1 /*
2  *  asus-laptop.c - Asus Laptop Support
3  *
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  *
24  *  The development page for this driver is located at
25  *  http://sourceforge.net/projects/acpi4asus/
26  *
27  *  Credits:
28  *  Pontus Fuchs   - Helper functions, cleanup
29  *  Johann Wiesner - Small compile fixes
30  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
31  *  Eric Burghard  - LED display support for W1N
32  *  Josh Green     - Light Sens support
33  *  Thomas Tuttle  - His first patch for led support was very helpful
34  *  Sam Lin        - GPS support
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <acpi/acpi_drivers.h>
57 #include <acpi/acpi_bus.h>
58 
59 #define ASUS_LAPTOP_VERSION	"0.42"
60 
61 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS	"hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
64 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
66 
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70 
71 /*
72  * WAPF defines the behavior of the Fn+Fx wlan key
73  * The significance of values is yet to be found, but
74  * most of the time:
75  * Bit | Bluetooth | WLAN
76  *  0  | Hardware  | Hardware
77  *  1  | Hardware  | Software
78  *  4  | Software  | Software
79  */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83 
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86 
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 		 "(unknown, led or rfkill). "
90 		 "default is unknown");
91 
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 		 "(unknown, led or rfkill). "
95 		 "default is unknown");
96 
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102 
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 		 "default is -1");
107 
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 		 "default is -1");
112 
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 		 "default is -1");
117 
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 		 "default is -1");
122 
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 		 "(0 = disabled, 1 = enabled). "
126 		 "default is 0");
127 
128 /*
129  * Some events we use, same for all Asus
130  */
131 #define ATKD_BR_UP	0x10	/* (event & ~ATKD_BR_UP) = brightness level */
132 #define ATKD_BR_DOWN	0x20	/* (event & ~ATKD_BR_DOWN) = britghness level */
133 #define ATKD_BR_MIN	ATKD_BR_UP
134 #define ATKD_BR_MAX	(ATKD_BR_DOWN | 0xF)	/* 0x2f */
135 #define ATKD_LCD_ON	0x33
136 #define ATKD_LCD_OFF	0x34
137 
138 /*
139  * Known bits returned by \_SB.ATKD.HWRS
140  */
141 #define WL_HWRS		0x80
142 #define BT_HWRS		0x100
143 
144 /*
145  * Flags for hotk status
146  * WL_ON and BT_ON are also used for wireless_status()
147  */
148 #define WL_RSTS		0x01	/* internal Wifi */
149 #define BT_RSTS		0x02	/* internal Bluetooth */
150 #define WM_RSTS		0x08    /* internal wimax */
151 #define WW_RSTS		0x20    /* internal wwan */
152 
153 /* WLED and BLED type */
154 #define TYPE_UNKNOWN	0
155 #define TYPE_LED	1
156 #define TYPE_RFKILL	2
157 
158 /* LED */
159 #define METHOD_MLED		"MLED"
160 #define METHOD_TLED		"TLED"
161 #define METHOD_RLED		"RLED"	/* W1JC */
162 #define METHOD_PLED		"PLED"	/* A7J */
163 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
164 
165 /* LEDD */
166 #define METHOD_LEDD		"SLCM"
167 
168 /*
169  * Bluetooth and WLAN
170  * WLED and BLED are not handled like other XLED, because in some dsdt
171  * they also control the WLAN/Bluetooth device.
172  */
173 #define METHOD_WLAN		"WLED"
174 #define METHOD_BLUETOOTH	"BLED"
175 
176 /* WWAN and WIMAX */
177 #define METHOD_WWAN		"GSMC"
178 #define METHOD_WIMAX		"WMXC"
179 
180 #define METHOD_WL_STATUS	"RSTS"
181 
182 /* Brightness */
183 #define METHOD_BRIGHTNESS_SET	"SPLV"
184 #define METHOD_BRIGHTNESS_GET	"GPLV"
185 
186 /* Display */
187 #define METHOD_SWITCH_DISPLAY	"SDSP"
188 
189 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
190 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
191 
192 /* GPS */
193 /* R2H use different handle for GPS on/off */
194 #define METHOD_GPS_ON		"SDON"
195 #define METHOD_GPS_OFF		"SDOF"
196 #define METHOD_GPS_STATUS	"GPST"
197 
198 /* Keyboard light */
199 #define METHOD_KBD_LIGHT_SET	"SLKB"
200 #define METHOD_KBD_LIGHT_GET	"GLKB"
201 
202 /* For Pegatron Lucid tablet */
203 #define DEVICE_NAME_PEGA	"Lucid"
204 
205 #define METHOD_PEGA_ENABLE	"ENPR"
206 #define METHOD_PEGA_DISABLE	"DAPR"
207 #define PEGA_WLAN	0x00
208 #define PEGA_BLUETOOTH	0x01
209 #define PEGA_WWAN	0x02
210 #define PEGA_ALS	0x04
211 #define PEGA_ALS_POWER	0x05
212 
213 #define METHOD_PEGA_READ	"RDLN"
214 #define PEGA_READ_ALS_H	0x02
215 #define PEGA_READ_ALS_L	0x03
216 
217 #define PEGA_ACCEL_NAME "pega_accel"
218 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
219 #define METHOD_XLRX "XLRX"
220 #define METHOD_XLRY "XLRY"
221 #define METHOD_XLRZ "XLRZ"
222 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
223 #define PEGA_ACC_RETRIES 3
224 
225 /*
226  * Define a specific led structure to keep the main structure clean
227  */
228 struct asus_led {
229 	int wk;
230 	struct work_struct work;
231 	struct led_classdev led;
232 	struct asus_laptop *asus;
233 	const char *method;
234 };
235 
236 /*
237  * Same thing for rfkill
238  */
239 struct asus_rfkill {
240 	/* type of control. Maps to PEGA_* values or *_RSTS  */
241 	int control_id;
242 	struct rfkill *rfkill;
243 	struct asus_laptop *asus;
244 };
245 
246 /*
247  * This is the main structure, we can use it to store anything interesting
248  * about the hotk device
249  */
250 struct asus_laptop {
251 	char *name;		/* laptop name */
252 
253 	struct acpi_table_header *dsdt_info;
254 	struct platform_device *platform_device;
255 	struct acpi_device *device;		/* the device we are in */
256 	struct backlight_device *backlight_device;
257 
258 	struct input_dev *inputdev;
259 	struct key_entry *keymap;
260 	struct input_polled_dev *pega_accel_poll;
261 
262 	struct asus_led wled;
263 	struct asus_led bled;
264 	struct asus_led mled;
265 	struct asus_led tled;
266 	struct asus_led rled;
267 	struct asus_led pled;
268 	struct asus_led gled;
269 	struct asus_led kled;
270 	struct workqueue_struct *led_workqueue;
271 
272 	int wled_type;
273 	int bled_type;
274 	int wireless_status;
275 	bool have_rsts;
276 	bool is_pega_lucid;
277 	bool pega_acc_live;
278 	int pega_acc_x;
279 	int pega_acc_y;
280 	int pega_acc_z;
281 
282 	struct asus_rfkill wlan;
283 	struct asus_rfkill bluetooth;
284 	struct asus_rfkill wwan;
285 	struct asus_rfkill wimax;
