1 /*
2  *  asus-laptop.c - Asus Laptop Support
3  *
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  *
24  *  The development page for this driver is located at
25  *  http://sourceforge.net/projects/acpi4asus/
26  *
27  *  Credits:
28  *  Pontus Fuchs   - Helper functions, cleanup
29  *  Johann Wiesner - Small compile fixes
30  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
31  *  Eric Burghard  - LED display support for W1N
32  *  Josh Green     - Light Sens support
33  *  Thomas Tuttle  - His first patch for led support was very helpful
34  *  Sam Lin        - GPS support
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <linux/acpi.h>
57 #include <acpi/video.h>
58 
59 #define ASUS_LAPTOP_VERSION	"0.42"
60 
61 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
62 #define ASUS_LAPTOP_CLASS	"hotkey"
63 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
64 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
65 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
66 
67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
69 MODULE_LICENSE("GPL");
70 
71 /*
72  * WAPF defines the behavior of the Fn+Fx wlan key
73  * The significance of values is yet to be found, but
74  * most of the time:
75  * Bit | Bluetooth | WLAN
76  *  0  | Hardware  | Hardware
77  *  1  | Hardware  | Software
78  *  4  | Software  | Software
79  */
80 static uint wapf = 1;
81 module_param(wapf, uint, 0444);
82 MODULE_PARM_DESC(wapf, "WAPF value");
83 
84 static char *wled_type = "unknown";
85 static char *bled_type = "unknown";
86 
87 module_param(wled_type, charp, 0444);
88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
89 		 "(unknown, led or rfkill). "
90 		 "default is unknown");
91 
92 module_param(bled_type, charp, 0444);
93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
94 		 "(unknown, led or rfkill). "
95 		 "default is unknown");
96 
97 static int wlan_status = 1;
98 static int bluetooth_status = 1;
99 static int wimax_status = -1;
100 static int wwan_status = -1;
101 static int als_status;
102 
103 module_param(wlan_status, int, 0444);
104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
105 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
106 		 "default is -1");
107 
108 module_param(bluetooth_status, int, 0444);
109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
110 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
111 		 "default is -1");
112 
113 module_param(wimax_status, int, 0444);
114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
115 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
116 		 "default is -1");
117 
118 module_param(wwan_status, int, 0444);
119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
120 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
121 		 "default is -1");
122 
123 module_param(als_status, int, 0444);
124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
125 		 "(0 = disabled, 1 = enabled). "
126 		 "default is 0");
127 
128 /*
129  * Some events we use, same for all Asus
130  */
131 #define ATKD_BRNUP_MIN		0x10
132 #define ATKD_BRNUP_MAX		0x1f
133 #define ATKD_BRNDOWN_MIN	0x20
134 #define ATKD_BRNDOWN_MAX	0x2f
135 #define ATKD_BRNDOWN		0x20
136 #define ATKD_BRNUP		0x2f
137 #define ATKD_LCD_ON	0x33
138 #define ATKD_LCD_OFF	0x34
139 
140 /*
141  * Known bits returned by \_SB.ATKD.HWRS
142  */
143 #define WL_HWRS		0x80
144 #define BT_HWRS		0x100
145 
146 /*
147  * Flags for hotk status
148  * WL_ON and BT_ON are also used for wireless_status()
149  */
150 #define WL_RSTS		0x01	/* internal Wifi */
151 #define BT_RSTS		0x02	/* internal Bluetooth */
152 #define WM_RSTS		0x08    /* internal wimax */
153 #define WW_RSTS		0x20    /* internal wwan */
154 
155 /* WLED and BLED type */
156 #define TYPE_UNKNOWN	0
157 #define TYPE_LED	1
158 #define TYPE_RFKILL	2
159 
160 /* LED */
161 #define METHOD_MLED		"MLED"
162 #define METHOD_TLED		"TLED"
163 #define METHOD_RLED		"RLED"	/* W1JC */
164 #define METHOD_PLED		"PLED"	/* A7J */
165 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
166 
167 /* LEDD */
168 #define METHOD_LEDD		"SLCM"
169 
170 /*
171  * Bluetooth and WLAN
172  * WLED and BLED are not handled like other XLED, because in some dsdt
173  * they also control the WLAN/Bluetooth device.
