xref: /openbmc/linux/drivers/platform/x86/asus-laptop.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  asus-laptop.c - Asus Laptop Support
3  *
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  *
24  *  The development page for this driver is located at
25  *  http://sourceforge.net/projects/acpi4asus/
26  *
27  *  Credits:
28  *  Pontus Fuchs   - Helper functions, cleanup
29  *  Johann Wiesner - Small compile fixes
30  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
31  *  Eric Burghard  - LED display support for W1N
32  *  Josh Green     - Light Sens support
33  *  Thomas Tuttle  - His first patch for led support was very helpful
34  *  Sam Lin        - GPS support
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <linux/acpi.h>
57 #include <acpi/video.h>
58 
59 #define ASUS_LAPTOP_VERSION	"0.42"
60 
61 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS	"hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
64 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
66 
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70 
71 /*
72  * WAPF defines the behavior of the Fn+Fx wlan key
73  * The significance of values is yet to be found, but
74  * most of the time:
75  * Bit | Bluetooth | WLAN
76  *  0  | Hardware  | Hardware
77  *  1  | Hardware  | Software
78  *  4  | Software  | Software
79  */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83 
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86 
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 		 "(unknown, led or rfkill). "
90 		 "default is unknown");
91 
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 		 "(unknown, led or rfkill). "
95 		 "default is unknown");
96 
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102 
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 		 "default is -1");
107 
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 		 "default is -1");
112 
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 		 "default is -1");
117 
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 		 "default is -1");
122 
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 		 "(0 = disabled, 1 = enabled). "
126 		 "default is 0");
127 
128 /*
129  * Some events we use, same for all Asus
130  */
131 #define ATKD_BRNUP_MIN		0x10
132 #define ATKD_BRNUP_MAX		0x1f
133 #define ATKD_BRNDOWN_MIN	0x20
134 #define ATKD_BRNDOWN_MAX	0x2f
135 #define ATKD_BRNDOWN		0x20
136 #define ATKD_BRNUP		0x2f
137 #define ATKD_LCD_ON	0x33
138 #define ATKD_LCD_OFF	0x34
139 
140 /*
141  * Known bits returned by \_SB.ATKD.HWRS
142  */
143 #define WL_HWRS		0x80
144 #define BT_HWRS		0x100
145 
146 /*
147  * Flags for hotk status
148  * WL_ON and BT_ON are also used for wireless_status()
149  */
150 #define WL_RSTS		0x01	/* internal Wifi */
151 #define BT_RSTS		0x02	/* internal Bluetooth */
152 #define WM_RSTS		0x08    /* internal wimax */
153 #define WW_RSTS		0x20    /* internal wwan */
154 
155 /* WLED and BLED type */
156 #define TYPE_UNKNOWN	0
157 #define TYPE_LED	1
158 #define TYPE_RFKILL	2
159 
160 /* LED */
161 #define METHOD_MLED		"MLED"
162 #define METHOD_TLED		"TLED"
163 #define METHOD_RLED		"RLED"	/* W1JC */
164 #define METHOD_PLED		"PLED"	/* A7J */
165 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
166 
167 /* LEDD */
168 #define METHOD_LEDD		"SLCM"
169 
170 /*
171  * Bluetooth and WLAN
172  * WLED and BLED are not handled like other XLED, because in some dsdt
173  * they also control the WLAN/Bluetooth device.
174  */
175 #define METHOD_WLAN		"WLED"
176 #define METHOD_BLUETOOTH	"BLED"
177 
178 /* WWAN and WIMAX */
179 #define METHOD_WWAN		"GSMC"
180 #define METHOD_WIMAX		"WMXC"
181 
182 #define METHOD_WL_STATUS	"RSTS"
183 
184 /* Brightness */
185 #define METHOD_BRIGHTNESS_SET	"SPLV"
186 #define METHOD_BRIGHTNESS_GET	"GPLV"
187 
188 /* Display */
189 #define METHOD_SWITCH_DISPLAY	"SDSP"
190 
191 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
192 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
193 
194 /* GPS */
195 /* R2H use different handle for GPS on/off */
196 #define METHOD_GPS_ON		"SDON"
197 #define METHOD_GPS_OFF		"SDOF"
198 #define METHOD_GPS_STATUS	"GPST"
199 
200 /* Keyboard light */
201 #define METHOD_KBD_LIGHT_SET	"SLKB"
202 #define METHOD_KBD_LIGHT_GET	"GLKB"
203 
204 /* For Pegatron Lucid tablet */
205 #define DEVICE_NAME_PEGA	"Lucid"
206 
207 #define METHOD_PEGA_ENABLE	"ENPR"
208 #define METHOD_PEGA_DISABLE	"DAPR"
209 #define PEGA_WLAN	0x00
210 #define PEGA_BLUETOOTH	0x01
211 #define PEGA_WWAN	0x02
212 #define PEGA_ALS	0x04
213 #define PEGA_ALS_POWER	0x05
214 
215 #define METHOD_PEGA_READ	"RDLN"
216 #define PEGA_READ_ALS_H	0x02
217 #define PEGA_READ_ALS_L	0x03
218 
219 #define PEGA_ACCEL_NAME "pega_accel"
220 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
221 #define METHOD_XLRX "XLRX"
222 #define METHOD_XLRY "XLRY"
223 #define METHOD_XLRZ "XLRZ"
224 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
225 #define PEGA_ACC_RETRIES 3
226 
227 /*
228  * Define a specific led structure to keep the main structure clean
229  */
230 struct asus_led {
231 	int wk;
232 	struct work_struct work;
233 	struct led_classdev led;
234 	struct asus_laptop *asus;
235 	const char *method;
236 };
237 
238 /*
239  * Same thing for rfkill
240  */
241 struct asus_rfkill {
242 	/* type of control. Maps to PEGA_* values or *_RSTS  */
243 	int control_id;
244 	struct rfkill *rfkill;
245 	struct asus_laptop *asus;
246 };
247 
248 /*
249  * This is the main structure, we can use it to store anything interesting
250  * about the hotk device
251  */
252 struct asus_laptop {
253 	char *name;		/* laptop name */
254 
255 	struct acpi_table_header *dsdt_info;
256 	struct platform_device *platform_device;
257 	struct acpi_device *device;		/* the device we are in */
258 	struct backlight_device *backlight_device;
259 
260 	struct input_dev *inputdev;
261 	struct key_entry *keymap;
262 	struct input_polled_dev *pega_accel_poll;
263 
264 	struct asus_led wled;
265 	struct asus_led bled;
266 	struct asus_led mled;
267 	struct asus_led tled;
268 	struct asus_led rled;
269 	struct asus_led pled;
270 	struct asus_led gled;
271 	struct asus_led kled;
272 	struct workqueue_struct *led_workqueue;
273 
274 	int wled_type;
275 	int bled_type;
276 	int wireless_status;
277 	bool have_rsts;
278 	bool is_pega_lucid;
279 	bool pega_acc_live;
280 	int pega_acc_x;
281 	int pega_acc_y;
282 	int pega_acc_z;
283 
284 	struct asus_rfkill wlan;
285 	struct asus_rfkill bluetooth;
286 	struct asus_rfkill wwan;
287 	struct asus_rfkill wimax;
288 	struct asus_rfkill gps;
289 
290 	acpi_handle handle;	/* the handle of the hotk device */
291 	u32 ledd_status;	/* status of the LED display */
292 	u8 light_level;		/* light sensor level */
293 	u8 light_switch;	/* light sensor switch value */
294 	u16 event_count[128];	/* count for each event TODO make this better */
295 };
296 
297 static const struct key_entry asus_keymap[] = {
298 	/* Lenovo SL Specific keycodes */
299 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
300 	{KE_KEY, 0x05, { KEY_WLAN } },
301 	{KE_KEY, 0x08, { KEY_F13 } },