286 	struct asus_rfkill gps;
287 
288 	acpi_handle handle;	/* the handle of the hotk device */
289 	u32 ledd_status;	/* status of the LED display */
290 	u8 light_level;		/* light sensor level */
291 	u8 light_switch;	/* light sensor switch value */
292 	u16 event_count[128];	/* count for each event TODO make this better */
293 };
294 
295 static const struct key_entry asus_keymap[] = {
296 	/* Lenovo SL Specific keycodes */
297 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
298 	{KE_KEY, 0x05, { KEY_WLAN } },
299 	{KE_KEY, 0x08, { KEY_F13 } },
300 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
301 	{KE_KEY, 0x17, { KEY_ZOOM } },
302 	{KE_KEY, 0x1f, { KEY_BATTERY } },
303 	/* End of Lenovo SL Specific keycodes */
304 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
305 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
306 	{KE_KEY, 0x32, { KEY_MUTE } },
307 	{KE_KEY, 0x33, { KEY_SWITCHVIDEOMODE } },
308 	{KE_KEY, 0x34, { KEY_SWITCHVIDEOMODE } },
309 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
310 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
311 	{KE_KEY, 0x43, { KEY_STOPCD } },
312 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
313 	{KE_KEY, 0x4c, { KEY_MEDIA } },
314 	{KE_KEY, 0x50, { KEY_EMAIL } },
315 	{KE_KEY, 0x51, { KEY_WWW } },
316 	{KE_KEY, 0x55, { KEY_CALC } },
317 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
318 	{KE_KEY, 0x5D, { KEY_WLAN } },
319 	{KE_KEY, 0x5E, { KEY_WLAN } },
320 	{KE_KEY, 0x5F, { KEY_WLAN } },
321 	{KE_KEY, 0x60, { KEY_SWITCHVIDEOMODE } },
322 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } },
323 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } },
324 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } },
325 	{KE_KEY, 0x6B, { KEY_F13 } }, /* Lock Touchpad */
326 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
327 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
328 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } },
329 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } },
330 	{KE_KEY, 0x82, { KEY_CAMERA } },
331 	{KE_KEY, 0x88, { KEY_WLAN  } },
332 	{KE_KEY, 0x8A, { KEY_PROG1 } },
333 	{KE_KEY, 0x95, { KEY_MEDIA } },
334 	{KE_KEY, 0x99, { KEY_PHONE } },
335 	{KE_KEY, 0xc4, { KEY_KBDILLUMUP } },
336 	{KE_KEY, 0xc5, { KEY_KBDILLUMDOWN } },
337 	{KE_KEY, 0xb5, { KEY_CALC } },
338 	{KE_END, 0},
339 };
340 
341 
342 /*
343  * This function evaluates an ACPI method, given an int as parameter, the
344  * method is searched within the scope of the handle, can be NULL. The output
345  * of the method is written is output, which can also be NULL
346  *
347  * returns 0 if write is successful, -1 else.
348  */
349 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
350 			      struct acpi_buffer *output)
351 {
352 	struct acpi_object_list params;	/* list of input parameters (an int) */
353 	union acpi_object in_obj;	/* the only param we use */
354 	acpi_status status;
355 
356 	if (!handle)
357 		return -1;
358 
359 	params.count = 1;
360 	params.pointer = &in_obj;
361 	in_obj.type = ACPI_TYPE_INTEGER;
362 	in_obj.integer.value = val;
363 
364 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
365 	if (status == AE_OK)
366 		return 0;
367 	else
368 		return -1;
369 }
370 
371 static int write_acpi_int(acpi_handle handle, const char *method, int val)
372 {
373 	return write_acpi_int_ret(handle, method, val, NULL);
374 }
375 
376 static int acpi_check_handle(acpi_handle handle, const char *method,
377 			     acpi_handle *ret)
378 {
379 	acpi_status status;
380 
381 	if (method == NULL)
382 		return -ENODEV;
383 
384 	if (ret)
385 		status = acpi_get_handle(handle, (char *)method,
386 					 ret);
387 	else {
388 		acpi_handle dummy;
389 
390 		status = acpi_get_handle(handle, (char *)method,
391 					 &dummy);
392 	}
393 
394 	if (status != AE_OK) {
395 		if (ret)
396 			pr_warn("Error finding %s\n", method);
397 		return -ENODEV;
398 	}
399 	return 0;
400 }
401 
402 static bool asus_check_pega_lucid(struct asus_laptop *asus)
403 {
404 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
405 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
406 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
407 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
408 }
409 
410 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
411 {
412 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
413 	return write_acpi_int(asus->handle, method, unit);
414 }
415 
416 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
417 {
418 	int i, delta;
419 	unsigned long long val;
420 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
421 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
422 
423 		/* The output is noisy.  From reading the ASL
424 		 * dissassembly, timeout errors are returned with 1's
425 		 * in the high word, and the lack of locking around
426 		 * thei hi/lo byte reads means that a transition
427 		 * between (for example) -1 and 0 could be read as
428 		 * 0xff00 or 0x00ff. */
429 		delta = abs(curr - (short)val);
430 		if (delta < 128 && !(val & ~0xffff))
431 			break;
432 	}
433 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
434 }
435 
436 static void pega_accel_poll(struct input_polled_dev *ipd)
437 {
438 	struct device *parent = ipd->input->dev.parent;
439 	struct asus_laptop *asus = dev_get_drvdata(parent);
440 
441 	/* In some cases, the very first call to poll causes a
442 	 * recursive fault under the polldev worker.  This is
443 	 * apparently related to very early userspace access to the
444 	 * device, and perhaps a firmware bug. Fake the first report. */
445 	if (!asus->pega_acc_live) {
446 		asus->pega_acc_live = true;
447 		input_report_abs(ipd->input, ABS_X, 0);
448 		input_report_abs(ipd->input, ABS_Y, 0);
449 		input_report_abs(ipd->input, ABS_Z, 0);
450 		input_sync(ipd->input);
451 		return;
452 	}
453 
454 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
455 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
456 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
457 
458 	/* Note transform, convert to "right/up/out" in the native
459 	 * landscape orientation (i.e. the vector is the direction of
460 	 * "real up" in the device's cartiesian coordinates). */
461 	input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
462 	input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
463 	input_report_abs(ipd->input, ABS_Z,  asus->pega_acc_z);
464 	input_sync(ipd->input);
465 }
466 
