1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * dcdbas.c: Dell Systems Management Base Driver 4 * 5 * The Dell Systems Management Base Driver provides a sysfs interface for 6 * systems management software to perform System Management Interrupts (SMIs) 7 * and Host Control Actions (power cycle or power off after OS shutdown) on 8 * Dell systems. 9 * 10 * See Documentation/driver-api/dcdbas.rst for more information. 11 * 12 * Copyright (C) 1995-2006 Dell Inc. 13 */ 14 15 #include <linux/platform_device.h> 16 #include <linux/acpi.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmi.h> 19 #include <linux/errno.h> 20 #include <linux/cpu.h> 21 #include <linux/gfp.h> 22 #include <linux/init.h> 23 #include <linux/io.h> 24 #include <linux/kernel.h> 25 #include <linux/mc146818rtc.h> 26 #include <linux/module.h> 27 #include <linux/reboot.h> 28 #include <linux/sched.h> 29 #include <linux/smp.h> 30 #include <linux/spinlock.h> 31 #include <linux/string.h> 32 #include <linux/types.h> 33 #include <linux/mutex.h> 34 35 #include "dcdbas.h" 36 37 #define DRIVER_NAME "dcdbas" 38 #define DRIVER_VERSION "5.6.0-3.4" 39 #define DRIVER_DESCRIPTION "Dell Systems Management Base Driver" 40 41 static struct platform_device *dcdbas_pdev; 42 43 static u8 *smi_data_buf; 44 static dma_addr_t smi_data_buf_handle; 45 static unsigned long smi_data_buf_size; 46 static unsigned long max_smi_data_buf_size = MAX_SMI_DATA_BUF_SIZE; 47 static u32 smi_data_buf_phys_addr; 48 static DEFINE_MUTEX(smi_data_lock); 49 static u8 *bios_buffer; 50 51 static unsigned int host_control_action; 52 static unsigned int host_control_smi_type; 53 static unsigned int host_control_on_shutdown; 54 55 static bool wsmt_enabled; 56 57 /** 58 * smi_data_buf_free: free SMI data buffer 59 */ 60 static void smi_data_buf_free(void) 61 { 62 if (!smi_data_buf || wsmt_enabled) 63 return; 64 65 dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n", 66 __func__, smi_data_buf_phys_addr, smi_data_buf_size); 67 68 dma_free_coherent(&dcdbas_pdev->dev, smi_data_buf_size, smi_data_buf, 69 smi_data_buf_handle); 70 smi_data_buf = NULL; 71 smi_data_buf_handle = 0; 72 smi_data_buf_phys_addr = 0; 73 smi_data_buf_size = 0; 74 } 75 76 /** 77 * smi_data_buf_realloc: grow SMI data buffer if needed 78 */ 79 static int smi_data_buf_realloc(unsigned long size) 80 { 81 void *buf; 82 dma_addr_t handle; 83 84 if (smi_data_buf_size >= size) 85 return 0; 86 87 if (size > max_smi_data_buf_size) 88 return -EINVAL; 89 90 /* new buffer is needed */ 91 buf = dma_alloc_coherent(&dcdbas_pdev->dev, size, &handle, GFP_KERNEL); 92 if (!buf) { 93 dev_dbg(&dcdbas_pdev->dev, 94 "%s: failed to allocate memory size %lu\n", 95 __func__, size); 96 return -ENOMEM; 97 } 98 /* memory zeroed by dma_alloc_coherent */ 99 100 if (smi_data_buf) 101 memcpy(buf, smi_data_buf, smi_data_buf_size); 102 103 /* free any existing buffer */ 104 smi_data_buf_free(); 105 106 /* set up new buffer for use */ 107 smi_data_buf = buf; 108 smi_data_buf_handle = handle; 109 smi_data_buf_phys_addr = (u32) virt_to_phys(buf); 110 smi_data_buf_size = size; 111 112 dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n", 113 __func__, smi_data_buf_phys_addr, smi_data_buf_size); 114 115 return 0; 116 } 117 118 static ssize_t smi_data_buf_phys_addr_show(struct device *dev, 119 struct device_attribute *attr, 120 char *buf) 121 { 122 return sprintf(buf, "%x\n", smi_data_buf_phys_addr); 123 } 124 125 static ssize_t smi_data_buf_size_show(struct device *dev, 126 