1 /* 2 * asus-laptop.c - Asus Laptop Support 3 * 4 * 5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor 6 * Copyright (C) 2006-2007 Corentin Chary 7 * Copyright (C) 2011 Wind River Systems 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * 24 * The development page for this driver is located at 25 * http://sourceforge.net/projects/acpi4asus/ 26 * 27 * Credits: 28 * Pontus Fuchs - Helper functions, cleanup 29 * Johann Wiesner - Small compile fixes 30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point. 31 * Eric Burghard - LED display support for W1N 32 * Josh Green - Light Sens support 33 * Thomas Tuttle - His first patch for led support was very helpful 34 * Sam Lin - GPS support 35 */ 36 37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/init.h> 42 #include <linux/types.h> 43 #include <linux/err.h> 44 #include <linux/proc_fs.h> 45 #include <linux/backlight.h> 46 #include <linux/fb.h> 47 #include <linux/leds.h> 48 #include <linux/platform_device.h> 49 #include <linux/uaccess.h> 50 #include <linux/input.h> 51 #include <linux/input/sparse-keymap.h> 52 #include <linux/input-polldev.h> 53 #include <linux/rfkill.h> 54 #include <linux/slab.h> 55 #include <linux/dmi.h> 56 #include <acpi/acpi_drivers.h> 57 #include <acpi/acpi_bus.h> 58 59 #define ASUS_LAPTOP_VERSION "0.42" 60 61 #define ASUS_LAPTOP_NAME "Asus Laptop Support" 62 #define ASUS_LAPTOP_CLASS "hotkey" 63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" 64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME 65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." 66 67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); 68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); 69 MODULE_LICENSE("GPL"); 70 71 /* 72 * WAPF defines the behavior of the Fn+Fx wlan key 73 * The significance of values is yet to be found, but 74 * most of the time: 75 * Bit | Bluetooth | WLAN 76 * 0 | Hardware | Hardware 77 * 1 | Hardware | Software 78 * 4 | Software | Software 79 */ 80 static uint wapf = 1; 81 module_param(wapf, uint, 0444); 82 MODULE_PARM_DESC(wapf, "WAPF value"); 83 84 static char *wled_type = "unknown"; 85 static char *bled_type = "unknown"; 86 87 module_param(wled_type, charp, 0444); 88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot " 89 "(unknown, led or rfkill). " 90 "default is unknown"); 91 92 module_param(bled_type, charp, 0444); 93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot " 94 "(unknown, led or rfkill). " 95 "default is unknown"); 96 97 static int wlan_status = 1; 98 static int bluetooth_status = 1; 99 static int wimax_status = -1; 100 static int wwan_status = -1; 101 static int als_status; 102 103 module_param(wlan_status, int, 0444); 104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " 105 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 106 "default is -1"); 107 108 module_param(bluetooth_status, int, 0444); 109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " 110 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 111 "default is -1"); 112 113 module_param(wimax_status, int, 0444); 114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " 115 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 116 "default is -1"); 117 118 module_param(wwan_status, int, 0444); 119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " 120 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 121 "default is -1"); 122 123 module_param(als_status, int, 0444); 124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot " 125 "(0 = disabled, 1 = enabled). " 126 "default is 0"); 127 128 /* 129 * Some events we use, same for all Asus 130 */ 131 #define ATKD_BR_UP 0x10 /* (event & ~ATKD_BR_UP) = brightness level */ 132 #define ATKD_BR_DOWN 0x20 /* (event & ~ATKD_BR_DOWN) = britghness level */ 133 #define ATKD_BR_MIN ATKD_BR_UP 134 #define ATKD_BR_MAX (ATKD_BR_DOWN | 0xF) /* 0x2f */ 135 #define ATKD_LCD_ON 0x33 136 #define ATKD_LCD_OFF 0x34 137 138 /* 139 * Known bits returned by \_SB.ATKD.HWRS 140 */ 141 #define WL_HWRS 0x80 142 #define BT_HWRS 0x100 143 144 /* 145 * Flags for hotk status 146 * WL_ON and BT_ON are also used for wireless_status() 147 */ 148 #define WL_RSTS 0x01 /* internal Wifi */ 149 #define BT_RSTS 0x02 /* internal Bluetooth */ 150 #define WM_RSTS 0x08 /* internal wimax */ 151 #define WW_RSTS 0x20 /* internal wwan */ 152 153 /* WLED and BLED type */ 154 #define TYPE_UNKNOWN 0 155 #define TYPE_LED 1 156 #define TYPE_RFKILL 2 157 158 /* LED */ 159 #define METHOD_MLED "MLED" 160 #define METHOD_TLED "TLED" 161 #define METHOD_RLED "RLED" /* W1JC */ 162 #define METHOD_PLED "PLED" /* A7J */ 163 #define METHOD_GLED "GLED" /* G1, G2 (probably) */ 164 165 /* LEDD */ 166 #define METHOD_LEDD "SLCM" 167 168 /* 169 * Bluetooth and WLAN 170 * WLED and BLED are not handled like other XLED, because in some dsdt 171 * they also control the WLAN/Bluetooth device. 172 */ 173 #define METHOD_WLAN "WLED" 174 #define METHOD_BLUETOOTH "BLED" 175 176 /* WWAN and WIMAX */ 177 #define METHOD_WWAN "GSMC" 178 #define METHOD_WIMAX "WMXC" 179 180 #define METHOD_WL_STATUS "RSTS" 181 182 /* Brightness */ 183 #define METHOD_BRIGHTNESS_SET "SPLV" 184 #define METHOD_BRIGHTNESS_GET "GPLV" 185 186 /* Display */ 187 #define METHOD_SWITCH_DISPLAY "SDSP" 188 189 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ 190 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ 191 192 /* GPS */ 193 /* R2H use different handle for GPS on/off */ 194 #define METHOD_GPS_ON "SDON" 195 #define METHOD_GPS_OFF "SDOF" 196 #define METHOD_GPS_STATUS "GPST" 197 198 /* Keyboard light */ 199 #define METHOD_KBD_LIGHT_SET "SLKB" 200 #define METHOD_KBD_LIGHT_GET "GLKB" 201 202 /* For Pegatron Lucid tablet */ 203 #define DEVICE_NAME_PEGA "Lucid" 204 205 #define METHOD_PEGA_ENABLE "ENPR" 206 #define METHOD_PEGA_DISABLE "DAPR" 207 #define PEGA_WLAN 0x00 208 #define PEGA_BLUETOOTH 0x01 209 #define PEGA_WWAN 0x02 210 #define PEGA_ALS 0x04 211 #define PEGA_ALS_POWER 0x05 212 213 #define METHOD_PEGA_READ "RDLN" 214 #define PEGA_READ_ALS_H 0x02 215 #define PEGA_READ_ALS_L 0x03 216 217 #define PEGA_ACCEL_NAME "pega_accel" 218 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" 219 #define METHOD_XLRX "XLRX" 220 #define METHOD_XLRY "XLRY" 221 #define METHOD_XLRZ "XLRZ" 222 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ 223 #define PEGA_ACC_RETRIES 3 224 225 /* 226 * Define a specific led structure to keep the main structure clean 227 */ 228 struct asus_led { 229 int wk; 230 struct work_struct work; 231 struct led_classdev led; 232 struct asus_laptop *asus; 233 const char *method; 234 }; 235 236 /* 237 * Same thing for rfkill 238 */ 239 struct asus_rfkill { 240 /* type of control. Maps to PEGA_* values or *_RSTS */ 241 int control_id; 242 struct rfkill *rfkill; 243 struct asus_laptop *asus; 244 }; 245 246 /* 247 * This is the main structure, we can use it to store anything interesting 248 * about the hotk device 249 */ 250 struct asus_laptop { 251 char *name; /* laptop name */ 252 253 struct acpi_table_header *dsdt_info; 254 struct platform_device *platform_device; 255 struct acpi_device *device; /* the device we are in */ 256 struct