467 static void pega_accel_exit(struct asus_laptop *asus)
468 {
469 	if (asus->pega_accel_poll) {
470 		input_unregister_polled_device(asus->pega_accel_poll);
471 		input_free_polled_device(asus->pega_accel_poll);
472 	}
473 	asus->pega_accel_poll = NULL;
474 }
475 
476 static int pega_accel_init(struct asus_laptop *asus)
477 {
478 	int err;
479 	struct input_polled_dev *ipd;
480 
481 	if (!asus->is_pega_lucid)
482 		return -ENODEV;
483 
484 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
485 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
486 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
487 		return -ENODEV;
488 
489 	ipd = input_allocate_polled_device();
490 	if (!ipd)
491 		return -ENOMEM;
492 
493 	ipd->poll = pega_accel_poll;
494 	ipd->poll_interval = 125;
495 	ipd->poll_interval_min = 50;
496 	ipd->poll_interval_max = 2000;
497 
498 	ipd->input->name = PEGA_ACCEL_DESC;
499 	ipd->input->phys = PEGA_ACCEL_NAME "/input0";
500 	ipd->input->dev.parent = &asus->platform_device->dev;
501 	ipd->input->id.bustype = BUS_HOST;
502 
503 	set_bit(EV_ABS, ipd->input->evbit);
504 	input_set_abs_params(ipd->input, ABS_X,
505 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
506 	input_set_abs_params(ipd->input, ABS_Y,
507 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
508 	input_set_abs_params(ipd->input, ABS_Z,
509 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
510 
511 	err = input_register_polled_device(ipd);
512 	if (err)
513 		goto exit;
514 
515 	asus->pega_accel_poll = ipd;
516 	return 0;
517 
518 exit:
519 	input_free_polled_device(ipd);
520 	return err;
521 }
522 
523 /* Generic LED function */
524 static int asus_led_set(struct asus_laptop *asus, const char *method,
525 			 int value)
526 {
527 	if (!strcmp(method, METHOD_MLED))
528 		value = !value;
529 	else if (!strcmp(method, METHOD_GLED))
530 		value = !value + 1;
531 	else
532 		value = !!value;
533 
534 	return write_acpi_int(asus->handle, method, value);
535 }
536 
537 /*
538  * LEDs
539  */
540 /* /sys/class/led handlers */
541 static void asus_led_cdev_set(struct led_classdev *led_cdev,
542 			 enum led_brightness value)
543 {
544 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
545 	struct asus_laptop *asus = led->asus;
546 
547 	led->wk = !!value;
548 	queue_work(asus->led_workqueue, &led->work);
549 }
550 
551 static void asus_led_cdev_update(struct work_struct *work)
552 {
553 	struct asus_led *led = container_of(work, struct asus_led, work);
554 	struct asus_laptop *asus = led->asus;
555 
556 	asus_led_set(asus, led->method, led->wk);
557 }
558 
559 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
560 {
561 	return led_cdev->brightness;
562 }
563 
564 /*
565  * Keyboard backlight (also a LED)
566  */
567 static int asus_kled_lvl(struct asus_laptop *asus)
568 {
569 	unsigned long long kblv;
570 	struct acpi_object_list params;
571 	union acpi_object in_obj;
572 	acpi_status rv;
573 
574 	params.count = 1;
575 	params.pointer = &in_obj;
576 	in_obj.type = ACPI_TYPE_INTEGER;
577 	in_obj.integer.value = 2;
578 
579 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
580 				   &params, &kblv);
581 	if (ACPI_FAILURE(rv)) {
582 		pr_warn("Error reading kled level\n");
583 		return -ENODEV;
584 	}
585 	return kblv;
586 }
587 
588 static int asus_kled_set(struct asus_laptop *asus, int kblv)
589 {
590 	if (kblv > 0)
591 		kblv = (1 << 7) | (kblv & 0x7F);
592 	else
593 		kblv = 0;
594 
595 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
596 		pr_warn("Keyboard LED display write failed\n");
597 		return -EINVAL;
598 	}
599 	return 0;
600 }
601 
602 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
603 			      enum led_brightness value)
604 {
605 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
606 	struct asus_laptop *asus = led->asus;
607 
608 	led->wk = value;
609 	queue_work(asus->led_workqueue, &led->work);
610 }
611 
612 static void asus_kled_cdev_update(struct work_struct *work)
613 {
614 	struct asus_led *led = container_of(work, struct asus_led, work);
615 	struct asus_laptop *asus = led->asus;
616 
617 	asus_kled_set(asus, led->wk);
618 }
619 
620 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
621 {
622 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
623 	struct asus_laptop *asus = led->asus;
624 
625 	return asus_kled_lvl(asus);
626 }
627 
628 static void asus_led_exit(struct asus_laptop *asus)
629 {
630 	if (!IS_ERR_OR_NULL(asus->wled.led.dev))
631 		led_classdev_unregister(&asus->wled.led);
632 	if (!IS_ERR_OR_NULL(asus->bled.led.dev))
633 		led_classdev_unregister(&asus->bled.led);
634 	if (!IS_ERR_OR_NULL(asus->mled.led.dev))
635 		led_classdev_unregister(&asus->mled.led);
636 	if (!IS_ERR_OR_NULL(asus->tled.led.dev))
637 		led_classdev_unregister(&asus->tled.led);
638 	if (!IS_ERR_OR_NULL(asus->pled.led.dev))
639 		led_classdev_unregister(&asus->pled.led);
640 	if (!IS_ERR_OR_NULL(asus->rled.led.dev))
641 		led_classdev_unregister(&asus->rled.led);
642 	if (!IS_ERR_OR_NULL(asus->gled.led.dev))
643 		led_classdev_unregister(&asus->gled.led);
644 	if (!IS_ERR_OR_NULL(asus->kled.led.dev))
645 		led_classdev_unregister(&asus->kled.led);
646 	if (asus->led_workqueue) {
647 		destroy_workqueue(asus->led_workqueue);
648 		asus->led_workqueue = NULL;
649 	}
650 }
651 
652 /*  Ugly macro, need to fix that later */
653 static int asus_led_register(struct asus_laptop *asus,
654 			     struct asus_led *led,
655 			     const char *name, const char *method)
656 {
657 	struct led_classdev *led_cdev = &led->led;
658 
659 	if (!method || acpi_check_handle(asus->handle, method, NULL))
660 		return 0; /* Led not present */
661 
662 	led->asus = asus;
663 	led->method = method;
664 
665 	INIT_WORK(&led->work, asus_led_cdev_update);
666 	led_cdev->name = name;
667 	led_cdev->brightness_set = asus_led_cdev_set;
668 	led_cdev->brightness_get = asus_led_cdev_get;
669 	led_cdev->max_brightness = 1;
670 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
671 }
672 
673 static int asus_led_init(struct asus_laptop *asus)
674 {
675 	int r = 0;
676 
677 	/*
678 	 * The Pegatron Lucid has no physical leds, but all methods are
679 	 * available in the DSDT...
680 	 */
681 	if (asus->is_pega_lucid)
682 		return 0;
683 
684 	/*
685 	 * Functions that actually update the LED's are called from a
686 	 * workqueue. By doing this as separate work rather than when the LED
687 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
688 	 * potentially bad time, such as a timer interrupt.
