1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * asus-laptop.c - Asus Laptop Support 4 * 5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor 6 * Copyright (C) 2006-2007 Corentin Chary 7 * Copyright (C) 2011 Wind River Systems 8 * 9 * The development page for this driver is located at 10 * http://sourceforge.net/projects/acpi4asus/ 11 * 12 * Credits: 13 * Pontus Fuchs - Helper functions, cleanup 14 * Johann Wiesner - Small compile fixes 15 * John Belmonte - ACPI code for Toshiba laptop was a good starting point. 16 * Eric Burghard - LED display support for W1N 17 * Josh Green - Light Sens support 18 * Thomas Tuttle - His first patch for led support was very helpful 19 * Sam Lin - GPS support 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/init.h> 27 #include <linux/types.h> 28 #include <linux/err.h> 29 #include <linux/proc_fs.h> 30 #include <linux/backlight.h> 31 #include <linux/fb.h> 32 #include <linux/leds.h> 33 #include <linux/platform_device.h> 34 #include <linux/uaccess.h> 35 #include <linux/input.h> 36 #include <linux/input/sparse-keymap.h> 37 #include <linux/rfkill.h> 38 #include <linux/slab.h> 39 #include <linux/dmi.h> 40 #include <linux/acpi.h> 41 #include <acpi/video.h> 42 43 #define ASUS_LAPTOP_VERSION "0.42" 44 45 #define ASUS_LAPTOP_NAME "Asus Laptop Support" 46 #define ASUS_LAPTOP_CLASS "hotkey" 47 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" 48 #define ASUS_LAPTOP_FILE KBUILD_MODNAME 49 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." 50 51 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); 52 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); 53 MODULE_LICENSE("GPL"); 54 55 /* 56 * WAPF defines the behavior of the Fn+Fx wlan key 57 * The significance of values is yet to be found, but 58 * most of the time: 59 * Bit | Bluetooth | WLAN 60 * 0 | Hardware | Hardware 61 * 1 | Hardware | Software 62 * 4 | Software | Software 63 */ 64 static uint wapf = 1; 65 module_param(wapf, uint, 0444); 66 MODULE_PARM_DESC(wapf, "WAPF value"); 67 68 static char *wled_type = "unknown"; 69 static char *bled_type = "unknown"; 70 71 module_param(wled_type, charp, 0444); 72 MODULE_PARM_DESC(wled_type, "Set the wled type on boot " 73 "(unknown, led or rfkill). " 74 "default is unknown"); 75 76 module_param(bled_type, charp, 0444); 77 MODULE_PARM_DESC(bled_type, "Set the bled type on boot " 78 "(unknown, led or rfkill). " 79 "default is unknown"); 80 81 static int wlan_status = 1; 82 static int bluetooth_status = 1; 83 static int wimax_status = -1; 84 static int wwan_status = -1; 85 static int als_status; 86 87 module_param(wlan_status, int, 0444); 88 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " 89 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 90 "default is -1"); 91 92 module_param(bluetooth_status, int, 0444); 93 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " 94 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 95 "default is -1"); 96 97 module_param(wimax_status, int, 0444); 98 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " 99 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 100 "default is -1"); 101 102 module_param(wwan_status, int, 0444); 103 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " 104 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 105 "default is -1"); 106 107 module_param(als_status, int, 0444); 108 MODULE_PARM_DESC(als_status, "Set the ALS status on boot " 109 "(0 = disabled, 1 = enabled). " 110 "default is 0"); 111 112 /* 113 * Some events we use, same for all Asus 114 */ 115 #define ATKD_BRNUP_MIN 0x10 116 #define ATKD_BRNUP_MAX 0x1f 117 #define ATKD_BRNDOWN_MIN 0x20 118 #define ATKD_BRNDOWN_MAX 0x2f 119 #define ATKD_BRNDOWN 0x20 120 #define ATKD_BRNUP 0x2f 121 #define ATKD_LCD_ON 0x33 122 #define ATKD_LCD_OFF 0x34 123 124 /* 125 * Known bits returned by \_SB.ATKD.HWRS 126 */ 127 #define WL_HWRS 0x80 128 #define BT_HWRS 0x100 129 130 /* 131 * Flags for hotk status 132 * WL_ON and BT_ON are also used for wireless_status() 133 */ 134 #define WL_RSTS 0x01 /* internal Wifi */ 135 #define BT_RSTS 0x02 /* internal Bluetooth */ 136 #define WM_RSTS 0x08 /* internal wimax */ 137 #define WW_RSTS 0x20 /* internal wwan */ 138 139 /* WLED and BLED type */ 140 #define TYPE_UNKNOWN 0 141 #define TYPE_LED 1 142 #define TYPE_RFKILL 2 143 144 /* LED */ 145 #define METHOD_MLED "MLED" 146 #define METHOD_TLED "TLED" 147 #define METHOD_RLED "RLED" /* W1JC */ 148 #define METHOD_PLED "PLED" /* A7J */ 149 #define METHOD_GLED "GLED" /* G1, G2 (probably) */ 150 151 /* LEDD */ 152 #define METHOD_LEDD "SLCM" 153 154 /* 155 * Bluetooth and WLAN 156 * WLED and BLED are not handled like other XLED, because in some dsdt 157 * they also control the WLAN/Bluetooth device. 158 */ 159 #define METHOD_WLAN "WLED" 160 #define METHOD_BLUETOOTH "BLED" 161 162 /* WWAN and WIMAX */ 163 #define METHOD_WWAN "GSMC" 164 #define METHOD_WIMAX "WMXC" 165 166 #define METHOD_WL_STATUS "RSTS" 167 168 /* Brightness */ 169 #define METHOD_BRIGHTNESS_SET "SPLV" 170 #define METHOD_BRIGHTNESS_GET "GPLV" 171 172 /* Display */ 173 #define METHOD_SWITCH_DISPLAY "SDSP" 174 175 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ 176 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ 177 178 /* GPS */ 179 /* R2H use different handle for GPS on/off */ 180 #define METHOD_GPS_ON "SDON" 181 #define METHOD_GPS_OFF "SDOF" 182 #define METHOD_GPS_STATUS "GPST" 183 184 /* Keyboard light */ 185 #define METHOD_KBD_LIGHT_SET "SLKB" 186 #define METHOD_KBD_LIGHT_GET "GLKB" 187 188 /* For Pegatron Lucid tablet */ 189 #define DEVICE_NAME_PEGA "Lucid" 190 191 #define METHOD_PEGA_ENABLE "ENPR" 192 #define METHOD_PEGA_DISABLE "DAPR" 193 #define PEGA_WLAN 0x00 194 #define PEGA_BLUETOOTH 0x01 195 #define PEGA_WWAN 0x02 196 #define PEGA_ALS 0x04 197 #define PEGA_ALS_POWER 0x05 198 199 #define METHOD_PEGA_READ "RDLN" 200 #define PEGA_READ_ALS_H 0x02 201 #define PEGA_READ_ALS_L 0x03 202 203 #define PEGA_ACCEL_NAME "pega_accel" 204 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" 205 #define METHOD_XLRX "XLRX" 206 #define METHOD_XLRY "XLRY" 207 #define METHOD_XLRZ "XLRZ" 208 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ 209 #define PEGA_ACC_RETRIES 3 210 211 /* 212 * Define a specific led structure to keep the main structure clean 213 */ 214 struct asus_led { 215 int wk; 216 struct work_struct work; 217 struct led_classdev led; 218 struct asus_laptop *asus; 219 const char *method; 220 }; 221 222 /* 223 * Same thing for rfkill 224 */ 225 struct asus_rfkill { 226 /* type of control. Maps to PEGA_* values or *_RSTS */ 227 int control_id; 228 struct rfkill *rfkill; 229 struct asus_laptop *asus; 230 }; 231 232 /* 233 * This is the main structure, we can use it to store anything interesting 234 * about the hotk device 235 */ 236 struct asus_laptop { 237 char *name; /* laptop name */ 238 239 struct acpi_table_header *dsdt_info; 240 struct platform_device *platform_device; 241 struct acpi_device *device; /* the device we are in */ 242 struct backlight_device *backlight_device; 243 244 struct input_dev *inputdev; 245 struct key_entry *keymap; 246 struct input_dev *pega_accel_poll; 247 248 struct asus_led wled; 249 struct asus_led