1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel-tpmi : Driver to enumerate TPMI features and create devices 4 * 5 * Copyright (c) 2023, Intel Corporation. 6 * All Rights Reserved. 7 * 8 * The TPMI (Topology Aware Register and PM Capsule Interface) provides a 9 * flexible, extendable and PCIe enumerable MMIO interface for PM features. 10 * 11 * For example Intel RAPL (Running Average Power Limit) provides a MMIO 12 * interface using TPMI. This has advantage over traditional MSR 13 * (Model Specific Register) interface, where a thread needs to be scheduled 14 * on the target CPU to read or write. Also the RAPL features vary between 15 * CPU models, and hence lot of model specific code. Here TPMI provides an 16 * architectural interface by providing hierarchical tables and fields, 17 * which will not need any model specific implementation. 18 * 19 * The TPMI interface uses a PCI VSEC structure to expose the location of 20 * MMIO region. 21 * 22 * This VSEC structure is present in the PCI configuration space of the 23 * Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC 24 * driver. The Intel VSEC driver parses VSEC structures present in the PCI 25 * configuration space of the given device and creates an auxiliary device 26 * object for each of them. In particular, it creates an auxiliary device 27 * object representing TPMI that can be bound by an auxiliary driver. 28 * 29 * This TPMI driver will bind to the TPMI auxiliary device object created 30 * by the Intel VSEC driver. 31 * 32 * The TPMI specification defines a PFS (PM Feature Structure) table. 33 * This table is present in the TPMI MMIO region. The starting address 34 * of PFS is derived from the tBIR (Bar Indicator Register) and "Address" 35 * field from the VSEC header. 36 * 37 * Each TPMI PM feature has one entry in the PFS with a unique TPMI 38 * ID and its access details. The TPMI driver creates device nodes 39 * for the supported PM features. 40 * 41 * The names of the devices created by the TPMI driver start with the 42 * "intel_vsec.tpmi-" prefix which is followed by a specific name of the 43 * given PM feature (for example, "intel_vsec.tpmi-rapl.0"). 44 * 45 * The device nodes are create by using interface "intel_vsec_add_aux()" 46 * provided by the Intel VSEC driver. 47 */ 48 49 #include <linux/auxiliary_bus.h> 50 #include <linux/bitfield.h> 51 #include <linux/debugfs.h> 52 #include <linux/delay.h> 53 #include <linux/intel_tpmi.h> 54 #include <linux/io.h> 55 #include <linux/iopoll.h> 56 #include <linux/module.h> 57 #include <linux/pci.h> 58 #include <linux/security.h> 59 #include <linux/sizes.h> 60 #include <linux/string_helpers.h> 61 62 #include "vsec.h" 63 64 /** 65 * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry 66 * @tpmi_id: TPMI feature identifier (what the feature is and its data format). 67 * @num_entries: Number of feature interface instances present in the PFS. 68 * This represents the maximum number of Power domains in the SoC. 69 * @entry_size: Interface instance entry size in 32-bit words. 70 * @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC 71 * register bank in KB. 72 * @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved. 73 * @reserved: Bits for use in the future. 74 * 75 * Represents one TPMI feature entry data in the PFS retrieved as is 76 * from the hardware. 