689 	 */
690 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
691 	if (!asus->led_workqueue)
692 		return -ENOMEM;
693 
694 	if (asus->wled_type == TYPE_LED)
695 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
696 				      METHOD_WLAN);
697 	if (r)
698 		goto error;
699 	if (asus->bled_type == TYPE_LED)
700 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
701 				      METHOD_BLUETOOTH);
702 	if (r)
703 		goto error;
704 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
705 	if (r)
706 		goto error;
707 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
708 	if (r)
709 		goto error;
710 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
711 	if (r)
712 		goto error;
713 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
714 	if (r)
715 		goto error;
716 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
717 	if (r)
718 		goto error;
719 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
720 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
721 		struct asus_led *led = &asus->kled;
722 		struct led_classdev *cdev = &led->led;
723 
724 		led->asus = asus;
725 
726 		INIT_WORK(&led->work, asus_kled_cdev_update);
727 		cdev->name = "asus::kbd_backlight";
728 		cdev->brightness_set = asus_kled_cdev_set;
729 		cdev->brightness_get = asus_kled_cdev_get;
730 		cdev->max_brightness = 3;
731 		r = led_classdev_register(&asus->platform_device->dev, cdev);
732 	}
733 error:
734 	if (r)
735 		asus_led_exit(asus);
736 	return r;
737 }
738 
739 /*
740  * Backlight device
741  */
742 static int asus_read_brightness(struct backlight_device *bd)
743 {
744 	struct asus_laptop *asus = bl_get_data(bd);
745 	unsigned long long value;
746 	acpi_status rv = AE_OK;
747 
748 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
749 				   NULL, &value);
750 	if (ACPI_FAILURE(rv))
751 		pr_warn("Error reading brightness\n");
752 
753 	return value;
754 }
755 
756 static int asus_set_brightness(struct backlight_device *bd, int value)
757 {
758 	struct asus_laptop *asus = bl_get_data(bd);
759 
760 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
761 		pr_warn("Error changing brightness\n");
762 		return -EIO;
763 	}
764 	return 0;
765 }
766 
767 static int update_bl_status(struct backlight_device *bd)
768 {
769 	int value = bd->props.brightness;
770 
771 	return asus_set_brightness(bd, value);
772 }
773 
774 static const struct backlight_ops asusbl_ops = {
775 	.get_brightness = asus_read_brightness,
776 	.update_status = update_bl_status,
777 };
778 
779 static int asus_backlight_notify(struct asus_laptop *asus)
780 {
781 	struct backlight_device *bd = asus->backlight_device;
782 	int old = bd->props.brightness;
783 
784 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
785 
786 	return old;
787 }
788 
789 static int asus_backlight_init(struct asus_laptop *asus)
790 {
791 	struct backlight_device *bd;
792 	struct backlight_properties props;
793 
794 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
795 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
796 		return 0;
797 
798 	memset(&props, 0, sizeof(struct backlight_properties));
799 	props.max_brightness = 15;
800 	props.type = BACKLIGHT_PLATFORM;
801 
802 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
803 				       &asus->platform_device->dev, asus,
804 				       &asusbl_ops, &props);
805 	if (IS_ERR(bd)) {
806 		pr_err("Could not register asus backlight device\n");
807 		asus->backlight_device = NULL;
808 		return PTR_ERR(bd);
809 	}
810 
811 	asus->backlight_device = bd;
812 	bd->props.brightness = asus_read_brightness(bd);
813 	bd->props.power = FB_BLANK_UNBLANK;
814 	backlight_update_status(bd);
815 	return 0;
816 }
817 
818 static void asus_backlight_exit(struct asus_laptop *asus)
819 {
820 	if (asus->backlight_device)
821 		backlight_device_unregister(asus->backlight_device);
822 	asus->backlight_device = NULL;
823 }
824 
825 /*
826  * Platform device handlers
827  */
828 
829 /*
830  * We write our info in page, we begin at offset off and cannot write more
831  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
832  * number of bytes written in page
833  */
834 static ssize_t show_infos(struct device *dev,
835 			  struct device_attribute *attr, char *page)
836 {
837 	struct asus_laptop *asus = dev_get_drvdata(dev);
838 	int len = 0;
839 	unsigned long long temp;
840 	char buf[16];		/* enough for all info */
841 	acpi_status rv = AE_OK;
842 
843 	/*
844 	 * We use the easy way, we don't care of off and count,
845 	 * so we don't set eof to 1
846 	 */
847 
848 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
849 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
850 	/*
851 	 * The SFUN method probably allows the original driver to get the list
852 	 * of features supported by a given model. For now, 0x0100 or 0x0800
853 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
854 	 * The significance of others is yet to be found.
855 	 */
856 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
857 	if (!ACPI_FAILURE(rv))
858 		len += sprintf(page + len, "SFUN value         : %#x\n",
859 			       (uint) temp);
860 	/*
861 	 * The HWRS method return informations about the hardware.
862 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
863 	 * 0x40 for WWAN, 0x10 for WIMAX.
864 	 * The significance of others is yet to be found.
865 	 * We don't currently use this for device detection, and it
866 	 * takes several seconds to run on some systems.
867 	 */
868 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
869 	if (!ACPI_FAILURE(rv))
870 		len += sprintf(page + len, "HWRS value         : %#x\n",
871 			       (uint) temp);
872 	/*
873 	 * Another value for userspace: the ASYM method returns 0x02 for
874 	 * battery low and 0x04 for battery critical, its readings tend to be
875 	 * more accurate than those provided by _BST.
876 	 * Note: since not all the laptops provide this method, errors are
877 	 * silently ignored.
878 	 */
879 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
880 	if (!ACPI_FAILURE(rv))
881 		len += sprintf(page + len, "ASYM value         : %#x\n",
882 			       (uint) temp);
883 	if (asus->dsdt_info) {
884 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
885 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
886 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
887 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
888 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
889 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
890 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
891 		len += sprintf(page + len, "OEM id             : %s\n", buf);
892 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
893 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
894 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
895 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
896 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
897 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
898 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
899 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
900 	}
901 
902 	return len;
903 }
904 
905 static int parse_arg(const char *buf, unsigned long count, int *val)
906 {
907 	if (!count)
908 		return 0;
909 	if (count > 31)
910 		return -EINVAL;
911 	if (sscanf(buf, "%i", val) != 1)
912 		return -EINVAL;
913 	return count;
914 }
915 
916 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
917 			      const char *buf, size_t count,
918 			      const char *method)
919 {
920 	int rv, value;
921 	int out = 0;
922 
923 	rv = parse_arg(buf, count, &value);
924 	if (rv > 0)
925 		out = value ? 1 : 0;
926 
927 	if (write_acpi_int(asus->handle, method, value))
928 		return -ENODEV;
929 	return rv;
930 }
