1 /*
2  *  asus-laptop.c - Asus Laptop Support
3  *
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  *
24  *  The development page for this driver is located at
25  *  http://sourceforge.net/projects/acpi4asus/
26  *
27  *  Credits:
28  *  Pontus Fuchs   - Helper functions, cleanup
29  *  Johann Wiesner - Small compile fixes
30  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
31  *  Eric Burghard  - LED display support for W1N
32  *  Josh Green     - Light Sens support
33  *  Thomas Tuttle  - His first patch for led support was very helpful
34  *  Sam Lin        - GPS support
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <linux/acpi.h>
57 
58 #define ASUS_LAPTOP_VERSION	"0.42"
59 
60 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
61 #define ASUS_LAPTOP_CLASS	"hotkey"
62 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
63 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
64 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
65 
66 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
67 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
68 MODULE_LICENSE("GPL");
69 
70 /*
71  * WAPF defines the behavior of the Fn+Fx wlan key
72  * The significance of values is yet to be found, but
73  * most of the time:
74  * Bit | Bluetooth | WLAN
75  *  0  | Hardware  | Hardware
76  *  1  | Hardware  | Software
77  *  4  | Software  | Software
78  */
79 static uint wapf = 1;
80 module_param(wapf, uint, 0444);
81 MODULE_PARM_DESC(wapf, "WAPF value");
82 
83 static char *wled_type = "unknown";
84 static char *bled_type = "unknown";
85 
86 module_param(wled_type, charp, 0444);
87 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
88 		 "(unknown, led or rfkill). "
89 		 "default is unknown");
90 
91 module_param(bled_type, charp, 0444);
92 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
93 		 "(unknown, led or rfkill). "
94 		 "default is unknown");
95 
96 static int wlan_status = 1;
97 static int bluetooth_status = 1;
98 static int wimax_status = -1;
99 static int wwan_status = -1;
100 static int als_status;
101 
102 module_param(wlan_status, int, 0444);
103 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
104 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
105 		 "default is -1");
106 
107 module_param(bluetooth_status, int, 0444);
108 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
109 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
110 		 "default is -1");
111 
112 module_param(wimax_status, int, 0444);
113 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
114 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
115 		 "default is -1");
116 
117 module_param(wwan_status, int, 0444);
118 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
119 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
120 		 "default is -1");
121 
122 module_param(als_status, int, 0444);
123 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
124 		 "(0 = disabled, 1 = enabled). "
125 		 "default is 0");
126 
127 /*
128  * Some events we use, same for all Asus
129  */
130 #define ATKD_BRNUP_MIN		0x10
131 #define ATKD_BRNUP_MAX		0x1f
132 #define ATKD_BRNDOWN_MIN	0x20
133 #define ATKD_BRNDOWN_MAX	0x2f
134 #define ATKD_BRNDOWN		0x20
135 #define ATKD_BRNUP		0x2f
136 #define ATKD_LCD_ON	0x33
137 #define ATKD_LCD_OFF	0x34
138 
139 /*
140  * Known bits returned by \_SB.ATKD.HWRS
141  */
142 #define WL_HWRS		0x80
143 #define BT_HWRS		0x100
144 
145 /*
146  * Flags for hotk status
147  * WL_ON and BT_ON are also used for wireless_status()
148  */
149 #define WL_RSTS		0x01	/* internal Wifi */
150 #define BT_RSTS		0x02	/* internal Bluetooth */
151 #define WM_RSTS		0x08    /* internal wimax */
152 #define WW_RSTS		0x20    /* internal wwan */
153 
154 /* WLED and BLED type */
155 #define TYPE_UNKNOWN	0
156 #define TYPE_LED	1
157 #define TYPE_RFKILL	2
158 
159 /* LED */
160 #define METHOD_MLED		"MLED"
161 #define METHOD_TLED		"TLED"
162 #define METHOD_RLED		"RLED"	/* W1JC */
163 #define METHOD_PLED		"PLED"	/* A7J */
164 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
165 
166 /* LEDD */
167 #define METHOD_LEDD		"SLCM"
168 
169 /*
170  * Bluetooth and WLAN
171  * WLED and BLED are not handled like other XLED, because in some dsdt
172  * they also control the WLAN/Bluetooth device.
173  */
174 #define METHOD_WLAN		"WLED"
175 #define METHOD_BLUETOOTH	"BLED"
176 
177 /* WWAN and WIMAX */
178 #define METHOD_WWAN		"GSMC"
179 #define METHOD_WIMAX		"WMXC"
180 
181 #define METHOD_WL_STATUS	"RSTS"
182 
183 /* Brightness */
184 #define METHOD_BRIGHTNESS_SET	"SPLV"
185 #define METHOD_BRIGHTNESS_GET	"GPLV"
186 
187 /* Display */
188 #define METHOD_SWITCH_DISPLAY	"SDSP"
189 
190 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
191 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
192 
193 /* GPS */
194 /* R2H use different handle for GPS on/off */
195 #define METHOD_GPS_ON		"SDON"
196 #define METHOD_GPS_OFF		"SDOF"
197 #define METHOD_GPS_STATUS	"GPST"
198 
199 /* Keyboard light */
200 #define METHOD_KBD_LIGHT_SET	"SLKB"
201 #define METHOD_KBD_LIGHT_GET	"GLKB"
202 
203 /* For Pegatron Lucid tablet */
204 #define DEVICE_NAME_PEGA	"Lucid"
205 
206 #define METHOD_PEGA_ENABLE	"ENPR"
207 #define METHOD_PEGA_DISABLE	"DAPR"
208 #define PEGA_WLAN	0x00
209 #define PEGA_BLUETOOTH	0x01
210 #define PEGA_WWAN	0x02
211 #define PEGA_ALS	0x04
212 #define PEGA_ALS_POWER	0x05
213 
214 #define METHOD_PEGA_READ	"RDLN"
215 #define PEGA_READ_ALS_H	0x02
216 #define PEGA_READ_ALS_L	0x03
217 
218 #define PEGA_ACCEL_NAME "pega_accel"
219 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
220 #define METHOD_XLRX "XLRX"
221 #define METHOD_XLRY "XLRY"
222 #define METHOD_XLRZ "XLRZ"
223 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
224 #define PEGA_ACC_RETRIES 3
225 
226 /*
227  * Define a specific led structure to keep the main structure clean
228  */
229 struct asus_led {
230 	int wk;
231 	struct work_struct work;
232 	struct led_classdev led;
233 	struct asus_laptop *asus;
234 	const char *method;
235 };
236 
237 /*
238  * Same thing for rfkill
239  */
240 struct asus_rfkill {
241 	/* type of control. Maps to PEGA_* values or *_RSTS  */
242 	int control_id;
243 	struct rfkill *rfkill;
244 	struct asus_laptop *asus;
245 };
246 
247 /*
248  * This is the main structure, we can use it to store anything interesting
249  * about the hotk device
250  */
251 struct asus_laptop {
252 	char *name;		/* laptop name */
253 
254 	struct acpi_table_header *dsdt_info;
255 	struct platform_device *platform_device;
256 	struct acpi_device *device;		/* the device we are in */
257 	struct backlight_device *backlight_device;
258 
259 	struct input_dev *inputdev;
260 	struct key_entry *keymap;
261 	struct input_polled_dev *pega_accel_poll;
262 
263 	struct asus_led wled;
264 	struct asus_led bled;
265 	struct asus_led mled;
266 	struct asus_led tled;
267 	struct asus_led rled;
268 	struct asus_led pled;
269 	struct asus_led gled;
270 	struct asus_led kled;
271 	struct workqueue_struct *led_workqueue;
272 
273 	int wled_type;
274 	int bled_type;
275 	int wireless_status;
276 	bool have_rsts;
277 	bool is_pega_lucid;
278 	bool pega_acc_live;
279 	int pega_acc_x;
280 	int pega_acc_y;
281 	int pega_acc_z;
282 
283 	struct asus_rfkill wlan;
284 	struct asus_rfkill bluetooth;
285 	struct asus_rfkill wwan;
286 	struct asus_rfkill wimax;