bled; 250 struct asus_led mled; 251 struct asus_led tled; 252 struct asus_led rled; 253 struct asus_led pled; 254 struct asus_led gled; 255 struct asus_led kled; 256 struct workqueue_struct *led_workqueue; 257 258 int wled_type; 259 int bled_type; 260 int wireless_status; 261 bool have_rsts; 262 bool is_pega_lucid; 263 bool pega_acc_live; 264 int pega_acc_x; 265 int pega_acc_y; 266 int pega_acc_z; 267 268 struct asus_rfkill wlan; 269 struct asus_rfkill bluetooth; 270 struct asus_rfkill wwan; 271 struct asus_rfkill wimax; 272 struct asus_rfkill gps; 273 274 acpi_handle handle; /* the handle of the hotk device */ 275 u32 ledd_status; /* status of the LED display */ 276 u8 light_level; /* light sensor level */ 277 u8 light_switch; /* light sensor switch value */ 278 u16 event_count[128]; /* count for each event TODO make this better */ 279 }; 280 281 static const struct key_entry asus_keymap[] = { 282 /* Lenovo SL Specific keycodes */ 283 {KE_KEY, 0x02, { KEY_SCREENLOCK } }, 284 {KE_KEY, 0x05, { KEY_WLAN } }, 285 {KE_KEY, 0x08, { KEY_F13 } }, 286 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */ 287 {KE_KEY, 0x17, { KEY_ZOOM } }, 288 {KE_KEY, 0x1f, { KEY_BATTERY } }, 289 /* End of Lenovo SL Specific keycodes */ 290 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } }, 291 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } }, 292 {KE_KEY, 0x30, { KEY_VOLUMEUP } }, 293 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, 294 {KE_KEY, 0x32, { KEY_MUTE } }, 295 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */ 296 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */ 297 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, 298 {KE_KEY, 0x41, { KEY_NEXTSONG } }, 299 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */ 300 {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, 301 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */ 302 {KE_KEY, 0x50, { KEY_EMAIL } }, 303 {KE_KEY, 0x51, { KEY_WWW } }, 304 {KE_KEY, 0x55, { KEY_CALC } }, 305 {KE_IGNORE, 0x57, }, /* Battery mode */ 306 {KE_IGNORE, 0x58, }, /* AC mode */ 307 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ 308 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */ 309 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */ 310 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */ 311 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } }, 312 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */ 313 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */ 314 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */ 315 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */ 316 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */ 317 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */ 318 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */ 319 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */ 320 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */ 321 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */ 322 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */ 323 {KE_IGNORE, 0x6E, }, /* Low Battery notification */ 324 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */ 325 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */ 326 {KE_KEY, 0x82, { KEY_CAMERA } }, 327 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */ 328 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */ 329 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */ 330 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */ 331 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */ 332 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */ 333 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */ 334 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */ 335 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */ 336 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */ 337 {KE_KEY, 0x95, { KEY_MEDIA } }, 338 {KE_KEY, 0x99, { KEY_PHONE } }, 339 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */ 340 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */ 341 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */ 342 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */ 343 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */ 344 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */ 345 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */ 346 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */ 347 {KE_KEY, 0xB5, { KEY_CALC } }, 348 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } }, 349 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } }, 350 {KE_END, 0}, 351 }; 352 353 354 /* 355 * This function evaluates an ACPI method, given an int as parameter, the 356 * method is searched within the scope of the handle, can be NULL. The output 357 * of the method is written is output, which can also be NULL 358 * 359 * returns 0 if write is successful, -1 else. 360 */ 361 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, 362 struct acpi_buffer *output) 363 { 364 struct acpi_object_list params; /* list of input parameters (an int) */ 365 union acpi_object in_obj; /* the only param we use */ 366 acpi_status status; 367 368 if (!handle) 369 return -1; 370 371 params.count = 1; 372 params.pointer = &in_obj; 373 in_obj.type = ACPI_TYPE_INTEGER; 374 in_obj.integer.value = val; 375 376 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); 377 if (status == AE_OK) 378 return 0; 379 else 380 return -1; 381 } 382 383 static int write_acpi_int(acpi_handle handle, const char *method, int val) 384 { 385 return write_acpi_int_ret(handle, method, val, NULL); 386 } 387 388 static int acpi_check_handle(acpi_handle handle, const char *method, 389 acpi_handle *ret) 390 { 391 acpi_status status; 392 393 if (method == NULL) 394 return -ENODEV; 395 396 if (ret) 397 status = acpi_get_handle(handle, (char *)method, 398 ret); 399 else { 400 acpi_handle dummy; 401 402 status = acpi_get_handle(handle, (char *)method, 403 &dummy); 404 } 405 406 if (status != AE_OK) { 407 if (ret) 408 pr_warn("Error finding %s\n", method); 409 return -ENODEV; 410 } 411 return 0; 412 } 413 414 static bool asus_check_pega_lucid(struct asus_laptop *asus) 415 { 416 return !strcmp(asus->name, DEVICE_NAME_PEGA) && 417 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && 418 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && 419 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); 420 } 421 422 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) 423 { 424 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; 425 return write_acpi_int(asus->handle, method, unit); 426 } 427 428 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) 429 { 430 int i, delta; 431 unsigned long long val; 432 for (i = 0; i < PEGA_ACC_RETRIES; i++) { 433 acpi_evaluate_integer(asus->handle, method, NULL, &val); 434 435 /* The output is noisy. From reading the ASL 436 * dissassembly, timeout errors are returned with 1's 437 * in the high word, and the lack of locking around 438 * thei hi/lo byte reads means that a transition 439 * between (for example) -1 and 0 could be read as 440 * 0xff00 or 0x00ff. */ 441 delta = abs(curr - (short)val); 442 if (delta < 128 && !