302 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
303 	{KE_KEY, 0x17, { KEY_ZOOM } },
304 	{KE_KEY, 0x1f, { KEY_BATTERY } },
305 	/* End of Lenovo SL Specific keycodes */
306 	{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
307 	{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
308 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
309 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
310 	{KE_KEY, 0x32, { KEY_MUTE } },
311 	{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
312 	{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
313 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
314 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
315 	{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
316 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
317 	{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
318 	{KE_KEY, 0x50, { KEY_EMAIL } },
319 	{KE_KEY, 0x51, { KEY_WWW } },
320 	{KE_KEY, 0x55, { KEY_CALC } },
321 	{KE_IGNORE, 0x57, },  /* Battery mode */
322 	{KE_IGNORE, 0x58, },  /* AC mode */
323 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
324 	{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
325 	{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
326 	{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
327 	{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
328 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
329 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
330 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
331 	{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
332 	{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
333 	{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
334 	{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
335 	{KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
336 	{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
337 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
338 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
339 	{KE_IGNORE, 0x6E, },  /* Low Battery notification */
340 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
341 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
342 	{KE_KEY, 0x82, { KEY_CAMERA } },
343 	{KE_KEY, 0x88, { KEY_RFKILL  } }, /* Radio Toggle Key */
344 	{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
345 	{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
346 	{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
347 	{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
348 	{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
349 	{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
350 	{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
351 	{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
352 	{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
353 	{KE_KEY, 0x95, { KEY_MEDIA } },
354 	{KE_KEY, 0x99, { KEY_PHONE } },
355 	{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
356 	{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
357 	{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
358 	{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
359 	{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
360 	{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
361 	{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
362 	{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
363 	{KE_KEY, 0xB5, { KEY_CALC } },
364 	{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
365 	{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
366 	{KE_END, 0},
367 };
368 
369 
370 /*
371  * This function evaluates an ACPI method, given an int as parameter, the
372  * method is searched within the scope of the handle, can be NULL. The output
373  * of the method is written is output, which can also be NULL
374  *
375  * returns 0 if write is successful, -1 else.
376  */
377 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
378 			      struct acpi_buffer *output)
379 {
380 	struct acpi_object_list params;	/* list of input parameters (an int) */
381 	union acpi_object in_obj;	/* the only param we use */
382 	acpi_status status;
383 
384 	if (!handle)
385 		return -1;
386 
387 	params.count = 1;
388 	params.pointer = &in_obj;
389 	in_obj.type = ACPI_TYPE_INTEGER;
390 	in_obj.integer.value = val;
391 
392 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
393 	if (status == AE_OK)
394 		return 0;
395 	else
396 		return -1;
397 }
398 
399 static int write_acpi_int(acpi_handle handle, const char *method, int val)
400 {
401 	return write_acpi_int_ret(handle, method, val, NULL);
402 }
403 
404 static int acpi_check_handle(acpi_handle handle, const char *method,
405 			     acpi_handle *ret)
406 {
407 	acpi_status status;
408 
409 	if (method == NULL)
410 		return -ENODEV;
411 
412 	if (ret)
413 		status = acpi_get_handle(handle, (char *)method,
414 					 ret);
415 	else {
416 		acpi_handle dummy;
417 
418 		status = acpi_get_handle(handle, (char *)method,
419 					 &dummy);
420 	}
421 
422 	if (status != AE_OK) {
423 		if (ret)
424 			pr_warn("Error finding %s\n", method);
425 		return -ENODEV;
426 	}
427 	return 0;
428 }
429 
430 static bool asus_check_pega_lucid(struct asus_laptop *asus)
431 {
432 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
433 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
434 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
435 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
436 }
437 
438 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
439 {
440 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
441 	return write_acpi_int(asus->handle, method, unit);
442 }
443 
444 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
445 {
446 	int i, delta;
447 	unsigned long long val;
448 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
449 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
450 
451 		/* The output is noisy.  From reading the ASL
452 		 * dissassembly, timeout errors are returned with 1's
453 		 * in the high word, and the lack of locking around
454 		 * thei hi/lo byte reads means that a transition
455 		 * between (for example) -1 and 0 could be read as
456 		 * 0xff00 or 0x00ff. */
457 		delta = abs(curr - (short)val);
458 		if (delta < 128 && !(val & ~0xffff))
459 			break;
460 	}
461 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
462 }
463 
464 static void pega_accel_poll(struct input_polled_dev *ipd)
465 {
466 	struct device *parent = ipd->input->dev.parent;
467 	struct asus_laptop *asus = dev_get_drvdata(parent);
468 
469 	/* In some cases, the very first call to poll causes a
470 	 * recursive fault under the polldev worker.  This is
471 	 * apparently related to very early userspace access to the
472 	 * device, and perhaps a firmware bug. Fake the first report. */
473 	if (!asus->pega_acc_live) {
474 		asus->pega_acc_live = true;
475 		input_report_abs(ipd->input, ABS_X, 0);
476 		input_report_abs(ipd->input, ABS_Y, 0);
477 		input_report_abs(ipd->input, ABS_Z, 0);
478 		input_sync(ipd->input);
479 		return;
480 	}
481 
