1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2009-2010 Intel Corporation
4 *
5 * Authors:
6 * Jesse Barnes <jbarnes@virtuousgeek.org>
7 */
8
9 /*
10 * Some Intel Ibex Peak based platforms support so-called "intelligent
11 * power sharing", which allows the CPU and GPU to cooperate to maximize
12 * performance within a given TDP (thermal design point). This driver
13 * performs the coordination between the CPU and GPU, monitors thermal and
14 * power statistics in the platform, and initializes power monitoring
15 * hardware. It also provides a few tunables to control behavior. Its
16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
17 * by tracking power and thermal budget; secondarily it can boost turbo
18 * performance by allocating more power or thermal budget to the CPU or GPU
19 * based on available headroom and activity.
20 *
21 * The basic algorithm is driven by a 5s moving average of temperature. If
22 * thermal headroom is available, the CPU and/or GPU power clamps may be
23 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
24 * we scale back the clamp. Aside from trigger events (when we're critically
25 * close or over our TDP) we don't adjust the clamps more than once every
26 * five seconds.
27 *
28 * The thermal device (device 31, function 6) has a set of registers that
29 * are updated by the ME firmware. The ME should also take the clamp values
30 * written to those registers and write them to the CPU, but we currently
31 * bypass that functionality and write the CPU MSR directly.
32 *
33 * UNSUPPORTED:
34 * - dual MCP configs
35 *
36 * TODO:
37 * - handle CPU hotplug
38 * - provide turbo enable/disable api
39 *
40 * Related documents:
41 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
42 * - CDI 401376 - Ibex Peak EDS
43 * - ref 26037, 26641 - IPS BIOS spec
44 * - ref 26489 - Nehalem BIOS writer's guide
45 * - ref 26921 - Ibex Peak BIOS Specification
46 */
47
48 #include <linux/debugfs.h>
49 #include <linux/delay.h>
50 #include <linux/interrupt.h>
51 #include <linux/kernel.h>
52 #include <linux/kthread.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/sched.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/seq_file.h>
58 #include <linux/string.h>
59 #include <linux/tick.h>
60 #include <linux/timer.h>
61 #include <linux/dmi.h>
62 #include <drm/i915_drm.h>
63 #include <asm/msr.h>
64 #include <asm/processor.h>
65 #include "intel_ips.h"
66
67 #include <linux/io-64-nonatomic-lo-hi.h>
68
69 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
70
71 /*
72 * Package level MSRs for monitor/control
73 */
74 #define PLATFORM_INFO 0xce
75 #define PLATFORM_TDP (1<<29)
76 #define PLATFORM_RATIO (1<<28)
77
78 #define IA32_MISC_ENABLE 0x1a0
79 #define IA32_MISC_TURBO_EN (1ULL<<38)
80
81 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
82 #define TURBO_TDC_OVR_EN (1UL<<31)
83 #define TURBO_TDC_MASK (0x000000007fff0000UL)
84 #define TURBO_TDC_SHIFT (16)
85 #define TURBO_TDP_OVR_EN (1UL<<15)
86 #define TURBO_TDP_MASK (0x0000000000003fffUL)
87
88 /*
89 * Core/thread MSRs for monitoring
90 */
91 #define IA32_PERF_CTL 0x199
92 #define IA32_PERF_TURBO_DIS (1ULL<<32)
93
94 /*
95 * Thermal PCI device regs
96 */
97 #define THM_CFG_TBAR 0x10
98 #define THM_CFG_TBAR_HI 0x14
99
100 #define THM_TSIU 0x00
101 #define THM_TSE 0x01
102 #define TSE_EN 0xb8
103 #define THM_TSS 0x02
104 #define THM_TSTR 0x03
105 #define THM_TSTTP 0x04
106 #define THM_TSCO 0x08
107 #define THM_TSES 0x0c
108 #define THM_TSGPEN 0x0d
109 #define TSGPEN_HOT_LOHI (1<<1)
110 #define TSGPEN_CRIT_LOHI (1<<2)
111 #define THM_TSPC 0x0e
112 #define THM_PPEC 0x10
113 #define THM_CTA 0x12
114 #define THM_PTA 0x14
115 #define PTA_SLOPE_MASK (0xff00)
116 #define PTA_SLOPE_SHIFT 8
117 #define PTA_OFFSET_MASK (0x00ff)
118 #define THM_MGTA 0x16
119 #define MGTA_SLOPE_MASK (0xff00)
120 #define MGTA_SLOPE_SHIFT 8
121 #define MGTA_OFFSET_MASK (0x00ff)
122 #define THM_TRC 0x1a
123 #define TRC_CORE2_EN (1<<15)
124 #define TRC_THM_EN (1<<12)
125 #define TRC_C6_WAR (1<<8)
126 #define TRC_CORE1_EN (1<<7)
127 #define TRC_CORE_PWR (1<<6)
128 #define TRC_PCH_EN (1<<5)
129 #define TRC_MCH_EN (1<<4)
130 #define TRC_DIMM4 (1<<3)
131 #define TRC_DIMM3 (1<<2)
132 #define TRC_DIMM2 (1<<1)
133 #define TRC_DIMM1 (1<<0)
134 #define THM_TES 0x20
135 #define THM_TEN 0x21
136 #define TEN_UPDATE_EN 1
137 #define THM_PSC 0x24
138 #define PSC_NTG (1<<0) /* No GFX turbo support */
139 #define PSC_NTPC (1<<1) /* No CPU turbo support */
140 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
141 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
142 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
143 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
144 #define PSP_PBRT (1<<4) /* BIOS run time support */
145 #define THM_CTV1 0x30
146 #define CTV_TEMP_ERROR (1<<15)
147 #define CTV_TEMP_MASK 0x3f
148 #define CTV_
149 #define THM_CTV2 0x32
150 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
151 #define THM_AE 0x3f
152 #define THM_HTS 0x50 /* 32 bits */
153 #define HTS_PCPL_MASK (0x7fe00000)
154 #define HTS_PCPL_SHIFT 21
155 #define HTS_GPL_MASK (0x001ff000)
156 #define HTS_GPL_SHIFT 12
157 #define HTS_PP_MASK (0x00000c00)
158 #define HTS_PP_SHIFT 10
159 #define HTS_PP_DEF 0
160 #define HTS_PP_PROC 1
161 #define HTS_PP_BAL 2
162 #define HTS_PP_GFX 3
163 #define HTS_PCTD_DIS (1<<9)
164 #define HTS_GTD_DIS (1<<8)
165 #define HTS_PTL_MASK (0x000000fe)