(val & ~0xffff)) 443 break; 444 } 445 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); 446 } 447 448 static void pega_accel_poll(struct input_dev *input) 449 { 450 struct device *parent = input->dev.parent; 451 struct asus_laptop *asus = dev_get_drvdata(parent); 452 453 /* In some cases, the very first call to poll causes a 454 * recursive fault under the polldev worker. This is 455 * apparently related to very early userspace access to the 456 * device, and perhaps a firmware bug. Fake the first report. */ 457 if (!asus->pega_acc_live) { 458 asus->pega_acc_live = true; 459 input_report_abs(input, ABS_X, 0); 460 input_report_abs(input, ABS_Y, 0); 461 input_report_abs(input, ABS_Z, 0); 462 input_sync(input); 463 return; 464 } 465 466 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); 467 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); 468 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); 469 470 /* Note transform, convert to "right/up/out" in the native 471 * landscape orientation (i.e. the vector is the direction of 472 * "real up" in the device's cartiesian coordinates). */ 473 input_report_abs(input, ABS_X, -asus->pega_acc_x); 474 input_report_abs(input, ABS_Y, -asus->pega_acc_y); 475 input_report_abs(input, ABS_Z, asus->pega_acc_z); 476 input_sync(input); 477 } 478 479 static void pega_accel_exit(struct asus_laptop *asus) 480 { 481 if (asus->pega_accel_poll) { 482 input_unregister_device(asus->pega_accel_poll); 483 asus->pega_accel_poll = NULL; 484 } 485 } 486 487 static int pega_accel_init(struct asus_laptop *asus) 488 { 489 int err; 490 struct input_dev *input; 491 492 if (!asus->is_pega_lucid) 493 return -ENODEV; 494 495 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || 496 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || 497 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) 498 return -ENODEV; 499 500 input = input_allocate_device(); 501 if (!input) 502 return -ENOMEM; 503 504 input->name = PEGA_ACCEL_DESC; 505 input->phys = PEGA_ACCEL_NAME "/input0"; 506 input->dev.parent = &asus->platform_device->dev; 507 input->id.bustype = BUS_HOST; 508 509 input_set_abs_params(input, ABS_X, 510 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 511 input_set_abs_params(input, ABS_Y, 512 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 513 input_set_abs_params(input, ABS_Z, 514 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 515 516 err = input_setup_polling(input, pega_accel_poll); 517 if (err) 518 goto exit; 519 520 input_set_poll_interval(input, 125); 521 input_set_min_poll_interval(input, 50); 522 input_set_max_poll_interval(input, 2000); 523 524 err = input_register_device(input); 525 if (err) 526 goto exit; 527 528 asus->pega_accel_poll = input; 529 return 0; 530 531 exit: 532 input_free_device(input); 533 return err; 534 } 535 536 /* Generic LED function */ 537 static int asus_led_set(struct asus_laptop *asus, const char *method, 538 int value) 539 { 540 if (!strcmp(method, METHOD_MLED)) 541 value = !value; 542 else if (!strcmp(method, METHOD_GLED)) 543 value = !value + 1; 544 else 545 value = !!value; 546 547 return write_acpi_int(asus->handle, method, value); 548 } 549 550 /* 551 * LEDs 552 */ 553 /* /sys/class/led handlers */ 554 static void asus_led_cdev_set(struct led_classdev *led_cdev, 555 enum led_brightness value) 556 { 557 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 558 struct asus_laptop *asus = led->asus; 559 560 led->wk = !!value; 561 queue_work(asus->led_workqueue, &led->work); 562 } 563 564 static void asus_led_cdev_update(struct work_struct *work) 565 { 566 struct asus_led *led = container_of(work, struct asus_led, work); 567 struct asus_laptop *asus = led->asus; 568 569 asus_led_set(asus, led->method, led->wk); 570 } 571 572 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) 573 { 574 return led_cdev->brightness; 575 } 576 577 /* 578 * Keyboard backlight (also a LED) 579 */ 580 static int asus_kled_lvl(struct asus_laptop *asus) 581 { 582 unsigned long long kblv; 583 struct acpi_object_list params; 584 union acpi_object in_obj; 585 acpi_status rv; 586 587 params.count = 1; 588 params.pointer = &in_obj; 589 in_obj.type = ACPI_TYPE_INTEGER; 590 in_obj.integer.value = 2; 591 592 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, 593 ¶ms, &kblv); 594 if (ACPI_FAILURE(rv)) { 595 pr_warn("Error reading kled level\n"); 596 return -ENODEV; 597 } 598 return kblv; 599 } 600 601 static int asus_kled_set(struct asus_laptop *asus, int kblv) 602 { 603 if (kblv > 0) 604 kblv = (1 << 7) | (kblv & 0x7F); 605 else 606 kblv = 0; 607 608 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { 609 pr_warn("Keyboard LED display write failed\n"); 610 return -EINVAL; 611 } 612 return 0; 613 } 614 615 static void asus_kled_cdev_set(struct led_classdev *led_cdev, 616 enum led_brightness value) 617 { 618 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 619 struct asus_laptop *asus = led->asus; 620 621 led->wk = value; 622 queue_work(asus->led_workqueue, &led->work); 623 } 624 625 static void asus_kled_cdev_update(struct work_struct *work) 626 { 627 struct asus_led *led = container_of(work, struct asus_led, work); 628 struct asus_laptop *asus = led->asus; 629 630 asus_kled_set(asus, led->wk); 631 } 632 633 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) 634 { 635 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 636 struct asus_laptop *asus = led->asus; 637 638 return asus_kled_lvl(asus); 639 } 640 641 static void asus_led_exit(struct asus_laptop *asus) 642 { 643 if (!IS_ERR_OR_NULL(asus->wled.led.dev)) 644 led_classdev_unregister(&asus->wled.led); 645 if (!IS_ERR_OR_NULL(asus->bled.led.dev)) 646 led_classdev_unregister(&asus->bled.led); 647 if (!IS_ERR_OR_NULL(asus->mled.led.dev)) 648 led_classdev_unregister(&asus->mled.led); 649 if (!IS_ERR_OR_NULL(asus->tled.led.dev)) 650 led_classdev_unregister(&asus->tled.led); 651 if (!IS_ERR_OR_NULL(asus->pled.led.dev)) 652 led_classdev_unregister(&asus->pled.led); 653 if (!IS_ERR_OR_NULL(asus->rled.led.dev)) 654 led_classdev_unregister(&asus->rled.led); 655 if (!IS_ERR_OR_NULL(asus->gled.led.dev)) 656 led_classdev_unregister(&asus->gled.led); 657 if (!IS_ERR_OR_NULL(asus->kled.led.dev)) 658 led_classdev_unregister(&asus->kled.led); 659 if (asus->led_workqueue) { 660 destroy_workqueue(asus->led_workqueue); 661 asus->led_workqueue = NULL; 662 } 663 } 664 665 /* Ugly macro, need to fix that later */ 666 static int asus_led_register(struct asus_laptop *asus, 667 struct asus_led *led, 668 const char *name, const char *method) 669 { 670 struct led_classdev *led_cdev = &led->led; 671 672 if (!method || acpi_check_handle(asus->handle, method, NULL)) 673 return 0; /* Led not present */ 674 675 led->asus = asus; 676 led->method = method; 677 678 INIT_WORK(&led->work, asus_led_cdev_update); 679 led_cdev->name = name; 680 led_cdev->brightness_set = asus_led_cdev_set; 681 led_cdev->brightness_get = asus_led_cdev_get; 682 led_cdev->max_brightness = 1; 683 return led_classdev_register(&asus->platform_device->dev, led_cdev); 684 } 685 686 static int asus_led_init(struct asus_laptop *asus) 687 { 688 int r = 0; 689 690 /* 691 * The Pegatron Lucid has no physical leds, but all methods are 692 * available in the DSDT... 693 */ 694 if (asus->is_pega_lucid) 695 return 0; 696 697 /* 698 * Functions that actually update the LED's are called from a 699 * workqueue. By doing this as separate work rather than when the LED 700 * subsystem asks, we avoid messing with the Asus ACPI stuff during a 701 * potentially bad time, such as a timer interrupt. 