482 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
483 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
484 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
485 
486 	/* Note transform, convert to "right/up/out" in the native
487 	 * landscape orientation (i.e. the vector is the direction of
488 	 * "real up" in the device's cartiesian coordinates). */
489 	input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
490 	input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
491 	input_report_abs(ipd->input, ABS_Z,  asus->pega_acc_z);
492 	input_sync(ipd->input);
493 }
494 
495 static void pega_accel_exit(struct asus_laptop *asus)
496 {
497 	if (asus->pega_accel_poll) {
498 		input_unregister_polled_device(asus->pega_accel_poll);
499 		input_free_polled_device(asus->pega_accel_poll);
500 	}
501 	asus->pega_accel_poll = NULL;
502 }
503 
504 static int pega_accel_init(struct asus_laptop *asus)
505 {
506 	int err;
507 	struct input_polled_dev *ipd;
508 
509 	if (!asus->is_pega_lucid)
510 		return -ENODEV;
511 
512 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
513 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
514 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
515 		return -ENODEV;
516 
517 	ipd = input_allocate_polled_device();
518 	if (!ipd)
519 		return -ENOMEM;
520 
521 	ipd->poll = pega_accel_poll;
522 	ipd->poll_interval = 125;
523 	ipd->poll_interval_min = 50;
524 	ipd->poll_interval_max = 2000;
525 
526 	ipd->input->name = PEGA_ACCEL_DESC;
527 	ipd->input->phys = PEGA_ACCEL_NAME "/input0";
528 	ipd->input->dev.parent = &asus->platform_device->dev;
529 	ipd->input->id.bustype = BUS_HOST;
530 
531 	set_bit(EV_ABS, ipd->input->evbit);
532 	input_set_abs_params(ipd->input, ABS_X,
533 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
534 	input_set_abs_params(ipd->input, ABS_Y,
535 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
536 	input_set_abs_params(ipd->input, ABS_Z,
537 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
538 
539 	err = input_register_polled_device(ipd);
540 	if (err)
541 		goto exit;
542 
543 	asus->pega_accel_poll = ipd;
544 	return 0;
545 
546 exit:
547 	input_free_polled_device(ipd);
548 	return err;
549 }
550 
551 /* Generic LED function */
552 static int asus_led_set(struct asus_laptop *asus, const char *method,
553 			 int value)
554 {
555 	if (!strcmp(method, METHOD_MLED))
556 		value = !value;
557 	else if (!strcmp(method, METHOD_GLED))
558 		value = !value + 1;
559 	else
560 		value = !!value;
561 
562 	return write_acpi_int(asus->handle, method, value);
563 }
564 
565 /*
566  * LEDs
567  */
568 /* /sys/class/led handlers */
569 static void asus_led_cdev_set(struct led_classdev *led_cdev,
570 			 enum led_brightness value)
571 {
572 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
573 	struct asus_laptop *asus = led->asus;
574 
575 	led->wk = !!value;
576 	queue_work(asus->led_workqueue, &led->work);
577 }
578 
579 static void asus_led_cdev_update(struct work_struct *work)
580 {
581 	struct asus_led *led = container_of(work, struct asus_led, work);
582 	struct asus_laptop *asus = led->asus;
583 
584 	asus_led_set(asus, led->method, led->wk);
585 }
586 
587 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
588 {
589 	return led_cdev->brightness;
590 }
591 
592 /*
593  * Keyboard backlight (also a LED)
594  */
595 static int asus_kled_lvl(struct asus_laptop *asus)
596 {
597 	unsigned long long kblv;
598 	struct acpi_object_list params;
599 	union acpi_object in_obj;
600 	acpi_status rv;
601 
602 	params.count = 1;
603 	params.pointer = &in_obj;
604 	in_obj.type = ACPI_TYPE_INTEGER;
605 	in_obj.integer.value = 2;
606 
607 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
608 				   &params, &kblv);
609 	if (ACPI_FAILURE(rv)) {
610 		pr_warn("Error reading kled level\n");
611 		return -ENODEV;
612 	}
613 	return kblv;
614 }
615 
616 static int asus_kled_set(struct asus_laptop *asus, int kblv)
617 {
618 	if (kblv > 0)
619 		kblv = (1 << 7) | (kblv & 0x7F);
620 	else
621 		kblv = 0;
622 
623 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
624 		pr_warn("Keyboard LED display write failed\n");
625 		return -EINVAL;
626 	}
627 	return 0;
628 }
629 
630 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
631 			      enum led_brightness value)
632 {
633 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
634 	struct asus_laptop *asus = led->asus;
635 
636 	led->wk = value;
637 	queue_work(asus->led_workqueue, &led->work);
638 }
639 
640 static void asus_kled_cdev_update(struct work_struct *work)
641 {
642 	struct asus_led *led = container_of(work, struct asus_led, work);
643 	struct asus_laptop *asus = led->asus;
644 
645 	asus_kled_set(asus, led->wk);
646 }
647 
648 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
649 {
650 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
651 	struct asus_laptop *asus = led->asus;
652 
653 	return asus_kled_lvl(asus);
654 }
655 
656 static void asus_led_exit(struct asus_laptop *asus)
657 {
658 	if (!IS_ERR_OR_NULL(asus->wled.led.dev))
659 		led_classdev_unregister(&asus->wled.led);
660 	if (!IS_ERR_OR_NULL(asus->bled.led.dev))
661 		led_classdev_unregister(&asus->bled.led);
662 	if (!IS_ERR_OR_NULL(asus->mled.led.dev))
663 		led_classdev_unregister(&asus->mled.led);
664 	if (!IS_ERR_OR_NULL(asus->tled.led.dev))
665 		led_classdev_unregister(&asus->tled.led);
666 	if (!IS_ERR_OR_NULL(asus->pled.led.dev))
667 		led_classdev_unregister(&asus->pled.led);
668 	if (!IS_ERR_OR_NULL(asus->rled.led.dev))
669 		led_classdev_unregister(&asus->rled.led);
670 	if (!IS_ERR_OR_NULL(asus->gled.led.dev))
671 		led_classdev_unregister(&asus->gled.led);
672 	if (!IS_ERR_OR_NULL(asus->kled.led.dev))
673 		led_classdev_unregister(&asus->kled.led);
674 	if (asus->led_workqueue) {
675 		destroy_workqueue(asus->led_workqueue);
676 		asus->led_workqueue = NULL;
677 	}
678 }
679 
680 /*  Ugly macro, need to fix that later */
681 static int asus_led_register(struct asus_laptop *asus,
682 			     struct asus_led *led,
683 			     const char *name, const char *method)
684 {
685 	struct led_classdev *led_cdev = &led->led;
686 
687 	if (!method || acpi_check_handle(asus->handle, method, NULL))
688 		return 0; /* Led not present */
689 
690 	led->asus = asus;
691 	led->method = method;
692 
693 	INIT_WORK(&led->work, asus_led_cdev_update);
694 	led_cdev->name = name;
695 	led_cdev->brightness_set = asus_led_cdev_set;
696 	led_cdev->brightness_get = asus_led_cdev_get;
697 	led_cdev->max_brightness = 1;
698 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
699 }
700 
701 static int asus_led_init(struct asus_laptop *asus)
702 {
703 	int r = 0;
704 
705 	/*
706 	 * The Pegatron Lucid has no physical leds, but all methods are
707 	 * available in the DSDT...
708 	 */
709 	if (asus->is_pega_lucid)
710 		return 0;
711 
712 	/*
713 	 * Functions that actually update the LED's are called from a
714 	 * workqueue. By doing this as separate work rather than when the LED
715 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
716 	 * potentially bad time, such as a timer interrupt.