287 	struct asus_rfkill gps;
288 
289 	acpi_handle handle;	/* the handle of the hotk device */
290 	u32 ledd_status;	/* status of the LED display */
291 	u8 light_level;		/* light sensor level */
292 	u8 light_switch;	/* light sensor switch value */
293 	u16 event_count[128];	/* count for each event TODO make this better */
294 };
295 
296 static const struct key_entry asus_keymap[] = {
297 	/* Lenovo SL Specific keycodes */
298 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
299 	{KE_KEY, 0x05, { KEY_WLAN } },
300 	{KE_KEY, 0x08, { KEY_F13 } },
301 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
302 	{KE_KEY, 0x17, { KEY_ZOOM } },
303 	{KE_KEY, 0x1f, { KEY_BATTERY } },
304 	/* End of Lenovo SL Specific keycodes */
305 	{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
306 	{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
307 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
308 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
309 	{KE_KEY, 0x32, { KEY_MUTE } },
310 	{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
311 	{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
312 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
313 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
314 	{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
315 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
316 	{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
317 	{KE_KEY, 0x50, { KEY_EMAIL } },
318 	{KE_KEY, 0x51, { KEY_WWW } },
319 	{KE_KEY, 0x55, { KEY_CALC } },
320 	{KE_IGNORE, 0x57, },  /* Battery mode */
321 	{KE_IGNORE, 0x58, },  /* AC mode */
322 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
323 	{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
324 	{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
325 	{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
326 	{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
327 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
328 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
329 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
330 	{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
331 	{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
332 	{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
333 	{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
334 	{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
335 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
336 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
337 	{KE_IGNORE, 0x6E, },  /* Low Battery notification */
338 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
339 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
340 	{KE_KEY, 0x82, { KEY_CAMERA } },
341 	{KE_KEY, 0x88, { KEY_RFKILL  } }, /* Radio Toggle Key */
342 	{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
343 	{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
344 	{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
345 	{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
346 	{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
347 	{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
348 	{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
349 	{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
350 	{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
351 	{KE_KEY, 0x95, { KEY_MEDIA } },
352 	{KE_KEY, 0x99, { KEY_PHONE } },
353 	{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
354 	{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
355 	{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
356 	{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
357 	{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
358 	{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
359 	{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
360 	{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
361 	{KE_KEY, 0xB5, { KEY_CALC } },
362 	{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
363 	{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
364 	{KE_END, 0},
365 };
366 
367 
368 /*
369  * This function evaluates an ACPI method, given an int as parameter, the
370  * method is searched within the scope of the handle, can be NULL. The output
371  * of the method is written is output, which can also be NULL
372  *
373  * returns 0 if write is successful, -1 else.
374  */
375 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
376 			      struct acpi_buffer *output)
377 {
378 	struct acpi_object_list params;	/* list of input parameters (an int) */
379 	union acpi_object in_obj;	/* the only param we use */
380 	acpi_status status;
381 
382 	if (!handle)
383 		return -1;
384 
385 	params.count = 1;
386 	params.pointer = &in_obj;
387 	in_obj.type = ACPI_TYPE_INTEGER;
388 	in_obj.integer.value = val;
389 
390 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
391 	if (status == AE_OK)
392 		return 0;
393 	else
394 		return -1;
395 }
396 
397 static int write_acpi_int(acpi_handle handle, const char *method, int val)
398 {
399 	return write_acpi_int_ret(handle, method, val, NULL);
400 }
401 
402 static int acpi_check_handle(acpi_handle handle, const char *method,
403 			     acpi_handle *ret)
404 {
405 	acpi_status status;
406 
407 	if (method == NULL)
408 		return -ENODEV;
409 
410 	if (ret)
411 		status = acpi_get_handle(handle, (char *)method,
412 					 ret);
413 	else {
414 		acpi_handle dummy;
415 
416 		status = acpi_get_handle(handle, (char *)method,
417 					 &dummy);
418 	}
419 
420 	if (status != AE_OK) {
421 		if (ret)
422 			pr_warn("Error finding %s\n", method);
423 		return -ENODEV;
424 	}
425 	return 0;
426 }
427 
428 static bool asus_check_pega_lucid(struct asus_laptop *asus)
429 {
430 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
431 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
432 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
433 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
434 }
435 
436 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
437 {
438 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
439 	return write_acpi_int(asus->handle, method, unit);
440 }
441 
442 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
443 {
444 	int i, delta;
445 	unsigned long long val;
446 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
447 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
448 
449 		/* The output is noisy.  From reading the ASL
450 		 * dissassembly, timeout errors are returned with 1's
451 		 * in the high word, and the lack of locking around
452 		 * thei hi/lo byte reads means that a transition
453 		 * between (for example) -1 and 0 could be read as
454 		 * 0xff00 or 0x00ff. */
455 		delta = abs(curr - (short)val);
456 		if (delta < 128 && !(val & ~0xffff))
457 			break;
458 	}
459 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
460 }
461 
462 static void pega_accel_poll(struct input_polled_dev *ipd)
463 {
464 	struct device *parent = ipd->input->dev.parent;
465 	struct asus_laptop *asus = dev_get_drvdata(parent);
466 
467 	/* In some cases, the very first call to poll causes a
468 	 * recursive fault under the polldev worker.  This is
469 	 * apparently related to very early userspace access to the
470 	 * device, and perhaps a firmware bug. Fake the first report. */
471 	if (!asus->pega_acc_live) {