166 #define HTS_PTL_SHIFT 1
167 #define HTS_NVV (1<<0)
168 #define THM_HTSHI 0x54 /* 16 bits */
169 #define HTS2_PPL_MASK (0x03ff)
170 #define HTS2_PRST_MASK (0x3c00)
171 #define HTS2_PRST_SHIFT 10
172 #define HTS2_PRST_UNLOADED 0
173 #define HTS2_PRST_RUNNING 1
174 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
175 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
176 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
177 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
178 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
179 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
180 #define THM_PTL 0x56
181 #define THM_MGTV 0x58
182 #define TV_MASK 0x000000000000ff00
183 #define TV_SHIFT 8
184 #define THM_PTV 0x60
185 #define PTV_MASK 0x00ff
186 #define THM_MMGPC 0x64
187 #define THM_MPPC 0x66
188 #define THM_MPCPC 0x68
189 #define THM_TSPIEN 0x82
190 #define TSPIEN_AUX_LOHI (1<<0)
191 #define TSPIEN_HOT_LOHI (1<<1)
192 #define TSPIEN_CRIT_LOHI (1<<2)
193 #define TSPIEN_AUX2_LOHI (1<<3)
194 #define THM_TSLOCK 0x83
195 #define THM_ATR 0x84
196 #define THM_TOF 0x87
197 #define THM_STS 0x98
198 #define STS_PCPL_MASK (0x7fe00000)
199 #define STS_PCPL_SHIFT 21
200 #define STS_GPL_MASK (0x001ff000)
201 #define STS_GPL_SHIFT 12
202 #define STS_PP_MASK (0x00000c00)
203 #define STS_PP_SHIFT 10
204 #define STS_PP_DEF 0
205 #define STS_PP_PROC 1
206 #define STS_PP_BAL 2
207 #define STS_PP_GFX 3
208 #define STS_PCTD_DIS (1<<9)
209 #define STS_GTD_DIS (1<<8)
210 #define STS_PTL_MASK (0x000000fe)
211 #define STS_PTL_SHIFT 1
212 #define STS_NVV (1<<0)
213 #define THM_SEC 0x9c
214 #define SEC_ACK (1<<0)
215 #define THM_TC3 0xa4
216 #define THM_TC1 0xa8
217 #define STS_PPL_MASK (0x0003ff00)
218 #define STS_PPL_SHIFT 16
219 #define THM_TC2 0xac
220 #define THM_DTV 0xb0
221 #define THM_ITV 0xd8
222 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
223 #define ITV_ME_SEQNO_SHIFT (16)
224 #define ITV_MCH_TEMP_MASK 0x0000ff00
225 #define ITV_MCH_TEMP_SHIFT (8)
226 #define ITV_PCH_TEMP_MASK 0x000000ff
227
228 #define thm_readb(off) readb(ips->regmap + (off))
229 #define thm_readw(off) readw(ips->regmap + (off))
230 #define thm_readl(off) readl(ips->regmap + (off))
231 #define thm_readq(off) readq(ips->regmap + (off))
232
233 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
234 #define thm_writew(off, val) writew((val), ips->regmap + (off))
235 #define thm_writel(off, val) writel((val), ips->regmap + (off))
236
237 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
238 static bool late_i915_load = false;
239
240 /* For initial average collection */
241 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
242 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
243 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
244
245 /* Per-SKU limits */
246 struct ips_mcp_limits {
247 int mcp_power_limit; /* mW units */
248 int core_power_limit;
249 int mch_power_limit;
250 int core_temp_limit; /* degrees C */
251 int mch_temp_limit;
252 };
253
254 /* Max temps are -10 degrees C to avoid PROCHOT# */
255
256 static struct ips_mcp_limits ips_sv_limits = {
257 .mcp_power_limit = 35000,
258 .core_power_limit = 29000,
259 .mch_power_limit = 20000,
260 .core_temp_limit = 95,
261 .mch_temp_limit = 90
262 };
263
264 static struct ips_mcp_limits ips_lv_limits = {
265 .mcp_power_limit = 25000,
266 .core_power_limit = 21000,
267 .mch_power_limit = 13000,
268 .core_temp_limit = 95,
269 .mch_temp_limit = 90
270 };
271
272 static struct ips_mcp_limits ips_ulv_limits = {
273 .mcp_power_limit = 18000,
274 .core_power_limit = 14000,
275 .mch_power_limit = 11000,
276 .core_temp_limit = 95,
277 .mch_temp_limit = 90
278 };
279
280 struct ips_driver {
281 struct device *dev;
282 void __iomem *regmap;
283 int irq;
284
285 struct task_struct *monitor;
286 struct task_struct *adjust;
287 struct dentry *debug_root;
288 struct timer_list timer;
289
290 /* Average CPU core temps (all averages in .01 degrees C for precision) */
291 u16 ctv1_avg_temp;
292 u16 ctv2_avg_temp;
293 /* GMCH average */
294 u16 mch_avg_temp;
295 /* Average for the CPU (both cores?) */
296 u16 mcp_avg_temp;
297 /* Average power consumption (in mW) */
298 u32 cpu_avg_power;
299 u32 mch_avg_power;
300
301 /* Offset values */
302 u16 cta_val;
303 u16 pta_val;
304 u16 mgta_val;
305
306 /* Maximums & prefs, protected by turbo status lock */
307 spinlock_t turbo_status_lock;
308 u16 mcp_temp_limit;
309 u16 mcp_power_limit;
310 u16 core_power_limit;
311 u16 mch_power_limit;
312 bool cpu_turbo_enabled;
313 bool __cpu_turbo_on;
314 bool gpu_turbo_enabled;
315 bool __gpu_turbo_on;
316 bool gpu_preferred;
317 bool poll_turbo_status;
318 bool second_cpu;
319 bool turbo_toggle_allowed;
320 struct ips_mcp_limits *limits;
321
322 /* Optional MCH interfaces for if i915 is in use */
323 unsigned long (*read_mch_val)(void);
324 bool (*gpu_raise)(void);
325 bool (*gpu_lower)(void);
326 bool (*gpu_busy)(void);
327 bool (*gpu_turbo_disable)(void);
328
329 /* For restoration at unload */
330 u64 orig_turbo_limit;
331 u64 orig_turbo_ratios;
332 };
333
334 static bool
335 ips_gpu_turbo_enabled(struct ips_driver *ips);
336
337 /**
338 * ips_cpu_busy - is CPU busy?
339 * @ips: IPS driver struct
340 *
341 * Check CPU for load to see whether we should increase its thermal budget.
342 *
343 * RETURNS:
344 * True if the CPU could use more power, false otherwise.