717 	 */
718 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
719 	if (!asus->led_workqueue)
720 		return -ENOMEM;
721 
722 	if (asus->wled_type == TYPE_LED)
723 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
724 				      METHOD_WLAN);
725 	if (r)
726 		goto error;
727 	if (asus->bled_type == TYPE_LED)
728 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
729 				      METHOD_BLUETOOTH);
730 	if (r)
731 		goto error;
732 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
733 	if (r)
734 		goto error;
735 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
736 	if (r)
737 		goto error;
738 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
739 	if (r)
740 		goto error;
741 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
742 	if (r)
743 		goto error;
744 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
745 	if (r)
746 		goto error;
747 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
748 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
749 		struct asus_led *led = &asus->kled;
750 		struct led_classdev *cdev = &led->led;
751 
752 		led->asus = asus;
753 
754 		INIT_WORK(&led->work, asus_kled_cdev_update);
755 		cdev->name = "asus::kbd_backlight";
756 		cdev->brightness_set = asus_kled_cdev_set;
757 		cdev->brightness_get = asus_kled_cdev_get;
758 		cdev->max_brightness = 3;
759 		r = led_classdev_register(&asus->platform_device->dev, cdev);
760 	}
761 error:
762 	if (r)
763 		asus_led_exit(asus);
764 	return r;
765 }
766 
767 /*
768  * Backlight device
769  */
770 static int asus_read_brightness(struct backlight_device *bd)
771 {
772 	struct asus_laptop *asus = bl_get_data(bd);
773 	unsigned long long value;
774 	acpi_status rv = AE_OK;
775 
776 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
777 				   NULL, &value);
778 	if (ACPI_FAILURE(rv))
779 		pr_warn("Error reading brightness\n");
780 
781 	return value;
782 }
783 
784 static int asus_set_brightness(struct backlight_device *bd, int value)
785 {
786 	struct asus_laptop *asus = bl_get_data(bd);
787 
788 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
789 		pr_warn("Error changing brightness\n");
790 		return -EIO;
791 	}
792 	return 0;
793 }
794 
795 static int update_bl_status(struct backlight_device *bd)
796 {
797 	int value = bd->props.brightness;
798 
799 	return asus_set_brightness(bd, value);
800 }
801 
802 static const struct backlight_ops asusbl_ops = {
803 	.get_brightness = asus_read_brightness,
804 	.update_status = update_bl_status,
805 };
806 
807 static int asus_backlight_notify(struct asus_laptop *asus)
808 {
809 	struct backlight_device *bd = asus->backlight_device;
810 	int old = bd->props.brightness;
811 
812 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
813 
814 	return old;
815 }
816 
817 static int asus_backlight_init(struct asus_laptop *asus)
818 {
819 	struct backlight_device *bd;
820 	struct backlight_properties props;
821 
822 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
823 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
824 		return 0;
825 
826 	memset(&props, 0, sizeof(struct backlight_properties));
827 	props.max_brightness = 15;
828 	props.type = BACKLIGHT_PLATFORM;
829 
830 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
831 				       &asus->platform_device->dev, asus,
832 				       &asusbl_ops, &props);
833 	if (IS_ERR(bd)) {
834 		pr_err("Could not register asus backlight device\n");
835 		asus->backlight_device = NULL;
836 		return PTR_ERR(bd);
837 	}
838 
839 	asus->backlight_device = bd;
840 	bd->props.brightness = asus_read_brightness(bd);
841 	bd->props.power = FB_BLANK_UNBLANK;
842 	backlight_update_status(bd);
843 	return 0;
844 }
845 
846 static void asus_backlight_exit(struct asus_laptop *asus)
847 {
848 	backlight_device_unregister(asus->backlight_device);
849 	asus->backlight_device = NULL;
850 }
851 
852 /*
853  * Platform device handlers
854  */
855 
856 /*
857  * We write our info in page, we begin at offset off and cannot write more
858  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
859  * number of bytes written in page
860  */
861 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
862 			  char *page)
863 {
864 	struct asus_laptop *asus = dev_get_drvdata(dev);
865 	int len = 0;
866 	unsigned long long temp;
867 	char buf[16];		/* enough for all info */
868 	acpi_status rv = AE_OK;
869 
870 	/*
871 	 * We use the easy way, we don't care of off and count,
872 	 * so we don't set eof to 1
873 	 */
874 
875 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
876 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
877 	/*
878 	 * The SFUN method probably allows the original driver to get the list
879 	 * of features supported by a given model. For now, 0x0100 or 0x0800
880 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
881 	 * The significance of others is yet to be found.
882 	 */
883 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
884 	if (!ACPI_FAILURE(rv))
885 		len += sprintf(page + len, "SFUN value         : %#x\n",
886 			       (uint) temp);
887 	/*
888 	 * The HWRS method return informations about the hardware.
889 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
890 	 * 0x40 for WWAN, 0x10 for WIMAX.
891 	 * The significance of others is yet to be found.
892 	 * We don't currently use this for device detection, and it
893 	 * takes several seconds to run on some systems.
894 	 */
895 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
896 	if (!ACPI_FAILURE(rv))
897 		len += sprintf(page + len, "HWRS value         : %#x\n",
898 			       (uint) temp);
899 	/*
900 	 * Another value for userspace: the ASYM method returns 0x02 for
901 	 * battery low and 0x04 for battery critical, its readings tend to be
902 	 * more accurate than those provided by _BST.
903 	 * Note: since not all the laptops provide this method, errors are
904 	 * silently ignored.
905 	 */
906 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
907 	if (!ACPI_FAILURE(rv))
908 		len += sprintf(page + len, "ASYM value         : %#x\n",
909 			       (uint) temp);
910 	if (asus->dsdt_info) {
911 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
912 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
913 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
914 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
915 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
916 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
917 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
918 		len += sprintf(page + len, "OEM id             : %s\n", buf);
919 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
920 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
921 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
922 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
923 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
924 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
925 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
926 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
927 	}
928 
929 	return len;
930 }
931 static DEVICE_ATTR_RO(infos);
932 
933 static int parse_arg(const char *buf, unsigned long count, int *val)
934 {
935 	if (!count)
936 		return 0;
937 	if (count > 31)
938 		return -EINVAL;
939 	if (sscanf(buf, "%i", val) != 1)
940 		return -EINVAL;
941 	return count;
942 }
943 
944 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
945 			      const char *buf, size_t count,
946 			      const char *method)
947 {
948 	int rv, value;
949 	int out = 0;
950 
951 	rv = parse_arg(buf, count, &value);