702 */ 703 asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); 704 if (!asus->led_workqueue) 705 return -ENOMEM; 706 707 if (asus->wled_type == TYPE_LED) 708 r = asus_led_register(asus, &asus->wled, "asus::wlan", 709 METHOD_WLAN); 710 if (r) 711 goto error; 712 if (asus->bled_type == TYPE_LED) 713 r = asus_led_register(asus, &asus->bled, "asus::bluetooth", 714 METHOD_BLUETOOTH); 715 if (r) 716 goto error; 717 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); 718 if (r) 719 goto error; 720 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); 721 if (r) 722 goto error; 723 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); 724 if (r) 725 goto error; 726 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); 727 if (r) 728 goto error; 729 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); 730 if (r) 731 goto error; 732 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && 733 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { 734 struct asus_led *led = &asus->kled; 735 struct led_classdev *cdev = &led->led; 736 737 led->asus = asus; 738 739 INIT_WORK(&led->work, asus_kled_cdev_update); 740 cdev->name = "asus::kbd_backlight"; 741 cdev->brightness_set = asus_kled_cdev_set; 742 cdev->brightness_get = asus_kled_cdev_get; 743 cdev->max_brightness = 3; 744 r = led_classdev_register(&asus->platform_device->dev, cdev); 745 } 746 error: 747 if (r) 748 asus_led_exit(asus); 749 return r; 750 } 751 752 /* 753 * Backlight device 754 */ 755 static int asus_read_brightness(struct backlight_device *bd) 756 { 757 struct asus_laptop *asus = bl_get_data(bd); 758 unsigned long long value; 759 acpi_status rv; 760 761 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, 762 NULL, &value); 763 if (ACPI_FAILURE(rv)) { 764 pr_warn("Error reading brightness\n"); 765 return 0; 766 } 767 768 return value; 769 } 770 771 static int asus_set_brightness(struct backlight_device *bd, int value) 772 { 773 struct asus_laptop *asus = bl_get_data(bd); 774 775 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { 776 pr_warn("Error changing brightness\n"); 777 return -EIO; 778 } 779 return 0; 780 } 781 782 static int update_bl_status(struct backlight_device *bd) 783 { 784 int value = bd->props.brightness; 785 786 return asus_set_brightness(bd, value); 787 } 788 789 static const struct backlight_ops asusbl_ops = { 790 .get_brightness = asus_read_brightness, 791 .update_status = update_bl_status, 792 }; 793 794 static int asus_backlight_notify(struct asus_laptop *asus) 795 { 796 struct backlight_device *bd = asus->backlight_device; 797 int old = bd->props.brightness; 798 799 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); 800 801 return old; 802 } 803 804 static int asus_backlight_init(struct asus_laptop *asus) 805 { 806 struct backlight_device *bd; 807 struct backlight_properties props; 808 809 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || 810 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) 811 return 0; 812 813 memset(&props, 0, sizeof(struct backlight_properties)); 814 props.max_brightness = 15; 815 props.type = BACKLIGHT_PLATFORM; 816 817 bd = backlight_device_register(ASUS_LAPTOP_FILE, 818 &asus->platform_device->dev, asus, 819 &asusbl_ops, &props); 820 if (IS_ERR(bd)) { 821 pr_err("Could not register asus backlight device\n"); 822 asus->backlight_device = NULL; 823 return PTR_ERR(bd); 824 } 825 826 asus->backlight_device = bd; 827 bd->props.brightness = asus_read_brightness(bd); 828 bd->props.power = FB_BLANK_UNBLANK; 829 backlight_update_status(bd); 830 return 0; 831 } 832 833 static void asus_backlight_exit(struct asus_laptop *asus) 834 { 835 backlight_device_unregister(asus->backlight_device); 836 asus->backlight_device = NULL; 837 } 838 839 /* 840 * Platform device handlers 841 */ 842 843 /* 844 * We write our info in page, we begin at offset off and cannot write more 845 * than count bytes. We set eof to 1 if we handle those 2 values. We return the 846 * number of bytes written in page 847 */ 848 static ssize_t infos_show(struct device *dev, struct device_attribute *attr, 849 char *page) 850 { 851 struct asus_laptop *asus = dev_get_drvdata(dev); 852 int len = 0; 853 unsigned long long temp; 854 char buf[16]; /* enough for all info */ 855 acpi_status rv; 856 857 /* 858 * We use the easy way, we don't care of off and count, 859 * so we don't set eof to 1 860 */ 861 862 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); 863 len += sprintf(page + len, "Model reference : %s\n", asus->name); 864 /* 865 * The SFUN method probably allows the original driver to get the list 866 * of features supported by a given model. For now, 0x0100 or 0x0800 867 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. 868 * The significance of others is yet to be found. 869 */ 870 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); 871 if (!ACPI_FAILURE(rv)) 872 len += sprintf(page + len, "SFUN value : %#x\n", 873 (uint) temp); 874 /* 875 * The HWRS method return informations about the hardware. 876 * 0x80 bit is for WLAN, 0x100 for Bluetooth. 877 * 0x40 for WWAN, 0x10 for WIMAX. 878 * The significance of others is yet to be found. 879 * We don't currently use this for device detection, and it 880 * takes several seconds to run on some systems. 881 */ 882 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp); 883 if (!ACPI_FAILURE(rv)) 884 len += sprintf(page + len, "HWRS value : %#x\n", 885 (uint) temp); 886 /* 887 * Another value for userspace: the ASYM method returns 0x02 for 888 * battery low and 0x04 for battery critical, its readings tend to be 889 * more accurate than those provided by _BST. 890 * Note: since not all the laptops provide this method, errors are 891 * silently ignored. 892 */ 893 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); 894 if (!ACPI_FAILURE(rv)) 895 len += sprintf(page + len, "ASYM value : %#x\n", 896 (uint) temp); 897 if (asus->dsdt_info) { 898 snprintf(buf, 16, "%d", asus->dsdt_info->length); 899 len += sprintf(page + len, "DSDT length : %s\n", buf); 900 snprintf(buf, 16, "%d", asus->dsdt_info->checksum); 901 len += sprintf(page + len, "DSDT checksum : %s\n", buf); 902 snprintf(buf, 16, "%d", asus->dsdt_info->revision); 903 len += sprintf(page + len, "DSDT revision : %s\n", buf); 904 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); 905 len += sprintf(page + len, "OEM id : %s\n", buf); 906 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); 907 len += sprintf(page + len, "OEM table id : %s\n", buf); 908 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); 909 len += sprintf(page + len, "OEM revision : 0x%s\n", buf); 910 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); 911 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); 912 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); 913 