472 		asus->pega_acc_live = true;
473 		input_report_abs(ipd->input, ABS_X, 0);
474 		input_report_abs(ipd->input, ABS_Y, 0);
475 		input_report_abs(ipd->input, ABS_Z, 0);
476 		input_sync(ipd->input);
477 		return;
478 	}
479 
480 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
481 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
482 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
483 
484 	/* Note transform, convert to "right/up/out" in the native
485 	 * landscape orientation (i.e. the vector is the direction of
486 	 * "real up" in the device's cartiesian coordinates). */
487 	input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
488 	input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
489 	input_report_abs(ipd->input, ABS_Z,  asus->pega_acc_z);
490 	input_sync(ipd->input);
491 }
492 
493 static void pega_accel_exit(struct asus_laptop *asus)
494 {
495 	if (asus->pega_accel_poll) {
496 		input_unregister_polled_device(asus->pega_accel_poll);
497 		input_free_polled_device(asus->pega_accel_poll);
498 	}
499 	asus->pega_accel_poll = NULL;
500 }
501 
502 static int pega_accel_init(struct asus_laptop *asus)
503 {
504 	int err;
505 	struct input_polled_dev *ipd;
506 
507 	if (!asus->is_pega_lucid)
508 		return -ENODEV;
509 
510 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
511 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
512 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
513 		return -ENODEV;
514 
515 	ipd = input_allocate_polled_device();
516 	if (!ipd)
517 		return -ENOMEM;
518 
519 	ipd->poll = pega_accel_poll;
520 	ipd->poll_interval = 125;
521 	ipd->poll_interval_min = 50;
522 	ipd->poll_interval_max = 2000;
523 
524 	ipd->input->name = PEGA_ACCEL_DESC;
525 	ipd->input->phys = PEGA_ACCEL_NAME "/input0";
526 	ipd->input->dev.parent = &asus->platform_device->dev;
527 	ipd->input->id.bustype = BUS_HOST;
528 
529 	set_bit(EV_ABS, ipd->input->evbit);
530 	input_set_abs_params(ipd->input, ABS_X,
531 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
532 	input_set_abs_params(ipd->input, ABS_Y,
533 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
534 	input_set_abs_params(ipd->input, ABS_Z,
535 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
536 
537 	err = input_register_polled_device(ipd);
538 	if (err)
539 		goto exit;
540 
541 	asus->pega_accel_poll = ipd;
542 	return 0;
543 
544 exit:
545 	input_free_polled_device(ipd);
546 	return err;
547 }
548 
549 /* Generic LED function */
550 static int asus_led_set(struct asus_laptop *asus, const char *method,
551 			 int value)
552 {
553 	if (!strcmp(method, METHOD_MLED))
554 		value = !value;
555 	else if (!strcmp(method, METHOD_GLED))
556 		value = !value + 1;
557 	else
558 		value = !!value;
559 
560 	return write_acpi_int(asus->handle, method, value);
561 }
562 
563 /*
564  * LEDs
565  */
566 /* /sys/class/led handlers */
567 static void asus_led_cdev_set(struct led_classdev *led_cdev,
568 			 enum led_brightness value)
569 {
570 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
571 	struct asus_laptop *asus = led->asus;
572 
573 	led->wk = !!value;
574 	queue_work(asus->led_workqueue, &led->work);
575 }
576 
577 static void asus_led_cdev_update(struct work_struct *work)
578 {
579 	struct asus_led *led = container_of(work, struct asus_led, work);
580 	struct asus_laptop *asus = led->asus;
581 
582 	asus_led_set(asus, led->method, led->wk);
583 }
584 
585 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
586 {
587 	return led_cdev->brightness;
588 }
589 
590 /*
591  * Keyboard backlight (also a LED)
592  */
593 static int asus_kled_lvl(struct asus_laptop *asus)
594 {
595 	unsigned long long kblv;
596 	struct acpi_object_list params;
597 	union acpi_object in_obj;
598 	acpi_status rv;
599 
600 	params.count = 1;
601 	params.pointer = &in_obj;
602 	in_obj.type = ACPI_TYPE_INTEGER;
603 	in_obj.integer.value = 2;
604 
605 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
606 				   &params, &kblv);
607 	if (ACPI_FAILURE(rv)) {
608 		pr_warn("Error reading kled level\n");
609 		return -ENODEV;
610 	}
611 	return kblv;
612 }
613 
614 static int asus_kled_set(struct asus_laptop *asus, int kblv)
615 {
616 	if (kblv > 0)
617 		kblv = (1 << 7) | (kblv & 0x7F);
618 	else
619 		kblv = 0;
620 
621 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
622 		pr_warn("Keyboard LED display write failed\n");
623 		return -EINVAL;
624 	}
625 	return 0;
626 }
627 
628 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
629 			      enum led_brightness value)
630 {
631 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
632 	struct asus_laptop *asus = led->asus;
633 
634 	led->wk = value;
635 	queue_work(asus->led_workqueue, &led->work);
636 }
637 
638 static void asus_kled_cdev_update(struct work_struct *work)
639 {
640 	struct asus_led *led = container_of(work, struct asus_led, work);
641 	struct asus_laptop *asus = led->asus;
642 
643 	asus_kled_set(asus, led->wk);
644 }
645 
646 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
647 {
648 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
649 	struct asus_laptop *asus = led->asus;
650 
651 	return asus_kled_lvl(asus);
652 }
653 
654 static void asus_led_exit(struct asus_laptop *asus)
655 {
656 	if (!IS_ERR_OR_NULL(asus->wled.led.dev))
657 		led_classdev_unregister(&asus->wled.led);
658 	if (!IS_ERR_OR_NULL(asus->bled.led.dev))
659 		led_classdev_unregister(&asus->bled.led);
660 	if (!IS_ERR_OR_NULL(asus->mled.led.dev))
661 		led_classdev_unregister(&asus->mled.led);
662 	if (!IS_ERR_OR_NULL(asus->tled.led.dev))
663 		led_classdev_unregister(&asus->tled.led);
664 	if (!IS_ERR_OR_NULL(asus->pled.led.dev))
665 		led_classdev_unregister(&asus->pled.led);
666 	if (!IS_ERR_OR_NULL(asus->rled.led.dev))
667 		led_classdev_unregister(&asus->rled.led);
668 	if (!IS_ERR_OR_NULL(asus->gled.led.dev))
669 		led_classdev_unregister(&asus->gled.led);
670 	if (!IS_ERR_OR_NULL(asus->kled.led.dev))
671 		led_classdev_unregister(&asus->kled.led);
672 	if (asus->led_workqueue) {
673 		destroy_workqueue(asus->led_workqueue);
674 		asus->led_workqueue = NULL;
675 	}
676 }
677 
678 /*  Ugly macro, need to fix that later */
679 static int asus_led_register(struct asus_laptop *asus,
680 			     struct asus_led *led,
681 			     const char *name, const char *method)
682 {
683 	struct led_classdev *led_cdev = &led->led;
684 
685 	if (!method || acpi_check_handle(asus->handle, method, NULL))
686 		return 0; /* Led not present */
687 
688 	led->asus = asus;
689 	led->method = method;
690 
691 	INIT_WORK(&led->work, asus_led_cdev_update);
692 	led_cdev->name = name;
693 	led_cdev->brightness_set = asus_led_cdev_set;
694 	led_cdev->brightness_get = asus_led_cdev_get;
695 	led_cdev->max_brightness = 1;
696 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
697 }
698 
699 static int asus_led_init(struct asus_laptop *asus)
700 {
701 	int r = 0;
702 
703 	/*
704 	 * The Pegatron Lucid has no physical leds, but all methods are
705 	 * available in the DSDT...
706 	 */
707 	if (asus->is_pega_lucid)
708 		return 0;
709 
710 	/*
711 	 * Functions that actually update the LED's are called from a
712 	 * workqueue. By doing this as separate work rather than when the LED
713 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
714 	 * potentially bad time, such as a timer interrupt.