345 */
ips_cpu_busy(struct ips_driver * ips)346 static bool ips_cpu_busy(struct ips_driver *ips)
347 {
348 if ((avenrun[0] >> FSHIFT) > 1)
349 return true;
350
351 return false;
352 }
353
354 /**
355 * ips_cpu_raise - raise CPU power clamp
356 * @ips: IPS driver struct
357 *
358 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
359 * this platform.
360 *
361 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
362 * long as we haven't hit the TDP limit for the SKU).
363 */
ips_cpu_raise(struct ips_driver * ips)364 static void ips_cpu_raise(struct ips_driver *ips)
365 {
366 u64 turbo_override;
367 u16 cur_tdp_limit, new_tdp_limit;
368
369 if (!ips->cpu_turbo_enabled)
370 return;
371
372 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
373
374 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
375 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
376
377 /* Clamp to SKU TDP limit */
378 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
379 new_tdp_limit = cur_tdp_limit;
380
381 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
382
383 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
384 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
385
386 turbo_override &= ~TURBO_TDP_MASK;
387 turbo_override |= new_tdp_limit;
388
389 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
390 }
391
392 /**
393 * ips_cpu_lower - lower CPU power clamp
394 * @ips: IPS driver struct
395 *
396 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
397 *
398 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
399 * as low as the platform limits will allow (though we could go lower there
400 * wouldn't be much point).
401 */
ips_cpu_lower(struct ips_driver * ips)402 static void ips_cpu_lower(struct ips_driver *ips)
403 {
404 u64 turbo_override;
405 u16 cur_limit, new_limit;
406
407 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
408
409 cur_limit = turbo_override & TURBO_TDP_MASK;
410 new_limit = cur_limit - 8; /* 1W decrease */
411
412 /* Clamp to SKU TDP limit */
413 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
414 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
415
416 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
417
418 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
419 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
420
421 turbo_override &= ~TURBO_TDP_MASK;
422 turbo_override |= new_limit;
423
424 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
425 }
426
427 /**
428 * do_enable_cpu_turbo - internal turbo enable function
429 * @data: unused
430 *
431 * Internal function for actually updating MSRs. When we enable/disable
432 * turbo, we need to do it on each CPU; this function is the one called
433 * by on_each_cpu() when needed.
434 */
do_enable_cpu_turbo(void * data)435 static void do_enable_cpu_turbo(void *data)
436 {
437 u64 perf_ctl;
438
439 rdmsrl(IA32_PERF_CTL, perf_ctl);
440 if (perf_ctl & IA32_PERF_TURBO_DIS) {
441 perf_ctl &= ~IA32_PERF_TURBO_DIS;
442 wrmsrl(IA32_PERF_CTL, perf_ctl);
443 }
444 }
445
446 /**
447 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
448 * @ips: IPS driver struct
449 *
450 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
451 * all logical threads.
452 */
ips_enable_cpu_turbo(struct ips_driver * ips)453 static void ips_enable_cpu_turbo(struct ips_driver *ips)
454 {
455 /* Already on, no need to mess with MSRs */
456 if (ips->__cpu_turbo_on)
457 return;
458
459 if (ips->turbo_toggle_allowed)
460 on_each_cpu(do_enable_cpu_turbo, ips, 1);
461
462 ips->__cpu_turbo_on = true;
463 }
464
465 /**
466 * do_disable_cpu_turbo - internal turbo disable function
467 * @data: unused
468 *
469 * Internal function for actually updating MSRs. When we enable/disable
470 * turbo, we need to do it on each CPU; this function is the one called
471 * by on_each_cpu() when needed.
472 */
do_disable_cpu_turbo(void * data)473 static void do_disable_cpu_turbo(void *data)
474 {
475 u64 perf_ctl;
476
477 rdmsrl(IA32_PERF_CTL, perf_ctl);
478 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
479 perf_ctl |= IA32_PERF_TURBO_DIS;
480 wrmsrl(IA32_PERF_CTL, perf_ctl);
481 }
482 }
483
484 /**
485 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
486 * @ips: IPS driver struct
487 *
488 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
489 * all logical threads.
490 */
ips_disable_cpu_turbo(struct ips_driver * ips)491 static void ips_disable_cpu_turbo(struct ips_driver *ips)
492 {
493 /* Already off, leave it */
494 if (!ips->__cpu_turbo_on)
495 return;
496
497 if (ips->turbo_toggle_allowed)
498 on_each_cpu(do_disable_cpu_turbo, ips, 1);
499
500 ips->__cpu_turbo_on = false;
501 }
502
503 /**
504 * ips_gpu_busy - is GPU busy?
505 * @ips: IPS driver struct
506 *
507 * Check GPU for load to see whether we should increase its thermal budget.
508 * We need to call into the i915 driver in this case.
509 *
510 * RETURNS:
511 * True if the GPU could use more power, false otherwise.
512 */
ips_gpu_busy(struct ips_driver * ips)513 static bool ips_gpu_busy(struct ips_driver *ips)
514 {
515 if (!ips_gpu_turbo_enabled(ips))
516 return false;
517
518 return ips->gpu_busy();
519 }
520
521 /**
522 * ips_gpu_raise - raise GPU power clamp
523 * @ips: IPS driver struct
524 *
525 * Raise the GPU frequency/power if possible. We need to call into the
526 * i915 driver in this case.
527 */
ips_gpu_raise(struct ips_driver * ips)528 static void ips_gpu_raise(struct ips_driver *ips)
529 {
530 if (!ips_gpu_turbo_enabled(ips))
531 return;
532
533 if (!ips->gpu_raise())
534 ips->gpu_turbo_enabled = false;
535
536 return;
537 }
538
539 /**
540 * ips_gpu_lower - lower GPU power clamp
541 * @ips: IPS driver struct
542 *
543 * Lower GPU frequency/power if possible. Need to call i915.
544 */
ips_gpu_lower(struct ips_driver * ips)545 static void ips_gpu_lower(struct ips_driver *ips)
546 {
547 if (!ips_gpu_turbo_enabled(ips))
548 return;
549
550 if (!ips->gpu_lower())
551 ips->gpu_turbo_enabled = false;
552
553 return;
554 }
555
556 /**
557 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
558 * @ips: IPS driver struct
559 *
560 * Call into the graphics driver indicating that it can safely use
561 * turbo mode.
562 */
ips_enable_gpu_turbo(struct ips_driver * ips)563 static void ips_enable_gpu_turbo(struct ips_driver *ips)
564 {
565 if (ips->__gpu_turbo_on)
566 return;
567 ips->__gpu_turbo_on = true;
568 }
569
570 /**
571 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
572 * @ips: IPS driver struct
573 *
574 * Request that the graphics driver disable turbo mode.