backlight_device *backlight_device; 257 258 struct input_dev *inputdev; 259 struct key_entry *keymap; 260 struct input_polled_dev *pega_accel_poll; 261 262 struct asus_led wled; 263 struct asus_led bled; 264 struct asus_led mled; 265 struct asus_led tled; 266 struct asus_led rled; 267 struct asus_led pled; 268 struct asus_led gled; 269 struct asus_led kled; 270 struct workqueue_struct *led_workqueue; 271 272 int wled_type; 273 int bled_type; 274 int wireless_status; 275 bool have_rsts; 276 bool is_pega_lucid; 277 bool pega_acc_live; 278 int pega_acc_x; 279 int pega_acc_y; 280 int pega_acc_z; 281 282 struct asus_rfkill wlan; 283 struct asus_rfkill bluetooth; 284 struct asus_rfkill wwan; 285 struct asus_rfkill wimax; 286 struct asus_rfkill gps; 287 288 acpi_handle handle; /* the handle of the hotk device */ 289 u32 ledd_status; /* status of the LED display */ 290 u8 light_level; /* light sensor level */ 291 u8 light_switch; /* light sensor switch value */ 292 u16 event_count[128]; /* count for each event TODO make this better */ 293 }; 294 295 static const struct key_entry asus_keymap[] = { 296 /* Lenovo SL Specific keycodes */ 297 {KE_KEY, 0x02, { KEY_SCREENLOCK } }, 298 {KE_KEY, 0x05, { KEY_WLAN } }, 299 {KE_KEY, 0x08, { KEY_F13 } }, 300 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */ 301 {KE_KEY, 0x17, { KEY_ZOOM } }, 302 {KE_KEY, 0x1f, { KEY_BATTERY } }, 303 /* End of Lenovo SL Specific keycodes */ 304 {KE_KEY, 0x30, { KEY_VOLUMEUP } }, 305 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, 306 {KE_KEY, 0x32, { KEY_MUTE } }, 307 {KE_KEY, 0x33, { KEY_SWITCHVIDEOMODE } }, 308 {KE_KEY, 0x34, { KEY_SWITCHVIDEOMODE } }, 309 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, 310 {KE_KEY, 0x41, { KEY_NEXTSONG } }, 311 {KE_KEY, 0x43, { KEY_STOPCD } }, 312 {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, 313 {KE_KEY, 0x4c, { KEY_MEDIA } }, 314 {KE_KEY, 0x50, { KEY_EMAIL } }, 315 {KE_KEY, 0x51, { KEY_WWW } }, 316 {KE_KEY, 0x55, { KEY_CALC } }, 317 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ 318 {KE_KEY, 0x5D, { KEY_WLAN } }, 319 {KE_KEY, 0x5E, { KEY_WLAN } }, 320 {KE_KEY, 0x5F, { KEY_WLAN } }, 321 {KE_KEY, 0x60, { KEY_SWITCHVIDEOMODE } }, 322 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, 323 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, 324 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, 325 {KE_KEY, 0x6B, { KEY_F13 } }, /* Lock Touchpad */ 326 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */ 327 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */ 328 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, 329 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, 330 {KE_KEY, 0x82, { KEY_CAMERA } }, 331 {KE_KEY, 0x88, { KEY_WLAN } }, 332 {KE_KEY, 0x8A, { KEY_PROG1 } }, 333 {KE_KEY, 0x95, { KEY_MEDIA } }, 334 {KE_KEY, 0x99, { KEY_PHONE } }, 335 {KE_KEY, 0xc4, { KEY_KBDILLUMUP } }, 336 {KE_KEY, 0xc5, { KEY_KBDILLUMDOWN } }, 337 {KE_KEY, 0xb5, { KEY_CALC } }, 338 {KE_END, 0}, 339 }; 340 341 342 /* 343 * This function evaluates an ACPI method, given an int as parameter, the 344 * method is searched within the scope of the handle, can be NULL. The output 345 * of the method is written is output, which can also be NULL 346 * 347 * returns 0 if write is successful, -1 else. 348 */ 349 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, 350 struct acpi_buffer *output) 351 { 352 struct acpi_object_list params; /* list of input parameters (an int) */ 353 union acpi_object in_obj; /* the only param we use */ 354 acpi_status status; 355 356 if (!handle) 357 return -1; 358 359 params.count = 1; 360 params.pointer = &in_obj; 361 in_obj.type = ACPI_TYPE_INTEGER; 362 in_obj.integer.value = val; 363 364 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); 365 if (status == AE_OK) 366 return 0; 367 else 368 return -1; 369 } 370 371 static int write_acpi_int(acpi_handle handle, const char *method, int val) 372 { 373 return write_acpi_int_ret(handle, method, val, NULL); 374 } 375 376 static int acpi_check_handle(acpi_handle handle, const char *method, 377 acpi_handle *ret) 378 { 379 acpi_status status; 380 381 if (method == NULL) 382 return -ENODEV; 383 384 if (ret) 385 status = acpi_get_handle(handle, (char *)method, 386 ret); 387 else { 388 acpi_handle dummy; 389 390 status = acpi_get_handle(handle, (char *)method, 391 &dummy); 392 } 393 394 if (status != AE_OK) { 395 if (ret) 396 pr_warn("Error finding %s\n", method); 397 return -ENODEV; 398 } 399 return 0; 400 } 401 402 static bool asus_check_pega_lucid(struct asus_laptop *asus) 403 { 404 return !strcmp(asus->name, DEVICE_NAME_PEGA) && 405 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && 406 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && 407 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); 408 } 409 410 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) 411 { 412 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; 413 return write_acpi_int(asus->handle, method, unit); 414 } 415 416 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) 417 { 418 int i, delta; 419 unsigned long long val; 420 for (i = 0; i < PEGA_ACC_RETRIES; i++) { 421 acpi_evaluate_integer(asus->handle, method, NULL, &val); 422 423 /* The output is noisy. From reading the ASL 424 * dissassembly, timeout errors are returned with 1's 425 * in the high word, and the lack of locking around 426 * thei hi/lo byte reads means that a transition 427 * between (for example) -1 and 0 could be read as 428 * 0xff00 or 0x00ff. */ 429 delta = abs(curr - (short)val); 430 if (delta < 128 && !(val & ~0xffff)) 431 break; 432 } 433 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); 434 } 435 436 static void pega_accel_poll(struct input_polled_dev *ipd) 437 { 438 struct device *parent = ipd->input->dev.parent; 439 struct asus_laptop *asus = dev_get_drvdata(parent); 440 441 /* In some cases, the very first call to poll causes a 442 * recursive fault under the polldev worker. This is 443 * apparently related to very early userspace access to the 444 * device, and perhaps a firmware bug. Fake the first report. */ 445 if (!asus->pega_acc_live) { 446 asus->pega_acc_live = true; 447 input_report_abs(ipd->input, ABS_X, 0); 448 input_report_abs(ipd->input, ABS_Y, 0); 449 input_report_abs(ipd->input, ABS_Z, 0); 450 input_sync(ipd->input); 451 return; 452 } 453 454 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); 455 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); 456 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); 457 458 /* Note transform, convert to "right/up/out" in the native 459 * landscape orientation (i.e. the vector is the direction of 460 * "real up" in the device's cartiesian coordinates). */ 461 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x); 462 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y); 463 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z); 464 input_sync(ipd->input); 465 } 466 467 static void pega_accel_exit(struct asus_laptop *asus) 468 { 469 if (asus->pega_accel_poll) { 470 input_unregister_polled_device(asus->pega_accel_poll); 471 