715 	 */
716 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
717 	if (!asus->led_workqueue)
718 		return -ENOMEM;
719 
720 	if (asus->wled_type == TYPE_LED)
721 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
722 				      METHOD_WLAN);
723 	if (r)
724 		goto error;
725 	if (asus->bled_type == TYPE_LED)
726 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
727 				      METHOD_BLUETOOTH);
728 	if (r)
729 		goto error;
730 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
731 	if (r)
732 		goto error;
733 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
734 	if (r)
735 		goto error;
736 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
737 	if (r)
738 		goto error;
739 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
740 	if (r)
741 		goto error;
742 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
743 	if (r)
744 		goto error;
745 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
746 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
747 		struct asus_led *led = &asus->kled;
748 		struct led_classdev *cdev = &led->led;
749 
750 		led->asus = asus;
751 
752 		INIT_WORK(&led->work, asus_kled_cdev_update);
753 		cdev->name = "asus::kbd_backlight";
754 		cdev->brightness_set = asus_kled_cdev_set;
755 		cdev->brightness_get = asus_kled_cdev_get;
756 		cdev->max_brightness = 3;
757 		r = led_classdev_register(&asus->platform_device->dev, cdev);
758 	}
759 error:
760 	if (r)
761 		asus_led_exit(asus);
762 	return r;
763 }
764 
765 /*
766  * Backlight device
767  */
768 static int asus_read_brightness(struct backlight_device *bd)
769 {
770 	struct asus_laptop *asus = bl_get_data(bd);
771 	unsigned long long value;
772 	acpi_status rv = AE_OK;
773 
774 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
775 				   NULL, &value);
776 	if (ACPI_FAILURE(rv))
777 		pr_warn("Error reading brightness\n");
778 
779 	return value;
780 }
781 
782 static int asus_set_brightness(struct backlight_device *bd, int value)
783 {
784 	struct asus_laptop *asus = bl_get_data(bd);
785 
786 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
787 		pr_warn("Error changing brightness\n");
788 		return -EIO;
789 	}
790 	return 0;
791 }
792 
793 static int update_bl_status(struct backlight_device *bd)
794 {
795 	int value = bd->props.brightness;
796 
797 	return asus_set_brightness(bd, value);
798 }
799 
800 static const struct backlight_ops asusbl_ops = {
801 	.get_brightness = asus_read_brightness,
802 	.update_status = update_bl_status,
803 };
804 
805 static int asus_backlight_notify(struct asus_laptop *asus)
806 {
807 	struct backlight_device *bd = asus->backlight_device;
808 	int old = bd->props.brightness;
809 
810 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
811 
812 	return old;
813 }
814 
815 static int asus_backlight_init(struct asus_laptop *asus)
816 {
817 	struct backlight_device *bd;
818 	struct backlight_properties props;
819 
820 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
821 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
822 		return 0;
823 
824 	memset(&props, 0, sizeof(struct backlight_properties));
825 	props.max_brightness = 15;
826 	props.type = BACKLIGHT_PLATFORM;
827 
828 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
829 				       &asus->platform_device->dev, asus,
830 				       &asusbl_ops, &props);
831 	if (IS_ERR(bd)) {
832 		pr_err("Could not register asus backlight device\n");
833 		asus->backlight_device = NULL;
834 		return PTR_ERR(bd);
835 	}
836 
837 	asus->backlight_device = bd;
838 	bd->props.brightness = asus_read_brightness(bd);
839 	bd->props.power = FB_BLANK_UNBLANK;
840 	backlight_update_status(bd);
841 	return 0;
842 }
843 
844 static void asus_backlight_exit(struct asus_laptop *asus)
845 {
846 	if (asus->backlight_device)
847 		backlight_device_unregister(asus->backlight_device);
848 	asus->backlight_device = NULL;
849 }
850 
851 /*
852  * Platform device handlers
853  */
854 
855 /*
856  * We write our info in page, we begin at offset off and cannot write more
857  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
858  * number of bytes written in page
859  */
860 static ssize_t show_infos(struct device *dev,
861 			  struct device_attribute *attr, char *page)
862 {
863 	struct asus_laptop *asus = dev_get_drvdata(dev);
864 	int len = 0;
865 	unsigned long long temp;
866 	char buf[16];		/* enough for all info */
867 	acpi_status rv = AE_OK;
868 
869 	/*
870 	 * We use the easy way, we don't care of off and count,
871 	 * so we don't set eof to 1
872 	 */
873 
874 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
875 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
876 	/*
877 	 * The SFUN method probably allows the original driver to get the list
878 	 * of features supported by a given model. For now, 0x0100 or 0x0800
879 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
880 	 * The significance of others is yet to be found.
881 	 */
882 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
883 	if (!ACPI_FAILURE(rv))
884 		len += sprintf(page + len, "SFUN value         : %#x\n",
885 			       (uint) temp);
886 	/*
887 	 * The HWRS method return informations about the hardware.
888 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
889 	 * 0x40 for WWAN, 0x10 for WIMAX.
890 	 * The significance of others is yet to be found.
891 	 * We don't currently use this for device detection, and it
892 	 * takes several seconds to run on some systems.
893 	 */
894 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
895 	if (!ACPI_FAILURE(rv))
896 		len += sprintf(page + len, "HWRS value         : %#x\n",
897 			       (uint) temp);
898 	/*
899 	 * Another value for userspace: the ASYM method returns 0x02 for
900 	 * battery low and 0x04 for battery critical, its readings tend to be
901 	 * more accurate than those provided by _BST.
902 	 * Note: since not all the laptops provide this method, errors are
903 	 * silently ignored.
904 	 */
905 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
906 	if (!ACPI_FAILURE(rv))
907 		len += sprintf(page + len, "ASYM value         : %#x\n",
908 			       (uint) temp);
909 	if (asus->dsdt_info) {
910 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
911 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
912 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
913 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
914 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
915 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
916 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
917 		len += sprintf(page + len, "OEM id             : %s\n", buf);
918 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
919 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
920 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
921 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
922 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
923 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
924 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
925 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
926 	}
927 
928 	return len;
929 }
930 
931 static int parse_arg(const char *buf, unsigned long count, int *val)
932 {
933 	if (!count)
934 		return 0;
935 	if (count > 31)
936 		return -EINVAL;
937 	if (sscanf(buf, "%i", val) != 1)
938 		return -EINVAL;
939 	return count;
940 }
941 
942 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
943 			      const char *buf, size_t count,
944 			      const char *method)
945 {
946 	int rv, value;
947 	int out = 0;
948 
949 	rv = parse_arg(buf, count, &value);
950 	if (rv > 0)
951 		out = value ? 1 : 0;
952 
953 	if (write_acpi_int(asus->handle, method, value))
954 		return -ENODEV;
955 	return rv;
956 }
957 
958 /*