931 
932 /*
933  * LEDD display
934  */
935 static ssize_t show_ledd(struct device *dev,
936 			 struct device_attribute *attr, char *buf)
937 {
938 	struct asus_laptop *asus = dev_get_drvdata(dev);
939 
940 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
941 }
942 
943 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
944 			  const char *buf, size_t count)
945 {
946 	struct asus_laptop *asus = dev_get_drvdata(dev);
947 	int rv, value;
948 
949 	rv = parse_arg(buf, count, &value);
950 	if (rv > 0) {
951 		if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
952 			pr_warn("LED display write failed\n");
953 			return -ENODEV;
954 		}
955 		asus->ledd_status = (u32) value;
956 	}
957 	return rv;
958 }
959 
960 /*
961  * Wireless
962  */
963 static int asus_wireless_status(struct asus_laptop *asus, int mask)
964 {
965 	unsigned long long status;
966 	acpi_status rv = AE_OK;
967 
968 	if (!asus->have_rsts)
969 		return (asus->wireless_status & mask) ? 1 : 0;
970 
971 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
972 				   NULL, &status);
973 	if (ACPI_FAILURE(rv)) {
974 		pr_warn("Error reading Wireless status\n");
975 		return -EINVAL;
976 	}
977 	return !!(status & mask);
978 }
979 
980 /*
981  * WLAN
982  */
983 static int asus_wlan_set(struct asus_laptop *asus, int status)
984 {
985 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
986 		pr_warn("Error setting wlan status to %d\n", status);
987 		return -EIO;
988 	}
989 	return 0;
990 }
991 
992 static ssize_t show_wlan(struct device *dev,
993 			 struct device_attribute *attr, char *buf)
994 {
995 	struct asus_laptop *asus = dev_get_drvdata(dev);
996 
997 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
998 }
999 
1000 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
1001 			  const char *buf, size_t count)
1002 {
1003 	struct asus_laptop *asus = dev_get_drvdata(dev);
1004 
1005 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1006 }
1007 
1008 /*e
1009  * Bluetooth
1010  */
1011 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1012 {
1013 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1014 		pr_warn("Error setting bluetooth status to %d\n", status);
1015 		return -EIO;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static ssize_t show_bluetooth(struct device *dev,
1021 			      struct device_attribute *attr, char *buf)
1022 {
1023 	struct asus_laptop *asus = dev_get_drvdata(dev);
1024 
1025 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1026 }
1027 
1028 static ssize_t store_bluetooth(struct device *dev,
1029 			       struct device_attribute *attr, const char *buf,
1030 			       size_t count)
1031 {
1032 	struct asus_laptop *asus = dev_get_drvdata(dev);
1033 
1034 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1035 }
1036 
1037 /*
1038  * Wimax
1039  */
1040 static int asus_wimax_set(struct asus_laptop *asus, int status)
1041 {
1042 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1043 		pr_warn("Error setting wimax status to %d\n", status);
1044 		return -EIO;
1045 	}
1046 	return 0;
1047 }
1048 
1049 static ssize_t show_wimax(struct device *dev,
1050 			      struct device_attribute *attr, char *buf)
1051 {
1052 	struct asus_laptop *asus = dev_get_drvdata(dev);
1053 
1054 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1055 }
1056 
1057 static ssize_t store_wimax(struct device *dev,
1058 			       struct device_attribute *attr, const char *buf,
1059 			       size_t count)
1060 {
1061 	struct asus_laptop *asus = dev_get_drvdata(dev);
1062 
1063 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1064 }
1065 
1066 /*
1067  * Wwan
1068  */
1069 static int asus_wwan_set(struct asus_laptop *asus, int status)
1070 {
1071 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1072 		pr_warn("Error setting wwan status to %d\n", status);
1073 		return -EIO;
1074 	}
1075 	return 0;
1076 }
1077 
1078 static ssize_t show_wwan(struct device *dev,
1079 			      struct device_attribute *attr, char *buf)
1080 {
1081 	struct asus_laptop *asus = dev_get_drvdata(dev);
1082 
1083 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1084 }
1085 
1086 static ssize_t store_wwan(struct device *dev,
1087 			       struct device_attribute *attr, const char *buf,
1088 			       size_t count)
1089 {
1090 	struct asus_laptop *asus = dev_get_drvdata(dev);
1091 
1092 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1093 }
1094 
1095 /*
1096  * Display
1097  */
1098 static void asus_set_display(struct asus_laptop *asus, int value)
1099 {
1100 	/* no sanity check needed for now */
1101 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1102 		pr_warn("Error setting display\n");
1103 	return;
1104 }
1105 
1106 /*
1107  * Experimental support for display switching. As of now: 1 should activate
1108  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1109  * Any combination (bitwise) of these will suffice. I never actually tested 4
1110  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1111  * for more info.
1112  */
1113 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1114 			  const char *buf, size_t count)
1115 {
1116 	struct asus_laptop *asus = dev_get_drvdata(dev);
1117 	int rv, value;
1118 
1119 	rv = parse_arg(buf, count, &value);
1120 	if (rv > 0)
1121 		asus_set_display(asus, value);
1122 	return rv;
1123 }
1124 
1125 /*
1126  * Light Sens
1127  */
1128 static void asus_als_switch(struct asus_laptop *asus, int value)
1129 {
1130 	int ret;
1131 
1132 	if (asus->is_pega_lucid) {
1133 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1134 		if (!ret)
1135 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1136 	} else {
1137 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1138 	}
1139 	if (ret)
1140 		pr_warning("Error setting light sensor switch\n");
1141 
1142 	asus->light_switch = value;
1143 }
1144 
1145 static ssize_t show_lssw(struct device *dev,
1146 			 struct device_attribute *attr, char *buf)
1147 {
1148 	struct asus_laptop *asus = dev_get_drvdata(dev);
1149 
1150 	return sprintf(buf, "%d\n", asus->light_switch);
1151 }
1152 
1153 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1154 			  const char *buf, size_t count)
1155 {
1156 	struct asus_laptop *asus = dev_get_drvdata(dev);
1157 	int rv, value;
1158 
1159 	rv = parse_arg(buf, count, &value);
1160 	if (rv > 0)
1161 		asus_als_switch(asus, value ? 1 : 0);
1162 
1163 	return rv;
1164 }
1165 
1166 static void asus_als_level(struct asus_laptop *asus, int value)
1167 {
1168 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1169 		pr_warn("Error setting light sensor level\n");
1170 	asus->light_level = value;
1171 }
1172 
1173 static ssize_t show_lslvl(struct device *dev,
1174 			  struct device_attribute *attr, char *buf)
1175 {
1176 	struct asus_laptop *asus = dev_get_drvdata(dev);
1177 
1178 	return sprintf(buf, "%d\n", asus->light_level);
1179 }
1180 
1181 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1182 			   const char *buf, size_t count)
1183 {
1184 	struct asus_laptop *asus = dev_get_drvdata(dev);
1185 	int rv, value;
1186 
1187 	rv = parse_arg(buf, count, &value);
1188 	if (rv > 0) {
1189 		value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1190 		/* 0 <= value <= 15 */
1191 		asus_als_level(asus, value);
1192 	}
1193 
1194 	return rv;
1195 }
1196 
1197 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1198 {
1199 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1200 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1201 				     &buffer);
1202 	if (!err) {
1203 		union acpi_object *obj = buffer.pointer;
1204 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1205 			*result = obj->integer.value;
1206 		else
1207 			err = -EIO;
1208 	}
1209 	return err;
1210 }
1211 