input_free_polled_device(asus->pega_accel_poll); 472 } 473 asus->pega_accel_poll = NULL; 474 } 475 476 static int pega_accel_init(struct asus_laptop *asus) 477 { 478 int err; 479 struct input_polled_dev *ipd; 480 481 if (!asus->is_pega_lucid) 482 return -ENODEV; 483 484 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || 485 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || 486 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) 487 return -ENODEV; 488 489 ipd = input_allocate_polled_device(); 490 if (!ipd) 491 return -ENOMEM; 492 493 ipd->poll = pega_accel_poll; 494 ipd->poll_interval = 125; 495 ipd->poll_interval_min = 50; 496 ipd->poll_interval_max = 2000; 497 498 ipd->input->name = PEGA_ACCEL_DESC; 499 ipd->input->phys = PEGA_ACCEL_NAME "/input0"; 500 ipd->input->dev.parent = &asus->platform_device->dev; 501 ipd->input->id.bustype = BUS_HOST; 502 503 set_bit(EV_ABS, ipd->input->evbit); 504 input_set_abs_params(ipd->input, ABS_X, 505 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 506 input_set_abs_params(ipd->input, ABS_Y, 507 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 508 input_set_abs_params(ipd->input, ABS_Z, 509 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 510 511 err = input_register_polled_device(ipd); 512 if (err) 513 goto exit; 514 515 asus->pega_accel_poll = ipd; 516 return 0; 517 518 exit: 519 input_free_polled_device(ipd); 520 return err; 521 } 522 523 /* Generic LED function */ 524 static int asus_led_set(struct asus_laptop *asus, const char *method, 525 int value) 526 { 527 if (!strcmp(method, METHOD_MLED)) 528 value = !value; 529 else if (!strcmp(method, METHOD_GLED)) 530 value = !value + 1; 531 else 532 value = !!value; 533 534 return write_acpi_int(asus->handle, method, value); 535 } 536 537 /* 538 * LEDs 539 */ 540 /* /sys/class/led handlers */ 541 static void asus_led_cdev_set(struct led_classdev *led_cdev, 542 enum led_brightness value) 543 { 544 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 545 struct asus_laptop *asus = led->asus; 546 547 led->wk = !!value; 548 queue_work(asus->led_workqueue, &led->work); 549 } 550 551 static void asus_led_cdev_update(struct work_struct *work) 552 { 553 struct asus_led *led = container_of(work, struct asus_led, work); 554 struct asus_laptop *asus = led->asus; 555 556 asus_led_set(asus, led->method, led->wk); 557 } 558 559 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) 560 { 561 return led_cdev->brightness; 562 } 563 564 /* 565 * Keyboard backlight (also a LED) 566 */ 567 static int asus_kled_lvl(struct asus_laptop *asus) 568 { 569 unsigned long long kblv; 570 struct acpi_object_list params; 571 union acpi_object in_obj; 572 acpi_status rv; 573 574 params.count = 1; 575 params.pointer = &in_obj; 576 in_obj.type = ACPI_TYPE_INTEGER; 577 in_obj.integer.value = 2; 578 579 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, 580 ¶ms, &kblv); 581 if (ACPI_FAILURE(rv)) { 582 pr_warn("Error reading kled level\n"); 583 return -ENODEV; 584 } 585 return kblv; 586 } 587 588 static int asus_kled_set(struct asus_laptop *asus, int kblv) 589 { 590 if (kblv > 0) 591 kblv = (1 << 7) | (kblv & 0x7F); 592 else 593 kblv = 0; 594 595 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { 596 pr_warn("Keyboard LED display write failed\n"); 597 return -EINVAL; 598 } 599 return 0; 600 } 601 602 static void asus_kled_cdev_set(struct led_classdev *led_cdev, 603 enum led_brightness value) 604 { 605 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 606 struct asus_laptop *asus = led->asus; 607 608 led->wk = value; 609 queue_work(asus->led_workqueue, &led->work); 610 } 611 612 static void asus_kled_cdev_update(struct work_struct *work) 613 { 614 struct asus_led *led = container_of(work, struct asus_led, work); 615 struct asus_laptop *asus = led->asus; 616 617 asus_kled_set(asus, led->wk); 618 } 619 620 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) 621 { 622 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 623 struct asus_laptop *asus = led->asus; 624 625 return asus_kled_lvl(asus); 626 } 627 628 static void asus_led_exit(struct asus_laptop *asus) 629 { 630 if (!IS_ERR_OR_NULL(asus->wled.led.dev)) 631 led_classdev_unregister(&asus->wled.led); 632 if (!IS_ERR_OR_NULL(asus->bled.led.dev)) 633 led_classdev_unregister(&asus->bled.led); 634 if (!IS_ERR_OR_NULL(asus->mled.led.dev)) 635 led_classdev_unregister(&asus->mled.led); 636 if (!IS_ERR_OR_NULL(asus->tled.led.dev)) 637 led_classdev_unregister(&asus->tled.led); 638 if (!IS_ERR_OR_NULL(asus->pled.led.dev)) 639 led_classdev_unregister(&asus->pled.led); 640 if (!IS_ERR_OR_NULL(asus->rled.led.dev)) 641 led_classdev_unregister(&asus->rled.led); 642 if (!IS_ERR_OR_NULL(asus->gled.led.dev)) 643 led_classdev_unregister(&asus->gled.led); 644 if (!IS_ERR_OR_NULL(asus->kled.led.dev)) 645 led_classdev_unregister(&asus->kled.led); 646 if (asus->led_workqueue) { 647 destroy_workqueue(asus->led_workqueue); 648 asus->led_workqueue = NULL; 649 } 650 } 651 652 /* Ugly macro, need to fix that later */ 653 static int asus_led_register(struct asus_laptop *asus, 654 struct asus_led *led, 655 const char *name, const char *method) 656 { 657 struct led_classdev *led_cdev = &led->led; 658 659 if (!method || acpi_check_handle(asus->handle, method, NULL)) 660 return 0; /* Led not present */ 661 662 led->asus = asus; 663 led->method = method; 664 665 INIT_WORK(&led->work, asus_led_cdev_update); 666 led_cdev->name = name; 667 led_cdev->brightness_set = asus_led_cdev_set; 668 led_cdev->brightness_get = asus_led_cdev_get; 669 led_cdev->max_brightness = 1; 670 return led_classdev_register(&asus->platform_device->dev, led_cdev); 671 } 672 673 static int asus_led_init(struct asus_laptop *asus) 674 { 675 int r = 0; 676 677 /* 678 * The Pegatron Lucid has no physical leds, but all methods are 679 * available in the DSDT... 680 */ 681 if (asus->is_pega_lucid) 682 return 0; 683 684 /* 685 * Functions that actually update the LED's are called from a 686 * workqueue. By doing this as separate work rather than when the LED 687 * subsystem asks, we avoid messing with the Asus ACPI stuff during a 688 * potentially bad time, such as a timer interrupt. 