959  * LEDD display
960  */
961 static ssize_t show_ledd(struct device *dev,
962 			 struct device_attribute *attr, char *buf)
963 {
964 	struct asus_laptop *asus = dev_get_drvdata(dev);
965 
966 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
967 }
968 
969 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
970 			  const char *buf, size_t count)
971 {
972 	struct asus_laptop *asus = dev_get_drvdata(dev);
973 	int rv, value;
974 
975 	rv = parse_arg(buf, count, &value);
976 	if (rv > 0) {
977 		if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
978 			pr_warn("LED display write failed\n");
979 			return -ENODEV;
980 		}
981 		asus->ledd_status = (u32) value;
982 	}
983 	return rv;
984 }
985 
986 /*
987  * Wireless
988  */
989 static int asus_wireless_status(struct asus_laptop *asus, int mask)
990 {
991 	unsigned long long status;
992 	acpi_status rv = AE_OK;
993 
994 	if (!asus->have_rsts)
995 		return (asus->wireless_status & mask) ? 1 : 0;
996 
997 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
998 				   NULL, &status);
999 	if (ACPI_FAILURE(rv)) {
1000 		pr_warn("Error reading Wireless status\n");
1001 		return -EINVAL;
1002 	}
1003 	return !!(status & mask);
1004 }
1005 
1006 /*
1007  * WLAN
1008  */
1009 static int asus_wlan_set(struct asus_laptop *asus, int status)
1010 {
1011 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1012 		pr_warn("Error setting wlan status to %d\n", status);
1013 		return -EIO;
1014 	}
1015 	return 0;
1016 }
1017 
1018 static ssize_t show_wlan(struct device *dev,
1019 			 struct device_attribute *attr, char *buf)
1020 {
1021 	struct asus_laptop *asus = dev_get_drvdata(dev);
1022 
1023 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1024 }
1025 
1026 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
1027 			  const char *buf, size_t count)
1028 {
1029 	struct asus_laptop *asus = dev_get_drvdata(dev);
1030 
1031 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1032 }
1033 
1034 /*e
1035  * Bluetooth
1036  */
1037 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1038 {
1039 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1040 		pr_warn("Error setting bluetooth status to %d\n", status);
1041 		return -EIO;
1042 	}
1043 	return 0;
1044 }
1045 
1046 static ssize_t show_bluetooth(struct device *dev,
1047 			      struct device_attribute *attr, char *buf)
1048 {
1049 	struct asus_laptop *asus = dev_get_drvdata(dev);
1050 
1051 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1052 }
1053 
1054 static ssize_t store_bluetooth(struct device *dev,
1055 			       struct device_attribute *attr, const char *buf,
1056 			       size_t count)
1057 {
1058 	struct asus_laptop *asus = dev_get_drvdata(dev);
1059 
1060 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1061 }
1062 
1063 /*
1064  * Wimax
1065  */
1066 static int asus_wimax_set(struct asus_laptop *asus, int status)
1067 {
1068 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1069 		pr_warn("Error setting wimax status to %d\n", status);
1070 		return -EIO;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static ssize_t show_wimax(struct device *dev,
1076 			      struct device_attribute *attr, char *buf)
1077 {
1078 	struct asus_laptop *asus = dev_get_drvdata(dev);
1079 
1080 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1081 }
1082 
1083 static ssize_t store_wimax(struct device *dev,
1084 			       struct device_attribute *attr, const char *buf,
1085 			       size_t count)
1086 {
1087 	struct asus_laptop *asus = dev_get_drvdata(dev);
1088 
1089 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1090 }
1091 
1092 /*
1093  * Wwan
1094  */
1095 static int asus_wwan_set(struct asus_laptop *asus, int status)
1096 {
1097 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1098 		pr_warn("Error setting wwan status to %d\n", status);
1099 		return -EIO;
1100 	}
1101 	return 0;
1102 }
1103 
1104 static ssize_t show_wwan(struct device *dev,
1105 			      struct device_attribute *attr, char *buf)
1106 {
1107 	struct asus_laptop *asus = dev_get_drvdata(dev);
1108 
1109 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1110 }
1111 
1112 static ssize_t store_wwan(struct device *dev,
1113 			       struct device_attribute *attr, const char *buf,
1114 			       size_t count)
1115 {
1116 	struct asus_laptop *asus = dev_get_drvdata(dev);
1117 
1118 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1119 }
1120 
1121 /*
1122  * Display
1123  */
1124 static void asus_set_display(struct asus_laptop *asus, int value)
1125 {
1126 	/* no sanity check needed for now */
1127 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1128 		pr_warn("Error setting display\n");
1129 	return;
1130 }
1131 
1132 /*
1133  * Experimental support for display switching. As of now: 1 should activate
1134  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1135  * Any combination (bitwise) of these will suffice. I never actually tested 4
1136  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1137  * for more info.
1138  */
1139 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1140 			  const char *buf, size_t count)
1141 {
1142 	struct asus_laptop *asus = dev_get_drvdata(dev);
1143 	int rv, value;
1144 
1145 	rv = parse_arg(buf, count, &value);
1146 	if (rv > 0)
1147 		asus_set_display(asus, value);
1148 	return rv;
1149 }
1150 
1151 /*
1152  * Light Sens
1153  */
1154 static void asus_als_switch(struct asus_laptop *asus, int value)
1155 {
1156 	int ret;
1157 
1158 	if (asus->is_pega_lucid) {
1159 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1160 		if (!ret)
1161 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1162 	} else {
1163 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1164 	}
1165 	if (ret)
1166 		pr_warning("Error setting light sensor switch\n");
1167 
1168 	asus->light_switch = value;
1169 }
1170 
1171 static ssize_t show_lssw(struct device *dev,
1172 			 struct device_attribute *attr, char *buf)
1173 {
1174 	struct asus_laptop *asus = dev_get_drvdata(dev);
1175 
1176 	return sprintf(buf, "%d\n", asus->light_switch);
1177 }
1178 
1179 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1180 			  const char *buf, size_t count)
1181 {
1182 	struct asus_laptop *asus = dev_get_drvdata(dev);
1183 	int rv, value;
1184 
1185 	rv = parse_arg(buf, count, &value);
1186 	if (rv > 0)
1187 		asus_als_switch(asus, value ? 1 : 0);
1188 
1189 	return rv;
1190 }
1191 
1192 static void asus_als_level(struct asus_laptop *asus, int value)
1193 {
1194 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1195 		pr_warn("Error setting light sensor level\n");
1196 	asus->light_level = value;
1197 }
1198 
1199 static ssize_t show_lslvl(struct device *dev,
1200 			  struct device_attribute *attr, char *buf)
1201 {
1202 	struct asus_laptop *asus = dev_get_drvdata(dev);
1203 
1204 	return sprintf(buf, "%d\n", asus->light_level);
1205 }
1206 
1207 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1208 			   const char *buf, size_t count)
1209 {
1210 	struct asus_laptop *asus = dev_get_drvdata(dev);
1211 	int rv, value;
1212 
1213 	rv = parse_arg(buf, count, &value);
1214 	if (rv > 0) {
1215 		value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1216 		/* 0 <= value <= 15 */
1217 		asus_als_level(asus, value);
1218 	}
1219 
1220 	return rv;
1221 }
1222 
1223 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1224 {
1225 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1226 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1227 				     &buffer);
1228 	if (!err) {
1229 		union acpi_object *obj = buffer.pointer;
1230 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1231 			*result = obj->integer.value;
1232 		else
1233 			err = -EIO;
1234 	}
1235 	return err;
1236 }
1237 