952 	if (rv > 0)
953 		out = value ? 1 : 0;
954 
955 	if (write_acpi_int(asus->handle, method, value))
956 		return -ENODEV;
957 	return rv;
958 }
959 
960 /*
961  * LEDD display
962  */
963 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
964 			 char *buf)
965 {
966 	struct asus_laptop *asus = dev_get_drvdata(dev);
967 
968 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
969 }
970 
971 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
972 			  const char *buf, size_t count)
973 {
974 	struct asus_laptop *asus = dev_get_drvdata(dev);
975 	int rv, value;
976 
977 	rv = parse_arg(buf, count, &value);
978 	if (rv > 0) {
979 		if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
980 			pr_warn("LED display write failed\n");
981 			return -ENODEV;
982 		}
983 		asus->ledd_status = (u32) value;
984 	}
985 	return rv;
986 }
987 static DEVICE_ATTR_RW(ledd);
988 
989 /*
990  * Wireless
991  */
992 static int asus_wireless_status(struct asus_laptop *asus, int mask)
993 {
994 	unsigned long long status;
995 	acpi_status rv = AE_OK;
996 
997 	if (!asus->have_rsts)
998 		return (asus->wireless_status & mask) ? 1 : 0;
999 
1000 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
1001 				   NULL, &status);
1002 	if (ACPI_FAILURE(rv)) {
1003 		pr_warn("Error reading Wireless status\n");
1004 		return -EINVAL;
1005 	}
1006 	return !!(status & mask);
1007 }
1008 
1009 /*
1010  * WLAN
1011  */
1012 static int asus_wlan_set(struct asus_laptop *asus, int status)
1013 {
1014 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1015 		pr_warn("Error setting wlan status to %d\n", status);
1016 		return -EIO;
1017 	}
1018 	return 0;
1019 }
1020 
1021 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
1022 			 char *buf)
1023 {
1024 	struct asus_laptop *asus = dev_get_drvdata(dev);
1025 
1026 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1027 }
1028 
1029 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
1030 			  const char *buf, size_t count)
1031 {
1032 	struct asus_laptop *asus = dev_get_drvdata(dev);
1033 
1034 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1035 }
1036 static DEVICE_ATTR_RW(wlan);
1037 
1038 /*e
1039  * Bluetooth
1040  */
1041 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1042 {
1043 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1044 		pr_warn("Error setting bluetooth status to %d\n", status);
1045 		return -EIO;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1051 			      char *buf)
1052 {
1053 	struct asus_laptop *asus = dev_get_drvdata(dev);
1054 
1055 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1056 }
1057 
1058 static ssize_t bluetooth_store(struct device *dev,
1059 			       struct device_attribute *attr, const char *buf,
1060 			       size_t count)
1061 {
1062 	struct asus_laptop *asus = dev_get_drvdata(dev);
1063 
1064 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1065 }
1066 static DEVICE_ATTR_RW(bluetooth);
1067 
1068 /*
1069  * Wimax
1070  */
1071 static int asus_wimax_set(struct asus_laptop *asus, int status)
1072 {
1073 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1074 		pr_warn("Error setting wimax status to %d\n", status);
1075 		return -EIO;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1081 			  char *buf)
1082 {
1083 	struct asus_laptop *asus = dev_get_drvdata(dev);
1084 
1085 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1086 }
1087 
1088 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1089 			   const char *buf, size_t count)
1090 {
1091 	struct asus_laptop *asus = dev_get_drvdata(dev);
1092 
1093 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1094 }
1095 static DEVICE_ATTR_RW(wimax);
1096 
1097 /*
1098  * Wwan
1099  */
1100 static int asus_wwan_set(struct asus_laptop *asus, int status)
1101 {
1102 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1103 		pr_warn("Error setting wwan status to %d\n", status);
1104 		return -EIO;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1110 			 char *buf)
1111 {
1112 	struct asus_laptop *asus = dev_get_drvdata(dev);
1113 
1114 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1115 }
1116 
1117 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1118 			  const char *buf, size_t count)
1119 {
1120 	struct asus_laptop *asus = dev_get_drvdata(dev);
1121 
1122 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1123 }
1124 static DEVICE_ATTR_RW(wwan);
1125 
1126 /*
1127  * Display
1128  */
1129 static void asus_set_display(struct asus_laptop *asus, int value)
1130 {
1131 	/* no sanity check needed for now */
1132 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1133 		pr_warn("Error setting display\n");
1134 	return;
1135 }
1136 
1137 /*
1138  * Experimental support for display switching. As of now: 1 should activate
1139  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1140  * Any combination (bitwise) of these will suffice. I never actually tested 4
1141  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1142  * for more info.
1143  */
1144 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1145 			     const char *buf, size_t count)
1146 {
1147 	struct asus_laptop *asus = dev_get_drvdata(dev);
1148 	int rv, value;
1149 
1150 	rv = parse_arg(buf, count, &value);
1151 	if (rv > 0)
1152 		asus_set_display(asus, value);
1153 	return rv;
1154 }
1155 static DEVICE_ATTR_WO(display);
1156 
1157 /*
1158  * Light Sens
1159  */
1160 static void asus_als_switch(struct asus_laptop *asus, int value)
1161 {
1162 	int ret;
1163 
1164 	if (asus->is_pega_lucid) {
1165 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1166 		if (!ret)
1167 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1168 	} else {
1169 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1170 	}
1171 	if (ret)
1172 		pr_warning("Error setting light sensor switch\n");
1173 
1174 	asus->light_switch = value;
1175 }
1176 
1177 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1178 			      char *buf)
1179 {
1180 	struct asus_laptop *asus = dev_get_drvdata(dev);
1181 
1182 	return sprintf(buf, "%d\n", asus->light_switch);
1183 }
1184 
1185 static ssize_t ls_switch_store(struct device *dev,
1186 			       struct device_attribute *attr, const char *buf,
1187 			       size_t count)
1188 {
1189 	struct asus_laptop *asus = dev_get_drvdata(dev);
1190 	int rv, value;
1191 
1192 	rv = parse_arg(buf, count, &value);
1193 	if (rv > 0)
1194 		asus_als_switch(asus, value ? 1 : 0);
1195 
1196 	return rv;
1197 }
1198 static DEVICE_ATTR_RW(ls_switch);
1199 
1200 static void asus_als_level(struct asus_laptop *asus, int value)
1201 {
1202 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1203 		pr_warn("Error setting light sensor level\n");
1204 	asus->light_level = value;
1205 }
1206 
1207 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1208 			     char *buf)
1209 {
1210 	struct asus_laptop *asus = dev_get_drvdata(dev);
1211 
1212 	return sprintf(buf, "%d\n", asus->light_level);
1213 }
1214 
1215 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1216 			      const char *buf, size_t count)
1217 {
1218 	struct asus_laptop *asus = dev_get_drvdata(dev);
1219 	int rv, value;
1220 
1221 	rv = parse_arg(buf, count, &value);
1222 	if (rv > 0) {
1223 		value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1224 		/* 0 <= value <= 15 */
1225 		asus_als_level(asus, value);
1226 	}
1227 
1228 	return rv;
1229 }
1230 static DEVICE_ATTR_RW(ls_level);
1231 
1232 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1233 {
1234 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1235 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1236 				     &buffer);
