668 		return;
1669 
1670 	ips_debugfs_cleanup(ips);
1671 
1672 	/* Release i915 driver */
1673 	if (ips->read_mch_val)
1674 		symbol_put(i915_read_mch_val);
1675 	if (ips->gpu_raise)
1676 		symbol_put(i915_gpu_raise);
1677 	if (ips->gpu_lower)
1678 		symbol_put(i915_gpu_lower);
1679 	if (ips->gpu_busy)
1680 		symbol_put(i915_gpu_busy);
1681 	if (ips->gpu_turbo_disable)
1682 		symbol_put(i915_gpu_turbo_disable);
1683 
1684 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1685 	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1686 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1687 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1688 
1689 	free_irq(ips->dev->irq, ips);
1690 	if (ips->adjust)
1691 		kthread_stop(ips->adjust);
1692 	if (ips->monitor)
1693 		kthread_stop(ips->monitor);
1694 	iounmap(ips->regmap);
1695 	pci_release_regions(dev);
1696 	kfree(ips);
1697 	dev_dbg(&dev->dev, "IPS driver removed\n");
1698 }
1699 
1700 #ifdef CONFIG_PM
1701 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1702 {
1703 	return 0;
1704 }
1705 
1706 static int ips_resume(struct pci_dev *dev)
1707 {
1708 	return 0;
1709 }
1710 #else
1711 #define ips_suspend NULL
1712 #define ips_resume NULL
1713 #endif /* CONFIG_PM */
1714 
1715 static void ips_shutdown(struct pci_dev *dev)
1716 {
1717 }
1718 
1719 static struct pci_driver ips_pci_driver = {
1720 	.name = "intel ips",
1721 	.id_table = ips_id_table,
1722 	.probe = ips_probe,
1723 	.remove = ips_remove,
1724 	.suspend = ips_suspend,
1725 	.resume = ips_resume,
1726 	.shutdown = ips_shutdown,
1727 };
1728 
1729 static int __init ips_init(void)
1730 {
1731 	return pci_register_driver(&ips_pci_driver);
1732 }
1733 module_init(ips_init);
1734 
1735 static void ips_exit(void)
1736 {
1737 	pci_unregister_driver(&ips_pci_driver);
1738 	return;
1739 }
1740 module_exit(ips_exit);
1741 
1742 MODULE_LICENSE("GPL");
1743 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1744 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1745