1238 static ssize_t show_lsvalue(struct device *dev,
1239 			    struct device_attribute *attr, char *buf)
1240 {
1241 	struct asus_laptop *asus = dev_get_drvdata(dev);
1242 	int err, hi, lo;
1243 
1244 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1245 	if (!err)
1246 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1247 	if (!err)
1248 		return sprintf(buf, "%d\n", 10 * hi + lo);
1249 	return err;
1250 }
1251 
1252 /*
1253  * GPS
1254  */
1255 static int asus_gps_status(struct asus_laptop *asus)
1256 {
1257 	unsigned long long status;
1258 	acpi_status rv = AE_OK;
1259 
1260 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1261 				   NULL, &status);
1262 	if (ACPI_FAILURE(rv)) {
1263 		pr_warn("Error reading GPS status\n");
1264 		return -ENODEV;
1265 	}
1266 	return !!status;
1267 }
1268 
1269 static int asus_gps_switch(struct asus_laptop *asus, int status)
1270 {
1271 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1272 
1273 	if (write_acpi_int(asus->handle, meth, 0x02))
1274 		return -ENODEV;
1275 	return 0;
1276 }
1277 
1278 static ssize_t show_gps(struct device *dev,
1279 			struct device_attribute *attr, char *buf)
1280 {
1281 	struct asus_laptop *asus = dev_get_drvdata(dev);
1282 
1283 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1284 }
1285 
1286 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1287 			 const char *buf, size_t count)
1288 {
1289 	struct asus_laptop *asus = dev_get_drvdata(dev);
1290 	int rv, value;
1291 	int ret;
1292 
1293 	rv = parse_arg(buf, count, &value);
1294 	if (rv <= 0)
1295 		return -EINVAL;
1296 	ret = asus_gps_switch(asus, !!value);
1297 	if (ret)
1298 		return ret;
1299 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1300 	return rv;
1301 }
1302 
1303 /*
1304  * rfkill
1305  */
1306 static int asus_gps_rfkill_set(void *data, bool blocked)
1307 {
1308 	struct asus_laptop *asus = data;
1309 
1310 	return asus_gps_switch(asus, !blocked);
1311 }
1312 
1313 static const struct rfkill_ops asus_gps_rfkill_ops = {
1314 	.set_block = asus_gps_rfkill_set,
1315 };
1316 
1317 static int asus_rfkill_set(void *data, bool blocked)
1318 {
1319 	struct asus_rfkill *rfk = data;
1320 	struct asus_laptop *asus = rfk->asus;
1321 
1322 	if (rfk->control_id == WL_RSTS)
1323 		return asus_wlan_set(asus, !blocked);
1324 	else if (rfk->control_id == BT_RSTS)
1325 		return asus_bluetooth_set(asus, !blocked);
1326 	else if (rfk->control_id == WM_RSTS)
1327 		return asus_wimax_set(asus, !blocked);
1328 	else if (rfk->control_id == WW_RSTS)
1329 		return asus_wwan_set(asus, !blocked);
1330 
1331 	return -EINVAL;
1332 }
1333 
1334 static const struct rfkill_ops asus_rfkill_ops = {
1335 	.set_block = asus_rfkill_set,
1336 };
1337 
1338 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1339 {
1340 	if (!rfk->rfkill)
1341 		return ;
1342 
1343 	rfkill_unregister(rfk->rfkill);
1344 	rfkill_destroy(rfk->rfkill);
1345 	rfk->rfkill = NULL;
1346 }
1347 
1348 static void asus_rfkill_exit(struct asus_laptop *asus)
1349 {
1350 	asus_rfkill_terminate(&asus->wwan);
1351 	asus_rfkill_terminate(&asus->bluetooth);
1352 	asus_rfkill_terminate(&asus->wlan);
1353 	asus_rfkill_terminate(&asus->gps);
1354 }
1355 
1356 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1357 			     const char *name, int control_id, int type,
1358 			     const struct rfkill_ops *ops)
1359 {
1360 	int result;
1361 
1362 	rfk->control_id = control_id;
1363 	rfk->asus = asus;
1364 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1365 				   type, ops, rfk);
1366 	if (!rfk->rfkill)
1367 		return -EINVAL;
1368 
1369 	result = rfkill_register(rfk->rfkill);
1370 	if (result) {
1371 		rfkill_destroy(rfk->rfkill);
1372 		rfk->rfkill = NULL;
1373 	}
1374 
1375 	return result;
1376 }
1377 
1378 static int asus_rfkill_init(struct asus_laptop *asus)
1379 {
1380 	int result = 0;
1381 
1382 	if (asus->is_pega_lucid)
1383 		return -ENODEV;
1384 
1385 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1386 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1387 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1388 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1389 					   -1, RFKILL_TYPE_GPS,
1390 					   &asus_gps_rfkill_ops);
1391 	if (result)
1392 		goto exit;
1393 
1394 
1395 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1396 	    asus->wled_type == TYPE_RFKILL)
1397 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1398 					   WL_RSTS, RFKILL_TYPE_WLAN,
1399 					   &asus_rfkill_ops);
1400 	if (result)
1401 		goto exit;
1402 
1403 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1404 	    asus->bled_type == TYPE_RFKILL)
1405 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1406 					   "asus-bluetooth", BT_RSTS,
1407 					   RFKILL_TYPE_BLUETOOTH,
1408 					   &asus_rfkill_ops);
1409 	if (result)
1410 		goto exit;
1411 
1412 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1413 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1414 					   WW_RSTS, RFKILL_TYPE_WWAN,
1415 					   &asus_rfkill_ops);
1416 	if (result)
1417 		goto exit;
1418 
1419 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1420 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1421 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1422 					   &asus_rfkill_ops);
1423 	if (result)
1424 		goto exit;
1425 
1426 exit:
1427 	if (result)
1428 		asus_rfkill_exit(asus);
1429 
1430 	return result;
1431 }
1432 
1433 static int pega_rfkill_set(void *data, bool blocked)
1434 {
1435 	struct asus_rfkill *rfk = data;
1436 
1437 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1438 	return ret;
1439 }
1440 
1441 static const struct rfkill_ops pega_rfkill_ops = {
1442 	.set_block = pega_rfkill_set,
1443 };
1444 
1445 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1446 			     const char *name, int controlid, int rfkill_type)
1447 {
1448 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1449 				 &pega_rfkill_ops);
1450 }
1451 
1452 static int pega_rfkill_init(struct asus_laptop *asus)
1453 {
1454 	int ret = 0;
1455 
1456 	if(!asus->is_pega_lucid)
1457 		return -ENODEV;
1458 
1459 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1460 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1461 	if(ret)
1462 		goto exit;
1463 
1464 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1465 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1466 	if(ret)
1467 		goto exit;
1468 
1469 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1470 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1471 
1472 exit:
1473 	if (ret)
1474 		asus_rfkill_exit(asus);
1475 
1476 	return ret;
1477 }
1478 
1479 /*
1480  * Input device (i.e. hotkeys)
1481  */
1482 static void asus_input_notify(struct asus_laptop *asus, int event)
1483 {
1484 	if (!asus->inputdev)
1485 		return ;
1486 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1487 		pr_info("Unknown key %x pressed\n", event);
1488 }
1489 
1490 static int asus_input_init(struct asus_laptop *asus)
1491 {
1492 	struct input_dev *input;
1493 	int error;
1494 
1495 	input = input_allocate_device();
1496 	if (!input)
1497 		return -ENOMEM;
1498 
1499 	input->name = "Asus Laptop extra buttons";
1500 	input->phys = ASUS_LAPTOP_FILE "/input0";
1501 	input->id.bustype = BUS_HOST;
1502 	input->dev.parent = &asus->platform_device->dev;
1503 
1504 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1505 	if (error) {
1506 		pr_err("Unable to setup input device keymap\n");
1507 		goto err_free_dev;
1508 	}
1509 	error = input_register_device(input);
1510 	if (error) {
1511 		pr_warn("Unable to register input device\n");
1512 		goto err_free_keymap;
1513 	}
1514 
1515 	asus->inputdev = input;
1516 	return 0;
1517 
1518 err_free_keymap:
1519 	sparse_keymap_free(input);
