xref: /openbmc/linux/drivers/platform/x86/intel/pmt/class.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Platform Monitory Technology Telemetry driver
4  *
5  * Copyright (c) 2020, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Author: "Alexander Duyck" <alexander.h.duyck@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/pci.h>
15 
16 #include "class.h"
17 
18 #define PMT_XA_START		0
19 #define PMT_XA_MAX		INT_MAX
20 #define PMT_XA_LIMIT		XA_LIMIT(PMT_XA_START, PMT_XA_MAX)
21 
22 /*
23  * Early implementations of PMT on client platforms have some
24  * differences from the server platforms (which use the Out Of Band
25  * Management Services Module OOBMSM). This list tracks those
26  * platforms as needed to handle those differences. Newer client
27  * platforms are expected to be fully compatible with server.
28  */
29 static const struct pci_device_id pmt_telem_early_client_pci_ids[] = {
30 	{ PCI_VDEVICE(INTEL, 0x467d) }, /* ADL */
31 	{ PCI_VDEVICE(INTEL, 0x490e) }, /* DG1 */
32 	{ PCI_VDEVICE(INTEL, 0x9a0d) }, /* TGL */
33 	{ }
34 };
35 
36 bool intel_pmt_is_early_client_hw(struct device *dev)
37 {
38 	struct pci_dev *parent = to_pci_dev(dev->parent);
39 
40 	return !!pci_match_id(pmt_telem_early_client_pci_ids, parent);
41 }
42 EXPORT_SYMBOL_GPL(intel_pmt_is_early_client_hw);
43 
44 /*
45  * sysfs
46  */
47 static ssize_t
48 intel_pmt_read(struct file *filp, struct kobject *kobj,
49 	       struct bin_attribute *attr, char *buf, loff_t off,
50 	       size_t count)
51 {
52 	struct intel_pmt_entry *entry = container_of(attr,
53 						     struct intel_pmt_entry,
54 						     pmt_bin_attr);
55 
56 	if (off < 0)
57 		return -EINVAL;
58 
59 	if (off >= entry->size)
60 		return 0;
61 
62 	if (count > entry->size - off)
63 		count = entry->size - off;
64 
65 	memcpy_fromio(buf, entry->base + off, count);
66 
67 	return count;
68 }
69 
70 static int
71 intel_pmt_mmap(struct file *filp, struct kobject *kobj,
72 		struct bin_attribute *attr, struct vm_area_struct *vma)
73 {
74 	struct intel_pmt_entry *entry = container_of(attr,
75 						     struct intel_pmt_entry,
76 						     pmt_bin_attr);
77 	unsigned long vsize = vma->vm_end - vma->vm_start;
78 	struct device *dev = kobj_to_dev(kobj);
79 	unsigned long phys = entry->base_addr;
80 	unsigned long pfn = PFN_DOWN(phys);
81 	unsigned long psize;
82 
83 	if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
84 		return -EROFS;
85 
86 	psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE;
87 	if (vsize > psize) {
88 		dev_err(dev, "Requested mmap size is too large\n");
89 		return -EINVAL;
90 	}
91 
92 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
93 	if (io_remap_pfn_range(vma, vma->vm_start, pfn,
94 		vsize, vma->vm_page_prot))
95 		return -EAGAIN;
96 
97 	return 0;
98 }
99 
100 static ssize_t
101 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
102 {
103 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
104 
105 	return sprintf(buf, "0x%x\n", entry->guid);
106 }
107 static DEVICE_ATTR_RO(guid);
108 
109 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
110 			 char *buf)
111 {
112 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
113 
114 	return sprintf(buf, "%zu\n", entry->size);
115 }
116 static DEVICE_ATTR_RO(size);
117 
118 static ssize_t
119 offset_show(struct device *dev, struct device_attribute *attr, char *buf)
120 {
121 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
122 
123 	return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr));
124 }
125 static DEVICE_ATTR_RO(offset);
126 
127 static struct attribute *intel_pmt_attrs[] = {
128 	&dev_attr_guid.attr,
129 	&dev_attr_size.attr,
130 	&dev_attr_offset.attr,
131 	NULL
132 };
133 ATTRIBUTE_GROUPS(intel_pmt);
134 
135 static struct class intel_pmt_class = {
136 	.name = "intel_pmt",
137 	.owner = THIS_MODULE,
138 	.dev_groups = intel_pmt_groups,
139 };
140 
141 static int intel_pmt_populate_entry(struct intel_pmt_entry *entry,
142 				    struct intel_pmt_header *header,
143 				    struct device *dev,
144 				    struct resource *disc_res)
145 {
146 	struct pci_dev *pci_dev = to_pci_dev(dev->parent);
147 	u8 bir;
148 
149 	/*
150 	 * The base offset should always be 8 byte aligned.
