xref: /openbmc/linux/drivers/platform/x86/intel/tpmi.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel-tpmi : Driver to enumerate TPMI features and create devices
4  *
5  * Copyright (c) 2023, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * The TPMI (Topology Aware Register and PM Capsule Interface) provides a
9  * flexible, extendable and PCIe enumerable MMIO interface for PM features.
10  *
11  * For example Intel RAPL (Running Average Power Limit) provides a MMIO
12  * interface using TPMI. This has advantage over traditional MSR
13  * (Model Specific Register) interface, where a thread needs to be scheduled
14  * on the target CPU to read or write. Also the RAPL features vary between
15  * CPU models, and hence lot of model specific code. Here TPMI provides an
16  * architectural interface by providing hierarchical tables and fields,
17  * which will not need any model specific implementation.
18  *
19  * The TPMI interface uses a PCI VSEC structure to expose the location of
20  * MMIO region.
21  *
22  * This VSEC structure is present in the PCI configuration space of the
23  * Intel Out-of-Band (OOB) device, which  is handled by the Intel VSEC
24  * driver. The Intel VSEC driver parses VSEC structures present in the PCI
25  * configuration space of the given device and creates an auxiliary device
26  * object for each of them. In particular, it creates an auxiliary device
27  * object representing TPMI that can be bound by an auxiliary driver.
28  *
29  * This TPMI driver will bind to the TPMI auxiliary device object created
30  * by the Intel VSEC driver.
31  *
32  * The TPMI specification defines a PFS (PM Feature Structure) table.
33  * This table is present in the TPMI MMIO region. The starting address
34  * of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
35  * field from the VSEC header.
36  *
37  * Each TPMI PM feature has one entry in the PFS with a unique TPMI
38  * ID and its access details. The TPMI driver creates device nodes
39  * for the supported PM features.
40  *
41  * The names of the devices created by the TPMI driver start with the
42  * "intel_vsec.tpmi-" prefix which is followed by a specific name of the
43  * given PM feature (for example, "intel_vsec.tpmi-rapl.0").
44  *
45  * The device nodes are create by using interface "intel_vsec_add_aux()"
46  * provided by the Intel VSEC driver.
47  */
48 
49 #include <linux/auxiliary_bus.h>
50 #include <linux/intel_tpmi.h>
51 #include <linux/io.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 
55 #include "vsec.h"
56 
57 /**
58  * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
59  * @tpmi_id:	TPMI feature identifier (what the feature is and its data format).
60  * @num_entries: Number of feature interface instances present in the PFS.
61  *		 This represents the maximum number of Power domains in the SoC.
62  * @entry_size:	Interface instance entry size in 32-bit words.
63  * @cap_offset:	Offset from the PM_Features base address to the base of the PM VSEC
64  *		register bank in KB.
65  * @attribute:	Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
66  * @reserved:	Bits for use in the future.
67  *
68  * Represents one TPMI feature entry data in the PFS retrieved as is
69  * from the hardware.
70  */
71 struct intel_tpmi_pfs_entry {
72 	u64 tpmi_id:8;
73 	u64 num_entries:8;
74 	u64 entry_size:16;
75 	u64 cap_offset:16;
76 	u64 attribute:2;
77 	u64 reserved:14;
78 } __packed;
79 
80 /**
81  * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
82  * @pfs_header:	PFS header retireved from the hardware.
83  * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
84  *		 this offset = "Address" from VSEC header + PFS Capability
85  *		 offset for this feature entry.
86  *
87  * Represents TPMI instance information for one TPMI ID.
88  */
89 struct intel_tpmi_pm_feature {
90 	struct intel_tpmi_pfs_entry pfs_header;
91 	unsigned int vsec_offset;
92 };
93 
94 /**
95  * struct intel_tpmi_info - TPMI information for all IDs in an instance
96  * @tpmi_features:	Pointer to a list of TPMI feature instances
97  * @vsec_dev:		Pointer to intel_vsec_device structure for this TPMI device
98  * @feature_count:	Number of TPMI of TPMI instances pointed by tpmi_features
99  * @pfs_start:		Start of PFS offset for the TPMI instances in this device
100  * @plat_info:		Stores platform info which can be used by the client drivers
101  *
102  * Stores the information for all TPMI devices enumerated from a single PCI device.