689 */ 690 asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); 691 if (!asus->led_workqueue) 692 return -ENOMEM; 693 694 if (asus->wled_type == TYPE_LED) 695 r = asus_led_register(asus, &asus->wled, "asus::wlan", 696 METHOD_WLAN); 697 if (r) 698 goto error; 699 if (asus->bled_type == TYPE_LED) 700 r = asus_led_register(asus, &asus->bled, "asus::bluetooth", 701 METHOD_BLUETOOTH); 702 if (r) 703 goto error; 704 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); 705 if (r) 706 goto error; 707 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); 708 if (r) 709 goto error; 710 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); 711 if (r) 712 goto error; 713 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); 714 if (r) 715 goto error; 716 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); 717 if (r) 718 goto error; 719 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && 720 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { 721 struct asus_led *led = &asus->kled; 722 struct led_classdev *cdev = &led->led; 723 724 led->asus = asus; 725 726 INIT_WORK(&led->work, asus_kled_cdev_update); 727 cdev->name = "asus::kbd_backlight"; 728 cdev->brightness_set = asus_kled_cdev_set; 729 cdev->brightness_get = asus_kled_cdev_get; 730 cdev->max_brightness = 3; 731 r = led_classdev_register(&asus->platform_device->dev, cdev); 732 } 733 error: 734 if (r) 735 asus_led_exit(asus); 736 return r; 737 } 738 739 /* 740 * Backlight device 741 */ 742 static int asus_read_brightness(struct backlight_device *bd) 743 { 744 struct asus_laptop *asus = bl_get_data(bd); 745 unsigned long long value; 746 acpi_status rv = AE_OK; 747 748 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, 749 NULL, &value); 750 if (ACPI_FAILURE(rv)) 751 pr_warn("Error reading brightness\n"); 752 753 return value; 754 } 755 756 static int asus_set_brightness(struct backlight_device *bd, int value) 757 { 758 struct asus_laptop *asus = bl_get_data(bd); 759 760 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { 761 pr_warn("Error changing brightness\n"); 762 return -EIO; 763 } 764 return 0; 765 } 766 767 static int update_bl_status(struct backlight_device *bd) 768 { 769 int value = bd->props.brightness; 770 771 return asus_set_brightness(bd, value); 772 } 773 774 static const struct backlight_ops asusbl_ops = { 775 .get_brightness = asus_read_brightness, 776 .update_status = update_bl_status, 777 }; 778 779 static int asus_backlight_notify(struct asus_laptop *asus) 780 { 781 struct backlight_device *bd = asus->backlight_device; 782 int old = bd->props.brightness; 783 784 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); 785 786 return old; 787 } 788 789 static int asus_backlight_init(struct asus_laptop *asus) 790 { 791 struct backlight_device *bd; 792 struct backlight_properties props; 793 794 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || 795 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) 796 return 0; 797 798 memset(&props, 0, sizeof(struct backlight_properties)); 799 props.max_brightness = 15; 800 props.type = BACKLIGHT_PLATFORM; 801 802 bd = backlight_device_register(ASUS_LAPTOP_FILE, 803 &asus->platform_device->dev, asus, 804 &asusbl_ops, &props); 805 if (IS_ERR(bd)) { 806 pr_err("Could not register asus backlight device\n"); 807 asus->backlight_device = NULL; 808 return PTR_ERR(bd); 809 } 810 811 asus->backlight_device = bd; 812 bd->props.brightness = asus_read_brightness(bd); 813 bd->props.power = FB_BLANK_UNBLANK; 814 backlight_update_status(bd); 815 return 0; 816 } 817 818 static void asus_backlight_exit(struct asus_laptop *asus) 819 { 820 if (asus->backlight_device) 821 backlight_device_unregister(asus->backlight_device); 822 asus->backlight_device = NULL; 823 } 824 825 /* 826 * Platform device handlers 827 */ 828 829 /* 830 * We write our info in page, we begin at offset off and cannot write more 831 * than count bytes. We set eof to 1 if we handle those 2 values. We return the 832 * number of bytes written in page 833 */ 834 static ssize_t show_infos(struct device *dev, 835 struct device_attribute *attr, char *page) 836 { 837 struct asus_laptop *asus = dev_get_drvdata(dev); 838 int len = 0; 839 unsigned long long temp; 840 char buf[16]; /* enough for all info */ 841 acpi_status rv = AE_OK; 842 843 /* 844 * We use the easy way, we don't care of off and count, 845 * so we don't set eof to 1 846 */ 847 848 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); 849 len += sprintf(page + len, "Model reference : %s\n", asus->name); 850 /* 851 * The SFUN method probably allows the original driver to get the list 852 * of features supported by a given model. For now, 0x0100 or 0x0800 853 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. 854 * The significance of others is yet to be found. 855 */ 856 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); 857 if (!ACPI_FAILURE(rv)) 858 len += sprintf(page + len, "SFUN value : %#x\n", 859 (uint) temp); 860 /* 861 * The HWRS method return informations about the hardware. 862 * 0x80 bit is for WLAN, 0x100 for Bluetooth. 863 * 0x40 for WWAN, 0x10 for WIMAX. 864 * The significance of others is yet to be found. 865 * We don't currently use this for device detection, and it 866 * takes several seconds to run on some systems. 867 */ 868 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp); 869 if (!ACPI_FAILURE(rv)) 870 len += sprintf(page + len, "HWRS value : %#x\n", 871 (uint) temp); 872 /* 873 * Another value for userspace: the ASYM method returns 0x02 for 874 * battery low and 0x04 for battery critical, its readings tend to be 875 * more accurate than those provided by _BST. 876 * Note: since not all the laptops provide this method, errors are 877 * silently ignored. 878 */ 879 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); 880 if (!ACPI_FAILURE(rv)) 881 len += sprintf(page + len, "ASYM value : %#x\n", 882 (uint) temp); 883 if (asus->dsdt_info) { 884 snprintf(buf, 16, "%d", asus->dsdt_info->length); 885 len += sprintf(page + len, "DSDT length : %s\n", buf); 886 snprintf(buf, 16, "%d", asus->dsdt_info->checksum); 887 len += sprintf(page + len, "DSDT checksum : %s\n", buf); 888 snprintf(buf, 16, "%d", asus->dsdt_info->revision); 889 len += sprintf(page + len, "DSDT revision : %s\n", buf); 890 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); 891 len += sprintf(page + len, "OEM id : %s\n", buf); 892 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); 893 len += sprintf(page + len, "OEM table id : %s\n", buf); 894 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); 895 len += sprintf(page + len, "OEM revision : 0x%s\n", buf); 896 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); 897 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); 898 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); 899 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); 900 } 901 902 return len; 903 } 904 905 static int parse_arg(const char *buf, unsigned long count, int *val) 906 { 907 if (!count) 908 return 0; 909 if (count > 31) 910 return -EINVAL; 911 if (sscanf(buf, "%i", val) != 1) 912 return -EINVAL; 913 return count; 914 } 915 916 static ssize_t sysfs_acpi_set(struct asus_laptop *asus, 917 const char *buf, size_t count, 918 const char *method) 919 { 920 int rv, value; 921 int out = 0; 922 923 rv = parse_arg(buf, count, &value); 924 if (rv > 0) 925 out = value ? 1 : 0; 926 927 if (write_acpi_int(asus->handle, method, value)) 928 return -ENODEV; 929 return rv; 930 } 931 932 /* 933 * LEDD display 934 */ 935 static ssize_t show_ledd(struct device *dev, 936 struct device_attribute *attr, char *buf) 937 { 938 struct asus_laptop *asus = dev_get_drvdata(dev); 939 940 return sprintf(buf, "0x%08x\n", asus->ledd_status); 941 } 942 943 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr, 944 const char *buf, size_t count) 945 { 946 struct asus_laptop *asus = dev_get_drvdata(dev); 947 int rv, value; 948 949 rv = parse_arg(buf, count, &value); 950 if (rv > 0) { 951 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { 952 pr_warn("LED display write failed\n"); 953 return -ENODEV; 954 } 955 asus->ledd_status = (u32) value; 956 } 957 return rv; 958 } 959 960 /* 961 * Wireless 962 */ 963 static int asus_wireless_status(struct asus_laptop *asus, int mask) 964 { 965 unsigned long long status; 966 acpi_status rv = AE_OK; 967 968 if (!asus->have_rsts) 969 return (asus->wireless_status & mask) ? 