1212 static ssize_t show_lsvalue(struct device *dev,
1213 			    struct device_attribute *attr, char *buf)
1214 {
1215 	struct asus_laptop *asus = dev_get_drvdata(dev);
1216 	int err, hi, lo;
1217 
1218 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1219 	if (!err)
1220 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1221 	if (!err)
1222 		return sprintf(buf, "%d\n", 10 * hi + lo);
1223 	return err;
1224 }
1225 
1226 /*
1227  * GPS
1228  */
1229 static int asus_gps_status(struct asus_laptop *asus)
1230 {
1231 	unsigned long long status;
1232 	acpi_status rv = AE_OK;
1233 
1234 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1235 				   NULL, &status);
1236 	if (ACPI_FAILURE(rv)) {
1237 		pr_warn("Error reading GPS status\n");
1238 		return -ENODEV;
1239 	}
1240 	return !!status;
1241 }
1242 
1243 static int asus_gps_switch(struct asus_laptop *asus, int status)
1244 {
1245 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1246 
1247 	if (write_acpi_int(asus->handle, meth, 0x02))
1248 		return -ENODEV;
1249 	return 0;
1250 }
1251 
1252 static ssize_t show_gps(struct device *dev,
1253 			struct device_attribute *attr, char *buf)
1254 {
1255 	struct asus_laptop *asus = dev_get_drvdata(dev);
1256 
1257 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1258 }
1259 
1260 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1261 			 const char *buf, size_t count)
1262 {
1263 	struct asus_laptop *asus = dev_get_drvdata(dev);
1264 	int rv, value;
1265 	int ret;
1266 
1267 	rv = parse_arg(buf, count, &value);
1268 	if (rv <= 0)
1269 		return -EINVAL;
1270 	ret = asus_gps_switch(asus, !!value);
1271 	if (ret)
1272 		return ret;
1273 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1274 	return rv;
1275 }
1276 
1277 /*
1278  * rfkill
1279  */
1280 static int asus_gps_rfkill_set(void *data, bool blocked)
1281 {
1282 	struct asus_laptop *asus = data;
1283 
1284 	return asus_gps_switch(asus, !blocked);
1285 }
1286 
1287 static const struct rfkill_ops asus_gps_rfkill_ops = {
1288 	.set_block = asus_gps_rfkill_set,
1289 };
1290 
1291 static int asus_rfkill_set(void *data, bool blocked)
1292 {
1293 	struct asus_rfkill *rfk = data;
1294 	struct asus_laptop *asus = rfk->asus;
1295 
1296 	if (rfk->control_id == WL_RSTS)
1297 		return asus_wlan_set(asus, !blocked);
1298 	else if (rfk->control_id == BT_RSTS)
1299 		return asus_bluetooth_set(asus, !blocked);
1300 	else if (rfk->control_id == WM_RSTS)
1301 		return asus_wimax_set(asus, !blocked);
1302 	else if (rfk->control_id == WW_RSTS)
1303 		return asus_wwan_set(asus, !blocked);
1304 
1305 	return -EINVAL;
1306 }
1307 
1308 static const struct rfkill_ops asus_rfkill_ops = {
1309 	.set_block = asus_rfkill_set,
1310 };
1311 
1312 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1313 {
1314 	if (!rfk->rfkill)
1315 		return ;
1316 
1317 	rfkill_unregister(rfk->rfkill);
1318 	rfkill_destroy(rfk->rfkill);
1319 	rfk->rfkill = NULL;
1320 }
1321 
1322 static void asus_rfkill_exit(struct asus_laptop *asus)
1323 {
1324 	asus_rfkill_terminate(&asus->wwan);
1325 	asus_rfkill_terminate(&asus->bluetooth);
1326 	asus_rfkill_terminate(&asus->wlan);
1327 	asus_rfkill_terminate(&asus->gps);
1328 }
1329 
1330 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1331 			     const char *name, int control_id, int type,
1332 			     const struct rfkill_ops *ops)
1333 {
1334 	int result;
1335 
1336 	rfk->control_id = control_id;
1337 	rfk->asus = asus;
1338 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1339 				   type, ops, rfk);
1340 	if (!rfk->rfkill)
1341 		return -EINVAL;
1342 
1343 	result = rfkill_register(rfk->rfkill);
1344 	if (result) {
1345 		rfkill_destroy(rfk->rfkill);
1346 		rfk->rfkill = NULL;
1347 	}
1348 
1349 	return result;
1350 }
1351 
1352 static int asus_rfkill_init(struct asus_laptop *asus)
1353 {
1354 	int result = 0;
1355 
1356 	if (asus->is_pega_lucid)
1357 		return -ENODEV;
1358 
1359 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1360 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1361 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1362 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1363 					   -1, RFKILL_TYPE_GPS,
1364 					   &asus_gps_rfkill_ops);
1365 	if (result)
1366 		goto exit;
1367 
1368 
1369 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1370 	    asus->wled_type == TYPE_RFKILL)
1371 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1372 					   WL_RSTS, RFKILL_TYPE_WLAN,
1373 					   &asus_rfkill_ops);
1374 	if (result)
1375 		goto exit;
1376 
1377 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1378 	    asus->bled_type == TYPE_RFKILL)
1379 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1380 					   "asus-bluetooth", BT_RSTS,
1381 					   RFKILL_TYPE_BLUETOOTH,
1382 					   &asus_rfkill_ops);
1383 	if (result)
1384 		goto exit;
1385 
1386 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1387 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1388 					   WW_RSTS, RFKILL_TYPE_WWAN,
1389 					   &asus_rfkill_ops);
1390 	if (result)
1391 		goto exit;
1392 
1393 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1394 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1395 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1396 					   &asus_rfkill_ops);
1397 	if (result)
1398 		goto exit;
1399 
1400 exit:
1401 	if (result)
1402 		asus_rfkill_exit(asus);
1403 
1404 	return result;
1405 }
1406 
1407 static int pega_rfkill_set(void *data, bool blocked)
1408 {
1409 	struct asus_rfkill *rfk = data;
1410 
1411 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1412 	return ret;
1413 }
1414 
1415 static const struct rfkill_ops pega_rfkill_ops = {
1416 	.set_block = pega_rfkill_set,
1417 };
1418 
1419 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1420 			     const char *name, int controlid, int rfkill_type)
1421 {
1422 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1423 				 &pega_rfkill_ops);
1424 }
1425 
1426 static int pega_rfkill_init(struct asus_laptop *asus)
1427 {
1428 	int ret = 0;
1429 
1430 	if(!asus->is_pega_lucid)
1431 		return -ENODEV;
1432 
1433 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1434 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1435 	if(ret)
1436 		goto exit;
1437 
1438 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1439 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1440 	if(ret)
1441 		goto exit;
1442 
1443 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1444 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1445 
1446 exit:
1447 	if (ret)
1448 		asus_rfkill_exit(asus);
1449 
1450 	return ret;
1451 }
1452 
1453 /*
1454  * Input device (i.e. hotkeys)
1455  */
1456 static void asus_input_notify(struct asus_laptop *asus, int event)
1457 {
1458 	if (!asus->inputdev)
1459 		return ;
1460 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1461 		pr_info("Unknown key %x pressed\n", event);
1462 }
1463 
1464 static int asus_input_init(struct asus_laptop *asus)
1465 {
1466 	struct input_dev *input;
1467 	int error;
1468 
1469 	input = input_allocate_device();
1470 	if (!input) {
1471 		pr_warn("Unable to allocate input device\n");
1472 		return -ENOMEM;
1473 	}
1474 	input->name = "Asus Laptop extra buttons";
1475 	input->phys = ASUS_LAPTOP_FILE "/input0";
1476 	input->id.bustype = BUS_HOST;
1477 	input->dev.parent = &asus->platform_device->dev;
1478 
1479 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1480 	if (error) {
1481 		pr_err("Unable to setup input device keymap\n");
1482 		goto err_free_dev;
1483 	}
1484 	error = input_register_device(input);
1485 	if (error) {
1486 		pr_warn("Unable to register input device\n");
1487 		goto err_free_keymap;
1488 	}
1489 
1490 	asus->inputdev = input;
1491 	return 0;
1492 