1237 	if (!err) {
1238 		union acpi_object *obj = buffer.pointer;
1239 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1240 			*result = obj->integer.value;
1241 		else
1242 			err = -EIO;
1243 	}
1244 	return err;
1245 }
1246 
1247 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1248 			     char *buf)
1249 {
1250 	struct asus_laptop *asus = dev_get_drvdata(dev);
1251 	int err, hi, lo;
1252 
1253 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1254 	if (!err)
1255 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1256 	if (!err)
1257 		return sprintf(buf, "%d\n", 10 * hi + lo);
1258 	return err;
1259 }
1260 static DEVICE_ATTR_RO(ls_value);
1261 
1262 /*
1263  * GPS
1264  */
1265 static int asus_gps_status(struct asus_laptop *asus)
1266 {
1267 	unsigned long long status;
1268 	acpi_status rv = AE_OK;
1269 
1270 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1271 				   NULL, &status);
1272 	if (ACPI_FAILURE(rv)) {
1273 		pr_warn("Error reading GPS status\n");
1274 		return -ENODEV;
1275 	}
1276 	return !!status;
1277 }
1278 
1279 static int asus_gps_switch(struct asus_laptop *asus, int status)
1280 {
1281 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1282 
1283 	if (write_acpi_int(asus->handle, meth, 0x02))
1284 		return -ENODEV;
1285 	return 0;
1286 }
1287 
1288 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1289 			char *buf)
1290 {
1291 	struct asus_laptop *asus = dev_get_drvdata(dev);
1292 
1293 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1294 }
1295 
1296 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1297 			 const char *buf, size_t count)
1298 {
1299 	struct asus_laptop *asus = dev_get_drvdata(dev);
1300 	int rv, value;
1301 	int ret;
1302 
1303 	rv = parse_arg(buf, count, &value);
1304 	if (rv <= 0)
1305 		return -EINVAL;
1306 	ret = asus_gps_switch(asus, !!value);
1307 	if (ret)
1308 		return ret;
1309 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1310 	return rv;
1311 }
1312 static DEVICE_ATTR_RW(gps);
1313 
1314 /*
1315  * rfkill
1316  */
1317 static int asus_gps_rfkill_set(void *data, bool blocked)
1318 {
1319 	struct asus_laptop *asus = data;
1320 
1321 	return asus_gps_switch(asus, !blocked);
1322 }
1323 
1324 static const struct rfkill_ops asus_gps_rfkill_ops = {
1325 	.set_block = asus_gps_rfkill_set,
1326 };
1327 
1328 static int asus_rfkill_set(void *data, bool blocked)
1329 {
1330 	struct asus_rfkill *rfk = data;
1331 	struct asus_laptop *asus = rfk->asus;
1332 
1333 	if (rfk->control_id == WL_RSTS)
1334 		return asus_wlan_set(asus, !blocked);
1335 	else if (rfk->control_id == BT_RSTS)
1336 		return asus_bluetooth_set(asus, !blocked);
1337 	else if (rfk->control_id == WM_RSTS)
1338 		return asus_wimax_set(asus, !blocked);
1339 	else if (rfk->control_id == WW_RSTS)
1340 		return asus_wwan_set(asus, !blocked);
1341 
1342 	return -EINVAL;
1343 }
1344 
1345 static const struct rfkill_ops asus_rfkill_ops = {
1346 	.set_block = asus_rfkill_set,
1347 };
1348 
1349 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1350 {
1351 	if (!rfk->rfkill)
1352 		return ;
1353 
1354 	rfkill_unregister(rfk->rfkill);
1355 	rfkill_destroy(rfk->rfkill);
1356 	rfk->rfkill = NULL;
1357 }
1358 
1359 static void asus_rfkill_exit(struct asus_laptop *asus)
1360 {
1361 	asus_rfkill_terminate(&asus->wwan);
1362 	asus_rfkill_terminate(&asus->bluetooth);
1363 	asus_rfkill_terminate(&asus->wlan);
1364 	asus_rfkill_terminate(&asus->gps);
1365 }
1366 
1367 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1368 			     const char *name, int control_id, int type,
1369 			     const struct rfkill_ops *ops)
1370 {
1371 	int result;
1372 
1373 	rfk->control_id = control_id;
1374 	rfk->asus = asus;
1375 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1376 				   type, ops, rfk);
1377 	if (!rfk->rfkill)
1378 		return -EINVAL;
1379 
1380 	result = rfkill_register(rfk->rfkill);
1381 	if (result) {
1382 		rfkill_destroy(rfk->rfkill);
1383 		rfk->rfkill = NULL;
1384 	}
1385 
1386 	return result;
1387 }
1388 
1389 static int asus_rfkill_init(struct asus_laptop *asus)
1390 {
1391 	int result = 0;
1392 
1393 	if (asus->is_pega_lucid)
1394 		return -ENODEV;
1395 
1396 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1397 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1398 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1399 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1400 					   -1, RFKILL_TYPE_GPS,
1401 					   &asus_gps_rfkill_ops);
1402 	if (result)
1403 		goto exit;
1404 
1405 
1406 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1407 	    asus->wled_type == TYPE_RFKILL)
1408 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1409 					   WL_RSTS, RFKILL_TYPE_WLAN,
1410 					   &asus_rfkill_ops);
1411 	if (result)
1412 		goto exit;
1413 
1414 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1415 	    asus->bled_type == TYPE_RFKILL)
1416 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1417 					   "asus-bluetooth", BT_RSTS,
1418 					   RFKILL_TYPE_BLUETOOTH,
1419 					   &asus_rfkill_ops);
1420 	if (result)
1421 		goto exit;
1422 
1423 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1424 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1425 					   WW_RSTS, RFKILL_TYPE_WWAN,
1426 					   &asus_rfkill_ops);
1427 	if (result)
1428 		goto exit;
1429 
1430 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1431 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1432 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1433 					   &asus_rfkill_ops);
1434 	if (result)
1435 		goto exit;
1436 
1437 exit:
1438 	if (result)
1439 		asus_rfkill_exit(asus);
1440 
1441 	return result;
1442 }
1443 
1444 static int pega_rfkill_set(void *data, bool blocked)
1445 {
1446 	struct asus_rfkill *rfk = data;
1447 
1448 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1449 	return ret;
1450 }
1451 
1452 static const struct rfkill_ops pega_rfkill_ops = {
1453 	.set_block = pega_rfkill_set,
1454 };
1455 
1456 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1457 			     const char *name, int controlid, int rfkill_type)
1458 {
1459 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1460 				 &pega_rfkill_ops);
1461 }
1462 
1463 static int pega_rfkill_init(struct asus_laptop *asus)
1464 {
1465 	int ret = 0;
1466 
1467 	if(!asus->is_pega_lucid)
1468 		return -ENODEV;
1469 
1470 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1471 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1472 	if(ret)
1473 		goto exit;
1474 
1475 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1476 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1477 	if(ret)
1478 		goto exit;
1479 
1480 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1481 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1482 
1483 exit:
1484 	if (ret)
1485 		asus_rfkill_exit(asus);
1486 
1487 	return ret;
1488 }
1489 
1490 /*
1491  * Input device (i.e. hotkeys)
1492  */
1493 static void asus_input_notify(struct asus_laptop *asus, int event)
1494 {
1495 	if (!asus->inputdev)
1496 		return ;
1497 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1498 		pr_info("Unknown key %x pressed\n", event);
1499 }
1500 
1501 static int asus_input_init(struct asus_laptop *asus)
1502 {
1503 	struct input_dev *input;
1504 	int error;
1505 
1506 	input = input_allocate_device();
1507 	if (!input)
1508 		return -ENOMEM;
1509 
1510 	input->name = "Asus Laptop extra buttons";
1511 	input->phys = ASUS_LAPTOP_FILE "/input0";
1512 	input->id.bustype = BUS_HOST;