1 : 0; 970 971 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, 972 NULL, &status); 973 if (ACPI_FAILURE(rv)) { 974 pr_warn("Error reading Wireless status\n"); 975 return -EINVAL; 976 } 977 return !!(status & mask); 978 } 979 980 /* 981 * WLAN 982 */ 983 static int asus_wlan_set(struct asus_laptop *asus, int status) 984 { 985 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { 986 pr_warn("Error setting wlan status to %d\n", status); 987 return -EIO; 988 } 989 return 0; 990 } 991 992 static ssize_t show_wlan(struct device *dev, 993 struct device_attribute *attr, char *buf) 994 { 995 struct asus_laptop *asus = dev_get_drvdata(dev); 996 997 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); 998 } 999 1000 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr, 1001 const char *buf, size_t count) 1002 { 1003 struct asus_laptop *asus = dev_get_drvdata(dev); 1004 1005 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); 1006 } 1007 1008 /*e 1009 * Bluetooth 1010 */ 1011 static int asus_bluetooth_set(struct asus_laptop *asus, int status) 1012 { 1013 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { 1014 pr_warn("Error setting bluetooth status to %d\n", status); 1015 return -EIO; 1016 } 1017 return 0; 1018 } 1019 1020 static ssize_t show_bluetooth(struct device *dev, 1021 struct device_attribute *attr, char *buf) 1022 { 1023 struct asus_laptop *asus = dev_get_drvdata(dev); 1024 1025 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); 1026 } 1027 1028 static ssize_t store_bluetooth(struct device *dev, 1029 struct device_attribute *attr, const char *buf, 1030 size_t count) 1031 { 1032 struct asus_laptop *asus = dev_get_drvdata(dev); 1033 1034 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); 1035 } 1036 1037 /* 1038 * Wimax 1039 */ 1040 static int asus_wimax_set(struct asus_laptop *asus, int status) 1041 { 1042 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { 1043 pr_warn("Error setting wimax status to %d\n", status); 1044 return -EIO; 1045 } 1046 return 0; 1047 } 1048 1049 static ssize_t show_wimax(struct device *dev, 1050 struct device_attribute *attr, char *buf) 1051 { 1052 struct asus_laptop *asus = dev_get_drvdata(dev); 1053 1054 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); 1055 } 1056 1057 static ssize_t store_wimax(struct device *dev, 1058 struct device_attribute *attr, const char *buf, 1059 size_t count) 1060 { 1061 struct asus_laptop *asus = dev_get_drvdata(dev); 1062 1063 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); 1064 } 1065 1066 /* 1067 * Wwan 1068 */ 1069 static int asus_wwan_set(struct asus_laptop *asus, int status) 1070 { 1071 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { 1072 pr_warn("Error setting wwan status to %d\n", status); 1073 return -EIO; 1074 } 1075 return 0; 1076 } 1077 1078 static ssize_t show_wwan(struct device *dev, 1079 struct device_attribute *attr, char *buf) 1080 { 1081 struct asus_laptop *asus = dev_get_drvdata(dev); 1082 1083 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); 1084 } 1085 1086 static ssize_t store_wwan(struct device *dev, 1087 struct device_attribute *attr, const char *buf, 1088 size_t count) 1089 { 1090 struct asus_laptop *asus = dev_get_drvdata(dev); 1091 1092 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); 1093 } 1094 1095 /* 1096 * Display 1097 */ 1098 static void asus_set_display(struct asus_laptop *asus, int value) 1099 { 1100 /* no sanity check needed for now */ 1101 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) 1102 pr_warn("Error setting display\n"); 1103 return; 1104 } 1105 1106 /* 1107 * Experimental support for display switching. As of now: 1 should activate 1108 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. 1109 * Any combination (bitwise) of these will suffice. I never actually tested 4 1110 * displays hooked up simultaneously, so be warned. See the acpi4asus README 1111 * for more info. 1112 */ 1113 static ssize_t store_disp(struct device *dev, struct device_attribute *attr, 1114 const char *buf, size_t count) 1115 { 1116 struct asus_laptop *asus = dev_get_drvdata(dev); 1117 int rv, value; 1118 1119 rv = parse_arg(buf, count, &value); 1120 if (rv > 0) 1121 asus_set_display(asus, value); 1122 return rv; 1123 } 1124 1125 /* 1126 * Light Sens 1127 */ 1128 static void asus_als_switch(struct asus_laptop *asus, int value) 1129 { 1130 int ret; 1131 1132 if (asus->is_pega_lucid) { 1133 ret = asus_pega_lucid_set(asus, PEGA_ALS, value); 1134 if (!ret) 1135 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); 1136 } else { 1137 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); 1138 } 1139 if (ret) 1140 pr_warning("Error setting light sensor switch\n"); 1141 1142 asus->light_switch = value; 1143 } 1144 1145 static ssize_t show_lssw(struct device *dev, 1146 struct device_attribute *attr, char *buf) 1147 { 1148 struct asus_laptop *asus = dev_get_drvdata(dev); 1149 1150 return sprintf(buf, "%d\n", asus->light_switch); 1151 } 1152 1153 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr, 1154 const char *buf, size_t count) 1155 { 1156 struct asus_laptop *asus = dev_get_drvdata(dev); 1157 int rv, value; 1158 1159 rv = parse_arg(buf, count, &value); 1160 if (rv > 0) 1161 asus_als_switch(asus, value ? 1 : 0); 1162 1163 return rv; 1164 } 1165 1166 static void asus_als_level(struct asus_laptop *asus, int value) 1167 { 1168 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) 1169 pr_warn("Error setting light sensor level\n"); 1170 asus->light_level = value; 1171 } 1172 1173 static ssize_t show_lslvl(struct device *dev, 1174 struct device_attribute *attr, char *buf) 1175 { 1176 struct asus_laptop *asus = dev_get_drvdata(dev); 1177 1178 return sprintf(buf, "%d\n", asus->light_level); 1179 } 1180 1181 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr, 1182 const char *buf, size_t count) 1183 { 1184 struct asus_laptop *asus = dev_get_drvdata(dev); 1185 int rv, value; 1186 1187 rv = parse_arg(buf, count, &value); 1188 if (rv > 0) { 1189 value = (0 < value) ? ((15 < value) ? 