1493 err_free_keymap:
1494 	sparse_keymap_free(input);
1495 err_free_dev:
1496 	input_free_device(input);
1497 	return error;
1498 }
1499 
1500 static void asus_input_exit(struct asus_laptop *asus)
1501 {
1502 	if (asus->inputdev) {
1503 		sparse_keymap_free(asus->inputdev);
1504 		input_unregister_device(asus->inputdev);
1505 	}
1506 	asus->inputdev = NULL;
1507 }
1508 
1509 /*
1510  * ACPI driver
1511  */
1512 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1513 {
1514 	struct asus_laptop *asus = acpi_driver_data(device);
1515 	u16 count;
1516 
1517 	/* TODO Find a better way to handle events count. */
1518 	count = asus->event_count[event % 128]++;
1519 	acpi_bus_generate_proc_event(asus->device, event, count);
1520 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1521 					dev_name(&asus->device->dev), event,
1522 					count);
1523 
1524 	/* Brightness events are special */
1525 	if (event >= ATKD_BR_MIN && event <= ATKD_BR_MAX) {
1526 
1527 		/* Ignore them completely if the acpi video driver is used */
1528 		if (asus->backlight_device != NULL) {
1529 			/* Update the backlight device. */
1530 			asus_backlight_notify(asus);
1531 		}
1532 		return ;
1533 	}
1534 
1535 	/* Accelerometer "coarse orientation change" event */
1536 	if (asus->pega_accel_poll && event == 0xEA) {
1537 		kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1538 			       KOBJ_CHANGE);
1539 		return ;
1540 	}
1541 
1542 	asus_input_notify(asus, event);
1543 }
1544 
1545 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1546 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1547 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1548 		   show_bluetooth, store_bluetooth);
1549 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1550 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1551 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1552 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1553 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1554 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1555 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1556 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1557 
1558 static struct attribute *asus_attributes[] = {
1559 	&dev_attr_infos.attr,
1560 	&dev_attr_wlan.attr,
1561 	&dev_attr_bluetooth.attr,
1562 	&dev_attr_wimax.attr,
1563 	&dev_attr_wwan.attr,
1564 	&dev_attr_display.attr,
1565 	&dev_attr_ledd.attr,
1566 	&dev_attr_ls_value.attr,
1567 	&dev_attr_ls_level.attr,
1568 	&dev_attr_ls_switch.attr,
1569 	&dev_attr_gps.attr,
1570 	NULL
1571 };
1572 
1573 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1574 				    struct attribute *attr,
1575 				    int idx)
1576 {
1577 	struct device *dev = container_of(kobj, struct device, kobj);
1578 	struct platform_device *pdev = to_platform_device(dev);
1579 	struct asus_laptop *asus = platform_get_drvdata(pdev);
1580 	acpi_handle handle = asus->handle;
1581 	bool supported;
1582 
1583 	if (asus->is_pega_lucid) {
1584 		/* no ls_level interface on the Lucid */
1585 		if (attr == &dev_attr_ls_switch.attr)
1586 			supported = true;
1587 		else if (attr == &dev_attr_ls_level.attr)
1588 			supported = false;
1589 		else
1590 			goto normal;
1591 
1592 		return supported;
1593 	}
1594 
1595 normal:
1596 	if (attr == &dev_attr_wlan.attr) {
1597 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1598 
1599 	} else if (attr == &dev_attr_bluetooth.attr) {
1600 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1601 
1602 	} else if (attr == &dev_attr_display.attr) {
1603 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1604 
1605 	} else if (attr == &dev_attr_wimax.attr) {
1606 		supported =
1607 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1608 
1609 	} else if (attr == &dev_attr_wwan.attr) {
1610 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1611 
1612 	} else if (attr == &dev_attr_ledd.attr) {
1613 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1614 
1615 	} else if (attr == &dev_attr_ls_switch.attr ||
1616 		   attr == &dev_attr_ls_level.attr) {
1617 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1618 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1619 	} else if (attr == &dev_attr_ls_value.attr) {
1620 		supported = asus->is_pega_lucid;
1621 	} else if (attr == &dev_attr_gps.attr) {
1622 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1623 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1624 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1625 	} else {
1626 		supported = true;
1627 	}
1628 
1629 	return supported ? attr->mode : 0;
1630 }
1631 
1632 
1633 static const struct attribute_group asus_attr_group = {
1634 	.is_visible	= asus_sysfs_is_visible,
1635 	.attrs		= asus_attributes,
1636 };
1637 
1638 static int asus_platform_init(struct asus_laptop *asus)
1639 {
1640 	int result;
1641 
1642 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1643 	if (!asus->platform_device)
1644 		return -ENOMEM;
1645 	platform_set_drvdata(asus->platform_device, asus);
1646 
1647 	result = platform_device_add(asus->platform_device);
1648 	if (result)
1649 		goto fail_platform_device;
1650 
1651 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1652 				    &asus_attr_group);
1653 	if (result)
1654 		goto fail_sysfs;
1655 
1656 	return 0;
1657 
1658 fail_sysfs:
1659 	platform_device_del(asus->platform_device);
1660 fail_platform_device:
1661 	platform_device_put(asus->platform_device);
1662 	return result;
1663 }
1664 
1665 static void asus_platform_exit(struct asus_laptop *asus)
1666 {
1667 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1668 	platform_device_unregister(asus->platform_device);
1669 }
1670 
1671 static struct platform_driver platform_driver = {
1672 	.driver = {
1673 		.name = ASUS_LAPTOP_FILE,
1674 		.owner = THIS_MODULE,
1675 	},
1676 };
1677 
1678 /*
1679  * This function is used to initialize the context with right values. In this
1680  * method, we can make all the detection we want, and modify the asus_laptop
1681  * struct
1682  */
1683 static int asus_laptop_get_info(struct asus_laptop *asus)
1684 {
1685 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1686 	union acpi_object *model = NULL;
1687 	unsigned long long bsts_result;
1688 	char *string = NULL;
1689 	acpi_status status;
1690 
1691 	/*
1692 	 * Get DSDT headers early enough to allow for differentiating between
1693 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1694 	 * before doing anything ACPI-specific. Should we encounter a machine,
1695 	 * which needs special handling (i.e. its hotkey device has a different
1696 	 * HID), this bit will be moved.
1697 	 */
1698 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1699 	if (ACPI_FAILURE(status))
1700 		pr_warn("Couldn't get the DSDT table header\n");
1701 
1702 	/* We have to write 0 on init this far for all ASUS models */
1703 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1704 		pr_err("Hotkey initialization failed\n");
1705 		return -ENODEV;
1706 	}
1707 
1708 	/* This needs to be called for some laptops to init properly */
1709 	status =
1710 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1711 	if (ACPI_FAILURE(status))
1712 		pr_warn("Error calling BSTS\n");
1713 	else if (bsts_result)
1714 		pr_notice("BSTS called, 0x%02x returned\n",
1715 		       (uint) bsts_result);
1716 
1717 	/* This too ... */
1718 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1719 		pr_err("Error calling CWAP(%d)\n", wapf);
1720 	/*
1721 	 * Try to match the object returned by INIT to the specific model.
1722 	 * Handle every possible object (or the lack of thereof) the DSDT
1723 	 * writers might throw at us. When in trouble, we pass NULL to
1724 	 * asus_model_match() and try something completely different.