1520 err_free_dev:
1521 	input_free_device(input);
1522 	return error;
1523 }
1524 
1525 static void asus_input_exit(struct asus_laptop *asus)
1526 {
1527 	if (asus->inputdev) {
1528 		sparse_keymap_free(asus->inputdev);
1529 		input_unregister_device(asus->inputdev);
1530 	}
1531 	asus->inputdev = NULL;
1532 }
1533 
1534 /*
1535  * ACPI driver
1536  */
1537 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1538 {
1539 	struct asus_laptop *asus = acpi_driver_data(device);
1540 	u16 count;
1541 
1542 	/* TODO Find a better way to handle events count. */
1543 	count = asus->event_count[event % 128]++;
1544 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1545 					dev_name(&asus->device->dev), event,
1546 					count);
1547 
1548 	if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1549 		event = ATKD_BRNUP;
1550 	else if (event >= ATKD_BRNDOWN_MIN &&
1551 		 event <= ATKD_BRNDOWN_MAX)
1552 		event = ATKD_BRNDOWN;
1553 
1554 	/* Brightness events are special */
1555 	if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1556 		if (asus->backlight_device != NULL) {
1557 			/* Update the backlight device. */
1558 			asus_backlight_notify(asus);
1559 			return ;
1560 		}
1561 	}
1562 
1563 	/* Accelerometer "coarse orientation change" event */
1564 	if (asus->pega_accel_poll && event == 0xEA) {
1565 		kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1566 			       KOBJ_CHANGE);
1567 		return ;
1568 	}
1569 
1570 	asus_input_notify(asus, event);
1571 }
1572 
1573 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1574 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1575 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1576 		   show_bluetooth, store_bluetooth);
1577 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1578 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1579 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1580 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1581 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1582 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1583 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1584 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1585 
1586 static struct attribute *asus_attributes[] = {
1587 	&dev_attr_infos.attr,
1588 	&dev_attr_wlan.attr,
1589 	&dev_attr_bluetooth.attr,
1590 	&dev_attr_wimax.attr,
1591 	&dev_attr_wwan.attr,
1592 	&dev_attr_display.attr,
1593 	&dev_attr_ledd.attr,
1594 	&dev_attr_ls_value.attr,
1595 	&dev_attr_ls_level.attr,
1596 	&dev_attr_ls_switch.attr,
1597 	&dev_attr_gps.attr,
1598 	NULL
1599 };
1600 
1601 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1602 				    struct attribute *attr,
1603 				    int idx)
1604 {
1605 	struct device *dev = container_of(kobj, struct device, kobj);
1606 	struct platform_device *pdev = to_platform_device(dev);
1607 	struct asus_laptop *asus = platform_get_drvdata(pdev);
1608 	acpi_handle handle = asus->handle;
1609 	bool supported;
1610 
1611 	if (asus->is_pega_lucid) {
1612 		/* no ls_level interface on the Lucid */
1613 		if (attr == &dev_attr_ls_switch.attr)
1614 			supported = true;
1615 		else if (attr == &dev_attr_ls_level.attr)
1616 			supported = false;
1617 		else
1618 			goto normal;
1619 
1620 		return supported;
1621 	}
1622 
1623 normal:
1624 	if (attr == &dev_attr_wlan.attr) {
1625 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1626 
1627 	} else if (attr == &dev_attr_bluetooth.attr) {
1628 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1629 
1630 	} else if (attr == &dev_attr_display.attr) {
1631 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1632 
1633 	} else if (attr == &dev_attr_wimax.attr) {
1634 		supported =
1635 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1636 
1637 	} else if (attr == &dev_attr_wwan.attr) {
1638 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1639 
1640 	} else if (attr == &dev_attr_ledd.attr) {
1641 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1642 
1643 	} else if (attr == &dev_attr_ls_switch.attr ||
1644 		   attr == &dev_attr_ls_level.attr) {
1645 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1646 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1647 	} else if (attr == &dev_attr_ls_value.attr) {
1648 		supported = asus->is_pega_lucid;
1649 	} else if (attr == &dev_attr_gps.attr) {
1650 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1651 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1652 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1653 	} else {
1654 		supported = true;
1655 	}
1656 
1657 	return supported ? attr->mode : 0;
1658 }
1659 
1660 
1661 static const struct attribute_group asus_attr_group = {
1662 	.is_visible	= asus_sysfs_is_visible,
1663 	.attrs		= asus_attributes,
1664 };
1665 
1666 static int asus_platform_init(struct asus_laptop *asus)
1667 {
1668 	int result;
1669 
1670 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1671 	if (!asus->platform_device)
1672 		return -ENOMEM;
1673 	platform_set_drvdata(asus->platform_device, asus);
1674 
1675 	result = platform_device_add(asus->platform_device);
1676 	if (result)
1677 		goto fail_platform_device;
1678 
1679 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1680 				    &asus_attr_group);
1681 	if (result)
1682 		goto fail_sysfs;
1683 
1684 	return 0;
1685 
1686 fail_sysfs:
1687 	platform_device_del(asus->platform_device);
1688 fail_platform_device:
1689 	platform_device_put(asus->platform_device);
1690 	return result;
1691 }
1692 
1693 static void asus_platform_exit(struct asus_laptop *asus)
1694 {
1695 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1696 	platform_device_unregister(asus->platform_device);
1697 }
1698 
1699 static struct platform_driver platform_driver = {
1700 	.driver = {
1701 		.name = ASUS_LAPTOP_FILE,
1702 		.owner = THIS_MODULE,
1703 	},
1704 };
1705 
1706 /*
1707  * This function is used to initialize the context with right values. In this
1708  * method, we can make all the detection we want, and modify the asus_laptop
1709  * struct
1710  */
1711 static int asus_laptop_get_info(struct asus_laptop *asus)
1712 {
1713 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1714 	union acpi_object *model = NULL;
1715 	unsigned long long bsts_result;
1716 	char *string = NULL;
1717 	acpi_status status;
1718 
1719 	/*
1720 	 * Get DSDT headers early enough to allow for differentiating between
1721 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1722 	 * before doing anything ACPI-specific. Should we encounter a machine,
1723 	 * which needs special handling (i.e. its hotkey device has a different
1724 	 * HID), this bit will be moved.
1725 	 */
1726 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1727 	if (ACPI_FAILURE(status))
1728 		pr_warn("Couldn't get the DSDT table header\n");
1729 
1730 	/* We have to write 0 on init this far for all ASUS models */
1731 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1732 		pr_err("Hotkey initialization failed\n");
1733 		return -ENODEV;
1734 	}
1735 
1736 	/* This needs to be called for some laptops to init properly */
1737 	status =
1738 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1739 	if (ACPI_FAILURE(status))
1740 		pr_warn("Error calling BSTS\n");
1741 	else if (bsts_result)
1742 		pr_notice("BSTS called, 0x%02x returned\n",
1743 		       (uint) bsts_result);
1744 
1745 	/* This too ... */
1746 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1747 		pr_err("Error calling CWAP(%d)\n", wapf);
1748 	/*
1749 	 * Try to match the object returned by INIT to the specific model.
1750 	 * Handle every possible object (or the lack of thereof) the DSDT
1751 	 * writers might throw at us. When in trouble, we pass NULL to
1752 	 * asus_model_match() and try something completely different.