77 */ 78 struct intel_tpmi_pfs_entry { 79 u64 tpmi_id:8; 80 u64 num_entries:8; 81 u64 entry_size:16; 82 u64 cap_offset:16; 83 u64 attribute:2; 84 u64 reserved:14; 85 } __packed; 86 87 /** 88 * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID 89 * @pfs_header: PFS header retireved from the hardware. 90 * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially 91 * this offset = "Address" from VSEC header + PFS Capability 92 * offset for this feature entry. 93 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device 94 * 95 * Represents TPMI instance information for one TPMI ID. 96 */ 97 struct intel_tpmi_pm_feature { 98 struct intel_tpmi_pfs_entry pfs_header; 99 unsigned int vsec_offset; 100 struct intel_vsec_device *vsec_dev; 101 }; 102 103 /** 104 * struct intel_tpmi_info - TPMI information for all IDs in an instance 105 * @tpmi_features: Pointer to a list of TPMI feature instances 106 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device 107 * @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features 108 * @pfs_start: Start of PFS offset for the TPMI instances in this device 109 * @plat_info: Stores platform info which can be used by the client drivers 110 * @tpmi_control_mem: Memory mapped IO for getting control information 111 * @dbgfs_dir: debugfs entry pointer 112 * 113 * Stores the information for all TPMI devices enumerated from a single PCI device. 114 */ 115 struct intel_tpmi_info { 116 struct intel_tpmi_pm_feature *tpmi_features; 117 struct intel_vsec_device *vsec_dev; 118 int feature_count; 119 u64 pfs_start; 120 struct intel_tpmi_plat_info plat_info; 121 void __iomem *tpmi_control_mem; 122 struct dentry *dbgfs_dir; 123 }; 124 125 /** 126 * struct tpmi_info_header - CPU package ID to PCI device mapping information 127 * @fn: PCI function number 128 * @dev: PCI device number 129 * @bus: PCI bus number 130 * @pkg: CPU Package id 131 * @reserved: Reserved for future use 132 * @lock: When set to 1 the register is locked and becomes read-only 133 * until next reset. Not for use by the OS driver. 134 * 135 * The structure to read hardware provided mapping information. 136 */ 137 struct tpmi_info_header { 138 u64 fn:3; 139 u64 dev:5; 140 u64 bus:8; 141 u64 pkg:8; 142 u64 reserved:39; 143 u64 lock:1; 144 } __packed; 145 146 /* 147 * List of supported TMPI IDs. 148 * Some TMPI IDs are not used by Linux, so the numbers are not consecutive. 149 */ 150 enum intel_tpmi_id { 151 TPMI_ID_RAPL = 0, /* Running Average Power Limit */ 152 TPMI_ID_PEM = 1, /* Power and Perf excursion Monitor */ 153 TPMI_ID_UNCORE = 2, /* Uncore Frequency Scaling */ 154 TPMI_ID_SST = 5, /* Speed Select Technology */ 155 TPMI_CONTROL_ID = 0x80, /* Special ID for getting feature status */ 156 TPMI_INFO_ID = 0x81, /* Special ID for PCI BDF and Package ID information */ 157 }; 158 159 /* 160 * The size from hardware is in u32 units. This size is from a trusted hardware, 161 * but better to verify for pre silicon platforms. Set size to 0, when invalid. 162 */ 163 #define TPMI_GET_SINGLE_ENTRY_SIZE(pfs) \ 164 ({ \ 165 pfs->pfs_header.entry_size > SZ_1K ? 