174  */
175 #define METHOD_WLAN		"WLED"
176 #define METHOD_BLUETOOTH	"BLED"
177 
178 /* WWAN and WIMAX */
179 #define METHOD_WWAN		"GSMC"
180 #define METHOD_WIMAX		"WMXC"
181 
182 #define METHOD_WL_STATUS	"RSTS"
183 
184 /* Brightness */
185 #define METHOD_BRIGHTNESS_SET	"SPLV"
186 #define METHOD_BRIGHTNESS_GET	"GPLV"
187 
188 /* Display */
189 #define METHOD_SWITCH_DISPLAY	"SDSP"
190 
191 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
192 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
193 
194 /* GPS */
195 /* R2H use different handle for GPS on/off */
196 #define METHOD_GPS_ON		"SDON"
197 #define METHOD_GPS_OFF		"SDOF"
198 #define METHOD_GPS_STATUS	"GPST"
199 
200 /* Keyboard light */
201 #define METHOD_KBD_LIGHT_SET	"SLKB"
202 #define METHOD_KBD_LIGHT_GET	"GLKB"
203 
204 /* For Pegatron Lucid tablet */
205 #define DEVICE_NAME_PEGA	"Lucid"
206 
207 #define METHOD_PEGA_ENABLE	"ENPR"
208 #define METHOD_PEGA_DISABLE	"DAPR"
209 #define PEGA_WLAN	0x00
210 #define PEGA_BLUETOOTH	0x01
211 #define PEGA_WWAN	0x02
212 #define PEGA_ALS	0x04
213 #define PEGA_ALS_POWER	0x05
214 
215 #define METHOD_PEGA_READ	"RDLN"
216 #define PEGA_READ_ALS_H	0x02
217 #define PEGA_READ_ALS_L	0x03
218 
219 #define PEGA_ACCEL_NAME "pega_accel"
220 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
221 #define METHOD_XLRX "XLRX"
222 #define METHOD_XLRY "XLRY"
223 #define METHOD_XLRZ "XLRZ"
224 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
225 #define PEGA_ACC_RETRIES 3
226 
227 /*
228  * Define a specific led structure to keep the main structure clean
229  */
230 struct asus_led {
231 	int wk;
232 	struct work_struct work;
233 	struct led_classdev led;
234 	struct asus_laptop *asus;
235 	const char *method;
236 };
237 
238 /*
239  * Same thing for rfkill
240  */
241 struct asus_rfkill {
242 	/* type of control. Maps to PEGA_* values or *_RSTS  */
243 	int control_id;
244 	struct rfkill *rfkill;
245 	struct asus_laptop *asus;
246 };
247 
248 /*
249  * This is the main structure, we can use it to store anything interesting
250  * about the hotk device
251  */
252 struct asus_laptop {
253 	char *name;		/* laptop name */
254 
255 	struct acpi_table_header *dsdt_info;
256 	struct platform_device *platform_device;
257 	struct acpi_device *device;		/* the device we are in */
258 	struct backlight_device *backlight_device;
259 
260 	struct input_dev *inputdev;
261 	struct key_entry *keymap;
262 	struct input_polled_dev *pega_accel_poll;
263 
264 	struct asus_led wled;
265 	struct asus_led bled;
266 	struct asus_led mled;
267 	struct asus_led tled;
268 	struct asus_led rled;
269 	struct asus_led pled;
270 	struct asus_led gled;
271 	struct asus_led kled;
272 	struct workqueue_struct *led_workqueue;
273 
274 	int wled_type;
275 	int bled_type;
276 	int wireless_status;
277 	bool have_rsts;
278 	bool is_pega_lucid;
279 	bool pega_acc_live;
280 	int pega_acc_x;
281 	int pega_acc_y;
282 	int pega_acc_z;
283 
284 	struct asus_rfkill wlan;
285 	struct asus_rfkill bluetooth;
286 	struct asus_rfkill wwan;
287 	struct asus_rfkill wimax;
288 	struct asus_rfkill gps;
289 
290 	acpi_handle handle;	/* the handle of the hotk device */
291 	u32 ledd_status;	/* status of the LED display */
292 	u8 light_level;		/* light sensor level */
293 	u8 light_switch;	/* light sensor switch value */
294 	u16 event_count[128];	/* count for each event TODO make this better */
295 };
296 
297 static const struct key_entry asus_keymap[] = {
298 	/* Lenovo SL Specific keycodes */
299 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
300 	{KE_KEY, 0x05, { KEY_WLAN } },
301 	{KE_KEY, 0x08, { KEY_F13 } },
302 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
303 	{KE_KEY, 0x17, { KEY_ZOOM } },
304 	{KE_KEY, 0x1f, { KEY_BATTERY } },
305 	/* End of Lenovo SL Specific keycodes */
306 	{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
307 	{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
308 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
309 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
310 	{KE_KEY, 0x32, { KEY_MUTE } },
311 	{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
312 	{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
313 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
314 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
315 	{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