struct device_attribute *attr, 127 char *buf) 128 { 129 return sprintf(buf, "%lu\n", smi_data_buf_size); 130 } 131 132 static ssize_t smi_data_buf_size_store(struct device *dev, 133 struct device_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned long buf_size; 137 ssize_t ret; 138 139 buf_size = simple_strtoul(buf, NULL, 10); 140 141 /* make sure SMI data buffer is at least buf_size */ 142 mutex_lock(&smi_data_lock); 143 ret = smi_data_buf_realloc(buf_size); 144 mutex_unlock(&smi_data_lock); 145 if (ret) 146 return ret; 147 148 return count; 149 } 150 151 static ssize_t smi_data_read(struct file *filp, struct kobject *kobj, 152 struct bin_attribute *bin_attr, 153 char *buf, loff_t pos, size_t count) 154 { 155 ssize_t ret; 156 157 mutex_lock(&smi_data_lock); 158 ret = memory_read_from_buffer(buf, count, &pos, smi_data_buf, 159 smi_data_buf_size); 160 mutex_unlock(&smi_data_lock); 161 return ret; 162 } 163 164 static ssize_t smi_data_write(struct file *filp, struct kobject *kobj, 165 struct bin_attribute *bin_attr, 166 char *buf, loff_t pos, size_t count) 167 { 168 ssize_t ret; 169 170 if ((pos + count) > max_smi_data_buf_size) 171 return -EINVAL; 172 173 mutex_lock(&smi_data_lock); 174 175 ret = smi_data_buf_realloc(pos + count); 176 if (ret) 177 goto out; 178 179 memcpy(smi_data_buf + pos, buf, count); 180 ret = count; 181 out: 182 mutex_unlock(&smi_data_lock); 183 return ret; 184 } 185 186 static ssize_t host_control_action_show(struct device *dev, 187 struct device_attribute *attr, 188 char *buf) 189 { 190 return sprintf(buf, "%u\n", host_control_action); 191 } 192 193 static ssize_t host_control_action_store(struct device *dev, 194 struct device_attribute *attr, 195 const char *buf, size_t count) 196 { 197 ssize_t ret; 198 199 /* make sure buffer is available for host control command */ 200 mutex_lock(&smi_data_lock); 201 ret = smi_data_buf_realloc(sizeof(struct apm_cmd)); 202 mutex_unlock(&smi_data_lock); 203 if (ret) 204 return ret; 205 206 host_control_action = simple_strtoul(buf, NULL, 10); 207 return count; 208 } 209 210 static ssize_t host_control_smi_type_show(struct device *dev, 211 struct device_attribute *attr, 212 char *buf) 213 { 214 return sprintf(buf, "%u\n", host_control_smi_type); 215 } 216 217 static ssize_t host_control_smi_type_store(struct device *dev, 218 struct device_attribute *attr, 219 const char *buf, size_t count) 220 { 221 host_control_smi_type = simple_strtoul(buf, NULL, 10); 222 return count; 223 } 224 225 static ssize_t host_control_on_shutdown_show(struct device *dev, 226 struct device_attribute *attr, 227 char *buf) 228 { 229 return sprintf(buf, "%u\n", host_control_on_shutdown); 230 } 231 232 static ssize_t host_control_on_shutdown_store(struct device *dev, 233 struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 host_control_on_shutdown = simple_strtoul(buf, NULL, 10); 237 return count; 238 } 239 240 static int raise_smi(void *par) 241 { 242 struct smi_cmd *smi_cmd = par; 243 244 if (smp_processor_id() != 0) { 245 dev_dbg(&dcdbas_pdev->dev, "%s: failed to get CPU 0\n", 246 __func__); 247 return -EBUSY; 248 } 249 250 /* generate SMI */ 251 /* inb to force posted write through and make SMI happen now */ 252 asm volatile ( 253 "outb %b0,%w1\n" 254 "inb %w1" 255 : /* no output args */ 256 : "a" (smi_cmd->command_code), 257 "d" (smi_cmd->command_address), 258 "b" (smi_cmd->ebx), 259 "c" (smi_cmd->ecx) 260 : "memory" 261 ); 262 263 return 0; 264 } 265 /** 266 * dcdbas_smi_request: generate