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); 914 } 915 916 return len; 917 } 918 static DEVICE_ATTR_RO(infos); 919 920 static ssize_t sysfs_acpi_set(struct asus_laptop *asus, 921 const char *buf, size_t count, 922 const char *method) 923 { 924 int rv, value; 925 926 rv = kstrtoint(buf, 0, &value); 927 if (rv < 0) 928 return rv; 929 930 if (write_acpi_int(asus->handle, method, value)) 931 return -ENODEV; 932 return count; 933 } 934 935 /* 936 * LEDD display 937 */ 938 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr, 939 char *buf) 940 { 941 struct asus_laptop *asus = dev_get_drvdata(dev); 942 943 return sprintf(buf, "0x%08x\n", asus->ledd_status); 944 } 945 946 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr, 947 const char *buf, size_t count) 948 { 949 struct asus_laptop *asus = dev_get_drvdata(dev); 950 int rv, value; 951 952 rv = kstrtoint(buf, 0, &value); 953 if (rv < 0) 954 return rv; 955 956 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { 957 pr_warn("LED display write failed\n"); 958 return -ENODEV; 959 } 960 961 asus->ledd_status = (u32) value; 962 return count; 963 } 964 static DEVICE_ATTR_RW(ledd); 965 966 /* 967 * Wireless 968 */ 969 static int asus_wireless_status(struct asus_laptop *asus, int mask) 970 { 971 unsigned long long status; 972 acpi_status rv = AE_OK; 973 974 if (!asus->have_rsts) 975 return (asus->wireless_status & mask) ? 1 : 0; 976 977 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, 978 NULL, &status); 979 if (ACPI_FAILURE(rv)) { 980 pr_warn("Error reading Wireless status\n"); 981 return -EINVAL; 982 } 983 return !!(status & mask); 984 } 985 986 /* 987 * WLAN 988 */ 989 static int asus_wlan_set(struct asus_laptop *asus, int status) 990 { 991 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { 992 pr_warn("Error setting wlan status to %d\n", status); 993 return -EIO; 994 } 995 return 0; 996 } 997 998 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr, 999 char *buf) 1000 { 1001 struct asus_laptop *asus = dev_get_drvdata(dev); 1002 1003 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); 1004 } 1005 1006 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr, 1007 const char *buf, size_t count) 1008 { 1009 struct asus_laptop *asus = dev_get_drvdata(dev); 1010 1011 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); 1012 } 1013 static DEVICE_ATTR_RW(wlan); 1014 1015 /*e 1016 * Bluetooth 1017 */ 1018 static int asus_bluetooth_set(struct asus_laptop *asus, int status) 1019 { 1020 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { 1021 pr_warn("Error setting bluetooth status to %d\n", status); 1022 return -EIO; 1023 } 1024 return 0; 1025 } 1026 1027 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr, 1028 char *buf) 1029 { 1030 struct asus_laptop *asus = dev_get_drvdata(dev); 1031 1032 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); 1033 } 1034 1035 static ssize_t bluetooth_store(struct device *dev, 1036 struct device_attribute *attr, const char *buf, 1037 size_t count) 1038 { 1039 struct asus_laptop *asus = dev_get_drvdata(dev); 1040 1041 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); 1042 } 1043 static DEVICE_ATTR_RW(bluetooth); 1044 1045 /* 1046 * Wimax 1047 */ 1048 static int asus_wimax_set(struct asus_laptop *asus, int status) 1049 { 1050 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { 1051 pr_warn("Error setting wimax status to %d\n", status); 1052 return -EIO; 1053 } 1054 return 0; 1055 } 1056 1057 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr, 1058 char *buf) 1059 { 1060 struct asus_laptop *asus = dev_get_drvdata(dev); 1061 1062 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); 1063 } 1064 1065 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr, 1066 const char *buf, size_t count) 1067 { 1068 struct asus_laptop *asus = dev_get_drvdata(dev); 1069 1070 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); 1071 } 1072 static DEVICE_ATTR_RW(wimax); 1073 1074 /* 1075 * Wwan 1076 */ 1077 static int asus_wwan_set(struct asus_laptop *asus, int status) 1078 { 1079 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { 1080 pr_warn("Error setting wwan status to %d\n", status); 1081 return -EIO; 1082 } 1083 return 0; 1084 } 1085 1086 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr, 1087 char *buf) 1088 { 1089 struct asus_laptop *asus = dev_get_drvdata(dev); 1090 1091 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); 1092 } 1093 1094 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr, 1095 const char *buf, size_t count) 1096 { 1097 struct asus_laptop *asus = dev_get_drvdata(dev); 1098 1099 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); 1100 } 1101 static DEVICE_ATTR_RW(wwan); 1102 1103 /* 1104 * Display 1105 */ 1106 static void asus_set_display(struct asus_laptop *asus, int value) 1107 { 1108 /* no sanity check needed for now */ 1109 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) 1110 pr_warn("Error setting display\n"); 1111 return; 1112 } 1113 1114 /* 1115 * Experimental support for display switching. As of now: 1 should activate 1116 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. 1117 * Any combination (bitwise) of these will suffice. I never actually tested 4 1118 * displays hooked up simultaneously, so be warned. See the acpi4asus README 1119 * for more info. 1120 */ 1121 static ssize_t display_store(struct device *dev, struct device_attribute *attr, 1122 const char *buf, size_t count) 1123 { 1124 struct asus_laptop *asus = dev_get_drvdata(dev); 1125 int rv, value; 1126 1127 rv = kstrtoint(buf, 0, &value); 1128 if (rv < 0) 1129 return rv; 1130 1131 asus_set_display(asus, value); 1132 return count; 1133 } 1134 static DEVICE_ATTR_WO(display); 1135 1136 /* 1137 * Light Sens 1138 */ 1139 static void asus_als_switch(struct asus_laptop *asus, int value) 1140 { 1141 int ret; 1142 1143 if (asus->is_pega_lucid) { 1144 ret = asus_pega_lucid_set(asus, PEGA_ALS, value); 1145 if (!ret) 1146 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); 1147 } else { 1148 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); 1149 } 1150 if (ret) 1151 pr_warn("Error setting light sensor switch\n"); 1152 1153 asus->light_switch = value; 1154 } 1155 1156 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr, 1157 char *buf) 1158 { 1159 struct asus_laptop *asus = dev_get_drvdata(dev); 1160 1161 return sprintf(buf, "%d\n", asus->light_switch); 1162 } 1163 1164 static ssize_t ls_switch_store(struct device *dev, 1165 struct device_attribute *attr, const char *buf, 1166 size_t count) 1167 { 1168 struct asus_laptop *asus = dev_get_drvdata(dev); 1169 int rv, value; 1170 1171 rv = kstrtoint(buf, 0, &value); 1172 if (rv < 0) 1173 return rv; 1174 1175 asus_als_switch(asus, value ? 1 : 0); 1176 return count; 1177 } 1178 static DEVICE_ATTR_RW(ls_switch); 1179 1180 static void asus_als_level(struct asus_laptop *asus, int value) 1181 { 1182 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) 1183 pr_warn("Error setting light sensor level\n"); 1184 asus->light_level = value; 1185 } 1186 1187 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr, 1188 char *buf) 1189 { 1190 struct asus_laptop *asus = dev_get_drvdata(dev); 1191 1192 return sprintf(buf, "%d\n", asus->light_level); 1193 } 1194 1195 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr, 1196 const char *buf, size_t count) 1197 { 1198 struct asus_laptop *asus = dev_get_drvdata(dev); 1199 int rv, value; 1200 1201 rv = kstrtoint(buf, 0, &value); 1202 if (rv < 0) 1203 return rv; 1204 1205 value = (0 < value) ? ((15 < value) ? 