316 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
317 	{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
318 	{KE_KEY, 0x50, { KEY_EMAIL } },
319 	{KE_KEY, 0x51, { KEY_WWW } },
320 	{KE_KEY, 0x55, { KEY_CALC } },
321 	{KE_IGNORE, 0x57, },  /* Battery mode */
322 	{KE_IGNORE, 0x58, },  /* AC mode */
323 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
324 	{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
325 	{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
326 	{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
327 	{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
328 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
329 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
330 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
331 	{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
332 	{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
333 	{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
334 	{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
335 	{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
336 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
337 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
338 	{KE_IGNORE, 0x6E, },  /* Low Battery notification */
339 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
340 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
341 	{KE_KEY, 0x82, { KEY_CAMERA } },
342 	{KE_KEY, 0x88, { KEY_RFKILL  } }, /* Radio Toggle Key */
343 	{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
344 	{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
345 	{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
346 	{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
347 	{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
348 	{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
349 	{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
350 	{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
351 	{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
352 	{KE_KEY, 0x95, { KEY_MEDIA } },
353 	{KE_KEY, 0x99, { KEY_PHONE } },
354 	{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
355 	{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
356 	{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
357 	{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
358 	{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
359 	{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
360 	{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
361 	{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
362 	{KE_KEY, 0xB5, { KEY_CALC } },
363 	{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
364 	{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
365 	{KE_END, 0},
366 };
367 
368 
369 /*
370  * This function evaluates an ACPI method, given an int as parameter, the
371  * method is searched within the scope of the handle, can be NULL. The output
372  * of the method is written is output, which can also be NULL
373  *
374  * returns 0 if write is successful, -1 else.
375  */
376 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
377 			      struct acpi_buffer *output)
378 {
379 	struct acpi_object_list params;	/* list of input parameters (an int) */
380 	union acpi_object in_obj;	/* the only param we use */
381 	acpi_status status;
382 
383 	if (!handle)
384 		return -1;
385 
386 	params.count = 1;
387 	params.pointer = &in_obj;
388 	in_obj.type = ACPI_TYPE_INTEGER;
389 	in_obj.integer.value = val;
390 
391 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
392 	if (status == AE_OK)
393 		return 0;
394 	else
395 		return -1;
396 }
397 
398 static int write_acpi_int(acpi_handle handle, const char *method, int val)
399 {
400 	return write_acpi_int_ret(handle, method, val, NULL);
401 }
402 
403 static int acpi_check_handle(acpi_handle handle, const char *method,
404 			     acpi_handle *ret)
405 {
406 	acpi_status status;
407 
408 	if (method == NULL)
409 		return -ENODEV;
410 
411 	if (ret)
412 		status = acpi_get_handle(handle, (char *)method,
413 					 ret);
414 	else {
415 		acpi_handle dummy;
416 
417 		status = acpi_get_handle(handle, (char *)method,
418 					 &dummy);
419 	}
420 
421 	if (status != AE_OK) {
422 		if (ret)
423 			pr_warn("Error finding %s\n", method);
424 		return -ENODEV;
425 	}
426 	return 0;
427 }
428 