15 : value) : 0; 1190 /* 0 <= value <= 15 */ 1191 asus_als_level(asus, value); 1192 } 1193 1194 return rv; 1195 } 1196 1197 static int pega_int_read(struct asus_laptop *asus, int arg, int *result) 1198 { 1199 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1200 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, 1201 &buffer); 1202 if (!err) { 1203 union acpi_object *obj = buffer.pointer; 1204 if (obj && obj->type == ACPI_TYPE_INTEGER) 1205 *result = obj->integer.value; 1206 else 1207 err = -EIO; 1208 } 1209 return err; 1210 } 1211 1212 static ssize_t show_lsvalue(struct device *dev, 1213 struct device_attribute *attr, char *buf) 1214 { 1215 struct asus_laptop *asus = dev_get_drvdata(dev); 1216 int err, hi, lo; 1217 1218 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); 1219 if (!err) 1220 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); 1221 if (!err) 1222 return sprintf(buf, "%d\n", 10 * hi + lo); 1223 return err; 1224 } 1225 1226 /* 1227 * GPS 1228 */ 1229 static int asus_gps_status(struct asus_laptop *asus) 1230 { 1231 unsigned long long status; 1232 acpi_status rv = AE_OK; 1233 1234 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, 1235 NULL, &status); 1236 if (ACPI_FAILURE(rv)) { 1237 pr_warn("Error reading GPS status\n"); 1238 return -ENODEV; 1239 } 1240 return !!status; 1241 } 1242 1243 static int asus_gps_switch(struct asus_laptop *asus, int status) 1244 { 1245 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; 1246 1247 if (write_acpi_int(asus->handle, meth, 0x02)) 1248 return -ENODEV; 1249 return 0; 1250 } 1251 1252 static ssize_t show_gps(struct device *dev, 1253 struct device_attribute *attr, char *buf) 1254 { 1255 struct asus_laptop *asus = dev_get_drvdata(dev); 1256 1257 return sprintf(buf, "%d\n", asus_gps_status(asus)); 1258 } 1259 1260 static ssize_t store_gps(struct device *dev, struct device_attribute *attr, 1261 const char *buf, size_t count) 1262 { 1263 struct asus_laptop *asus = dev_get_drvdata(dev); 1264 int rv, value; 1265 int ret; 1266 1267 rv = parse_arg(buf, count, &value); 1268 if (rv <= 0) 1269 return -EINVAL; 1270 ret = asus_gps_switch(asus, !!value); 1271 if (ret) 1272 return ret; 1273 rfkill_set_sw_state(asus->gps.rfkill, !value); 1274 return rv; 1275 } 1276 1277 /* 1278 * rfkill 1279 */ 1280 static int asus_gps_rfkill_set(void *data, bool blocked) 1281 { 1282 struct asus_laptop *asus = data; 1283 1284 return asus_gps_switch(asus, !blocked); 1285 } 1286 1287 static const struct rfkill_ops asus_gps_rfkill_ops = { 1288 .set_block = asus_gps_rfkill_set, 1289 }; 1290 1291 static int asus_rfkill_set(void *data, bool blocked) 1292 { 1293 struct asus_rfkill *rfk = data; 1294 struct asus_laptop *asus = rfk->asus; 1295 1296 if (rfk->control_id == WL_RSTS) 1297 return asus_wlan_set(asus, !blocked); 1298 else if (rfk->control_id == BT_RSTS) 1299 return asus_bluetooth_set(asus, !blocked); 1300 else if (rfk->control_id == WM_RSTS) 1301 return asus_wimax_set(asus, !blocked); 1302 else if (rfk->control_id == WW_RSTS) 1303 return asus_wwan_set(asus, !blocked); 1304 1305 return -EINVAL; 1306 } 1307 1308 static const struct rfkill_ops asus_rfkill_ops = { 1309 .set_block = asus_rfkill_set, 1310 }; 1311 1312 static void asus_rfkill_terminate(struct asus_rfkill *rfk) 1313 { 1314 if (!rfk->rfkill) 1315 return ; 1316 1317 rfkill_unregister(rfk->rfkill); 1318 rfkill_destroy(rfk->rfkill); 1319 rfk->rfkill = NULL; 1320 } 1321 1322 static void asus_rfkill_exit(struct asus_laptop *asus) 1323 { 1324 asus_rfkill_terminate(&asus->wwan); 1325 asus_rfkill_terminate(&asus->bluetooth); 1326 asus_rfkill_terminate(&asus->wlan); 1327 asus_rfkill_terminate(&asus->gps); 1328 } 1329 1330 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1331 const char *name, int control_id, int type, 1332 const struct rfkill_ops *ops) 1333 { 1334 int result; 1335 1336 rfk->control_id = control_id; 1337 rfk->asus = asus; 1338 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, 1339 type, ops, rfk); 1340 if (!rfk->rfkill) 1341 return -EINVAL; 1342 1343 result = rfkill_register(rfk->rfkill); 1344 if (result) { 1345 rfkill_destroy(rfk->rfkill); 1346 rfk->rfkill = NULL; 1347 } 1348 1349 return result; 1350 } 1351 1352 static int asus_rfkill_init(struct asus_laptop *asus) 1353 { 1354 int result = 0; 1355 1356 if (asus->is_pega_lucid) 1357 return -ENODEV; 1358 1359 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && 1360 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && 1361 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) 1362 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", 1363 -1, RFKILL_TYPE_GPS, 1364 &asus_gps_rfkill_ops); 1365 if (result) 1366 goto exit; 1367 1368 1369 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) && 1370 asus->wled_type == TYPE_RFKILL) 1371 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", 1372 WL_RSTS, RFKILL_TYPE_WLAN, 1373 &asus_rfkill_ops); 1374 if (result) 1375 goto exit; 1376 1377 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) && 1378 asus->bled_type == TYPE_RFKILL) 1379 result = asus_rfkill_setup(asus, &asus->bluetooth, 1380 "asus-bluetooth", BT_RSTS, 1381 RFKILL_TYPE_BLUETOOTH, 1382 &asus_rfkill_ops); 1383 if (result) 1384 goto exit; 1385 1386 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL)) 1387 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan", 1388 WW_RSTS, RFKILL_TYPE_WWAN, 1389 &asus_rfkill_ops); 1390 if (result) 1391 goto exit; 1392 1393 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL)) 1394 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax", 1395 WM_RSTS, RFKILL_TYPE_WIMAX, 1396 &asus_rfkill_ops); 1397 if (result) 1398 goto exit; 1399 1400 exit: 1401 if (result) 1402 asus_rfkill_exit(asus); 1403 1404 return result; 1405 } 1406 1407 static int pega_rfkill_set(void *data, bool blocked) 1408 { 1409 struct asus_rfkill *rfk = data; 1410 1411 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); 1412 return ret; 1413 } 1414 1415 static const struct rfkill_ops pega_rfkill_ops = { 1416 .set_block = pega_rfkill_set, 1417 }; 1418 1419 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1420 const char *name, int controlid, int rfkill_type) 1421 { 1422 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, 1423 &pega_rfkill_ops); 1424 } 1425 1426 static int pega_rfkill_init(struct asus_laptop *asus) 1427 { 1428 int ret = 0; 1429 1430 if(!asus->is_pega_lucid) 1431 return -ENODEV; 1432 1433 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", 1434 PEGA_WLAN, RFKILL_TYPE_WLAN); 1435 if(ret) 1436 goto exit; 1437 1438 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", 1439 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); 1440 if(ret) 1441 goto exit; 1442 1443 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", 1444 PEGA_WWAN, RFKILL_TYPE_WWAN); 1445 1446 exit: 1447 if (ret) 1448 asus_rfkill_exit(asus); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * Input device (i.e. hotkeys) 1455 */ 1456 static void asus_input_notify(struct asus_laptop *asus, int event) 1457 { 1458 if (!asus->inputdev) 1459 return ; 1460 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) 1461 pr_info("Unknown key %x pressed\n", event); 1462 } 1463 1464 static int asus_input_init(struct asus_laptop *asus) 1465 { 1466 struct input_dev *input; 1467 int error; 1468 1469 input = input_allocate_device(); 1470 if (!input) { 1471 pr_warn("Unable to allocate input device\n"); 1472 return -ENOMEM; 1473 } 1474 input->name = "Asus Laptop extra buttons"; 1475 input->phys = ASUS_LAPTOP_FILE "/input0"; 1476 input->id.bustype = BUS_HOST; 1477 input->dev.parent = &asus->platform_device->dev; 1478 1479 error = sparse_keymap_setup(input, asus_keymap, NULL); 1480 if (error) { 1481 pr_err("Unable to setup input device keymap\n"); 1482 goto err_free_dev; 1483 } 1484 error = input_register_device(input); 1485 if (error) { 1486 pr_warn("Unable to register input device\n"); 1487 