SMI request 267 * 268 * Called with smi_data_lock. 269 */ 270 int dcdbas_smi_request(struct smi_cmd *smi_cmd) 271 { 272 int ret; 273 274 if (smi_cmd->magic != SMI_CMD_MAGIC) { 275 dev_info(&dcdbas_pdev->dev, "%s: invalid magic value\n", 276 __func__); 277 return -EBADR; 278 } 279 280 /* SMI requires CPU 0 */ 281 cpus_read_lock(); 282 ret = smp_call_on_cpu(0, raise_smi, smi_cmd, true); 283 cpus_read_unlock(); 284 285 return ret; 286 } 287 EXPORT_SYMBOL(dcdbas_smi_request); 288 289 /** 290 * smi_request_store: 291 * 292 * The valid values are: 293 * 0: zero SMI data buffer 294 * 1: generate calling interface SMI 295 * 2: generate raw SMI 296 * 297 * User application writes smi_cmd to smi_data before telling driver 298 * to generate SMI. 299 */ 300 static ssize_t smi_request_store(struct device *dev, 301 struct device_attribute *attr, 302 const char *buf, size_t count) 303 { 304 struct smi_cmd *smi_cmd; 305 unsigned long val = simple_strtoul(buf, NULL, 10); 306 ssize_t ret; 307 308 mutex_lock(&smi_data_lock); 309 310 if (smi_data_buf_size < sizeof(struct smi_cmd)) { 311 ret = -ENODEV; 312 goto out; 313 } 314 smi_cmd = (struct smi_cmd *)smi_data_buf; 315 316 switch (val) { 317 case 2: 318 /* Raw SMI */ 319 ret = dcdbas_smi_request(smi_cmd); 320 if (!ret) 321 ret = count; 322 break; 323 case 1: 324 /* 325 * Calling Interface SMI 326 * 327 * Provide physical address of command buffer field within 328 * the struct smi_cmd to BIOS. 329 * 330 * Because the address that smi_cmd (smi_data_buf) points to 331 * will be from memremap() of a non-memory address if WSMT 332 * is present, we can't use virt_to_phys() on smi_cmd, so 333 * we have to use the physical address that was saved when 334 * the virtual address for smi_cmd was received. 335 */ 336 smi_cmd->ebx = smi_data_buf_phys_addr + 337 offsetof(struct smi_cmd, command_buffer); 338 ret = dcdbas_smi_request(smi_cmd); 339 if (!ret) 340 ret = count; 341 break; 342 case 0: 343 memset(smi_data_buf, 0, smi_data_buf_size); 344 ret = count; 345 break; 346 default: 347 ret = -EINVAL; 348 break; 349 } 350 351 out: 352 mutex_unlock(&smi_data_lock); 353 return ret; 354 } 355 356 /** 357 * host_control_smi: generate host control SMI 358 * 359 * Caller must set up the host control command in smi_data_buf. 360 */ 361 static int host_control_smi(void) 362 { 363 struct apm_cmd *apm_cmd; 364 u8 *data; 365 unsigned long flags; 366 u32 num_ticks; 367 s8 cmd_status; 368 u8 index; 369 370 apm_cmd = (struct apm_cmd *)smi_data_buf; 371 apm_cmd->status = ESM_STATUS_CMD_UNSUCCESSFUL; 372 373 switch (host_control_smi_type) { 374 case HC_SMITYPE_TYPE1: 375 spin_lock_irqsave(&rtc_lock, flags); 376 /* write SMI data buffer physical address */ 377 data = (u8 *)&smi_data_buf_phys_addr; 378 for (index = PE1300_CMOS_CMD_STRUCT_PTR; 379 index < (PE1300_CMOS_CMD_STRUCT_PTR + 4); 380 index++, data++) { 381 outb(index, 382 (CMOS_BASE_PORT + CMOS_PAGE2_INDEX_PORT_PIIX4)); 383 outb(*data, 384 (CMOS_BASE_PORT + CMOS_PAGE2_DATA_PORT_PIIX4)); 385 } 386 387 /* first set status to -1 as called by spec */ 388 cmd_status = ESM_STATUS_CMD_UNSUCCESSFUL; 389 outb((u8) cmd_status, PCAT_APM_STATUS_PORT); 390 391 /* generate SMM call */ 392 outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT); 393 spin_unlock_irqrestore(&rtc_lock, flags); 394 395 /* wait a few to see if it executed */ 396 num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING; 397 while ((s8)inb(PCAT_APM_STATUS_PORT) == ESM_STATUS_CMD_UNSUCCESSFUL) { 398 