429 static bool asus_check_pega_lucid(struct asus_laptop *asus)
430 {
431 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
432 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
433 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
434 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
435 }
436 
437 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
438 {
439 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
440 	return write_acpi_int(asus->handle, method, unit);
441 }
442 
443 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
444 {
445 	int i, delta;
446 	unsigned long long val;
447 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
448 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
449 
450 		/* The output is noisy.  From reading the ASL
451 		 * dissassembly, timeout errors are returned with 1's
452 		 * in the high word, and the lack of locking around
453 		 * thei hi/lo byte reads means that a transition
454 		 * between (for example) -1 and 0 could be read as
455 		 * 0xff00 or 0x00ff. */
456 		delta = abs(curr - (short)val);
457 		if (delta < 128 && !(val & ~0xffff))
458 			break;
459 	}
460 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
461 }
462 
463 static void pega_accel_poll(struct input_polled_dev *ipd)
464 {
465 	struct device *parent = ipd->input->dev.parent;
466 	struct asus_laptop *asus = dev_get_drvdata(parent);
467 
468 	/* In some cases, the very first call to poll causes a
469 	 * recursive fault under the polldev worker.  This is
470 	 * apparently related to very early userspace access to the
471 	 * device, and perhaps a firmware bug. Fake the first report. */
472 	if (!asus->pega_acc_live) {
473 		asus->pega_acc_live = true;
474 		input_report_abs(ipd->input, ABS_X, 0);
475 		input_report_abs(ipd->input, ABS_Y, 0);
476 		input_report_abs(ipd->input, ABS_Z, 0);
477 		input_sync(ipd->input);
478 		return;
479 	}
480 
481 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
482 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
483 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
484 
485 	/* Note transform, convert to "right/up/out" in the native
486 	 * landscape orientation (i.e. the vector is the direction of
487 	 * "real up" in the device's cartiesian coordinates). */
488 	input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
489 	input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
490 	input_report_abs(ipd->input, ABS_Z,  asus->pega_acc_z);
491 	input_sync(ipd->input);
492 }
493 
494 static void pega_accel_exit(struct asus_laptop *asus)
495 {
496 	if (asus->pega_accel_poll) {
497 		input_unregister_polled_device(asus->pega_accel_poll);
498 		input_free_polled_device(asus->pega_accel_poll);
499 	}
500 	asus->pega_accel_poll = NULL;
501 }
502 
503 static int pega_accel_init(struct asus_laptop *asus)
504 {
505 	int err;
506 	struct input_polled_dev *ipd;
507 
508 	if (!asus->is_pega_lucid)
509 		return -ENODEV;
510 
511 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
512 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
513 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
514 		return -ENODEV;
515 
516 	ipd = input_allocate_polled_device();
517 	if (!ipd)
518 		return -ENOMEM;
519 
520 	ipd->poll = pega_accel_poll;
521 	ipd->poll_interval = 125;
522 	ipd->poll_interval_min = 50;
523 	ipd->poll_interval_max = 2000;
524 
525 	ipd->input->name = PEGA_ACCEL_DESC;
526 	ipd->input->phys = PEGA_ACCEL_NAME "/input0";
527 	ipd->input->dev.parent = &asus->platform_device->dev;
528 	ipd->input->id.bustype = BUS_HOST;
529 
530 	set_bit(EV_ABS, ipd->input->evbit);
531 	input_set_abs_params(ipd->input, ABS_X,
532 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
533 	input_set_abs_params(ipd->input, ABS_Y,
534 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
535 	input_set_abs_params(ipd->input, ABS_Z,
536 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
537 
538 	err = input_register_polled_device(ipd);
539 	if (err)
540 		goto exit;
541 
542 	asus->pega_accel_poll = ipd;
543 	return 0;
544 
545 exit:
546 	input_free_polled_device(ipd);
547 	return err;
548 }
549 
550 /* Generic LED function */
551 static int asus_led_set(struct asus_laptop *asus, const char *method,
552 			 int value)
553 {
554 	if (!strcmp(method, METHOD_MLED))
555 		value = !value;