1753 	 */
1754 	if (buffer.pointer) {
1755 		model = buffer.pointer;
1756 		switch (model->type) {
1757 		case ACPI_TYPE_STRING:
1758 			string = model->string.pointer;
1759 			break;
1760 		case ACPI_TYPE_BUFFER:
1761 			string = model->buffer.pointer;
1762 			break;
1763 		default:
1764 			string = "";
1765 			break;
1766 		}
1767 	}
1768 	asus->name = kstrdup(string, GFP_KERNEL);
1769 	if (!asus->name) {
1770 		kfree(buffer.pointer);
1771 		return -ENOMEM;
1772 	}
1773 
1774 	if (string)
1775 		pr_notice("  %s model detected\n", string);
1776 
1777 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1778 		asus->have_rsts = true;
1779 
1780 	kfree(model);
1781 
1782 	return AE_OK;
1783 }
1784 
1785 static int asus_acpi_init(struct asus_laptop *asus)
1786 {
1787 	int result = 0;
1788 
1789 	result = acpi_bus_get_status(asus->device);
1790 	if (result)
1791 		return result;
1792 	if (!asus->device->status.present) {
1793 		pr_err("Hotkey device not present, aborting\n");
1794 		return -ENODEV;
1795 	}
1796 
1797 	result = asus_laptop_get_info(asus);
1798 	if (result)
1799 		return result;
1800 
1801 	if (!strcmp(bled_type, "led"))
1802 		asus->bled_type = TYPE_LED;
1803 	else if (!strcmp(bled_type, "rfkill"))
1804 		asus->bled_type = TYPE_RFKILL;
1805 
1806 	if (!strcmp(wled_type, "led"))
1807 		asus->wled_type = TYPE_LED;
1808 	else if (!strcmp(wled_type, "rfkill"))
1809 		asus->wled_type = TYPE_RFKILL;
1810 
1811 	if (bluetooth_status >= 0)
1812 		asus_bluetooth_set(asus, !!bluetooth_status);
1813 
1814 	if (wlan_status >= 0)
1815 		asus_wlan_set(asus, !!wlan_status);
1816 
1817 	if (wimax_status >= 0)
1818 		asus_wimax_set(asus, !!wimax_status);
1819 
1820 	if (wwan_status >= 0)
1821 		asus_wwan_set(asus, !!wwan_status);
1822 
1823 	/* Keyboard Backlight is on by default */
1824 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1825 		asus_kled_set(asus, 1);
1826 
1827 	/* LED display is off by default */
1828 	asus->ledd_status = 0xFFF;
1829 
1830 	/* Set initial values of light sensor and level */
1831 	asus->light_switch = !!als_status;
1832 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1833 
1834 	if (asus->is_pega_lucid) {
1835 		asus_als_switch(asus, asus->light_switch);
1836 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1837 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1838 		asus_als_switch(asus, asus->light_switch);
1839 		asus_als_level(asus, asus->light_level);
1840 	}
1841 
1842 	return result;
1843 }
1844 
1845 static void asus_dmi_check(void)
1846 {
1847 	const char *model;
1848 
1849 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1850 	if (!model)
1851 		return;
1852 
1853 	/* On L1400B WLED control the sound card, don't mess with it ... */
1854 	if (strncmp(model, "L1400B", 6) == 0) {
1855 		wlan_status = -1;
1856 	}
1857 }
1858 
1859 static bool asus_device_present;
1860 
1861 static int asus_acpi_add(struct acpi_device *device)
1862 {
1863 	struct asus_laptop *asus;
1864 	int result;
1865 
1866 	pr_notice("Asus Laptop Support version %s\n",
1867 		  ASUS_LAPTOP_VERSION);
1868 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1869 	if (!asus)
1870 		return -ENOMEM;
1871 	asus->handle = device->handle;
1872 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1873 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1874 	device->driver_data = asus;
1875 	asus->device = device;
1876 
1877 	asus_dmi_check();
1878 
1879 	result = asus_acpi_init(asus);
1880 	if (result)
1881 		goto fail_platform;
1882 
1883 	/*
1884 	 * Need platform type detection first, then the platform
1885 	 * device.  It is used as a parent for the sub-devices below.
1886 	 */
1887 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1888 	result = asus_platform_init(asus);
1889 	if (result)
1890 		goto fail_platform;
1891 
1892 	if (!acpi_video_backlight_support()) {
1893 		result = asus_backlight_init(asus);
1894 		if (result)
1895 			goto fail_backlight;
1896 	} else
1897 		pr_info("Backlight controlled by ACPI video driver\n");
1898 
1899 	result = asus_input_init(asus);
1900 	if (result)
1901 		goto fail_input;
1902 
1903 	result = asus_led_init(asus);
1904 	if (result)
1905 		goto fail_led;
1906 
1907 	result = asus_rfkill_init(asus);
1908 	if (result && result != -ENODEV)
1909 		goto fail_rfkill;
1910 
1911 	result = pega_accel_init(asus);
1912 	if (result && result != -ENODEV)
1913 		goto fail_pega_accel;
1914 
1915 	result = pega_rfkill_init(asus);
1916 	if (result && result != -ENODEV)
1917 		goto fail_pega_rfkill;
1918 
1919 	asus_device_present = true;
1920 	return 0;
1921 
1922 fail_pega_rfkill:
1923 	pega_accel_exit(asus);
1924 fail_pega_accel:
1925 	asus_rfkill_exit(asus);
1926 fail_rfkill:
1927 	asus_led_exit(asus);
1928 fail_led:
1929 	asus_input_exit(asus);
1930 fail_input:
1931 	asus_backlight_exit(asus);
1932 fail_backlight:
1933 	asus_platform_exit(asus);
1934 fail_platform:
1935 	kfree(asus);
1936 
1937 	return result;
1938 }
1939 
1940 static int asus_acpi_remove(struct acpi_device *device)
1941 {
1942 	struct asus_laptop *asus = acpi_driver_data(device);
1943 
1944 	asus_backlight_exit(asus);
1945 	asus_rfkill_exit(asus);
1946 	asus_led_exit(asus);
1947 	asus_input_exit(asus);
1948 	pega_accel_exit(asus);
1949 	asus_platform_exit(asus);
1950 
1951 	kfree(asus->name);
1952 	kfree(asus);
1953 	return 0;
1954 }
1955 
1956 static const struct acpi_device_id asus_device_ids[] = {
1957 	{"ATK0100", 0},
1958 	{"ATK0101", 0},
1959 	{"", 0},
1960 };
1961 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1962 
1963 static struct acpi_driver asus_acpi_driver = {
1964 	.name = ASUS_LAPTOP_NAME,
1965 	.class = ASUS_LAPTOP_CLASS,
1966 	.owner = THIS_MODULE,
1967 	.ids = asus_device_ids,
1968 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1969 	.ops = {
1970 		.add = asus_acpi_add,
1971 		.remove = asus_acpi_remove,
1972 		.notify = asus_acpi_notify,
1973 		},
1974 };
1975 
1976 static int __init asus_laptop_init(void)
1977 {
1978 	int result;
1979 
1980 	result = platform_driver_register(&platform_driver);
1981 	if (result < 0)
1982 		return result;
1983 
1984 	result = acpi_bus_register_driver(&asus_acpi_driver);
1985 	if (result < 0)
1986 		goto fail_acpi_driver;
1987 	if (!asus_device_present) {
1988 		result = -ENODEV;
1989 		goto fail_no_device;
1990 	}
1991 	return 0;
1992 
1993 fail_no_device:
1994 	acpi_bus_unregister_driver(&asus_acpi_driver);
1995 fail_acpi_driver:
1996 	platform_driver_unregister(&platform_driver);
1997 	return result;
1998 }
1999 
2000 static void __exit asus_laptop_exit(void)
2001 {
2002 	acpi_bus_unregister_driver(&asus_acpi_driver);
2003 	platform_driver_unregister(&platform_driver);
2004 }
2005 
2006 module_init(asus_laptop_init);
2007 module_exit(asus_laptop_exit);
2008