0 : pfs->pfs_header.entry_size << 2; \ 166 }) 167 168 /* Used during auxbus device creation */ 169 static DEFINE_IDA(intel_vsec_tpmi_ida); 170 171 struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev) 172 { 173 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); 174 175 return vsec_dev->priv_data; 176 } 177 EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI); 178 179 int tpmi_get_resource_count(struct auxiliary_device *auxdev) 180 { 181 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); 182 183 if (vsec_dev) 184 return vsec_dev->num_resources; 185 186 return 0; 187 } 188 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI); 189 190 struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index) 191 { 192 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); 193 194 if (vsec_dev && index < vsec_dev->num_resources) 195 return &vsec_dev->resource[index]; 196 197 return NULL; 198 } 199 EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI); 200 201 /* TPMI Control Interface */ 202 203 #define TPMI_CONTROL_STATUS_OFFSET 0x00 204 #define TPMI_COMMAND_OFFSET 0x08 205 206 /* 207 * Spec is calling for max 1 seconds to get ownership at the worst 208 * case. Read at 10 ms timeouts and repeat up to 1 second. 209 */ 210 #define TPMI_CONTROL_TIMEOUT_US (10 * USEC_PER_MSEC) 211 #define TPMI_CONTROL_TIMEOUT_MAX_US (1 * USEC_PER_SEC) 212 213 #define TPMI_RB_TIMEOUT_US (10 * USEC_PER_MSEC) 214 #define TPMI_RB_TIMEOUT_MAX_US USEC_PER_SEC 215 216 /* TPMI Control status register defines */ 217 218 #define TPMI_CONTROL_STATUS_RB BIT_ULL(0) 219 220 #define TPMI_CONTROL_STATUS_OWNER GENMASK_ULL(5, 4) 221 #define TPMI_OWNER_NONE 0 222 #define TPMI_OWNER_IN_BAND 1 223 224 #define TPMI_CONTROL_STATUS_CPL BIT_ULL(6) 225 #define TPMI_CONTROL_STATUS_RESULT GENMASK_ULL(15, 8) 226 #define TPMI_CONTROL_STATUS_LEN GENMASK_ULL(31, 16) 227 228 #define TPMI_CMD_PKT_LEN 2 229 #define TPMI_CMD_STATUS_SUCCESS 0x40 230 231 /* TPMI command data registers */ 232 #define TMPI_CONTROL_DATA_CMD GENMASK_ULL(7, 0) 233 #define TMPI_CONTROL_DATA_VAL GENMASK_ULL(63, 32) 234 #define TPMI_CONTROL_DATA_VAL_FEATURE GENMASK_ULL(48, 40) 235 236 /* Command to send via control interface */ 237 #define TPMI_CONTROL_GET_STATE_CMD 0x10 238 239 #define TPMI_CONTROL_CMD_MASK GENMASK_ULL(48, 40) 240 241 #define TPMI_CMD_LEN_MASK GENMASK_ULL(18, 16) 242 243 #define TPMI_STATE_DISABLED BIT_ULL(0) 244 #define TPMI_STATE_LOCKED BIT_ULL(31) 245 246 /* Mutex to complete get feature status without interruption */ 247 static DEFINE_MUTEX(tpmi_dev_lock); 248 249 static int tpmi_wait_for_owner(struct intel_tpmi_info *tpmi_info, u8 owner) 250 { 251 u64 control; 252 253 return readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET, 254 control, owner == FIELD_GET(TPMI_CONTROL_STATUS_OWNER, control), 255 TPMI_CONTROL_TIMEOUT_US, TPMI_CONTROL_TIMEOUT_MAX_US); 256 } 257 258 static int tpmi_read_feature_status(struct intel_tpmi_info *tpmi_info, int feature_id, 259 int *locked, int *disabled) 260 { 261 u64 control, data; 262 int ret; 263 264 if (!tpmi_info->tpmi_control_mem) 265 return -EFAULT; 266 267 mutex_lock(&tpmi_dev_lock); 268 269 /* Wait for owner bit set to 0 (none) */ 270 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_NONE); 271 if (ret) 272 goto err_unlock; 273 274 /* set command id to 0x10 for TPMI_GET_STATE */ 275 data = FIELD_PREP(TMPI_CONTROL_DATA_CMD, TPMI_CONTROL_GET_STATE_CMD); 276 277 /* 32 bits for DATA offset and +8 for feature_id field */ 278 data |= FIELD_PREP(TPMI_CONTROL_DATA_VAL_FEATURE, feature_id); 279 280 /* Write at command offset for qword access */ 281 writeq(data, tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET); 282 283 /* Wait for owner bit set to in-band */ 284 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_IN_BAND); 285 if (ret) 286 goto err_unlock; 287 288 /* Set Run Busy and packet length of 2 dwords */ 289 control = TPMI_CONTROL_STATUS_RB; 290 control |= FIELD_PREP(TPMI_CONTROL_STATUS_LEN, TPMI_CMD_PKT_LEN); 291 292 /* Write at status offset for qword access */ 293 writeq(control, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET); 294 295 /* Wait for Run Busy clear */ 296 ret = readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET, 297 control, !