575 */
ips_disable_gpu_turbo(struct ips_driver * ips)576 static void ips_disable_gpu_turbo(struct ips_driver *ips)
577 {
578 /* Avoid calling i915 if turbo is already disabled */
579 if (!ips->__gpu_turbo_on)
580 return;
581
582 if (!ips->gpu_turbo_disable())
583 dev_err(ips->dev, "failed to disable graphics turbo\n");
584 else
585 ips->__gpu_turbo_on = false;
586 }
587
588 /**
589 * mcp_exceeded - check whether we're outside our thermal & power limits
590 * @ips: IPS driver struct
591 *
592 * Check whether the MCP is over its thermal or power budget.
593 */
mcp_exceeded(struct ips_driver * ips)594 static bool mcp_exceeded(struct ips_driver *ips)
595 {
596 unsigned long flags;
597 bool ret = false;
598 u32 temp_limit;
599 u32 avg_power;
600
601 spin_lock_irqsave(&ips->turbo_status_lock, flags);
602
603 temp_limit = ips->mcp_temp_limit * 100;
604 if (ips->mcp_avg_temp > temp_limit)
605 ret = true;
606
607 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
608 if (avg_power > ips->mcp_power_limit)
609 ret = true;
610
611 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
612
613 return ret;
614 }
615
616 /**
617 * cpu_exceeded - check whether a CPU core is outside its limits
618 * @ips: IPS driver struct
619 * @cpu: CPU number to check
620 *
621 * Check a given CPU's average temp or power is over its limit.
622 */
cpu_exceeded(struct ips_driver * ips,int cpu)623 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
624 {
625 unsigned long flags;
626 int avg;
627 bool ret = false;
628
629 spin_lock_irqsave(&ips->turbo_status_lock, flags);
630 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
631 if (avg > (ips->limits->core_temp_limit * 100))
632 ret = true;
633 if (ips->cpu_avg_power > ips->core_power_limit * 100)
634 ret = true;
635 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
636
637 if (ret)
638 dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
639
640 return ret;
641 }
642
643 /**
644 * mch_exceeded - check whether the GPU is over budget
645 * @ips: IPS driver struct
646 *
647 * Check the MCH temp & power against their maximums.
648 */
mch_exceeded(struct ips_driver * ips)649 static bool mch_exceeded(struct ips_driver *ips)
650 {
651 unsigned long flags;
652 bool ret = false;
653
654 spin_lock_irqsave(&ips->turbo_status_lock, flags);
655 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
656 ret = true;
657 if (ips->mch_avg_power > ips->mch_power_limit)
658 ret = true;
659 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
660
661 return ret;
662 }
663
664 /**
665 * verify_limits - verify BIOS provided limits
666 * @ips: IPS structure
667 *
668 * BIOS can optionally provide non-default limits for power and temp. Check
669 * them here and use the defaults if the BIOS values are not provided or
670 * are otherwise unusable.
671 */
verify_limits(struct ips_driver * ips)672 static void verify_limits(struct ips_driver *ips)
673 {
674 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
675 ips->mcp_power_limit > 35000)
676 ips->mcp_power_limit = ips->limits->mcp_power_limit;
677
678 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
679 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
680 ips->mcp_temp_limit > 150)
681 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
682 ips->limits->mch_temp_limit);
683 }
684
685 /**
686 * update_turbo_limits - get various limits & settings from regs
687 * @ips: IPS driver struct
688 *
689 * Update the IPS power & temp limits, along with turbo enable flags,
690 * based on latest register contents.
691 *
692 * Used at init time and for runtime BIOS support, which requires polling
693 * the regs for updates (as a result of AC->DC transition for example).
694 *
695 * LOCKING:
696 * Caller must hold turbo_status_lock (outside of init)
697 */
update_turbo_limits(struct ips_driver * ips)698 static void update_turbo_limits(struct ips_driver *ips)
699 {
700 u32 hts = thm_readl(THM_HTS);
701
702 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
703 /*
704 * Disable turbo for now, until we can figure out why the power figures
705 * are wrong
706 */
707 ips->cpu_turbo_enabled = false;
708
709 if (ips->gpu_busy)
710 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
711
712 ips->core_power_limit = thm_readw(THM_MPCPC);
713 ips->mch_power_limit = thm_readw(THM_MMGPC);
714 ips->mcp_temp_limit = thm_readw(THM_PTL);
715 ips->mcp_power_limit = thm_readw(THM_MPPC);
716
717 verify_limits(ips);
718 /* Ignore BIOS CPU vs GPU pref */
719 }
720
721 /**
722 * ips_adjust - adjust power clamp based on thermal state
723 * @data: ips driver structure
724 *
725 * Wake up every 5s or so and check whether we should adjust the power clamp.
726 * Check CPU and GPU load to determine which needs adjustment. There are
727 * several things to consider here:
728 * - do we need to adjust up or down?
729 * - is CPU busy?
730 * - is GPU busy?
731 * - is CPU in turbo?
732 * - is GPU in turbo?
733 * - is CPU or GPU preferred? (CPU is default)
734 *
735 * So, given the above, we do the following:
736 * - up (TDP available)
737 * - CPU not busy, GPU not busy - nothing
738 * - CPU busy, GPU not busy - adjust CPU up
739 * - CPU not busy, GPU busy - adjust GPU up
740 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
741 * non-preferred unit if necessary
742 * - down (at TDP limit)
743 * - adjust both CPU and GPU down if possible
744 *
745 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
746 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
747 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
748 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
749 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
750 *
751 */
ips_adjust(void * data)752 static int ips_adjust(void *data)
753 {
754 struct ips_driver *ips = data;
755 unsigned long flags;
756
757 dev_dbg(ips->dev, "starting ips-adjust thread\n");
758
759 /*
760 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
761 * often isn't recommended due to ME interaction.
762 */
763 do {
764 bool cpu_busy = ips_cpu_busy(ips);
765 bool gpu_busy = ips_gpu_busy(ips);
766
767 spin_lock_irqsave(&ips->turbo_status_lock, flags);
768 if (ips->poll_turbo_status)
769 update_turbo_limits(ips);
770 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
771
772 /* Update turbo status if necessary */
773 if (ips->cpu_turbo_enabled)
774 ips_enable_cpu_turbo(ips);
775 else
776 ips_disable_cpu_turbo(ips);
777
778 if (ips->gpu_turbo_enabled)
779 ips_enable_gpu_turbo(ips);
780 else
781 ips_disable_gpu_turbo(ips);
782
783 /* We're outside our comfort zone, crank them down */
784 if (mcp_exceeded(ips)) {
785 ips_cpu_lower(ips);
786 ips_gpu_lower(ips);
787 goto sleep;
788 }
789
790 if (!cpu_exceeded(ips, 0) && cpu_busy)
791 ips_cpu_raise(ips);
792 else
793 ips_cpu_lower(ips);
794
795 if (!mch_exceeded(ips) && gpu_busy)
796 ips_gpu_raise(ips);
797 else
798 ips_gpu_lower(ips);
799
800 sleep:
801 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
802 } while (!kthread_should_stop());
803
804 dev_dbg(ips->dev, "ips-adjust thread stopped\n");
805
806 return 0;
807 }
808
809 /*
810 * Helpers for reading out temp/power values and calculating their
811 * averages for the decision making and monitoring functions.