1513 	input->dev.parent = &asus->platform_device->dev;
1514 
1515 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1516 	if (error) {
1517 		pr_err("Unable to setup input device keymap\n");
1518 		goto err_free_dev;
1519 	}
1520 	error = input_register_device(input);
1521 	if (error) {
1522 		pr_warn("Unable to register input device\n");
1523 		goto err_free_keymap;
1524 	}
1525 
1526 	asus->inputdev = input;
1527 	return 0;
1528 
1529 err_free_keymap:
1530 	sparse_keymap_free(input);
1531 err_free_dev:
1532 	input_free_device(input);
1533 	return error;
1534 }
1535 
1536 static void asus_input_exit(struct asus_laptop *asus)
1537 {
1538 	if (asus->inputdev) {
1539 		sparse_keymap_free(asus->inputdev);
1540 		input_unregister_device(asus->inputdev);
1541 	}
1542 	asus->inputdev = NULL;
1543 }
1544 
1545 /*
1546  * ACPI driver
1547  */
1548 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1549 {
1550 	struct asus_laptop *asus = acpi_driver_data(device);
1551 	u16 count;
1552 
1553 	/* TODO Find a better way to handle events count. */
1554 	count = asus->event_count[event % 128]++;
1555 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1556 					dev_name(&asus->device->dev), event,
1557 					count);
1558 
1559 	if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1560 		event = ATKD_BRNUP;
1561 	else if (event >= ATKD_BRNDOWN_MIN &&
1562 		 event <= ATKD_BRNDOWN_MAX)
1563 		event = ATKD_BRNDOWN;
1564 
1565 	/* Brightness events are special */
1566 	if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1567 		if (asus->backlight_device != NULL) {
1568 			/* Update the backlight device. */
1569 			asus_backlight_notify(asus);
1570 			return ;
1571 		}
1572 	}
1573 
1574 	/* Accelerometer "coarse orientation change" event */
1575 	if (asus->pega_accel_poll && event == 0xEA) {
1576 		kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1577 			       KOBJ_CHANGE);
1578 		return ;
1579 	}
1580 
1581 	asus_input_notify(asus, event);
1582 }
1583 
1584 static struct attribute *asus_attributes[] = {
1585 	&dev_attr_infos.attr,
1586 	&dev_attr_wlan.attr,
1587 	&dev_attr_bluetooth.attr,
1588 	&dev_attr_wimax.attr,
1589 	&dev_attr_wwan.attr,
1590 	&dev_attr_display.attr,
1591 	&dev_attr_ledd.attr,
1592 	&dev_attr_ls_value.attr,
1593 	&dev_attr_ls_level.attr,
1594 	&dev_attr_ls_switch.attr,
1595 	&dev_attr_gps.attr,
1596 	NULL
1597 };
1598 
1599 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1600 				    struct attribute *attr,
1601 				    int idx)
1602 {
1603 	struct device *dev = container_of(kobj, struct device, kobj);
1604 	struct platform_device *pdev = to_platform_device(dev);
1605 	struct asus_laptop *asus = platform_get_drvdata(pdev);
1606 	acpi_handle handle = asus->handle;
1607 	bool supported;
1608 
1609 	if (asus->is_pega_lucid) {
1610 		/* no ls_level interface on the Lucid */
1611 		if (attr == &dev_attr_ls_switch.attr)
1612 			supported = true;
1613 		else if (attr == &dev_attr_ls_level.attr)
1614 			supported = false;
1615 		else
1616 			goto normal;
1617 
1618 		return supported ? attr->mode : 0;
1619 	}
1620 
1621 normal:
1622 	if (attr == &dev_attr_wlan.attr) {
1623 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1624 
1625 	} else if (attr == &dev_attr_bluetooth.attr) {
1626 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1627 
1628 	} else if (attr == &dev_attr_display.attr) {
1629 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1630 
1631 	} else if (attr == &dev_attr_wimax.attr) {
1632 		supported =
1633 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1634 
1635 	} else if (attr == &dev_attr_wwan.attr) {
1636 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1637 
1638 	} else if (attr == &dev_attr_ledd.attr) {
1639 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1640 
1641 	} else if (attr == &dev_attr_ls_switch.attr ||
1642 		   attr == &dev_attr_ls_level.attr) {
1643 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1644 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1645 	} else if (attr == &dev_attr_ls_value.attr) {
1646 		supported = asus->is_pega_lucid;
1647 	} else if (attr == &dev_attr_gps.attr) {
1648 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1649 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1650 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1651 	} else {
1652 		supported = true;
1653 	}
1654 
1655 	return supported ? attr->mode : 0;
1656 }
1657 
1658 
1659 static const struct attribute_group asus_attr_group = {
1660 	.is_visible	= asus_sysfs_is_visible,
1661 	.attrs		= asus_attributes,
1662 };
1663 
1664 static int asus_platform_init(struct asus_laptop *asus)
1665 {
1666 	int result;
1667 
1668 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1669 	if (!asus->platform_device)
1670 		return -ENOMEM;
1671 	platform_set_drvdata(asus->platform_device, asus);
1672 
1673 	result = platform_device_add(asus->platform_device);
1674 	if (result)
1675 		goto fail_platform_device;
1676 
1677 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1678 				    &asus_attr_group);
1679 	if (result)
1680 		goto fail_sysfs;
1681 
1682 	return 0;
1683 
1684 fail_sysfs:
1685 	platform_device_del(asus->platform_device);
1686 fail_platform_device:
1687 	platform_device_put(asus->platform_device);
1688 	return result;
1689 }
1690 
1691 static void asus_platform_exit(struct asus_laptop *asus)
1692 {
1693 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1694 	platform_device_unregister(asus->platform_device);
1695 }
1696 
1697 static struct platform_driver platform_driver = {
1698 	.driver = {
1699 		.name = ASUS_LAPTOP_FILE,
1700 	},
1701 };
1702 
1703 /*
1704  * This function is used to initialize the context with right values. In this
1705  * method, we can make all the detection we want, and modify the asus_laptop
1706  * struct
1707  */
1708 static int asus_laptop_get_info(struct asus_laptop *asus)
1709 {
1710 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1711 	union acpi_object *model = NULL;
1712 	unsigned long long bsts_result;
1713 	char *string = NULL;
1714 	acpi_status status;
1715 
1716 	/*
1717 	 * Get DSDT headers early enough to allow for differentiating between
1718 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1719 	 * before doing anything ACPI-specific. Should we encounter a machine,
1720 	 * which needs special handling (i.e. its hotkey device has a different
1721 	 * HID), this bit will be moved.
1722 	 */
1723 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1724 	if (ACPI_FAILURE(status))
1725 		pr_warn("Couldn't get the DSDT table header\n");
1726 
1727 	/* We have to write 0 on init this far for all ASUS models */
1728 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1729 		pr_err("Hotkey initialization failed\n");
1730 		return -ENODEV;
1731 	}
1732 
1733 	/* This needs to be called for some laptops to init properly */
1734 	status =
1735 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1736 	if (ACPI_FAILURE(status))
1737 		pr_warn("Error calling BSTS\n");
1738 	else if (bsts_result)
1739 		pr_notice("BSTS called, 0x%02x returned\n",
1740 		       (uint) bsts_result);
1741 
1742 	/* This too ... */
1743 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1744 		pr_err("Error calling CWAP(%d)\n", wapf);
1745 	/*
1746 	 * Try to match the object returned by INIT to the specific model.
1747 	 * Handle every possible object (or the lack of thereof) the DSDT
1748 	 * writers might throw at us. When in trouble, we pass NULL to
1749 	 * asus_model_match() and try something completely different.