103  */
104 struct intel_tpmi_info {
105 	struct intel_tpmi_pm_feature *tpmi_features;
106 	struct intel_vsec_device *vsec_dev;
107 	int feature_count;
108 	u64 pfs_start;
109 	struct intel_tpmi_plat_info plat_info;
110 };
111 
112 /**
113  * struct tpmi_info_header - CPU package ID to PCI device mapping information
114  * @fn:		PCI function number
115  * @dev:	PCI device number
116  * @bus:	PCI bus number
117  * @pkg:	CPU Package id
118  * @reserved:	Reserved for future use
119  * @lock:	When set to 1 the register is locked and becomes read-only
120  *		until next reset. Not for use by the OS driver.
121  *
122  * The structure to read hardware provided mapping information.
123  */
124 struct tpmi_info_header {
125 	u64 fn:3;
126 	u64 dev:5;
127 	u64 bus:8;
128 	u64 pkg:8;
129 	u64 reserved:39;
130 	u64 lock:1;
131 } __packed;
132 
133 /*
134  * List of supported TMPI IDs.
135  * Some TMPI IDs are not used by Linux, so the numbers are not consecutive.
136  */
137 enum intel_tpmi_id {
138 	TPMI_ID_RAPL = 0, /* Running Average Power Limit */
139 	TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */
140 	TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */
141 	TPMI_ID_SST = 5, /* Speed Select Technology */
142 	TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */
143 };
144 
145 /* Used during auxbus device creation */
146 static DEFINE_IDA(intel_vsec_tpmi_ida);
147 
148 struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
149 {
150 	struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
151 
152 	return vsec_dev->priv_data;
153 }
154 EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
155 
156 int tpmi_get_resource_count(struct auxiliary_device *auxdev)
157 {
158 	struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
159 
160 	if (vsec_dev)
161 		return vsec_dev->num_resources;
162 
163 	return 0;
164 }
165 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
166 
167 struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
168 {
169 	struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
170 
171 	if (vsec_dev && index < vsec_dev->num_resources)
172 		return &vsec_dev->resource[index];
173 
174 	return NULL;
175 }
176 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
177 
178 static const char *intel_tpmi_name(enum intel_tpmi_id id)
179 {
180 	switch (id) {
181 	case TPMI_ID_RAPL:
182 		return "rapl";
183 	case TPMI_ID_PEM:
184 		return "pem";
185 	case TPMI_ID_UNCORE:
186 		return "uncore";
187 	case TPMI_ID_SST:
188 		return "sst";
189 	default:
190 		return NULL;
191 	}
192 }
193 
194 /* String Length for tpmi-"feature_name(upto 8 bytes)" */
195 #define TPMI_FEATURE_NAME_LEN	14
196 
197 static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
198 			      struct intel_tpmi_pm_feature *pfs,
199 			      u64 pfs_start)
200 {
201 	struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
202 	char feature_id_name[TPMI_FEATURE_NAME_LEN];
203 	struct intel_vsec_device *feature_vsec_dev;
204 	struct resource *res, *tmp;
205 	const char *name;
206 	int i;
207 
208 	name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
209 	if (!name)
210 		return -EOPNOTSUPP;
211 
212 	res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
213 	if (!res)
214 		return -ENOMEM;
215 
216 	feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
217 	if (!feature_vsec_dev) {
218 		kfree(res);
219 		return -ENOMEM;
220 	}
221 
222 	snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
223 
224 	for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
225 		u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32);
226 
227 		tmp->start = pfs->vsec_offset + entry_size_bytes * i;
228 		tmp->end = tmp->start + entry_size_bytes - 1;
229 		tmp->flags = IORESOURCE_MEM;
230 	}
231 
232 	feature_vsec_dev->pcidev = vsec_dev->pcidev;
233 	feature_vsec_dev->resource = res;
234 	feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
235 	feature_vsec_dev->priv_data = &tpmi_info->plat_info;
236 	feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
237 	feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
238 
239 	/*
240 	 * intel_vsec_add_aux() is resource managed, no explicit
241 	 * delete is required on error or on module unload.
242 	 * feature_vsec_dev and res memory are also freed as part of
243 	 * device deletion.
244 	 */
245 	return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
246 				  feature_vsec_dev, feature_id_name);
247 }
248 
249 static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
250 {
251 	struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
252 	int ret, i;
253 
254 	for (i = 0; i < vsec_dev->num_resources; i++) {
255 		ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
256 					 tpmi_info->pfs_start);
257 		/*
258 		 * Fail, if the supported features fails to create device,
259 		 * otherwise, continue. Even if one device failed to create,
260 		 * fail the loading of driver. Since intel_vsec_add_aux()
261 		 * is resource managed, no clean up is required for the
262 		 * successfully created devices.