556 	else if (!strcmp(method, METHOD_GLED))
557 		value = !value + 1;
558 	else
559 		value = !!value;
560 
561 	return write_acpi_int(asus->handle, method, value);
562 }
563 
564 /*
565  * LEDs
566  */
567 /* /sys/class/led handlers */
568 static void asus_led_cdev_set(struct led_classdev *led_cdev,
569 			 enum led_brightness value)
570 {
571 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
572 	struct asus_laptop *asus = led->asus;
573 
574 	led->wk = !!value;
575 	queue_work(asus->led_workqueue, &led->work);
576 }
577 
578 static void asus_led_cdev_update(struct work_struct *work)
579 {
580 	struct asus_led *led = container_of(work, struct asus_led, work);
581 	struct asus_laptop *asus = led->asus;
582 
583 	asus_led_set(asus, led->method, led->wk);
584 }
585 
586 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
587 {
588 	return led_cdev->brightness;
589 }
590 
591 /*
592  * Keyboard backlight (also a LED)
593  */
594 static int asus_kled_lvl(struct asus_laptop *asus)
595 {
596 	unsigned long long kblv;
597 	struct acpi_object_list params;
598 	union acpi_object in_obj;
599 	acpi_status rv;
600 
601 	params.count = 1;
602 	params.pointer = &in_obj;
603 	in_obj.type = ACPI_TYPE_INTEGER;
604 	in_obj.integer.value = 2;
605 
606 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
607 				   &params, &kblv);
608 	if (ACPI_FAILURE(rv)) {
609 		pr_warn("Error reading kled level\n");
610 		return -ENODEV;
611 	}
612 	return kblv;
613 }
614 
615 static int asus_kled_set(struct asus_laptop *asus, int kblv)
616 {
617 	if (kblv > 0)
618 		kblv = (1 << 7) | (kblv & 0x7F);
619 	else
620 		kblv = 0;
621 
622 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
623 		pr_warn("Keyboard LED display write failed\n");
624 		return -EINVAL;
625 	}
626 	return 0;
627 }
628 
629 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
630 			      enum led_brightness value)
631 {
632 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
633 	struct asus_laptop *asus = led->asus;
634 
635 	led->wk = value;
636 	queue_work(asus->led_workqueue, &led->work);
637 }
638 
639 static void asus_kled_cdev_update(struct work_struct *work)
640 {
641 	struct asus_led *led = container_of(work, struct asus_led, work);
642 	struct asus_laptop *asus = led->asus;
643 
644 	asus_kled_set(asus, led->wk);
645 }
646 
647 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
648 {
649 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
650 	struct asus_laptop *asus = led->asus;
651 
652 	return asus_kled_lvl(asus);
653 }
654 
655 static void asus_led_exit(struct asus_laptop *asus)
656 {
657 	if (!IS_ERR_OR_NULL(asus->wled.led.dev))
658 		led_classdev_unregister(&asus->wled.led);
659 	if (!IS_ERR_OR_NULL(asus->bled.led.dev))
660 		led_classdev_unregister(&asus->bled.led);
661 	if (!IS_ERR_OR_NULL(asus->mled.led.dev))
662 		led_classdev_unregister(&asus->mled.led);
663 	if (!IS_ERR_OR_NULL(asus->tled.led.dev))
664 		led_classdev_unregister(&asus->tled.led);
665 	if (!IS_ERR_OR_NULL(asus->pled.led.dev))
666 		led_classdev_unregister(&asus->pled.led);
667 	if (!IS_ERR_OR_NULL(asus->rled.led.dev))
668 		led_classdev_unregister(&asus->rled.led);
669 	if (!IS_ERR_OR_NULL(asus->gled.led.dev))
670 		led_classdev_unregister(&asus->gled.led);
671 	if (!IS_ERR_OR_NULL(asus->kled.led.dev))
672 		led_classdev_unregister(&asus->kled.led);
673 	if (asus->led_workqueue) {
674 		destroy_workqueue(asus->led_workqueue);
675 		asus->led_workqueue = NULL;
676 	}
677 }
678 
679 /*  Ugly macro, need to fix that later */
680 static int asus_led_register(struct asus_laptop *asus,
681 			     struct asus_led *led,
682 			     const char *name, const char *method)
683 {
684 	struct led_classdev *led_cdev = &led->led;
685 
686 	if (!method || acpi_check_handle(asus->handle, method, NULL))
687 		return 0; /* Led not present */
688 
689 	led->asus = asus;
690 	led->method = method;
691 
692 	INIT_WORK(&led->work, asus_led_cdev_update);
693 	led_cdev->name = name;
694 	led_cdev->brightness_set = asus_led_cdev_set;
695 	led_cdev->brightness_get = asus_led_cdev_get;
696 	led_cdev->max_brightness = 1;
697 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
698 }
699 
700 static int asus_led_init(struct asus_laptop *asus)
701 {
702 	int r = 0;
703 
704 	/*
705 	 * The Pegatron Lucid has no physical leds, but all methods are
706 	 * available in the DSDT...