151 	 *
152 	 * For non-local access types the lower 3 bits of base offset
153 	 * contains the index of the base address register where the
154 	 * telemetry can be found.
155 	 */
156 	bir = GET_BIR(header->base_offset);
157 
158 	/* Local access and BARID only for now */
159 	switch (header->access_type) {
160 	case ACCESS_LOCAL:
161 		if (bir) {
162 			dev_err(dev,
163 				"Unsupported BAR index %d for access type %d\n",
164 				bir, header->access_type);
165 			return -EINVAL;
166 		}
167 		/*
168 		 * For access_type LOCAL, the base address is as follows:
169 		 * base address = end of discovery region + base offset
170 		 */
171 		entry->base_addr = disc_res->end + 1 + header->base_offset;
172 
173 		/*
174 		 * Some hardware use a different calculation for the base address
175 		 * when access_type == ACCESS_LOCAL. On the these systems
176 		 * ACCCESS_LOCAL refers to an address in the same BAR as the
177 		 * header but at a fixed offset. But as the header address was
178 		 * supplied to the driver, we don't know which BAR it was in.
179 		 * So search for the bar whose range includes the header address.
180 		 */
181 		if (intel_pmt_is_early_client_hw(dev)) {
182 			int i;
183 
184 			entry->base_addr = 0;
185 			for (i = 0; i < 6; i++)
186 				if (disc_res->start >= pci_resource_start(pci_dev, i) &&
187 				   (disc_res->start <= pci_resource_end(pci_dev, i))) {
188 					entry->base_addr = pci_resource_start(pci_dev, i) +
189 							   header->base_offset;
190 					break;
191 				}
192 			if (!entry->base_addr)
193 				return -EINVAL;
194 		}
195 
196 		break;
197 	case ACCESS_BARID:
198 		/*
199 		 * If another BAR was specified then the base offset
200 		 * represents the offset within that BAR. SO retrieve the
201 		 * address from the parent PCI device and add offset.