812 */
813
calc_avg_temp(struct ips_driver * ips,u16 * array)814 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
815 {
816 u64 total = 0;
817 int i;
818 u16 avg;
819
820 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
821 total += (u64)(array[i] * 100);
822
823 do_div(total, IPS_SAMPLE_COUNT);
824
825 avg = (u16)total;
826
827 return avg;
828 }
829
read_mgtv(struct ips_driver * ips)830 static u16 read_mgtv(struct ips_driver *ips)
831 {
832 u16 __maybe_unused ret;
833 u64 slope, offset;
834 u64 val;
835
836 val = thm_readq(THM_MGTV);
837 val = (val & TV_MASK) >> TV_SHIFT;
838
839 slope = offset = thm_readw(THM_MGTA);
840 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
841 offset = offset & MGTA_OFFSET_MASK;
842
843 ret = ((val * slope + 0x40) >> 7) + offset;
844
845 return 0; /* MCH temp reporting buggy */
846 }
847
read_ptv(struct ips_driver * ips)848 static u16 read_ptv(struct ips_driver *ips)
849 {
850 u16 val;
851
852 val = thm_readw(THM_PTV) & PTV_MASK;
853
854 return val;
855 }
856
read_ctv(struct ips_driver * ips,int cpu)857 static u16 read_ctv(struct ips_driver *ips, int cpu)
858 {
859 int reg = cpu ? THM_CTV2 : THM_CTV1;
860 u16 val;
861
862 val = thm_readw(reg);
863 if (!(val & CTV_TEMP_ERROR))
864 val = (val) >> 6; /* discard fractional component */
865 else
866 val = 0;
867
868 return val;
869 }
870
get_cpu_power(struct ips_driver * ips,u32 * last,int period)871 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
872 {
873 u32 val;
874 u32 ret;
875
876 /*
877 * CEC is in joules/65535. Take difference over time to
878 * get watts.
879 */
880 val = thm_readl(THM_CEC);
881
882 /* period is in ms and we want mW */
883 ret = (((val - *last) * 1000) / period);
884 ret = (ret * 1000) / 65535;
885 *last = val;
886
887 return 0;
888 }
889
890 static const u16 temp_decay_factor = 2;
update_average_temp(u16 avg,u16 val)891 static u16 update_average_temp(u16 avg, u16 val)
892 {
893 u16 ret;
894
895 /* Multiply by 100 for extra precision */
896 ret = (val * 100 / temp_decay_factor) +
897 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
898 return ret;
899 }
900
901 static const u16 power_decay_factor = 2;
update_average_power(u32 avg,u32 val)902 static u16 update_average_power(u32 avg, u32 val)
903 {
904 u32 ret;
905
906 ret = (val / power_decay_factor) +
907 (((power_decay_factor - 1) * avg) / power_decay_factor);
908
909 return ret;
910 }
911
calc_avg_power(struct ips_driver * ips,u32 * array)912 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
913 {
914 u64 total = 0;
915 u32 avg;
916 int i;
917
918 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
919 total += array[i];
920
921 do_div(total, IPS_SAMPLE_COUNT);
922 avg = (u32)total;
923
924 return avg;
925 }
926
monitor_timeout(struct timer_list * t)927 static void monitor_timeout(struct timer_list *t)
928 {
929 struct ips_driver *ips = from_timer(ips, t, timer);
930 wake_up_process(ips->monitor);
931 }
932
933 /**
934 * ips_monitor - temp/power monitoring thread
935 * @data: ips driver structure
936 *
937 * This is the main function for the IPS driver. It monitors power and
938 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
939 *
940 * We keep a 5s moving average of power consumption and tempurature. Using
941 * that data, along with CPU vs GPU preference, we adjust the power clamps
942 * up or down.
943 */
ips_monitor(void * data)944 static int ips_monitor(void *data)
945 {
946 struct ips_driver *ips = data;
947 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
948 int i;
949 u32 *cpu_samples, *mchp_samples, old_cpu_power;
950 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
951 u8 cur_seqno, last_seqno;
952
953 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
954 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
955 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
956 mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
957 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
958 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
959 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
960 !cpu_samples || !mchp_samples) {
961 dev_err(ips->dev,
962 "failed to allocate sample array, ips disabled\n");
963 kfree(mcp_samples);
964 kfree(ctv1_samples);
965 kfree(ctv2_samples);
966 kfree(mch_samples);
967 kfree(cpu_samples);
968 kfree(mchp_samples);
969 return -ENOMEM;
970 }
971
972 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
973 ITV_ME_SEQNO_SHIFT;
974 seqno_timestamp = get_jiffies_64();
975
976 old_cpu_power = thm_readl(THM_CEC);
977 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
978
979 /* Collect an initial average */
980 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
981 u32 mchp, cpu_power;
982 u16 val;
983
984 mcp_samples[i] = read_ptv(ips);
985
986 val = read_ctv(ips, 0);
987 ctv1_samples[i] = val;
988
989 val = read_ctv(ips, 1);
990 ctv2_samples[i] = val;
991
992 val = read_mgtv(ips);
993 mch_samples[i] = val;
994
995 cpu_power = get_cpu_power(ips, &old_cpu_power,
996 IPS_SAMPLE_PERIOD);
997 cpu_samples[i] = cpu_power;
998
999 if (ips->read_mch_val) {
1000 mchp = ips->read_mch_val();
1001 mchp_samples[i] = mchp;
1002 }
1003
1004 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1005 if (kthread_should_stop())
1006 break;
1007 }
1008
1009 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1010 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1011 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1012 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1013 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1014 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1015 kfree(mcp_samples);
1016 kfree(ctv1_samples);
1017 kfree(ctv2_samples);
1018 kfree(mch_samples);
1019 kfree(cpu_samples);
1020 kfree(mchp_samples);
1021
1022 /* Start the adjustment thread now that we have data */
1023 wake_up_process(ips->adjust);
1024
1025 /*
1026 * Ok, now we have an initial avg. From here on out, we track the
1027 * running avg using a decaying average calculation. This allows
1028 * us to reduce the sample frequency if the CPU and GPU are idle.