707 	 */
708 	if (asus->is_pega_lucid)
709 		return 0;
710 
711 	/*
712 	 * Functions that actually update the LED's are called from a
713 	 * workqueue. By doing this as separate work rather than when the LED
714 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
715 	 * potentially bad time, such as a timer interrupt.
716 	 */
717 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
718 	if (!asus->led_workqueue)
719 		return -ENOMEM;
720 
721 	if (asus->wled_type == TYPE_LED)
722 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
723 				      METHOD_WLAN);
724 	if (r)
725 		goto error;
726 	if (asus->bled_type == TYPE_LED)
727 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
728 				      METHOD_BLUETOOTH);
729 	if (r)
730 		goto error;
731 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
732 	if (r)
733 		goto error;
734 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
735 	if (r)
736 		goto error;
737 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
738 	if (r)
739 		goto error;
740 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
741 	if (r)
742 		goto error;
743 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
744 	if (r)
745 		goto error;
746 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
747 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
748 		struct asus_led *led = &asus->kled;
749 		struct led_classdev *cdev = &led->led;
750 
751 		led->asus = asus;
752 
753 		INIT_WORK(&led->work, asus_kled_cdev_update);
754 		cdev->name = "asus::kbd_backlight";
755 		cdev->brightness_set = asus_kled_cdev_set;
756 		cdev->brightness_get = asus_kled_cdev_get;
757 		cdev->max_brightness = 3;
758 		r = led_classdev_register(&asus->platform_device->dev, cdev);
759 	}
760 error:
761 	if (r)
762 		asus_led_exit(asus);
763 	return r;
764 }
765 
766 /*
767  * Backlight device
768  */
769 static int asus_read_brightness(struct backlight_device *bd)
770 {
771 	struct asus_laptop *asus = bl_get_data(bd);
772 	unsigned long long value;
773 	acpi_status rv = AE_OK;
774 
775 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
776 				   NULL, &value);
777 	if (ACPI_FAILURE(rv))
778 		pr_warn("Error reading brightness\n");
779 
780 	return value;
781 }
782 
783 static int asus_set_brightness(struct backlight_device *bd, int value)
784 {
785 	struct asus_laptop *asus = bl_get_data(bd);
786 
787 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
788 		pr_warn("Error changing brightness\n");
789 		return -EIO;
790 	}
791 	return 0;
792 }
793 
794 static int update_bl_status(struct backlight_device *bd)
795 {
796 	int value = bd->props.brightness;
797 
798 	return asus_set_brightness(bd, value);
799 }
800 
801 static const struct backlight_ops asusbl_ops = {
802 	.get_brightness = asus_read_brightness,
803 	.update_status = update_bl_status,
804 };
805 
806 static int asus_backlight_notify(struct asus_laptop *asus)
807 {
808 	struct backlight_device *bd = asus->backlight_device;
809 	int old = bd->props.brightness;
810 
811 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
812 
813 	return old;
814 }
815 
816 static int asus_backlight_init(struct asus_laptop *asus)
817 {
818 	struct backlight_device *bd;
819 	struct backlight_properties props;
820 
821 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
822 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
823 		return 0;
824 
825 	memset(&props, 0, sizeof(struct backlight_properties));
826 	props.max_brightness = 15;
827 	props.type = BACKLIGHT_PLATFORM;
828 
829 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
830 				       &asus->platform_device->dev, asus,
831 				       &asusbl_ops, &props);
832 	if (IS_ERR(bd)) {
833 		pr_err("Could not register asus backlight device\n");
834 		asus->backlight_device = NULL;
835 		return PTR_ERR(bd);
836 	}
837 
838 	asus->backlight_device = bd;
839 	bd->props.brightness = asus_read_brightness(bd);
840 	bd->props.power = FB_BLANK_UNBLANK;
841 	backlight_update_status(bd);
842 	return 0;
843 }
844 
845 static void asus_backlight_exit(struct asus_laptop *asus)
846 {
847 	backlight_device_unregister(asus->backlight_device);
848 	asus->backlight_device = NULL;
849 }
850 
851 /*
852  * Platform device handlers
853  */
854 
855 /*
856  * We write our info in page, we begin at offset off and cannot write more
857  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