(control & TPMI_CONTROL_STATUS_RB), 298 TPMI_RB_TIMEOUT_US, TPMI_RB_TIMEOUT_MAX_US); 299 if (ret) 300 goto done_proc; 301 302 control = FIELD_GET(TPMI_CONTROL_STATUS_RESULT, control); 303 if (control != TPMI_CMD_STATUS_SUCCESS) { 304 ret = -EBUSY; 305 goto done_proc; 306 } 307 308 /* Response is ready */ 309 data = readq(tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET); 310 data = FIELD_GET(TMPI_CONTROL_DATA_VAL, data); 311 312 *disabled = 0; 313 *locked = 0; 314 315 if (!(data & TPMI_STATE_DISABLED)) 316 *disabled = 1; 317 318 if (data & TPMI_STATE_LOCKED) 319 *locked = 1; 320 321 ret = 0; 322 323 done_proc: 324 /* Set CPL "completion" bit */ 325 writeq(TPMI_CONTROL_STATUS_CPL, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET); 326 327 err_unlock: 328 mutex_unlock(&tpmi_dev_lock); 329 330 return ret; 331 } 332 333 int tpmi_get_feature_status(struct auxiliary_device *auxdev, int feature_id, 334 int *locked, int *disabled) 335 { 336 struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent); 337 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev); 338 339 return tpmi_read_feature_status(tpmi_info, feature_id, locked, disabled); 340 } 341 EXPORT_SYMBOL_NS_GPL(tpmi_get_feature_status, INTEL_TPMI); 342 343 static int tpmi_pfs_dbg_show(struct seq_file *s, void *unused) 344 { 345 struct intel_tpmi_info *tpmi_info = s->private; 346 struct intel_tpmi_pm_feature *pfs; 347 int locked, disabled, ret, i; 348 349 seq_printf(s, "tpmi PFS start offset 0x:%llx\n", tpmi_info->pfs_start); 350 seq_puts(s, "tpmi_id\t\tentries\t\tsize\t\tcap_offset\tattribute\tvsec_offset\tlocked\tdisabled\n"); 351 for (i = 0; i < tpmi_info->feature_count; ++i) { 352 pfs = &tpmi_info->tpmi_features[i]; 353 ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &locked, 354 &disabled); 355 if (ret) { 356 locked = 'U'; 357 disabled = 'U'; 358 } else { 359 disabled = disabled ? 'Y' : 'N'; 360 locked = locked ? 'Y' : 'N'; 361 } 362 seq_printf(s, "0x%02x\t\t0x%02x\t\t0x%04x\t\t0x%04x\t\t0x%02x\t\t0x%08x\t%c\t%c\n", 363 pfs->pfs_header.tpmi_id, pfs->pfs_header.num_entries, 364 pfs->pfs_header.entry_size, pfs->pfs_header.cap_offset, 365 pfs->pfs_header.attribute, pfs->vsec_offset, locked, disabled); 366 } 367 368 return 0; 369 } 370 DEFINE_SHOW_ATTRIBUTE(tpmi_pfs_dbg); 371 372 #define MEM_DUMP_COLUMN_COUNT 8 373 374 static int tpmi_mem_dump_show(struct seq_file *s, void *unused) 375 { 376 size_t row_size = MEM_DUMP_COLUMN_COUNT * sizeof(u32); 377 struct intel_tpmi_pm_feature *pfs = s->private; 378 int count, ret = 0; 379 void __iomem *mem; 380 u32 off, size; 381 u8 *buffer; 382 383 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); 384 if (!size) 385 return -EIO; 386 387 buffer = kmalloc(size, GFP_KERNEL); 388 if (!buffer) 389 return -ENOMEM; 390 391 off = pfs->vsec_offset; 392 393 mutex_lock(&tpmi_dev_lock); 394 395 for (count = 0; count < pfs->pfs_header.num_entries; ++count) { 396 seq_printf(s, "TPMI Instance:%d offset:0x%x\n", count, off); 397 398 mem = ioremap(off, size); 399 if (!mem) { 400 ret = -ENOMEM; 401 break; 402 } 403 404 memcpy_fromio(buffer, mem, size); 405 406 seq_hex_dump(s, " ", DUMP_PREFIX_OFFSET, row_size, sizeof(u32), buffer, size, 