1029 */
1030 old_cpu_power = thm_readl(THM_CEC);
1031 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1032 last_sample_period = IPS_SAMPLE_PERIOD;
1033
1034 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1035 do {
1036 u32 cpu_val, mch_val;
1037 u16 val;
1038
1039 /* MCP itself */
1040 val = read_ptv(ips);
1041 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1042
1043 /* Processor 0 */
1044 val = read_ctv(ips, 0);
1045 ips->ctv1_avg_temp =
1046 update_average_temp(ips->ctv1_avg_temp, val);
1047 /* Power */
1048 cpu_val = get_cpu_power(ips, &old_cpu_power,
1049 last_sample_period);
1050 ips->cpu_avg_power =
1051 update_average_power(ips->cpu_avg_power, cpu_val);
1052
1053 if (ips->second_cpu) {
1054 /* Processor 1 */
1055 val = read_ctv(ips, 1);
1056 ips->ctv2_avg_temp =
1057 update_average_temp(ips->ctv2_avg_temp, val);
1058 }
1059
1060 /* MCH */
1061 val = read_mgtv(ips);
1062 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1063 /* Power */
1064 if (ips->read_mch_val) {
1065 mch_val = ips->read_mch_val();
1066 ips->mch_avg_power =
1067 update_average_power(ips->mch_avg_power,
1068 mch_val);
1069 }
1070
1071 /*
1072 * Make sure ME is updating thermal regs.
1073 * Note:
1074 * If it's been more than a second since the last update,
1075 * the ME is probably hung.
1076 */
1077 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1078 ITV_ME_SEQNO_SHIFT;
1079 if (cur_seqno == last_seqno &&
1080 time_after(jiffies, seqno_timestamp + HZ)) {
1081 dev_warn(ips->dev,
1082 "ME failed to update for more than 1s, likely hung\n");
1083 } else {
1084 seqno_timestamp = get_jiffies_64();
1085 last_seqno = cur_seqno;
1086 }
1087
1088 last_msecs = jiffies_to_msecs(jiffies);
1089 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1090
1091 __set_current_state(TASK_INTERRUPTIBLE);
1092 mod_timer(&ips->timer, expire);
1093 schedule();
1094
1095 /* Calculate actual sample period for power averaging */
1096 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1097 if (!last_sample_period)
1098 last_sample_period = 1;
1099 } while (!kthread_should_stop());
1100
1101 del_timer_sync(&ips->timer);
1102
1103 dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1104
1105 return 0;
1106 }
1107
1108 #if 0
1109 #define THM_DUMPW(reg) \
1110 { \
1111 u16 val = thm_readw(reg); \
1112 dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \
1113 }
1114 #define THM_DUMPL(reg) \
1115 { \
1116 u32 val = thm_readl(reg); \
1117 dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \
1118 }
1119 #define THM_DUMPQ(reg) \
1120 { \
1121 u64 val = thm_readq(reg); \
1122 dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \
1123 }
1124
1125 static void dump_thermal_info(struct ips_driver *ips)
1126 {
1127 u16 ptl;
1128
1129 ptl = thm_readw(THM_PTL);
1130 dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl);
1131
1132 THM_DUMPW(THM_CTA);
1133 THM_DUMPW(THM_TRC);
1134 THM_DUMPW(THM_CTV1);
1135 THM_DUMPL(THM_STS);
1136 THM_DUMPW(THM_PTV);
1137 THM_DUMPQ(THM_MGTV);
1138 }
1139 #endif
1140
1141 /**
1142 * ips_irq_handler - handle temperature triggers and other IPS events
1143 * @irq: irq number
1144 * @arg: unused
1145 *
1146 * Handle temperature limit trigger events, generally by lowering the clamps.
1147 * If we're at a critical limit, we clamp back to the lowest possible value
1148 * to prevent emergency shutdown.
1149 */
ips_irq_handler(int irq,void * arg)1150 static irqreturn_t ips_irq_handler(int irq, void *arg)
1151 {
1152 struct ips_driver *ips = arg;
1153 u8 tses = thm_readb(THM_TSES);
1154 u8 tes = thm_readb(THM_TES);
1155
1156 if (!tses && !tes)
1157 return IRQ_NONE;
1158
1159 dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1160 dev_info(ips->dev, "TES: 0x%02x\n", tes);
1161
1162 /* STS update from EC? */
1163 if (tes & 1) {
1164 u32 sts, tc1;
1165
1166 sts = thm_readl(THM_STS);
1167 tc1 = thm_readl(THM_TC1);
1168
1169 if (sts & STS_NVV) {
1170 spin_lock(&ips->turbo_status_lock);
1171 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1172 STS_PCPL_SHIFT;
1173 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1174 STS_GPL_SHIFT;
1175 /* ignore EC CPU vs GPU pref */
1176 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1177 /*
1178 * Disable turbo for now, until we can figure
1179 * out why the power figures are wrong
1180 */
1181 ips->cpu_turbo_enabled = false;
1182 if (ips->gpu_busy)
1183 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1184 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1185 STS_PTL_SHIFT;
1186 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1187 STS_PPL_SHIFT;
1188 verify_limits(ips);
1189 spin_unlock(&ips->turbo_status_lock);
1190
1191 thm_writeb(THM_SEC, SEC_ACK);
1192 }
1193 thm_writeb(THM_TES, tes);
1194 }
1195
1196 /* Thermal trip */
1197 if (tses) {
1198 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1199 tses);
1200 thm_writeb(THM_TSES, tses);
1201 }
1202
1203 return IRQ_HANDLED;
1204 }
1205
1206 #ifndef CONFIG_DEBUG_FS
ips_debugfs_init(struct ips_driver * ips)1207 static void ips_debugfs_init(struct ips_driver *ips) { return; }
ips_debugfs_cleanup(struct ips_driver * ips)1208 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1209 #else
1210
1211 /* Expose current state and limits in debugfs if possible */
1212
cpu_temp_show(struct seq_file * m,void * data)1213 static int cpu_temp_show(struct seq_file *m, void *data)
1214 {
1215 struct ips_driver *ips = m->private;
1216
1217 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1218 ips->ctv1_avg_temp % 100);
1219
1220 return 0;
1221 }
1222 DEFINE_SHOW_ATTRIBUTE(cpu_temp);
1223
cpu_power_show(struct seq_file * m,void * data)1224 static int cpu_power_show(struct seq_file *m, void *data)
1225 {
1226 struct ips_driver *ips = m->private;
1227