858  * number of bytes written in page
859  */
860 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
861 			  char *page)
862 {
863 	struct asus_laptop *asus = dev_get_drvdata(dev);
864 	int len = 0;
865 	unsigned long long temp;
866 	char buf[16];		/* enough for all info */
867 	acpi_status rv = AE_OK;
868 
869 	/*
870 	 * We use the easy way, we don't care of off and count,
871 	 * so we don't set eof to 1
872 	 */
873 
874 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
875 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
876 	/*
877 	 * The SFUN method probably allows the original driver to get the list
878 	 * of features supported by a given model. For now, 0x0100 or 0x0800
879 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
880 	 * The significance of others is yet to be found.
881 	 */
882 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
883 	if (!ACPI_FAILURE(rv))
884 		len += sprintf(page + len, "SFUN value         : %#x\n",
885 			       (uint) temp);
886 	/*
887 	 * The HWRS method return informations about the hardware.
888 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
889 	 * 0x40 for WWAN, 0x10 for WIMAX.
890 	 * The significance of others is yet to be found.
891 	 * We don't currently use this for device detection, and it
892 	 * takes several seconds to run on some systems.
893 	 */
894 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
895 	if (!ACPI_FAILURE(rv))
896 		len += sprintf(page + len, "HWRS value         : %#x\n",
897 			       (uint) temp);
898 	/*
899 	 * Another value for userspace: the ASYM method returns 0x02 for
900 	 * battery low and 0x04 for battery critical, its readings tend to be
901 	 * more accurate than those provided by _BST.
902 	 * Note: since not all the laptops provide this method, errors are
903 	 * silently ignored.
904 	 */
905 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
906 	if (!ACPI_FAILURE(rv))
907 		len += sprintf(page + len, "ASYM value         : %#x\n",
908 			       (uint) temp);
909 	if (asus->dsdt_info) {
910 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
911 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
912 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
913 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
914 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
915 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
916 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
917 		len += sprintf(page + len, "OEM id             : %s\n", buf);
918 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
919 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
920 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
921 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
922 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
923 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
924 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
925 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
926 	}
927 
928 	return len;
929 }
930 static DEVICE_ATTR_RO(infos);
931 
932 static int parse_arg(const char *buf, unsigned long count, int *val)
933 {
934 	if (!count)
935 		return 0;
936 	if (count > 31)
937 		return -EINVAL;
938 	if (sscanf(buf, "%i", val) != 1)
939 		return -EINVAL;
940 	return count;
941 }
942 
943 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
944 			      const char *buf, size_t count,
945 			      const char *method)
946 {
947 	int rv, value;
948 	int out = 0;
949 
950 	rv = parse_arg(buf, count, &value);
951 	if (rv > 0)
952 		out = value ? 1 : 0;
953 
954 	if (write_acpi_int(asus->handle, method, value))
955 		return -ENODEV;
956 	return rv;
957 }
958 
959 /*
960  * LEDD display
961  */
962 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
963 			 char *buf)
964 {
965 	struct asus_laptop *asus = dev_get_drvdata(dev);
966 
967 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
968 }
969 
970 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
971 			  const char *buf, size_t count)
972 {
973 	struct asus_laptop *asus = dev_get_drvdata(dev);
974 	int rv, value;
975 
976 	rv = parse_arg(buf, count, &value);
977 	if (rv > 0) {
978 		if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
979 			pr_warn("LED display write failed\n");
980 			return -ENODEV;
981 		}