1725 	 */
1726 	if (buffer.pointer) {
1727 		model = buffer.pointer;
1728 		switch (model->type) {
1729 		case ACPI_TYPE_STRING:
1730 			string = model->string.pointer;
1731 			break;
1732 		case ACPI_TYPE_BUFFER:
1733 			string = model->buffer.pointer;
1734 			break;
1735 		default:
1736 			string = "";
1737 			break;
1738 		}
1739 	}
1740 	asus->name = kstrdup(string, GFP_KERNEL);
1741 	if (!asus->name) {
1742 		kfree(buffer.pointer);
1743 		return -ENOMEM;
1744 	}
1745 
1746 	if (string)
1747 		pr_notice("  %s model detected\n", string);
1748 
1749 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1750 		asus->have_rsts = true;
1751 
1752 	kfree(model);
1753 
1754 	return AE_OK;
1755 }
1756 
1757 static int asus_acpi_init(struct asus_laptop *asus)
1758 {
1759 	int result = 0;
1760 
1761 	result = acpi_bus_get_status(asus->device);
1762 	if (result)
1763 		return result;
1764 	if (!asus->device->status.present) {
1765 		pr_err("Hotkey device not present, aborting\n");
1766 		return -ENODEV;
1767 	}
1768 
1769 	result = asus_laptop_get_info(asus);
1770 	if (result)
1771 		return result;
1772 
1773 	if (!strcmp(bled_type, "led"))
1774 		asus->bled_type = TYPE_LED;
1775 	else if (!strcmp(bled_type, "rfkill"))
1776 		asus->bled_type = TYPE_RFKILL;
1777 
1778 	if (!strcmp(wled_type, "led"))
1779 		asus->wled_type = TYPE_LED;
1780 	else if (!strcmp(wled_type, "rfkill"))
1781 		asus->wled_type = TYPE_RFKILL;
1782 
1783 	if (bluetooth_status >= 0)
1784 		asus_bluetooth_set(asus, !!bluetooth_status);
1785 
1786 	if (wlan_status >= 0)
1787 		asus_wlan_set(asus, !!wlan_status);
1788 
1789 	if (wimax_status >= 0)
1790 		asus_wimax_set(asus, !!wimax_status);
1791 
1792 	if (wwan_status >= 0)
1793 		asus_wwan_set(asus, !!wwan_status);
1794 
1795 	/* Keyboard Backlight is on by default */
1796 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1797 		asus_kled_set(asus, 1);
1798 
1799 	/* LED display is off by default */
1800 	asus->ledd_status = 0xFFF;
1801 
1802 	/* Set initial values of light sensor and level */
1803 	asus->light_switch = !!als_status;
1804 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1805 
1806 	if (asus->is_pega_lucid) {
1807 		asus_als_switch(asus, asus->light_switch);
1808 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1809 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1810 		asus_als_switch(asus, asus->light_switch);
1811 		asus_als_level(asus, asus->light_level);
1812 	}
1813 
1814 	return result;
1815 }
1816 
1817 static void asus_dmi_check(void)
1818 {
1819 	const char *model;
1820 
1821 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1822 	if (!model)
1823 		return;
1824 
1825 	/* On L1400B WLED control the sound card, don't mess with it ... */
1826 	if (strncmp(model, "L1400B", 6) == 0) {
1827 		wlan_status = -1;
1828 	}
1829 }
1830 
1831 static bool asus_device_present;
1832 
1833 static int asus_acpi_add(struct acpi_device *device)
1834 {
1835 	struct asus_laptop *asus;
1836 	int result;
1837 
1838 	pr_notice("Asus Laptop Support version %s\n",
1839 		  ASUS_LAPTOP_VERSION);
1840 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1841 	if (!asus)
1842 		return -ENOMEM;
1843 	asus->handle = device->handle;
1844 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1845 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1846 	device->driver_data = asus;
1847 	asus->device = device;
1848 
1849 	asus_dmi_check();
1850 
1851 	result = asus_acpi_init(asus);
1852 	if (result)
1853 		goto fail_platform;
1854 
1855 	/*
1856 	 * Need platform type detection first, then the platform
1857 	 * device.  It is used as a parent for the sub-devices below.
1858 	 */
1859 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1860 	result = asus_platform_init(asus);
1861 	if (result)
1862 		goto fail_platform;
1863 
1864 	if (!acpi_video_backlight_support()) {
1865 		result = asus_backlight_init(asus);
1866 		if (result)
1867 			goto fail_backlight;
1868 	} else
1869 		pr_info("Backlight controlled by ACPI video driver\n");
1870 
1871 	result = asus_input_init(asus);
1872 	if (result)
1873 		goto fail_input;
1874 
1875 	result = asus_led_init(asus);
1876 	if (result)
1877 		goto fail_led;
1878 
1879 	result = asus_rfkill_init(asus);
1880 	if (result && result != -ENODEV)
1881 		goto fail_rfkill;
1882 
1883 	result = pega_accel_init(asus);
1884 	if (result && result != -ENODEV)
1885 		goto fail_pega_accel;
1886 
1887 	result = pega_rfkill_init(asus);
1888 	if (result && result != -ENODEV)
1889 		goto fail_pega_rfkill;
1890 
1891 	asus_device_present = true;
1892 	return 0;
1893 
1894 fail_pega_rfkill:
1895 	pega_accel_exit(asus);
1896 fail_pega_accel:
1897 	asus_rfkill_exit(asus);
1898 fail_rfkill:
1899 	asus_led_exit(asus);
1900 fail_led:
1901 	asus_input_exit(asus);
1902 fail_input:
1903 	asus_backlight_exit(asus);
1904 fail_backlight:
1905 	asus_platform_exit(asus);
1906 fail_platform:
1907 	kfree(asus->name);
1908 	kfree(asus);
1909 
1910 	return result;
1911 }
1912 
1913 static int asus_acpi_remove(struct acpi_device *device, int type)
1914 {
1915 	struct asus_laptop *asus = acpi_driver_data(device);
1916 
1917 	asus_backlight_exit(asus);
1918 	asus_rfkill_exit(asus);
1919 	asus_led_exit(asus);
1920 	asus_input_exit(asus);
1921 	pega_accel_exit(asus);
1922 	asus_platform_exit(asus);
1923 
1924 	kfree(asus->name);
1925 	kfree(asus);
1926 	return 0;
1927 }
1928 
1929 static const struct acpi_device_id asus_device_ids[] = {
1930 	{"ATK0100", 0},
1931 	{"ATK0101", 0},
1932 	{"", 0},
1933 };
1934 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1935 
1936 static struct acpi_driver asus_acpi_driver = {
1937 	.name = ASUS_LAPTOP_NAME,
1938 	.class = ASUS_LAPTOP_CLASS,
1939 	.owner = THIS_MODULE,
1940 	.ids = asus_device_ids,
1941 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1942 	.ops = {
1943 		.add = asus_acpi_add,
1944 		.remove = asus_acpi_remove,
1945 		.notify = asus_acpi_notify,
1946 		},
1947 };
1948 
1949 static int __init asus_laptop_init(void)
1950 {
1951 	int result;
1952 
1953 	result = platform_driver_register(&platform_driver);
1954 	if (result < 0)
1955 		return result;
1956 
1957 	result = acpi_bus_register_driver(&asus_acpi_driver);
1958 	if (result < 0)
1959 		goto fail_acpi_driver;
1960 	if (!asus_device_present) {
1961 		result = -ENODEV;
1962 		goto fail_no_device;
1963 	}
1964 	return 0;
1965 
1966 fail_no_device:
1967 	acpi_bus_unregister_driver(&asus_acpi_driver);
1968 fail_acpi_driver:
1969 	platform_driver_unregister(&platform_driver);
1970 	return result;
1971 }
1972 
1973 static void __exit asus_laptop_exit(void)
1974 {
1975 	acpi_bus_unregister_driver(&asus_acpi_driver);
1976 	platform_driver_unregister(&platform_driver);
1977 }
1978 
1979 module_init(asus_laptop_init);
1980 module_exit(asus_laptop_exit);
1981