15 : value) : 0; 1206 /* 0 <= value <= 15 */ 1207 asus_als_level(asus, value); 1208 1209 return count; 1210 } 1211 static DEVICE_ATTR_RW(ls_level); 1212 1213 static int pega_int_read(struct asus_laptop *asus, int arg, int *result) 1214 { 1215 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1216 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, 1217 &buffer); 1218 if (!err) { 1219 union acpi_object *obj = buffer.pointer; 1220 if (obj && obj->type == ACPI_TYPE_INTEGER) 1221 *result = obj->integer.value; 1222 else 1223 err = -EIO; 1224 } 1225 return err; 1226 } 1227 1228 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr, 1229 char *buf) 1230 { 1231 struct asus_laptop *asus = dev_get_drvdata(dev); 1232 int err, hi, lo; 1233 1234 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); 1235 if (!err) 1236 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); 1237 if (!err) 1238 return sprintf(buf, "%d\n", 10 * hi + lo); 1239 return err; 1240 } 1241 static DEVICE_ATTR_RO(ls_value); 1242 1243 /* 1244 * GPS 1245 */ 1246 static int asus_gps_status(struct asus_laptop *asus) 1247 { 1248 unsigned long long status; 1249 acpi_status rv; 1250 1251 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, 1252 NULL, &status); 1253 if (ACPI_FAILURE(rv)) { 1254 pr_warn("Error reading GPS status\n"); 1255 return -ENODEV; 1256 } 1257 return !!status; 1258 } 1259 1260 static int asus_gps_switch(struct asus_laptop *asus, int status) 1261 { 1262 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; 1263 1264 if (write_acpi_int(asus->handle, meth, 0x02)) 1265 return -ENODEV; 1266 return 0; 1267 } 1268 1269 static ssize_t gps_show(struct device *dev, struct device_attribute *attr, 1270 char *buf) 1271 { 1272 struct asus_laptop *asus = dev_get_drvdata(dev); 1273 1274 return sprintf(buf, "%d\n", asus_gps_status(asus)); 1275 } 1276 1277 static ssize_t gps_store(struct device *dev, struct device_attribute *attr, 1278 const char *buf, size_t count) 1279 { 1280 struct asus_laptop *asus = dev_get_drvdata(dev); 1281 int rv, value; 1282 int ret; 1283 1284 rv = kstrtoint(buf, 0, &value); 1285 if (rv < 0) 1286 return rv; 1287 ret = asus_gps_switch(asus, !!value); 1288 if (ret) 1289 return ret; 1290 rfkill_set_sw_state(asus->gps.rfkill, !value); 1291 return count; 1292 } 1293 static DEVICE_ATTR_RW(gps); 1294 1295 /* 1296 * rfkill 1297 */ 1298 static int asus_gps_rfkill_set(void *data, bool blocked) 1299 { 1300 struct asus_laptop *asus = data; 1301 1302 return asus_gps_switch(asus, !blocked); 1303 } 1304 1305 static const struct rfkill_ops asus_gps_rfkill_ops = { 1306 .set_block = asus_gps_rfkill_set, 1307 }; 1308 1309 static int asus_rfkill_set(void *data, bool blocked) 1310 { 1311 struct asus_rfkill *rfk = data; 1312 struct asus_laptop *asus = rfk->asus; 1313 1314 if (rfk->control_id == WL_RSTS) 1315 return asus_wlan_set(asus, !blocked); 1316 else if (rfk->control_id == BT_RSTS) 1317 return asus_bluetooth_set(asus, !blocked); 1318 else if (rfk->control_id == WM_RSTS) 1319 return asus_wimax_set(asus, !blocked); 1320 else if (rfk->control_id == WW_RSTS) 1321 return asus_wwan_set(asus, !blocked); 1322 1323 return -EINVAL; 1324 } 1325 1326 static const struct rfkill_ops asus_rfkill_ops = { 1327 .set_block = asus_rfkill_set, 1328 }; 1329 1330 static void asus_rfkill_terminate(struct asus_rfkill *rfk) 1331 { 1332 if (!rfk->rfkill) 1333 return ; 1334 1335 rfkill_unregister(rfk->rfkill); 1336 rfkill_destroy(rfk->rfkill); 1337 rfk->rfkill = NULL; 1338 } 1339 1340 static void asus_rfkill_exit(struct asus_laptop *asus) 1341 { 1342 asus_rfkill_terminate(&asus->wwan); 1343 asus_rfkill_terminate(&asus->bluetooth); 1344 asus_rfkill_terminate(&asus->wlan); 1345 asus_rfkill_terminate(&asus->gps); 1346 } 1347 1348 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1349 const char *name, int control_id, int type, 1350 const struct rfkill_ops *ops) 1351 { 1352 int result; 1353 1354 rfk->control_id = control_id; 1355 rfk->asus = asus; 1356 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, 1357 type, ops, rfk); 1358 if (!rfk->rfkill) 1359 return -EINVAL; 1360 1361 result = rfkill_register(rfk->rfkill); 1362 if (result) { 1363 rfkill_destroy(rfk->rfkill); 1364 rfk->rfkill = NULL; 1365 } 1366 1367 return result; 1368 } 1369 1370 static int asus_rfkill_init(struct asus_laptop *asus) 1371 { 1372 int result = 0; 1373 1374 if (asus->is_pega_lucid) 1375 return -ENODEV; 1376 1377 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && 1378 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && 1379 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) 1380 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", 1381 -1, RFKILL_TYPE_GPS, 1382 &asus_gps_rfkill_ops); 1383 if (result) 1384 goto exit; 1385 1386 1387 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) && 1388 asus->wled_type == TYPE_RFKILL) 1389 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", 1390 WL_RSTS, RFKILL_TYPE_WLAN, 1391 &asus_rfkill_ops); 1392 if (result) 1393 goto exit; 1394 1395 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) && 1396 asus->bled_type == TYPE_RFKILL) 1397 result = asus_rfkill_setup(asus, &asus->bluetooth, 1398 "asus-bluetooth", BT_RSTS, 1399 RFKILL_TYPE_BLUETOOTH, 1400 &asus_rfkill_ops); 1401 if (result) 1402 goto exit; 1403 1404 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL)) 1405 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan", 1406 WW_RSTS, RFKILL_TYPE_WWAN, 1407 &asus_rfkill_ops); 1408 if (result) 1409 goto exit; 1410 1411 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL)) 1412 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax", 1413 WM_RSTS, RFKILL_TYPE_WIMAX, 1414 &asus_rfkill_ops); 1415 if (result) 1416 goto exit; 1417 1418 exit: 1419 if (result) 1420 asus_rfkill_exit(asus); 1421 1422 return result; 1423 } 1424 1425 static int pega_rfkill_set(void *data, bool blocked) 1426 { 1427 struct asus_rfkill *rfk = data; 1428 1429 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); 1430 return ret; 1431 } 1432 1433 static const struct rfkill_ops pega_rfkill_ops = { 1434 .set_block = pega_rfkill_set, 1435 }; 1436 1437 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1438 const char *name, int controlid, int rfkill_type) 1439 { 1440 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, 1441 &pega_rfkill_ops); 1442 } 1443 1444 static int pega_rfkill_init(struct asus_laptop *asus) 1445 { 1446 int ret = 0; 1447 1448 if(!asus->is_pega_lucid) 1449 return -ENODEV; 1450 1451 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", 1452 PEGA_WLAN, RFKILL_TYPE_WLAN); 1453 if(ret) 1454 goto exit; 1455 1456 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", 1457 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); 1458 if(ret) 1459 goto exit; 1460 1461 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", 1462 