407 false); 408 409 iounmap(mem); 410 411 off += size; 412 } 413 414 mutex_unlock(&tpmi_dev_lock); 415 416 kfree(buffer); 417 418 return ret; 419 } 420 DEFINE_SHOW_ATTRIBUTE(tpmi_mem_dump); 421 422 static ssize_t mem_write(struct file *file, const char __user *userbuf, size_t len, loff_t *ppos) 423 { 424 struct seq_file *m = file->private_data; 425 struct intel_tpmi_pm_feature *pfs = m->private; 426 u32 addr, value, punit, size; 427 u32 num_elems, *array; 428 void __iomem *mem; 429 int ret; 430 431 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); 432 if (!size) 433 return -EIO; 434 435 ret = parse_int_array_user(userbuf, len, (int **)&array); 436 if (ret < 0) 437 return ret; 438 439 num_elems = *array; 440 if (num_elems != 3) { 441 ret = -EINVAL; 442 goto exit_write; 443 } 444 445 punit = array[1]; 446 addr = array[2]; 447 value = array[3]; 448 449 if (punit >= pfs->pfs_header.num_entries) { 450 ret = -EINVAL; 451 goto exit_write; 452 } 453 454 if (addr >= size) { 455 ret = -EINVAL; 456 goto exit_write; 457 } 458 459 mutex_lock(&tpmi_dev_lock); 460 461 mem = ioremap(pfs->vsec_offset + punit * size, size); 462 if (!mem) { 463 ret = -ENOMEM; 464 goto unlock_mem_write; 465 } 466 467 writel(value, mem + addr); 468 469 iounmap(mem); 470 471 ret = len; 472 473 unlock_mem_write: 474 mutex_unlock(&tpmi_dev_lock); 475 476 exit_write: 477 kfree(array); 478 479 return ret; 480 } 481 482 static int mem_write_show(struct seq_file *s, void *unused) 483 { 484 return 0; 485 } 486 487 static int mem_write_open(struct inode *inode, struct file *file) 488 { 489 return single_open(file, mem_write_show, inode->i_private); 490 } 491 492 static const struct file_operations mem_write_ops = { 493 .open = mem_write_open, 494 .read = seq_read, 495 .write = mem_write, 496 .llseek = seq_lseek, 497 .release = single_release, 498 }; 499 500 #define tpmi_to_dev(info) (&info->vsec_dev->pcidev->dev) 501 502 static void tpmi_dbgfs_register(struct intel_tpmi_info *tpmi_info) 503 { 504 char name[64]; 505 int i; 506 507 snprintf(name, sizeof(name), "tpmi-%s", dev_name(tpmi_to_dev(tpmi_info))); 508 tpmi_info->dbgfs_dir = debugfs_create_dir(name, NULL); 509 510 debugfs_create_file("pfs_dump", 0444, tpmi_info->dbgfs_dir, tpmi_info, &tpmi_pfs_dbg_fops); 511 512 for (i = 0; i < tpmi_info->feature_count; ++i) { 513 struct intel_tpmi_pm_feature *pfs; 514 struct dentry *dir; 515 516 pfs = &tpmi_info->tpmi_features[i]; 517 snprintf(name, sizeof(name), "tpmi-id-%02x", pfs->pfs_header.tpmi_id); 518 dir = debugfs_create_dir(name, tpmi_info->dbgfs_dir); 519 520 debugfs_create_file("mem_dump", 0444, dir, pfs, &tpmi_mem_dump_fops); 521 debugfs_create_file("mem_write", 0644, dir, pfs, &mem_write_ops); 522 } 523 } 524 525 static void tpmi_set_control_base(struct auxiliary_device *auxdev, 526 struct intel_tpmi_info *tpmi_info, 527 struct intel_tpmi_pm_feature *pfs) 528 { 529 void __iomem *mem; 530 u32 size; 531 532 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs); 533 if (!size) 534 return; 535 536 mem = devm_ioremap(&auxdev->dev, pfs->vsec_offset, size); 537 if (!mem) 538 return; 539 540 /* mem is pointing to TPMI CONTROL base */ 541 tpmi_info->tpmi_control_mem = mem; 542 } 543 544 static const char *intel_tpmi_name(enum intel_tpmi_id id) 545 { 546 switch (id) { 547 case TPMI_ID_RAPL: 548 return "rapl"; 549 case TPMI_ID_PEM: 550 return "pem"; 551 case TPMI_ID_UNCORE: 552 return "uncore"; 553 case