num_ticks--; 399 if (num_ticks == EXPIRED_TIMER) 400 return -ETIME; 401 } 402 break; 403 404 case HC_SMITYPE_TYPE2: 405 case HC_SMITYPE_TYPE3: 406 spin_lock_irqsave(&rtc_lock, flags); 407 /* write SMI data buffer physical address */ 408 data = (u8 *)&smi_data_buf_phys_addr; 409 for (index = PE1400_CMOS_CMD_STRUCT_PTR; 410 index < (PE1400_CMOS_CMD_STRUCT_PTR + 4); 411 index++, data++) { 412 outb(index, (CMOS_BASE_PORT + CMOS_PAGE1_INDEX_PORT)); 413 outb(*data, (CMOS_BASE_PORT + CMOS_PAGE1_DATA_PORT)); 414 } 415 416 /* generate SMM call */ 417 if (host_control_smi_type == HC_SMITYPE_TYPE3) 418 outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT); 419 else 420 outb(ESM_APM_CMD, PE1400_APM_CONTROL_PORT); 421 422 /* restore RTC index pointer since it was written to above */ 423 CMOS_READ(RTC_REG_C); 424 spin_unlock_irqrestore(&rtc_lock, flags); 425 426 /* read control port back to serialize write */ 427 cmd_status = inb(PE1400_APM_CONTROL_PORT); 428 429 /* wait a few to see if it executed */ 430 num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING; 431 while (apm_cmd->status == ESM_STATUS_CMD_UNSUCCESSFUL) { 432 num_ticks--; 433 if (num_ticks == EXPIRED_TIMER) 434 return -ETIME; 435 } 436 break; 437 438 default: 439 dev_dbg(&dcdbas_pdev->dev, "%s: invalid SMI type %u\n", 440 __func__, host_control_smi_type); 441 return -ENOSYS; 442 } 443 444 return 0; 445 } 446 447 /** 448 * dcdbas_host_control: initiate host control 449 * 450 * This function is called by the driver after the system has 451 * finished shutting down if the user application specified a 452 * host control action to perform on shutdown. It is safe to 453 * use smi_data_buf at this point because the system has finished 454 * shutting down and no userspace apps are running. 455 */ 456 static void dcdbas_host_control(void) 457 { 458 struct apm_cmd *apm_cmd; 459 u8 action; 460 461 if (host_control_action == HC_ACTION_NONE) 462 return; 463 464 action = host_control_action; 465 host_control_action = HC_ACTION_NONE; 466 467 if (!smi_data_buf) { 468 dev_dbg(&dcdbas_pdev->dev, "%s: no SMI buffer\n", __func__); 469 return; 470 } 471 472 if (smi_data_buf_size < sizeof(struct apm_cmd)) { 473 dev_dbg(&dcdbas_pdev->dev, "%s: SMI buffer too small\n", 474 __func__); 475 return; 476 } 477 478 apm_cmd = (struct apm_cmd *)smi_data_buf; 479 480 /* power off takes precedence */ 481 if (action & HC_ACTION_HOST_CONTROL_POWEROFF) { 482 apm_cmd->command = ESM_APM_POWER_CYCLE; 483 apm_cmd->reserved = 0; 484 *((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 0; 485 host_control_smi(); 486 } else if (action & HC_ACTION_HOST_CONTROL_POWERCYCLE) { 487 apm_cmd->command = ESM_APM_POWER_CYCLE; 488 apm_cmd->reserved = 0; 489 *((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 20; 490 host_control_smi(); 491 } 492 } 493 494 /* WSMT */ 495 496 static u8 checksum(u8 *buffer, u8 length) 497 { 498 u8 sum = 0; 499 u8 *end = buffer + length; 500 501 while (buffer < end) 502 sum += *buffer++; 503 return sum; 504 } 505 506 static inline struct smm_eps_table *check_eps_table(u8 *addr) 507 { 508 struct smm_eps_table *eps = (struct smm_eps_table *)addr; 509 510 if (strncmp(eps->smm_comm_buff_anchor, SMM_EPS_SIG, 4) != 0) 511 return NULL; 512 513 if (checksum(addr, eps->length) != 0) 514 return NULL; 515 516 return eps; 517 } 518 519 static int dcdbas_check_wsmt(void) 520 { 521 const struct dmi_device *dev = NULL; 522 struct acpi_table_wsmt *wsmt = NULL; 523 struct smm_eps_table *eps = NULL; 524 u64 bios_buf_paddr; 525 u64 remap_size; 526 u8 *addr; 527 528 acpi_get_table(ACPI_SIG_WSMT, 0, (struct acpi_table_header **)&wsmt); 529 if (!wsmt) 530 return 0; 531 532 /* Check if WSMT ACPI table shows that protection is enabled */ 533 if (!