263 		 */
264 		if (ret && ret != -EOPNOTSUPP)
265 			return ret;
266 	}
267 
268 	return 0;
269 }
270 
271 #define TPMI_INFO_BUS_INFO_OFFSET	0x08
272 
273 static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
274 			     struct intel_tpmi_pm_feature *pfs)
275 {
276 	struct tpmi_info_header header;
277 	void __iomem *info_mem;
278 
279 	info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET,
280 			   pfs->pfs_header.entry_size * sizeof(u32) - TPMI_INFO_BUS_INFO_OFFSET);
281 	if (!info_mem)
282 		return -ENOMEM;
283 
284 	memcpy_fromio(&header, info_mem, sizeof(header));
285 
286 	tpmi_info->plat_info.package_id = header.pkg;
287 	tpmi_info->plat_info.bus_number = header.bus;
288 	tpmi_info->plat_info.device_number = header.dev;
289 	tpmi_info->plat_info.function_number = header.fn;
290 
291 	iounmap(info_mem);
292 
293 	return 0;
294 }
295 
296 static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
297 {
298 	void __iomem *pfs_mem;
299 
300 	pfs_mem = ioremap(start, size);
301 	if (!pfs_mem)
302 		return -ENOMEM;
303 
304 	memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
305 
306 	iounmap(pfs_mem);
307 
308 	return 0;
309 }
310 
311 #define TPMI_CAP_OFFSET_UNIT	1024
312 
313 static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
314 {
315 	struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
316 	struct pci_dev *pci_dev = vsec_dev->pcidev;
317 	struct intel_tpmi_info *tpmi_info;
318 	u64 pfs_start = 0;
319 	int i;
320 
321 	tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
322 	if (!tpmi_info)
323 		return -ENOMEM;
324 
325 	tpmi_info->vsec_dev = vsec_dev;
326 	tpmi_info->feature_count = vsec_dev->num_resources;
327 	tpmi_info->plat_info.bus_number = pci_dev->bus->number;
328 
329 	tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
330 						sizeof(*tpmi_info->tpmi_features),
331 						GFP_KERNEL);
332 	if (!tpmi_info->tpmi_features)
333 		return -ENOMEM;
334 
335 	for (i = 0; i < vsec_dev->num_resources; i++) {
336 		struct intel_tpmi_pm_feature *pfs;
337 		struct resource *res;
338 		u64 res_start;
339 		int size, ret;
340 
341 		pfs = &tpmi_info->tpmi_features[i];
342 
343 		res = &vsec_dev->resource[i];
344 		if (!res)
345 			continue;
346 
347 		res_start = res->start;
348 		size = resource_size(res);
349 		if (size < 0)
350 			continue;
351 
352 		ret = tpmi_fetch_pfs_header(pfs, res_start, size);
353 		if (ret)
354 			continue;
355 
356 		if (!pfs_start)
357 			pfs_start = res_start;
358 
359 		pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT;
360 
361 		/*
362 		 * Process TPMI_INFO to get PCI device to CPU package ID.
363 		 * Device nodes for TPMI features are not created in this
364 		 * for loop. So, the mapping information will be available
365 		 * when actual device nodes created outside this
366 		 * loop via tpmi_create_devices().
367 		 */
368 		if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID)
369 			tpmi_process_info(tpmi_info, pfs);
370 	}
371 
372 	tpmi_info->pfs_start = pfs_start;
373 
374 	auxiliary_set_drvdata(auxdev, tpmi_info);
375 
376 	return tpmi_create_devices(tpmi_info);
377 }
378 
379 static int tpmi_probe(struct auxiliary_device *auxdev,
380 		      const struct auxiliary_device_id *id)
381 {
382 	return intel_vsec_tpmi_init(auxdev);
383 }
384 
385 /*
386  * Remove callback is not needed currently as there is no
387  * cleanup required. All memory allocs are device managed. All
388  * devices created by this modules are also device managed.
389  */
390 
391 static const struct auxiliary_device_id tpmi_id_table[] = {
392 	{ .name = "intel_vsec.tpmi" },
393 	{}
394 };
395 MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
396 
397 static struct auxiliary_driver tpmi_aux_driver = {
398 	.id_table	= tpmi_id_table,
399 	.probe		= tpmi_probe,
400 };
401 
402 module_auxiliary_driver(tpmi_aux_driver);
403 
404 MODULE_IMPORT_NS(INTEL_VSEC);
405 MODULE_DESCRIPTION("Intel TPMI enumeration module");
406 MODULE_LICENSE("GPL");
407