TPMI_ID_SST: 554 return "sst"; 555 default: 556 return NULL; 557 } 558 } 559 560 /* String Length for tpmi-"feature_name(upto 8 bytes)" */ 561 #define TPMI_FEATURE_NAME_LEN 14 562 563 static int tpmi_create_device(struct intel_tpmi_info *tpmi_info, 564 struct intel_tpmi_pm_feature *pfs, 565 u64 pfs_start) 566 { 567 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev; 568 char feature_id_name[TPMI_FEATURE_NAME_LEN]; 569 struct intel_vsec_device *feature_vsec_dev; 570 struct resource *res, *tmp; 571 const char *name; 572 int i; 573 574 name = intel_tpmi_name(pfs->pfs_header.tpmi_id); 575 if (!name) 576 return -EOPNOTSUPP; 577 578 res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL); 579 if (!res) 580 return -ENOMEM; 581 582 feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL); 583 if (!feature_vsec_dev) { 584 kfree(res); 585 return -ENOMEM; 586 } 587 588 snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name); 589 590 for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) { 591 u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32); 592 593 tmp->start = pfs->vsec_offset + entry_size_bytes * i; 594 tmp->end = tmp->start + entry_size_bytes - 1; 595 tmp->flags = IORESOURCE_MEM; 596 } 597 598 feature_vsec_dev->pcidev = vsec_dev->pcidev; 599 feature_vsec_dev->resource = res; 600 feature_vsec_dev->num_resources = pfs->pfs_header.num_entries; 601 feature_vsec_dev->priv_data = &tpmi_info->plat_info; 602 feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info); 603 feature_vsec_dev->ida = &intel_vsec_tpmi_ida; 604 605 /* 606 * intel_vsec_add_aux() is resource managed, no explicit 607 * delete is required on error or on module unload. 608 * feature_vsec_dev and res memory are also freed as part of 609 * device deletion. 610 */ 611 return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev, 612 feature_vsec_dev, feature_id_name); 613 } 614 615 static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info) 616 { 617 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev; 618 int ret, i; 619 620 for (i = 0; i < vsec_dev->num_resources; i++) { 621 ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i], 622 tpmi_info->pfs_start); 623 /* 624 * Fail, if the supported features fails to create device, 625 * otherwise, continue. Even if one device failed to create, 626 * fail the loading of driver. Since intel_vsec_add_aux() 627 * is resource managed, no clean up is required for the 628 * successfully created devices. 629 */ 630 if (ret && ret != -EOPNOTSUPP) 631 return ret; 632 } 633 634 return 0; 635 } 636 637 #define TPMI_INFO_BUS_INFO_OFFSET 0x08 638 639 static int tpmi_process_info(struct intel_tpmi_info *tpmi_info, 640 struct intel_tpmi_pm_feature *pfs) 641 { 642 struct tpmi_info_header header; 643 void __iomem *info_mem; 644 645 info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET, 646 pfs->pfs_header.entry_size * sizeof(u32) - TPMI_INFO_BUS_INFO_OFFSET); 647 if (!info_mem) 648 return -ENOMEM; 649 650 memcpy_fromio(&header, info_mem, sizeof(header)); 651 652 tpmi_info->plat_info.package_id = header.pkg; 653 tpmi_info->plat_info.bus_number = header.bus; 654 tpmi_info->plat_info.device_number = header.dev; 655 tpmi_info->plat_info.function_number = header.fn; 656 657 iounmap(info_mem); 658 659 return 0; 660 } 661 662 static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size) 663 { 664 void __iomem *pfs_mem; 665 666 pfs_mem = ioremap(start, size); 667 if (!pfs_mem) 668 