goto err_free_keymap; 1488 } 1489 1490 asus->inputdev = input; 1491 return 0; 1492 1493 err_free_keymap: 1494 sparse_keymap_free(input); 1495 err_free_dev: 1496 input_free_device(input); 1497 return error; 1498 } 1499 1500 static void asus_input_exit(struct asus_laptop *asus) 1501 { 1502 if (asus->inputdev) { 1503 sparse_keymap_free(asus->inputdev); 1504 input_unregister_device(asus->inputdev); 1505 } 1506 asus->inputdev = NULL; 1507 } 1508 1509 /* 1510 * ACPI driver 1511 */ 1512 static void asus_acpi_notify(struct acpi_device *device, u32 event) 1513 { 1514 struct asus_laptop *asus = acpi_driver_data(device); 1515 u16 count; 1516 1517 /* TODO Find a better way to handle events count. */ 1518 count = asus->event_count[event % 128]++; 1519 acpi_bus_generate_proc_event(asus->device, event, count); 1520 acpi_bus_generate_netlink_event(asus->device->pnp.device_class, 1521 dev_name(&asus->device->dev), event, 1522 count); 1523 1524 /* Brightness events are special */ 1525 if (event >= ATKD_BR_MIN && event <= ATKD_BR_MAX) { 1526 1527 /* Ignore them completely if the acpi video driver is used */ 1528 if (asus->backlight_device != NULL) { 1529 /* Update the backlight device. */ 1530 asus_backlight_notify(asus); 1531 } 1532 return ; 1533 } 1534 1535 /* Accelerometer "coarse orientation change" event */ 1536 if (asus->pega_accel_poll && event == 0xEA) { 1537 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj, 1538 KOBJ_CHANGE); 1539 return ; 1540 } 1541 1542 asus_input_notify(asus, event); 1543 } 1544 1545 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL); 1546 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan); 1547 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR, 1548 show_bluetooth, store_bluetooth); 1549 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax); 1550 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan); 1551 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp); 1552 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd); 1553 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL); 1554 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl); 1555 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw); 1556 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps); 1557 1558 static struct attribute *asus_attributes[] = { 1559 &dev_attr_infos.attr, 1560 &dev_attr_wlan.attr, 1561 &dev_attr_bluetooth.attr, 1562 &dev_attr_wimax.attr, 1563 &dev_attr_wwan.attr, 1564 &dev_attr_display.attr, 1565 &dev_attr_ledd.attr, 1566 &dev_attr_ls_value.attr, 1567 &dev_attr_ls_level.attr, 1568 &dev_attr_ls_switch.attr, 1569 &dev_attr_gps.attr, 1570 NULL 1571 }; 1572 1573 static umode_t asus_sysfs_is_visible(struct kobject *kobj, 1574 struct attribute *attr, 1575 int idx) 1576 { 1577 struct device *dev = container_of(kobj, struct device, kobj); 1578 struct platform_device *pdev = to_platform_device(dev); 1579 struct asus_laptop *asus = platform_get_drvdata(pdev); 1580 acpi_handle handle = asus->handle; 1581 bool supported; 1582 1583 if (asus->is_pega_lucid) { 1584 /* no ls_level interface on the Lucid */ 1585 if (attr == &dev_attr_ls_switch.attr) 1586 supported = true; 1587 else if (attr == &dev_attr_ls_level.attr) 1588 supported = false; 1589 else 1590 goto normal; 1591 1592 return supported; 1593 } 1594 1595 normal: 1596 if (attr == &dev_attr_wlan.attr) { 1597 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); 1598 1599 } else if (attr == &dev_attr_bluetooth.attr) { 1600 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); 1601 1602 } else if (attr == &dev_attr_display.attr) { 1603 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); 1604 1605 } else if (attr == &dev_attr_wimax.attr) { 1606 supported = 1607 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); 1608 1609 } else if (attr == &dev_attr_wwan.attr) { 1610 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); 1611 1612 } else if (attr == &dev_attr_ledd.attr) { 1613 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); 1614 1615 } else if (attr == &dev_attr_ls_switch.attr || 1616 attr == &dev_attr_ls_level.attr) { 1617 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && 1618 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); 1619 } else if (attr == &dev_attr_ls_value.attr) { 1620 supported = asus->is_pega_lucid; 1621 } else if (attr == &dev_attr_gps.attr) { 1622 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && 1623 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && 1624 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); 1625 } else { 1626 supported = true; 1627 } 1628 1629 return supported ? attr->mode : 0; 1630 } 1631 1632 1633 static const struct attribute_group asus_attr_group = { 1634 .is_visible = asus_sysfs_is_visible, 1635 .attrs = asus_attributes, 1636 }; 1637 1638 static int asus_platform_init(struct asus_laptop *asus) 1639 { 1640 int result; 1641 1642 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1); 1643 if (!asus->platform_device) 1644 return -ENOMEM; 1645 platform_set_drvdata(asus->platform_device, asus); 1646 1647 result = platform_device_add(asus->platform_device); 1648 if (result) 1649 goto fail_platform_device; 1650 1651 result = sysfs_create_group(&asus->platform_device->dev.kobj, 1652 &asus_attr_group); 1653 if (result) 1654 goto fail_sysfs; 1655 1656 return 0; 1657 1658 fail_sysfs: 1659 platform_device_del(asus->platform_device); 1660 fail_platform_device: 1661 platform_device_put(asus->platform_device); 1662 return result; 1663 } 1664 1665 static void asus_platform_exit(struct asus_laptop *asus) 1666 { 1667 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); 1668 platform_device_unregister(asus->platform_device); 1669 } 1670 1671 static struct platform_driver platform_driver = { 1672 .driver = { 1673 .name = ASUS_LAPTOP_FILE, 1674 .owner = THIS_MODULE, 1675 }, 1676 }; 1677 1678 /* 1679 * This function is used to initialize the context with right values. In this 1680 * method, we can make all the detection we want, and modify the asus_laptop 1681 * struct 1682 */ 1683 static int asus_laptop_get_info(struct asus_laptop *asus) 1684 { 1685 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1686 union acpi_object *model = NULL; 1687 unsigned long long bsts_result; 1688 char *string = NULL; 1689 acpi_status status; 1690 1691 /* 1692 * Get DSDT headers early enough to allow for differentiating between 1693 * models, but late enough to allow acpi_bus_register_driver() to fail 1694 * before doing anything ACPI-specific. Should we encounter a machine, 1695 * which needs special handling (i.e. its hotkey device has a different 1696 * HID), this bit will be moved. 1697 */ 1698 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); 1699 if (ACPI_FAILURE(status)) 1700 pr_warn("Couldn't get the DSDT table header\n"); 1701 1702 /* We have to write 0 on init this far for all ASUS models */ 1703 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { 1704 pr_err("Hotkey initialization failed\n"); 1705 return -ENODEV; 1706 } 1707 1708 /* This needs to be called for some laptops to init properly */ 1709 status = 1710 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); 1711 if (ACPI_FAILURE(status)) 1712 pr_warn("Error calling BSTS\n"); 1713 else if (bsts_result) 1714 pr_notice("BSTS called, 0x%02x returned\n", 1715 (uint) bsts_result); 1716 1717 /* This too ... */ 1718 if (write_acpi_int(asus->handle, "CWAP", wapf)) 1719 pr_err("Error calling CWAP(%d)\n", wapf); 1720 /* 1721 * Try to match the object returned by INIT to the specific model. 