PEGA_WWAN, RFKILL_TYPE_WWAN); 1463 1464 exit: 1465 if (ret) 1466 asus_rfkill_exit(asus); 1467 1468 return ret; 1469 } 1470 1471 /* 1472 * Input device (i.e. hotkeys) 1473 */ 1474 static void asus_input_notify(struct asus_laptop *asus, int event) 1475 { 1476 if (!asus->inputdev) 1477 return ; 1478 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) 1479 pr_info("Unknown key %x pressed\n", event); 1480 } 1481 1482 static int asus_input_init(struct asus_laptop *asus) 1483 { 1484 struct input_dev *input; 1485 int error; 1486 1487 input = input_allocate_device(); 1488 if (!input) 1489 return -ENOMEM; 1490 1491 input->name = "Asus Laptop extra buttons"; 1492 input->phys = ASUS_LAPTOP_FILE "/input0"; 1493 input->id.bustype = BUS_HOST; 1494 input->dev.parent = &asus->platform_device->dev; 1495 1496 error = sparse_keymap_setup(input, asus_keymap, NULL); 1497 if (error) { 1498 pr_err("Unable to setup input device keymap\n"); 1499 goto err_free_dev; 1500 } 1501 error = input_register_device(input); 1502 if (error) { 1503 pr_warn("Unable to register input device\n"); 1504 goto err_free_dev; 1505 } 1506 1507 asus->inputdev = input; 1508 return 0; 1509 1510 err_free_dev: 1511 input_free_device(input); 1512 return error; 1513 } 1514 1515 static void asus_input_exit(struct asus_laptop *asus) 1516 { 1517 if (asus->inputdev) 1518 input_unregister_device(asus->inputdev); 1519 asus->inputdev = NULL; 1520 } 1521 1522 /* 1523 * ACPI driver 1524 */ 1525 static void asus_acpi_notify(struct acpi_device *device, u32 event) 1526 { 1527 struct asus_laptop *asus = acpi_driver_data(device); 1528 u16 count; 1529 1530 /* TODO Find a better way to handle events count. */ 1531 count = asus->event_count[event % 128]++; 1532 acpi_bus_generate_netlink_event(asus->device->pnp.device_class, 1533 dev_name(&asus->device->dev), event, 1534 count); 1535 1536 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX) 1537 event = ATKD_BRNUP; 1538 else if (event >= ATKD_BRNDOWN_MIN && 1539 event <= ATKD_BRNDOWN_MAX) 1540 event = ATKD_BRNDOWN; 1541 1542 /* Brightness events are special */ 1543 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) { 1544 if (asus->backlight_device != NULL) { 1545 /* Update the backlight device. */ 1546 asus_backlight_notify(asus); 1547 return ; 1548 } 1549 } 1550 1551 /* Accelerometer "coarse orientation change" event */ 1552 if (asus->pega_accel_poll && event == 0xEA) { 1553 kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE); 1554 return ; 1555 } 1556 1557 asus_input_notify(asus, event); 1558 } 1559 1560 static struct attribute *asus_attributes[] = { 1561 &dev_attr_infos.attr, 1562 &dev_attr_wlan.attr, 1563 &dev_attr_bluetooth.attr, 1564 &dev_attr_wimax.attr, 1565 &dev_attr_wwan.attr, 1566 &dev_attr_display.attr, 1567 &dev_attr_ledd.attr, 1568 &dev_attr_ls_value.attr, 1569 &dev_attr_ls_level.attr, 1570 &dev_attr_ls_switch.attr, 1571 &dev_attr_gps.attr, 1572 NULL 1573 }; 1574 1575 static umode_t asus_sysfs_is_visible(struct kobject *kobj, 1576 struct attribute *attr, 1577 int idx) 1578 { 1579 struct device *dev = container_of(kobj, struct device, kobj); 1580 struct asus_laptop *asus = dev_get_drvdata(dev); 1581 acpi_handle handle = asus->handle; 1582 bool supported; 1583 1584 if (asus->is_pega_lucid) { 1585 /* no ls_level interface on the Lucid */ 1586 if (attr == &dev_attr_ls_switch.attr) 1587 supported = true; 1588 else if (attr == &dev_attr_ls_level.attr) 1589 supported = false; 1590 else 1591 goto normal; 1592 1593 return supported ? attr->mode : 0; 1594 } 1595 1596 normal: 1597 if (attr == &dev_attr_wlan.attr) { 1598 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); 1599 1600 } else if (attr == &dev_attr_bluetooth.attr) { 1601 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); 1602 1603 } else if (attr == &dev_attr_display.attr) { 1604 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); 1605 1606 } else if (attr == &dev_attr_wimax.attr) { 1607 supported = 1608 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); 1609 1610 } else if (attr == &dev_attr_wwan.attr) { 1611 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); 1612 1613 } else if (attr == &dev_attr_ledd.attr) { 1614 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); 1615 1616 } else if (attr == &dev_attr_ls_switch.attr || 1617 attr == &dev_attr_ls_level.attr) { 1618 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && 1619 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); 1620 } else if (attr == &dev_attr_ls_value.attr) { 1621 supported = asus->is_pega_lucid; 1622 } else if (attr == &dev_attr_gps.attr) { 1623 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && 1624 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && 1625 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); 1626 } else { 1627 supported = true; 1628 } 1629 1630 return supported ? attr->mode : 0; 1631 } 1632 1633 1634 static const struct attribute_group asus_attr_group = { 1635 .is_visible = asus_sysfs_is_visible, 1636 .attrs = asus_attributes, 1637 }; 1638 1639 static int asus_platform_init(struct asus_laptop *asus) 1640 { 1641 int result; 1642 1643 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1); 1644 if (!asus->platform_device) 1645 return -ENOMEM; 1646 platform_set_drvdata(asus->platform_device, asus); 1647 1648 result = platform_device_add(asus->platform_device); 1649 if (result) 1650 goto fail_platform_device; 1651 1652 result = sysfs_create_group(&asus->platform_device->dev.kobj, 1653 &asus_attr_group); 1654 if (result) 1655 goto fail_sysfs; 1656 1657 return 0; 1658 1659 fail_sysfs: 1660 platform_device_del(asus->platform_device); 1661 fail_platform_device: 1662 platform_device_put(asus->platform_device); 1663 return result; 1664 } 1665 1666 static void asus_platform_exit(struct asus_laptop *asus) 1667 { 1668 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); 1669 platform_device_unregister(asus->platform_device); 1670 } 1671 1672 static struct platform_driver platform_driver = { 1673 .driver = { 1674 .name = ASUS_LAPTOP_FILE, 1675 }, 1676 }; 1677 1678 /* 1679 * This function is used to initialize the context with right values. In this 1680 * method, we can make all the detection we want, and modify the asus_laptop 1681 * struct 1682 */ 1683 static int asus_laptop_get_info(struct asus_laptop *asus) 1684 { 1685 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1686 union acpi_object *model = NULL; 1687 unsigned long long bsts_result; 1688 char *string = NULL; 1689 acpi_status status; 1690 1691 /* 1692 * Get DSDT headers early enough to allow for differentiating between 1693 * models, but late enough to allow acpi_bus_register_driver() to fail 1694 * before doing anything ACPI-specific. Should we encounter a machine, 1695 * which needs special handling (i.e. its hotkey device has a different 1696 * HID), this bit will be moved. 