(wsmt->protection_flags & ACPI_WSMT_FIXED_COMM_BUFFERS) || 534 !(wsmt->protection_flags & ACPI_WSMT_COMM_BUFFER_NESTED_PTR_PROTECTION)) 535 return 0; 536 537 /* 538 * BIOS could provide the address/size of the protected buffer 539 * in an SMBIOS string or in an EPS structure in 0xFxxxx. 540 */ 541 542 /* Check SMBIOS for buffer address */ 543 while ((dev = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, NULL, dev))) 544 if (sscanf(dev->name, "30[%16llx;%8llx]", &bios_buf_paddr, 545 &remap_size) == 2) 546 goto remap; 547 548 /* Scan for EPS (entry point structure) */ 549 for (addr = (u8 *)__va(0xf0000); 550 addr < (u8 *)__va(0x100000 - sizeof(struct smm_eps_table)); 551 addr += 16) { 552 eps = check_eps_table(addr); 553 if (eps) 554 break; 555 } 556 557 if (!eps) { 558 dev_dbg(&dcdbas_pdev->dev, "found WSMT, but no firmware buffer found\n"); 559 return -ENODEV; 560 } 561 bios_buf_paddr = eps->smm_comm_buff_addr; 562 remap_size = eps->num_of_4k_pages * PAGE_SIZE; 563 564 remap: 565 /* 566 * Get physical address of buffer and map to virtual address. 567 * Table gives size in 4K pages, regardless of actual system page size. 568 */ 569 if (upper_32_bits(bios_buf_paddr + 8)) { 570 dev_warn(&dcdbas_pdev->dev, "found WSMT, but buffer address is above 4GB\n"); 571 return -EINVAL; 572 } 573 /* 574 * Limit remap size to MAX_SMI_DATA_BUF_SIZE + 8 (since the first 8 575 * bytes are used for a semaphore, not the data buffer itself). 576 */ 577 if (remap_size > MAX_SMI_DATA_BUF_SIZE + 8) 578 remap_size = MAX_SMI_DATA_BUF_SIZE + 8; 579 580 bios_buffer = memremap(bios_buf_paddr, remap_size, MEMREMAP_WB); 581 if (!bios_buffer) { 582 dev_warn(&dcdbas_pdev->dev, "found WSMT, but failed to map buffer\n"); 583 return -ENOMEM; 584 } 585 586 /* First 8 bytes is for a semaphore, not part of the smi_data_buf */ 587 smi_data_buf_phys_addr = bios_buf_paddr + 8; 588 smi_data_buf = bios_buffer + 8; 589 smi_data_buf_size = remap_size - 8; 590 max_smi_data_buf_size = smi_data_buf_size; 591 wsmt_enabled = true; 592 dev_info(&dcdbas_pdev->dev, 593 "WSMT found, using firmware-provided SMI buffer.\n"); 594 return 1; 595 } 596 597 /** 598 * dcdbas_reboot_notify: handle reboot notification for host control 599 */ 600 static int dcdbas_reboot_notify(struct notifier_block *nb, unsigned long code, 601 void *unused) 602 { 603 switch (code) { 604 case SYS_DOWN: 605 case SYS_HALT: 606 case SYS_POWER_OFF: 607 if (host_control_on_shutdown) { 608 /* firmware is going to perform host control action */ 609 printk(KERN_WARNING "Please wait for shutdown " 610 "action to complete...\n"); 611 dcdbas_host_control(); 612 } 613 break; 614 } 615 616 return NOTIFY_DONE; 617 } 618 619 static struct notifier_block dcdbas_reboot_nb = { 620 .notifier_call = dcdbas_reboot_notify, 621 .next = NULL, 622 .priority = INT_MIN 623 }; 624 625 static DCDBAS_BIN_ATTR_RW(smi_data); 626 627 static struct bin_attribute *dcdbas_bin_attrs[] = { 628 &bin_attr_smi_data, 629 NULL 630 }; 631 632 static DCDBAS_DEV_ATTR_RW(smi_data_buf_size); 633 static DCDBAS_DEV_ATTR_RO(smi_data_buf_phys_addr); 634 static DCDBAS_DEV_ATTR_WO(smi_request); 635 static DCDBAS_DEV_ATTR_RW(host_control_action); 636 static DCDBAS_DEV_ATTR_RW(host_control_smi_type); 637 static