1228 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1229
1230 return 0;
1231 }
1232 DEFINE_SHOW_ATTRIBUTE(cpu_power);
1233
cpu_clamp_show(struct seq_file * m,void * data)1234 static int cpu_clamp_show(struct seq_file *m, void *data)
1235 {
1236 u64 turbo_override;
1237 int tdp, tdc;
1238
1239 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1240
1241 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1242 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1243
1244 /* Convert to .1W/A units */
1245 tdp = tdp * 10 / 8;
1246 tdc = tdc * 10 / 8;
1247
1248 /* Watts Amperes */
1249 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1250 tdc / 10, tdc % 10);
1251
1252 return 0;
1253 }
1254 DEFINE_SHOW_ATTRIBUTE(cpu_clamp);
1255
mch_temp_show(struct seq_file * m,void * data)1256 static int mch_temp_show(struct seq_file *m, void *data)
1257 {
1258 struct ips_driver *ips = m->private;
1259
1260 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1261 ips->mch_avg_temp % 100);
1262
1263 return 0;
1264 }
1265 DEFINE_SHOW_ATTRIBUTE(mch_temp);
1266
mch_power_show(struct seq_file * m,void * data)1267 static int mch_power_show(struct seq_file *m, void *data)
1268 {
1269 struct ips_driver *ips = m->private;
1270
1271 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1272
1273 return 0;
1274 }
1275 DEFINE_SHOW_ATTRIBUTE(mch_power);
1276
ips_debugfs_cleanup(struct ips_driver * ips)1277 static void ips_debugfs_cleanup(struct ips_driver *ips)
1278 {
1279 debugfs_remove_recursive(ips->debug_root);
1280 }
1281
ips_debugfs_init(struct ips_driver * ips)1282 static void ips_debugfs_init(struct ips_driver *ips)
1283 {
1284 ips->debug_root = debugfs_create_dir("ips", NULL);
1285
1286 debugfs_create_file("cpu_temp", 0444, ips->debug_root, ips, &cpu_temp_fops);
1287 debugfs_create_file("cpu_power", 0444, ips->debug_root, ips, &cpu_power_fops);
1288 debugfs_create_file("cpu_clamp", 0444, ips->debug_root, ips, &cpu_clamp_fops);
1289 debugfs_create_file("mch_temp", 0444, ips->debug_root, ips, &mch_temp_fops);
1290 debugfs_create_file("mch_power", 0444, ips->debug_root, ips, &mch_power_fops);
1291 }
1292 #endif /* CONFIG_DEBUG_FS */
1293
1294 /**
1295 * ips_detect_cpu - detect whether CPU supports IPS
1296 *
1297 * Walk our list and see if we're on a supported CPU. If we find one,
1298 * return the limits for it.
1299 */
ips_detect_cpu(struct ips_driver * ips)1300 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1301 {
1302 u64 turbo_power, misc_en;
1303 struct ips_mcp_limits *limits = NULL;
1304 u16 tdp;
1305
1306 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1307 dev_info(ips->dev, "Non-IPS CPU detected.\n");
1308 return NULL;
1309 }
1310
1311 rdmsrl(IA32_MISC_ENABLE, misc_en);
1312 /*
1313 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1314 * turbo manually or we'll get an illegal MSR access, even though
1315 * turbo will still be available.
1316 */
1317 if (misc_en & IA32_MISC_TURBO_EN)
1318 ips->turbo_toggle_allowed = true;
1319 else
1320 ips->turbo_toggle_allowed = false;
1321
1322 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1323 limits = &ips_sv_limits;
1324 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1325 limits = &ips_lv_limits;
1326 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1327 limits = &ips_ulv_limits;
1328 else {
1329 dev_info(ips->dev, "No CPUID match found.\n");
1330 return NULL;
1331 }
1332
1333 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1334 tdp = turbo_power & TURBO_TDP_MASK;
1335
1336 /* Sanity check TDP against CPU */
1337 if (limits->core_power_limit != (tdp / 8) * 1000) {
1338 dev_info(ips->dev,
1339 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1340 tdp / 8, limits->core_power_limit / 1000);
1341 limits->core_power_limit = (tdp / 8) * 1000;
1342 }
1343
1344 return limits;
1345 }
1346
1347 /**
1348 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1349 * @ips: IPS driver
1350 *
1351 * The i915 driver exports several interfaces to allow the IPS driver to
1352 * monitor and control graphics turbo mode. If we can find them, we can
1353 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1354 * thermal and power limits in the MCP.
1355 */
ips_get_i915_syms(struct ips_driver * ips)1356 static bool ips_get_i915_syms(struct ips_driver *ips)
1357 {
1358 ips->read_mch_val = symbol_get(i915_read_mch_val);
1359 if (!ips->read_mch_val)
1360 goto out_err;
1361 ips->gpu_raise = symbol_get(i915_gpu_raise);
1362 if (!ips->gpu_raise)
1363 goto out_put_mch;
1364 ips->gpu_lower = symbol_get(i915_gpu_lower);
1365 if (!ips->gpu_lower)
1366 goto out_put_raise;
1367 ips->gpu_busy = symbol_get(i915_gpu_busy);
1368 if (!ips->gpu_busy)
1369 goto out_put_lower;
1370 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1371 if (!ips->gpu_turbo_disable)
1372 goto out_put_busy;
1373
1374 return true;
1375
1376 out_put_busy:
1377 symbol_put(i915_gpu_busy);
1378 out_put_lower:
1379 symbol_put(i915_gpu_lower);
1380 out_put_raise:
1381 symbol_put(i915_gpu_raise);
1382 out_put_mch:
1383 symbol_put(i915_read_mch_val);
1384 out_err:
1385 return false;
1386 }
1387
1388 static bool
ips_gpu_turbo_enabled(struct ips_driver * ips)1389 ips_gpu_turbo_enabled(struct ips_driver *ips)
1390 {
1391 if (!ips->gpu_busy && late_i915_load) {
1392 if (ips_get_i915_syms(ips)) {
1393 dev_info(ips->dev,
1394 "i915 driver attached, reenabling gpu turbo\n");
1395 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1396 }
1397 }
1398
1399 return ips->gpu_turbo_enabled;
1400 }
1401
1402 void
ips_link_to_i915_driver(void)1403 ips_link_to_i915_driver(void)
1404 {
1405 /* We can't cleanly get at the various ips_driver structs from
1406 * this caller (the i915 driver), so just set a flag saying
1407 * that it's time to try getting the symbols again.