1697 */ 1698 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); 1699 if (ACPI_FAILURE(status)) 1700 pr_warn("Couldn't get the DSDT table header\n"); 1701 1702 /* We have to write 0 on init this far for all ASUS models */ 1703 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { 1704 pr_err("Hotkey initialization failed\n"); 1705 return -ENODEV; 1706 } 1707 1708 /* This needs to be called for some laptops to init properly */ 1709 status = 1710 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); 1711 if (ACPI_FAILURE(status)) 1712 pr_warn("Error calling BSTS\n"); 1713 else if (bsts_result) 1714 pr_notice("BSTS called, 0x%02x returned\n", 1715 (uint) bsts_result); 1716 1717 /* This too ... */ 1718 if (write_acpi_int(asus->handle, "CWAP", wapf)) 1719 pr_err("Error calling CWAP(%d)\n", wapf); 1720 /* 1721 * Try to match the object returned by INIT to the specific model. 1722 * Handle every possible object (or the lack of thereof) the DSDT 1723 * writers might throw at us. When in trouble, we pass NULL to 1724 * asus_model_match() and try something completely different. 1725 */ 1726 if (buffer.pointer) { 1727 model = buffer.pointer; 1728 switch (model->type) { 1729 case ACPI_TYPE_STRING: 1730 string = model->string.pointer; 1731 break; 1732 case ACPI_TYPE_BUFFER: 1733 string = model->buffer.pointer; 1734 break; 1735 default: 1736 string = ""; 1737 break; 1738 } 1739 } 1740 asus->name = kstrdup(string, GFP_KERNEL); 1741 if (!asus->name) { 1742 kfree(buffer.pointer); 1743 return -ENOMEM; 1744 } 1745 1746 if (string) 1747 pr_notice(" %s model detected\n", string); 1748 1749 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) 1750 asus->have_rsts = true; 1751 1752 kfree(model); 1753 1754 return AE_OK; 1755 } 1756 1757 static int asus_acpi_init(struct asus_laptop *asus) 1758 { 1759 int result = 0; 1760 1761 result = acpi_bus_get_status(asus->device); 1762 if (result) 1763 return result; 1764 if (!asus->device->status.present) { 1765 pr_err("Hotkey device not present, aborting\n"); 1766 return -ENODEV; 1767 } 1768 1769 result = asus_laptop_get_info(asus); 1770 if (result) 1771 return result; 1772 1773 if (!strcmp(bled_type, "led")) 1774 asus->bled_type = TYPE_LED; 1775 else if (!strcmp(bled_type, "rfkill")) 1776 asus->bled_type = TYPE_RFKILL; 1777 1778 if (!strcmp(wled_type, "led")) 1779 asus->wled_type = TYPE_LED; 1780 else if (!strcmp(wled_type, "rfkill")) 1781 asus->wled_type = TYPE_RFKILL; 1782 1783 if (bluetooth_status >= 0) 1784 asus_bluetooth_set(asus, !!bluetooth_status); 1785 1786 if (wlan_status >= 0) 1787 asus_wlan_set(asus, !!wlan_status); 1788 1789 if (wimax_status >= 0) 1790 asus_wimax_set(asus, !!wimax_status); 1791 1792 if (wwan_status >= 0) 1793 asus_wwan_set(asus, !!wwan_status); 1794 1795 /* Keyboard Backlight is on by default */ 1796 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) 1797 asus_kled_set(asus, 1); 1798 1799 /* LED display is off by default */ 1800 asus->ledd_status = 0xFFF; 1801 1802 /* Set initial values of light sensor and level */ 1803 asus->light_switch = !!als_status; 1804 asus->light_level = 5; /* level 5 for sensor sensitivity */ 1805 1806 if (asus->is_pega_lucid) { 1807 asus_als_switch(asus, asus->light_switch); 1808 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && 1809 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { 1810 asus_als_switch(asus, asus->light_switch); 1811 asus_als_level(asus, asus->light_level); 1812 } 1813 1814 return result; 1815 } 1816 1817 static void asus_dmi_check(void) 1818 { 1819 const char *model; 1820 1821 model = dmi_get_system_info(DMI_PRODUCT_NAME); 1822 if (!model) 1823 return; 1824 1825 /* On L1400B WLED control the sound card, don't mess with it ... */ 1826 if (strncmp(model, "L1400B", 6) == 0) { 1827 wlan_status = -1; 1828 } 1829 } 1830 1831 static bool asus_device_present; 1832 1833 static int asus_acpi_add(struct acpi_device *device) 1834 { 1835 struct asus_laptop *asus; 1836 int result; 1837 1838 pr_notice("Asus Laptop Support version %s\n", 1839 ASUS_LAPTOP_VERSION); 1840 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); 1841 if (!asus) 1842 return -ENOMEM; 1843 asus->handle = device->handle; 1844 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); 1845 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); 1846 device->driver_data = asus; 1847 asus->device = device; 1848 1849 asus_dmi_check(); 1850 1851 result = asus_acpi_init(asus); 1852 if (result) 1853 goto fail_platform; 1854 1855 /* 1856 * Need platform type detection first, then the platform 1857 * device. It is used as a parent for the sub-devices below. 1858 */ 1859 asus->is_pega_lucid = asus_check_pega_lucid(asus); 1860 result = asus_platform_init(asus); 1861 if (result) 1862 goto fail_platform; 1863 1864 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { 1865 result = asus_backlight_init(asus); 1866 if (result) 1867 goto fail_backlight; 1868 } 1869 1870 result = asus_input_init(asus); 1871 if (result) 1872 goto fail_input; 1873 1874 result = asus_led_init(asus); 1875 if (result) 1876 goto fail_led; 1877 1878 result = asus_rfkill_init(asus); 1879 if (result && result != -ENODEV) 1880 goto fail_rfkill; 1881 1882 result = pega_accel_init(asus); 1883 if (result && result != -ENODEV) 1884 goto fail_pega_accel; 1885 1886 result = pega_rfkill_init(asus); 1887 if (result && result != -ENODEV) 1888 goto fail_pega_rfkill; 1889 1890 asus_device_present = true; 1891 return 0; 1892 1893 fail_pega_rfkill: 1894 pega_accel_exit(asus); 1895 fail_pega_accel: 1896 asus_rfkill_exit(asus); 1897 fail_rfkill: 1898 asus_led_exit(asus); 1899 fail_led: 1900 asus_input_exit(asus); 1901 fail_input: 1902 asus_backlight_exit(asus); 1903 fail_backlight: 1904 asus_platform_exit(asus); 1905 fail_platform: 1906 kfree(asus); 1907 1908 return result; 1909 } 1910 1911 static int asus_acpi_remove(struct acpi_device *device) 1912 { 1913 struct asus_laptop *asus = acpi_driver_data(device); 1914 1915 asus_backlight_exit(asus); 1916 asus_rfkill_exit(asus); 1917 asus_led_exit(asus); 1918 asus_input_exit(asus); 1919 pega_accel_exit(asus); 1920 asus_platform_exit(asus); 1921 1922 kfree(asus->name); 1923 kfree(asus); 1924 return 0; 1925 } 1926 1927 static const struct acpi_device_id asus_device_ids[] = { 1928 {"ATK0100", 0}, 1929 {"ATK0101", 0}, 1930 {"", 0}, 1931 }; 1932 MODULE_DEVICE_TABLE(acpi, asus_device_ids); 1933 1934 static struct acpi_driver asus_acpi_driver = { 1935 .name = ASUS_LAPTOP_NAME, 1936 .class = ASUS_LAPTOP_CLASS, 1937 .owner = THIS_MODULE, 1938 .ids = asus_device_ids, 1939 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, 1940 .ops = { 1941 .add = asus_acpi_add, 1942 .remove = asus_acpi_remove, 1943 .notify = asus_acpi_notify, 1944 }, 1945 }; 1946 1947 static int __init asus_laptop_init(void) 1948 { 1949 int result; 1950 1951 result = platform_driver_register(&platform_driver); 1952 if (result < 0) 1953 return result; 1954 1955 result = acpi_bus_register_driver(&asus_acpi_driver); 1956 if (result < 0) 1957 goto fail_acpi_driver; 1958 if (!asus_device_present) { 1959 result = -ENODEV; 1960 goto fail_no_device; 1961 } 1962 return 0; 1963 1964 fail_no_device: 1965 acpi_bus_unregister_driver(&asus_acpi_driver); 1966 fail_acpi_driver: 1967 platform_driver_unregister(&platform_driver); 1968 return result; 1969 } 1970 1971 static void __exit asus_laptop_exit(void) 1972 { 1973 acpi_bus_unregister_driver(&asus_acpi_driver); 1974 platform_driver_unregister(&platform_driver); 1975 } 1976 1977 module_init(asus_laptop_init); 1978 module_exit(asus_laptop_exit); 1979