DCDBAS_DEV_ATTR_RW(host_control_on_shutdown); 638 639 static struct attribute *dcdbas_dev_attrs[] = { 640 &dev_attr_smi_data_buf_size.attr, 641 &dev_attr_smi_data_buf_phys_addr.attr, 642 &dev_attr_smi_request.attr, 643 &dev_attr_host_control_action.attr, 644 &dev_attr_host_control_smi_type.attr, 645 &dev_attr_host_control_on_shutdown.attr, 646 NULL 647 }; 648 649 static const struct attribute_group dcdbas_attr_group = { 650 .attrs = dcdbas_dev_attrs, 651 .bin_attrs = dcdbas_bin_attrs, 652 }; 653 654 static int dcdbas_probe(struct platform_device *dev) 655 { 656 int error; 657 658 host_control_action = HC_ACTION_NONE; 659 host_control_smi_type = HC_SMITYPE_NONE; 660 661 dcdbas_pdev = dev; 662 663 /* Check if ACPI WSMT table specifies protected SMI buffer address */ 664 error = dcdbas_check_wsmt(); 665 if (error < 0) 666 return error; 667 668 /* 669 * BIOS SMI calls require buffer addresses be in 32-bit address space. 670 * This is done by setting the DMA mask below. 671 */ 672 error = dma_set_coherent_mask(&dcdbas_pdev->dev, DMA_BIT_MASK(32)); 673 if (error) 674 return error; 675 676 error = sysfs_create_group(&dev->dev.kobj, &dcdbas_attr_group); 677 if (error) 678 return error; 679 680 register_reboot_notifier(&dcdbas_reboot_nb); 681 682 dev_info(&dev->dev, "%s (version %s)\n", 683 DRIVER_DESCRIPTION, DRIVER_VERSION); 684 685 return 0; 686 } 687 688 static int dcdbas_remove(struct platform_device *dev) 689 { 690 unregister_reboot_notifier(&dcdbas_reboot_nb); 691 sysfs_remove_group(&dev->dev.kobj, &dcdbas_attr_group); 692 693 return 0; 694 } 695 696 static struct platform_driver dcdbas_driver = { 697 .driver = { 698 .name = DRIVER_NAME, 699 }, 700 .probe = dcdbas_probe, 701 .remove = dcdbas_remove, 702 }; 703 704 static const struct platform_device_info dcdbas_dev_info __initconst = { 705 .name = DRIVER_NAME, 706 .id = -1, 707 .dma_mask = DMA_BIT_MASK(32), 708 }; 709 710 static struct platform_device *dcdbas_pdev_reg; 711 712 /** 713 * dcdbas_init: initialize driver 714 */ 715 static int __init dcdbas_init(void) 716 { 717 int error; 718 719 error = platform_driver_register(&dcdbas_driver); 720 if (error) 721 return error; 722 723 dcdbas_pdev_reg = platform_device_register_full(&dcdbas_dev_info); 724 if (IS_ERR(dcdbas_pdev_reg)) { 725 error = PTR_ERR(dcdbas_pdev_reg); 726 goto err_unregister_driver; 727 } 728 729 return 0; 730 731 err_unregister_driver: 732 platform_driver_unregister(&dcdbas_driver); 733 return error; 734 } 735 736 /** 737 * dcdbas_exit: perform driver cleanup 738 */ 739 static void __exit dcdbas_exit(void) 740 { 741 /* 742 * make sure functions that use dcdbas_pdev are called 743 * before platform_device_unregister 744 */ 745 unregister_reboot_notifier(&dcdbas_reboot_nb); 746 747 /* 748 * We have to free the buffer here instead of dcdbas_remove 749 * because only in module exit function we can be sure that 750 * all sysfs attributes belonging to this module have been 751 * released. 752 */ 753 if (dcdbas_pdev) 754 smi_data_buf_free(); 755 if (bios_buffer) 756 memunmap(bios_buffer); 757 platform_device_unregister(dcdbas_pdev_reg); 758 platform_driver_unregister(&dcdbas_driver); 759 } 760 761 subsys_initcall_sync(dcdbas_init); 762 module_exit(dcdbas_exit); 763 764 MODULE_DESCRIPTION(DRIVER_DESCRIPTION " (version " DRIVER_VERSION ")"); 765 MODULE_VERSION(DRIVER_VERSION); 766 MODULE_AUTHOR("Dell Inc."); 767 MODULE_LICENSE("GPL"); 768 /* Any System or BIOS claiming to be by Dell */ 769 MODULE_ALIAS("dmi:*:[bs]vnD[Ee][Ll][Ll]*:*"); 770