return -ENOMEM; 669 670 memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header)); 671 672 iounmap(pfs_mem); 673 674 return 0; 675 } 676 677 #define TPMI_CAP_OFFSET_UNIT 1024 678 679 static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev) 680 { 681 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev); 682 struct pci_dev *pci_dev = vsec_dev->pcidev; 683 struct intel_tpmi_info *tpmi_info; 684 u64 pfs_start = 0; 685 int ret, i; 686 687 tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL); 688 if (!tpmi_info) 689 return -ENOMEM; 690 691 tpmi_info->vsec_dev = vsec_dev; 692 tpmi_info->feature_count = vsec_dev->num_resources; 693 tpmi_info->plat_info.bus_number = pci_dev->bus->number; 694 695 tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources, 696 sizeof(*tpmi_info->tpmi_features), 697 GFP_KERNEL); 698 if (!tpmi_info->tpmi_features) 699 return -ENOMEM; 700 701 for (i = 0; i < vsec_dev->num_resources; i++) { 702 struct intel_tpmi_pm_feature *pfs; 703 struct resource *res; 704 u64 res_start; 705 int size, ret; 706 707 pfs = &tpmi_info->tpmi_features[i]; 708 pfs->vsec_dev = vsec_dev; 709 710 res = &vsec_dev->resource[i]; 711 if (!res) 712 continue; 713 714 res_start = res->start; 715 size = resource_size(res); 716 if (size < 0) 717 continue; 718 719 ret = tpmi_fetch_pfs_header(pfs, res_start, size); 720 if (ret) 721 continue; 722 723 if (!pfs_start) 724 pfs_start = res_start; 725 726 pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT; 727 728 /* 729 * Process TPMI_INFO to get PCI device to CPU package ID. 730 * Device nodes for TPMI features are not created in this 731 * for loop. So, the mapping information will be available 732 * when actual device nodes created outside this 733 * loop via tpmi_create_devices(). 734 */ 735 if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID) 736 tpmi_process_info(tpmi_info, pfs); 737 738 if (pfs->pfs_header.tpmi_id == TPMI_CONTROL_ID) 739 tpmi_set_control_base(auxdev, tpmi_info, pfs); 740 } 741 742 tpmi_info->pfs_start = pfs_start; 743 744 auxiliary_set_drvdata(auxdev, tpmi_info); 745 746 ret = tpmi_create_devices(tpmi_info); 747 if (ret) 748 return ret; 749 750 /* 751 * Allow debugfs when security policy allows. Everything this debugfs 752 * interface provides, can also be done via /dev/mem access. If 753 * /dev/mem interface is locked, don't allow debugfs to present any 754 * information. Also check for CAP_SYS_RAWIO as /dev/mem interface. 755 */ 756 if (!security_locked_down(LOCKDOWN_DEV_MEM) && capable(CAP_SYS_RAWIO)) 757 tpmi_dbgfs_register(tpmi_info); 758 759 return 0; 760 } 761 762 static int tpmi_probe(struct auxiliary_device *auxdev, 763 const struct auxiliary_device_id *id) 764 { 765 return intel_vsec_tpmi_init(auxdev); 766 } 767 768 static void tpmi_remove(struct auxiliary_device *auxdev) 769 { 770 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(auxdev); 771 772 debugfs_remove_recursive(tpmi_info->dbgfs_dir); 773 } 774 775 static const struct auxiliary_device_id tpmi_id_table[] = { 776 { .name = "intel_vsec.tpmi" }, 777 {} 778 }; 779 MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table); 780 781 static struct auxiliary_driver tpmi_aux_driver = { 782 .id_table = tpmi_id_table, 783 .probe = tpmi_probe, 784 .remove = tpmi_remove, 785 }; 786 787 module_auxiliary_driver(tpmi_aux_driver); 788 789 MODULE_IMPORT_NS(INTEL_VSEC); 790 MODULE_DESCRIPTION("Intel TPMI enumeration module"); 791 MODULE_LICENSE("GPL"); 792