1750 	 */
1751 	if (buffer.pointer) {
1752 		model = buffer.pointer;
1753 		switch (model->type) {
1754 		case ACPI_TYPE_STRING:
1755 			string = model->string.pointer;
1756 			break;
1757 		case ACPI_TYPE_BUFFER:
1758 			string = model->buffer.pointer;
1759 			break;
1760 		default:
1761 			string = "";
1762 			break;
1763 		}
1764 	}
1765 	asus->name = kstrdup(string, GFP_KERNEL);
1766 	if (!asus->name) {
1767 		kfree(buffer.pointer);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	if (string)
1772 		pr_notice("  %s model detected\n", string);
1773 
1774 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1775 		asus->have_rsts = true;
1776 
1777 	kfree(model);
1778 
1779 	return AE_OK;
1780 }
1781 
1782 static int asus_acpi_init(struct asus_laptop *asus)
1783 {
1784 	int result = 0;
1785 
1786 	result = acpi_bus_get_status(asus->device);
1787 	if (result)
1788 		return result;
1789 	if (!asus->device->status.present) {
1790 		pr_err("Hotkey device not present, aborting\n");
1791 		return -ENODEV;
1792 	}
1793 
1794 	result = asus_laptop_get_info(asus);
1795 	if (result)
1796 		return result;
1797 
1798 	if (!strcmp(bled_type, "led"))
1799 		asus->bled_type = TYPE_LED;
1800 	else if (!strcmp(bled_type, "rfkill"))
1801 		asus->bled_type = TYPE_RFKILL;
1802 
1803 	if (!strcmp(wled_type, "led"))
1804 		asus->wled_type = TYPE_LED;
1805 	else if (!strcmp(wled_type, "rfkill"))
1806 		asus->wled_type = TYPE_RFKILL;
1807 
1808 	if (bluetooth_status >= 0)
1809 		asus_bluetooth_set(asus, !!bluetooth_status);
1810 
1811 	if (wlan_status >= 0)
1812 		asus_wlan_set(asus, !!wlan_status);
1813 
1814 	if (wimax_status >= 0)
1815 		asus_wimax_set(asus, !!wimax_status);
1816 
1817 	if (wwan_status >= 0)
1818 		asus_wwan_set(asus, !!wwan_status);
1819 
1820 	/* Keyboard Backlight is on by default */
1821 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1822 		asus_kled_set(asus, 1);
1823 
1824 	/* LED display is off by default */
1825 	asus->ledd_status = 0xFFF;
1826 
1827 	/* Set initial values of light sensor and level */
1828 	asus->light_switch = !!als_status;
1829 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1830 
1831 	if (asus->is_pega_lucid) {
1832 		asus_als_switch(asus, asus->light_switch);
1833 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1834 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1835 		asus_als_switch(asus, asus->light_switch);
1836 		asus_als_level(asus, asus->light_level);
1837 	}
1838 
1839 	return result;
1840 }
1841 
1842 static void asus_dmi_check(void)
1843 {
1844 	const char *model;
1845 
1846 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1847 	if (!model)
1848 		return;
1849 
1850 	/* On L1400B WLED control the sound card, don't mess with it ... */
1851 	if (strncmp(model, "L1400B", 6) == 0) {
1852 		wlan_status = -1;
1853 	}
1854 }
1855 
1856 static bool asus_device_present;
1857 
1858 static int asus_acpi_add(struct acpi_device *device)
1859 {
1860 	struct asus_laptop *asus;
1861 	int result;
1862 
1863 	pr_notice("Asus Laptop Support version %s\n",
1864 		  ASUS_LAPTOP_VERSION);
1865 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1866 	if (!asus)
1867 		return -ENOMEM;
1868 	asus->handle = device->handle;
1869 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1870 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1871 	device->driver_data = asus;
1872 	asus->device = device;
1873 
1874 	asus_dmi_check();
1875 
1876 	result = asus_acpi_init(asus);
1877 	if (result)
1878 		goto fail_platform;
1879 
1880 	/*
1881 	 * Need platform type detection first, then the platform
1882 	 * device.  It is used as a parent for the sub-devices below.
1883 	 */
1884 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1885 	result = asus_platform_init(asus);
1886 	if (result)
1887 		goto fail_platform;
1888 
1889 	if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1890 		result = asus_backlight_init(asus);
1891 		if (result)
1892 			goto fail_backlight;
1893 	}
1894 
1895 	result = asus_input_init(asus);
1896 	if (result)
1897 		goto fail_input;
1898 
1899 	result = asus_led_init(asus);
1900 	if (result)
1901 		goto fail_led;
1902 
1903 	result = asus_rfkill_init(asus);
1904 	if (result && result != -ENODEV)
1905 		goto fail_rfkill;
1906 
1907 	result = pega_accel_init(asus);
1908 	if (result && result != -ENODEV)
1909 		goto fail_pega_accel;
1910 
1911 	result = pega_rfkill_init(asus);
1912 	if (result && result != -ENODEV)
1913 		goto fail_pega_rfkill;
1914 
1915 	asus_device_present = true;
1916 	return 0;
1917 
1918 fail_pega_rfkill:
1919 	pega_accel_exit(asus);
1920 fail_pega_accel:
1921 	asus_rfkill_exit(asus);
1922 fail_rfkill:
1923 	asus_led_exit(asus);
1924 fail_led:
1925 	asus_input_exit(asus);
1926 fail_input:
1927 	asus_backlight_exit(asus);
1928 fail_backlight:
1929 	asus_platform_exit(asus);
1930 fail_platform:
1931 	kfree(asus);
1932 
1933 	return result;
1934 }
1935 
1936 static int asus_acpi_remove(struct acpi_device *device)
1937 {
1938 	struct asus_laptop *asus = acpi_driver_data(device);
1939 
1940 	asus_backlight_exit(asus);
1941 	asus_rfkill_exit(asus);
1942 	asus_led_exit(asus);
1943 	asus_input_exit(asus);
1944 	pega_accel_exit(asus);
1945 	asus_platform_exit(asus);
1946 
1947 	kfree(asus->name);
1948 	kfree(asus);
1949 	return 0;
1950 }
1951 
1952 static const struct acpi_device_id asus_device_ids[] = {
1953 	{"ATK0100", 0},
1954 	{"ATK0101", 0},
1955 	{"", 0},
1956 };
1957 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1958 
1959 static struct acpi_driver asus_acpi_driver = {
1960 	.name = ASUS_LAPTOP_NAME,
1961 	.class = ASUS_LAPTOP_CLASS,
1962 	.owner = THIS_MODULE,
1963 	.ids = asus_device_ids,
1964 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1965 	.ops = {
1966 		.add = asus_acpi_add,
1967 		.remove = asus_acpi_remove,
1968 		.notify = asus_acpi_notify,
1969 		},
1970 };
1971 
1972 static int __init asus_laptop_init(void)
1973 {
1974 	int result;
1975 
1976 	result = platform_driver_register(&platform_driver);
1977 	if (result < 0)
1978 		return result;
1979 
1980 	result = acpi_bus_register_driver(&asus_acpi_driver);
1981 	if (result < 0)
1982 		goto fail_acpi_driver;
1983 	if (!asus_device_present) {
1984 		result = -ENODEV;
1985 		goto fail_no_device;
1986 	}
1987 	return 0;
1988 
1989 fail_no_device:
1990 	acpi_bus_unregister_driver(&asus_acpi_driver);
1991 fail_acpi_driver:
1992 	platform_driver_unregister(&platform_driver);
1993 	return result;
1994 }
1995 
1996 static void __exit asus_laptop_exit(void)
1997 {
1998 	acpi_bus_unregister_driver(&asus_acpi_driver);
1999 	platform_driver_unregister(&platform_driver);
2000 }
2001 
2002 module_init(asus_laptop_init);
2003 module_exit(asus_laptop_exit);
2004