1408 */
1409 late_i915_load = true;
1410 }
1411 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1412
1413 static const struct pci_device_id ips_id_table[] = {
1414 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1415 { 0, }
1416 };
1417
1418 MODULE_DEVICE_TABLE(pci, ips_id_table);
1419
ips_blacklist_callback(const struct dmi_system_id * id)1420 static int ips_blacklist_callback(const struct dmi_system_id *id)
1421 {
1422 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1423 return 1;
1424 }
1425
1426 static const struct dmi_system_id ips_blacklist[] = {
1427 {
1428 .callback = ips_blacklist_callback,
1429 .ident = "HP ProBook",
1430 .matches = {
1431 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1432 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1433 },
1434 },
1435 { } /* terminating entry */
1436 };
1437
ips_probe(struct pci_dev * dev,const struct pci_device_id * id)1438 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1439 {
1440 u64 platform_info;
1441 struct ips_driver *ips;
1442 u32 hts;
1443 int ret = 0;
1444 u16 htshi, trc, trc_required_mask;
1445 u8 tse;
1446
1447 if (dmi_check_system(ips_blacklist))
1448 return -ENODEV;
1449
1450 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1451 if (!ips)
1452 return -ENOMEM;
1453
1454 spin_lock_init(&ips->turbo_status_lock);
1455 ips->dev = &dev->dev;
1456
1457 ips->limits = ips_detect_cpu(ips);
1458 if (!ips->limits) {
1459 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1460 return -ENXIO;
1461 }
1462
1463 ret = pcim_enable_device(dev);
1464 if (ret) {
1465 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1466 return ret;
1467 }
1468
1469 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1470 if (ret) {
1471 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1472 return ret;
1473 }
1474 ips->regmap = pcim_iomap_table(dev)[0];
1475
1476 pci_set_drvdata(dev, ips);
1477
1478 tse = thm_readb(THM_TSE);
1479 if (tse != TSE_EN) {
1480 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1481 return -ENXIO;
1482 }
1483
1484 trc = thm_readw(THM_TRC);
1485 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1486 if ((trc & trc_required_mask) != trc_required_mask) {
1487 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1488 return -ENXIO;
1489 }
1490
1491 if (trc & TRC_CORE2_EN)
1492 ips->second_cpu = true;
1493
1494 update_turbo_limits(ips);
1495 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1496 ips->mcp_power_limit / 10);
1497 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1498 ips->core_power_limit / 10);
1499 /* BIOS may update limits at runtime */
1500 if (thm_readl(THM_PSC) & PSP_PBRT)
1501 ips->poll_turbo_status = true;
1502
1503 if (!ips_get_i915_syms(ips)) {
1504 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1505 ips->gpu_turbo_enabled = false;
1506 } else {
1507 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1508 ips->gpu_turbo_enabled = true;
1509 }
1510
1511 /*
1512 * Check PLATFORM_INFO MSR to make sure this chip is
1513 * turbo capable.
1514 */
1515 rdmsrl(PLATFORM_INFO, platform_info);
1516 if (!(platform_info & PLATFORM_TDP)) {
1517 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1518 return -ENODEV;
1519 }
1520
1521 /*
1522 * IRQ handler for ME interaction
1523 * Note: don't use MSI here as the PCH has bugs.
1524 */
1525 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
1526 if (ret < 0)
1527 return ret;
1528
1529 ips->irq = pci_irq_vector(dev, 0);
1530
1531 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1532 if (ret) {
1533 dev_err(&dev->dev, "request irq failed, aborting\n");
1534 return ret;
1535 }
1536
1537 /* Enable aux, hot & critical interrupts */
1538 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1539 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1540 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1541
1542 /* Collect adjustment values */
1543 ips->cta_val = thm_readw(THM_CTA);
1544 ips->pta_val = thm_readw(THM_PTA);
1545 ips->mgta_val = thm_readw(THM_MGTA);
1546
1547 /* Save turbo limits & ratios */
1548 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1549
1550 ips_disable_cpu_turbo(ips);
1551 ips->cpu_turbo_enabled = false;
1552
1553 /* Create thermal adjust thread */
1554 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1555 if (IS_ERR(ips->adjust)) {
1556 dev_err(&dev->dev,
1557 "failed to create thermal adjust thread, aborting\n");
1558 ret = -ENOMEM;
1559 goto error_free_irq;
1560
1561 }
1562
1563 /*
1564 * Set up the work queue and monitor thread. The monitor thread
1565 * will wake up ips_adjust thread.
1566 */
1567 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1568 if (IS_ERR(ips->monitor)) {
1569 dev_err(&dev->dev,
1570 "failed to create thermal monitor thread, aborting\n");
1571 ret = -ENOMEM;
1572 goto error_thread_cleanup;
1573 }
1574
1575 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1576 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1577 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1578
1579 thm_writew(THM_HTSHI, htshi);
1580 thm_writel(THM_HTS, hts);
1581
1582 ips_debugfs_init(ips);
1583
1584 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1585 ips->mcp_temp_limit);
1586 return ret;
1587
1588 error_thread_cleanup:
1589 kthread_stop(ips->adjust);
1590 error_free_irq:
1591 free_irq(ips->irq, ips);
1592 pci_free_irq_vectors(dev);
1593 return ret;
1594 }
1595
ips_remove(struct pci_dev * dev)1596 static void ips_remove(struct pci_dev *dev)
1597 {
1598 struct ips_driver *ips = pci_get_drvdata(dev);
1599 u64 turbo_override;
1600
1601 ips_debugfs_cleanup(ips);
1602
1603 /* Release i915 driver */
1604 if (ips->read_mch_val)
1605 symbol_put(i915_read_mch_val);
1606 if (ips->gpu_raise)
1607 symbol_put(i915_gpu_raise);
1608 if (ips->gpu_lower)
1609 symbol_put(i915_gpu_lower);
1610 if (ips->gpu_busy)
1611 symbol_put(i915_gpu_busy);
1612 if (ips->gpu_turbo_disable)
1613 symbol_put(i915_gpu_turbo_disable);
1614
1615 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1616 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1617 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1618 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1619
1620 free_irq(ips->irq, ips);
1621 pci_free_irq_vectors(dev);
1622 if (ips->adjust)
1623 kthread_stop(ips->adjust);
1624 if (ips->monitor)
1625 kthread_stop(ips->monitor);
1626 dev_dbg(&dev->dev, "IPS driver removed\n");
1627 }
1628
1629 static struct pci_driver ips_pci_driver = {
1630 .name = "intel ips",
1631 .id_table = ips_id_table,
1632 .probe = ips_probe,
1633 .remove = ips_remove,
1634 };
1635
1636 module_pci_driver(ips_pci_driver);
1637
1638 MODULE_LICENSE("GPL v2");
1639 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1640 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1641