1722 * Handle every possible object (or the lack of thereof) the DSDT 1723 * writers might throw at us. When in trouble, we pass NULL to 1724 * asus_model_match() and try something completely different. 1725 */ 1726 if (buffer.pointer) { 1727 model = buffer.pointer; 1728 switch (model->type) { 1729 case ACPI_TYPE_STRING: 1730 string = model->string.pointer; 1731 break; 1732 case ACPI_TYPE_BUFFER: 1733 string = model->buffer.pointer; 1734 break; 1735 default: 1736 string = ""; 1737 break; 1738 } 1739 } 1740 asus->name = kstrdup(string, GFP_KERNEL); 1741 if (!asus->name) { 1742 kfree(buffer.pointer); 1743 return -ENOMEM; 1744 } 1745 1746 if (string) 1747 pr_notice(" %s model detected\n", string); 1748 1749 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) 1750 asus->have_rsts = true; 1751 1752 kfree(model); 1753 1754 return AE_OK; 1755 } 1756 1757 static int asus_acpi_init(struct asus_laptop *asus) 1758 { 1759 int result = 0; 1760 1761 result = acpi_bus_get_status(asus->device); 1762 if (result) 1763 return result; 1764 if (!asus->device->status.present) { 1765 pr_err("Hotkey device not present, aborting\n"); 1766 return -ENODEV; 1767 } 1768 1769 result = asus_laptop_get_info(asus); 1770 if (result) 1771 return result; 1772 1773 if (!strcmp(bled_type, "led")) 1774 asus->bled_type = TYPE_LED; 1775 else if (!strcmp(bled_type, "rfkill")) 1776 asus->bled_type = TYPE_RFKILL; 1777 1778 if (!strcmp(wled_type, "led")) 1779 asus->wled_type = TYPE_LED; 1780 else if (!strcmp(wled_type, "rfkill")) 1781 asus->wled_type = TYPE_RFKILL; 1782 1783 if (bluetooth_status >= 0) 1784 asus_bluetooth_set(asus, !!bluetooth_status); 1785 1786 if (wlan_status >= 0) 1787 asus_wlan_set(asus, !!wlan_status); 1788 1789 if (wimax_status >= 0) 1790 asus_wimax_set(asus, !!wimax_status); 1791 1792 if (wwan_status >= 0) 1793 asus_wwan_set(asus, !!wwan_status); 1794 1795 /* Keyboard Backlight is on by default */ 1796 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) 1797 asus_kled_set(asus, 1); 1798 1799 /* LED display is off by default */ 1800 asus->ledd_status = 0xFFF; 1801 1802 /* Set initial values of light sensor and level */ 1803 asus->light_switch = !!als_status; 1804 asus->light_level = 5; /* level 5 for sensor sensitivity */ 1805 1806 if (asus->is_pega_lucid) { 1807 asus_als_switch(asus, asus->light_switch); 1808 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && 1809 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { 1810 asus_als_switch(asus, asus->light_switch); 1811 asus_als_level(asus, asus->light_level); 1812 } 1813 1814 return result; 1815 } 1816 1817 static void asus_dmi_check(void) 1818 { 1819 const char *model; 1820 1821 model = dmi_get_system_info(DMI_PRODUCT_NAME); 1822 if (!model) 1823 return; 1824 1825 /* On L1400B WLED control the sound card, don't mess with it ... */ 1826 if (strncmp(model, "L1400B", 6) == 0) { 1827 wlan_status = -1; 1828 } 1829 } 1830 1831 static bool asus_device_present; 1832 1833 static int asus_acpi_add(struct acpi_device *device) 1834 { 1835 struct asus_laptop *asus; 1836 int result; 1837 1838 pr_notice("Asus Laptop Support version %s\n", 1839 ASUS_LAPTOP_VERSION); 1840 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); 1841 if (!asus) 1842 return -ENOMEM; 1843 asus->handle = device->handle; 1844 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); 1845 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); 1846 device->driver_data = asus; 1847 asus->device = device; 1848 1849 asus_dmi_check(); 1850 1851 result = asus_acpi_init(asus); 1852 if (result) 1853 goto fail_platform; 1854 1855 /* 1856 * Need platform type detection first, then the platform 1857 * device. It is used as a parent for the sub-devices below. 1858 */ 1859 asus->is_pega_lucid = asus_check_pega_lucid(asus); 1860 result = asus_platform_init(asus); 1861 if (result) 1862 goto fail_platform; 1863 1864 if (!acpi_video_backlight_support()) { 1865 result = asus_backlight_init(asus); 1866 if (result) 1867 goto fail_backlight; 1868 } else 1869 pr_info("Backlight controlled by ACPI video driver\n"); 1870 1871 result = asus_input_init(asus); 1872 if (result) 1873 goto fail_input; 1874 1875 result = asus_led_init(asus); 1876 if (result) 1877 goto fail_led; 1878 1879 result = asus_rfkill_init(asus); 1880 if (result && result != -ENODEV) 1881 goto fail_rfkill; 1882 1883 result = pega_accel_init(asus); 1884 if (result && result != -ENODEV) 1885 goto fail_pega_accel; 1886 1887 result = pega_rfkill_init(asus); 1888 if (result && result != -ENODEV) 1889 goto fail_pega_rfkill; 1890 1891 asus_device_present = true; 1892 return 0; 1893 1894 fail_pega_rfkill: 1895 pega_accel_exit(asus); 1896 fail_pega_accel: 1897 asus_rfkill_exit(asus); 1898 fail_rfkill: 1899 asus_led_exit(asus); 1900 fail_led: 1901 asus_input_exit(asus); 1902 fail_input: 1903 asus_backlight_exit(asus); 1904 fail_backlight: 1905 asus_platform_exit(asus); 1906 fail_platform: 1907 kfree(asus->name); 1908 kfree(asus); 1909 1910 return result; 1911 } 1912 1913 static int asus_acpi_remove(struct acpi_device *device) 1914 { 1915 struct asus_laptop *asus = acpi_driver_data(device); 1916 1917 asus_backlight_exit(asus); 1918 asus_rfkill_exit(asus); 1919 asus_led_exit(asus); 1920 asus_input_exit(asus); 1921 pega_accel_exit(asus); 1922 asus_platform_exit(asus); 1923 1924 kfree(asus->name); 1925 kfree(asus); 1926 return 0; 1927 } 1928 1929 static const struct acpi_device_id asus_device_ids[] = { 1930 {"ATK0100", 0}, 1931 {"ATK0101", 0}, 1932 {"", 0}, 1933 }; 1934 MODULE_DEVICE_TABLE(acpi, asus_device_ids); 1935 1936 static struct acpi_driver asus_acpi_driver = { 1937 .name = ASUS_LAPTOP_NAME, 1938 .class = ASUS_LAPTOP_CLASS, 1939 .owner = THIS_MODULE, 1940 .ids = asus_device_ids, 1941 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, 1942 .ops = { 1943 .add = asus_acpi_add, 1944 .remove = asus_acpi_remove, 1945 .notify = asus_acpi_notify, 1946 }, 1947 }; 1948 1949 static int __init asus_laptop_init(void) 1950 { 1951 int result; 1952 1953 result = platform_driver_register(&platform_driver); 1954 if (result < 0) 1955 return result; 1956 1957 result = acpi_bus_register_driver(&asus_acpi_driver); 1958 if (result < 0) 1959 goto fail_acpi_driver; 1960 if (!asus_device_present) { 1961 result = -ENODEV; 1962 goto fail_no_device; 1963 } 1964 return 0; 1965 1966 fail_no_device: 1967 acpi_bus_unregister_driver(&asus_acpi_driver); 1968 fail_acpi_driver: 1969 platform_driver_unregister(&platform_driver); 1970 return result; 1971 } 1972 1973 static void __exit asus_laptop_exit(void) 1974 { 1975 acpi_bus_unregister_driver(&asus_acpi_driver); 1976 platform_driver_unregister(&platform_driver); 1977 } 1978 1979 module_init(asus_laptop_init); 1980 module_exit(asus_laptop_exit); 1981