202 		 */
203 		entry->base_addr = pci_resource_start(pci_dev, bir) +
204 				   GET_ADDRESS(header->base_offset);
205 		break;
206 	default:
207 		dev_err(dev, "Unsupported access type %d\n",
208 			header->access_type);
209 		return -EINVAL;
210 	}
211 
212 	entry->guid = header->guid;
213 	entry->size = header->size;
214 
215 	return 0;
216 }
217 
218 static int intel_pmt_dev_register(struct intel_pmt_entry *entry,
219 				  struct intel_pmt_namespace *ns,
220 				  struct device *parent)
221 {
222 	struct resource res = {0};
223 	struct device *dev;
224 	int ret;
225 
226 	ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL);
227 	if (ret)
228 		return ret;
229 
230 	dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry,
231 			    "%s%d", ns->name, entry->devid);
232 
233 	if (IS_ERR(dev)) {
234 		dev_err(parent, "Could not create %s%d device node\n",
235 			ns->name, entry->devid);
236 		ret = PTR_ERR(dev);
237 		goto fail_dev_create;
238 	}
239 
240 	entry->kobj = &dev->kobj;
241 
242 	if (ns->attr_grp) {
243 		ret = sysfs_create_group(entry->kobj, ns->attr_grp);
244 		if (ret)
245 			goto fail_sysfs;
246 	}
247 
248 	/* if size is 0 assume no data buffer, so no file needed */
249 	if (!entry->size)
250 		return 0;
251 
252 	res.start = entry->base_addr;
253 	res.end = res.start + entry->size - 1;
254 	res.flags = IORESOURCE_MEM;
255 
256 	entry->base = devm_ioremap_resource(dev, &res);
257 	if (IS_ERR(entry->base)) {
258 		ret = PTR_ERR(entry->base);
259 		goto fail_ioremap;
260 	}
261 
262 	sysfs_bin_attr_init(&entry->pmt_bin_attr);
263 	entry->pmt_bin_attr.attr.name = ns->name;
264 	entry->pmt_bin_attr.attr.mode = 0440;
265 	entry->pmt_bin_attr.mmap = intel_pmt_mmap;
266 	entry->pmt_bin_attr.read = intel_pmt_read;
267 	entry->pmt_bin_attr.size = entry->size;
268 
269 	ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr);
270 	if (!ret)
271 		return 0;
272 
273 fail_ioremap:
274 	if (ns->attr_grp)
275 		sysfs_remove_group(entry->kobj, ns->attr_grp);
276 fail_sysfs:
277 	device_unregister(dev);
278 fail_dev_create:
279 	xa_erase(ns->xa, entry->devid);
280 
281 	return ret;
282 }
283 
284 int intel_pmt_dev_create(struct intel_pmt_entry *entry,
285 			 struct intel_pmt_namespace *ns,
286 			 struct platform_device *pdev, int idx)
287 {
288 	struct intel_pmt_header header;
289 	struct resource	*disc_res;
290 	int ret = -ENODEV;
291 
292 	disc_res = platform_get_resource(pdev, IORESOURCE_MEM, idx);
293 	if (!disc_res)
294 		return ret;
295 
296 	entry->disc_table = devm_platform_ioremap_resource(pdev, idx);
297 	if (IS_ERR(entry->disc_table))
298 		return PTR_ERR(entry->disc_table);
299 
300 	ret = ns->pmt_header_decode(entry, &header, &pdev->dev);
301 	if (ret)
302 		return ret;
303 
304 	ret = intel_pmt_populate_entry(entry, &header, &pdev->dev, disc_res);
305 	if (ret)
306 		return ret;
307 
308 	return intel_pmt_dev_register(entry, ns, &pdev->dev);
309 
310 }
311 EXPORT_SYMBOL_GPL(intel_pmt_dev_create);
312 
313 void intel_pmt_dev_destroy(struct intel_pmt_entry *entry,
314 			   struct intel_pmt_namespace *ns)
315 {
316 	struct device *dev = kobj_to_dev(entry->kobj);
317 
318 	if (entry->size)
319 		sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
320 
321 	if (ns->attr_grp)
322 		sysfs_remove_group(entry->kobj, ns->attr_grp);
323 
324 	device_unregister(dev);
325 	xa_erase(ns->xa, entry->devid);
326 }
327 EXPORT_SYMBOL_GPL(intel_pmt_dev_destroy);
328 
329 static int __init pmt_class_init(void)
330 {
331 	return class_register(&intel_pmt_class);
332 }
333 
334 static void __exit pmt_class_exit(void)
335 {
336 	class_unregister(&intel_pmt_class);
337 }
338 
339 module_init(pmt_class_init);
340 module_exit(pmt_class_exit);
341 
342 MODULE_AUTHOR("Alexander Duyck <alexander.h.duyck@linux.intel.com>");
343 MODULE_DESCRIPTION("Intel PMT Class driver");
344 MODULE_LICENSE("GPL v2");
345