982 		asus->ledd_status = (u32) value;
983 	}
984 	return rv;
985 }
986 static DEVICE_ATTR_RW(ledd);
987 
988 /*
989  * Wireless
990  */
991 static int asus_wireless_status(struct asus_laptop *asus, int mask)
992 {
993 	unsigned long long status;
994 	acpi_status rv = AE_OK;
995 
996 	if (!asus->have_rsts)
997 		return (asus->wireless_status & mask) ? 1 : 0;
998 
999 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
1000 				   NULL, &status);
1001 	if (ACPI_FAILURE(rv)) {
1002 		pr_warn("Error reading Wireless status\n");
1003 		return -EINVAL;
1004 	}
1005 	return !!(status & mask);
1006 }
1007 
1008 /*
1009  * WLAN
1010  */
1011 static int asus_wlan_set(struct asus_laptop *asus, int status)
1012 {
1013 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1014 		pr_warn("Error setting wlan status to %d\n", status);
1015 		return -EIO;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
1021 			 char *buf)
1022 {
1023 	struct asus_laptop *asus = dev_get_drvdata(dev);
1024 
1025 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1026 }
1027 
1028 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
1029 			  const char *buf, size_t count)
1030 {
1031 	struct asus_laptop *asus = dev_get_drvdata(dev);
1032 
1033 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1034 }
1035 static DEVICE_ATTR_RW(wlan);
1036 
1037 /*e
1038  * Bluetooth
1039  */
1040 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1041 {
1042 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1043 		pr_warn("Error setting bluetooth status to %d\n", status);
1044 		return -EIO;
1045 	}
1046 	return 0;
1047 }
1048 
1049 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1050 			      char *buf)
1051 {
1052 	struct asus_laptop *asus = dev_get_drvdata(dev);
1053 
1054 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1055 }
1056 
1057 static ssize_t bluetooth_store(struct device *dev,
1058 			       struct device_attribute *attr, const char *buf,
1059 			       size_t count)
1060 {
1061 	struct asus_laptop *asus = dev_get_drvdata(dev);
1062 
1063 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1064 }
1065 static DEVICE_ATTR_RW(bluetooth);
1066 
1067 /*
1068  * Wimax
1069  */
1070 static int asus_wimax_set(struct asus_laptop *asus, int status)
1071 {
1072 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1073 		pr_warn("Error setting wimax status to %d\n", status);
1074 		return -EIO;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1080 			  char *buf)
1081 {
1082 	struct asus_laptop *asus = dev_get_drvdata(dev);
1083 
1084 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1085 }
1086 
1087 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1088 			   const char *buf, size_t count)
1089 {
1090 	struct asus_laptop *asus = dev_get_drvdata(dev);
1091 
1092 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1093 }
1094 static DEVICE_ATTR_RW(wimax);
1095 
1096 /*
1097  * Wwan
1098  */
1099 static int asus_wwan_set(struct asus_laptop *asus, int status)
1100 {
1101 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1102 		pr_warn("Error setting wwan status to %d\n", status);
1103 		return -EIO;
1104 	}
1105 	return 0;
1106 }
1107 
1108 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1109 			 char *buf)
1110 {
1111 	struct asus_laptop *asus = dev_get_drvdata(dev);
1112 
1113 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1114 }
1115 
1116 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1117 			  const char *buf, size_t count)
1118 {
1119 	struct asus_laptop *asus = dev_get_drvdata(dev);
1120 
1121 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1122 }
1123 static DEVICE_ATTR_RW(wwan);
1124 
1125 /*
1126  * Display
1127  */
1128 static void asus_set_display(struct asus_laptop *asus, int value)
1129 {
1130 	/* no sanity check needed for now */
1131 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1132 		pr_warn("Error setting display\n");
1133 	return;
1134 }
1135 
1136 /*
1137  * Experimental support for display switching. As of now: 1 should activate
1138  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1139  * Any combination (bitwise) of these will suffice. I never actually tested 4
1140  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1141  * for more info.
1142  */
1143 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1144 			     const char *buf, size_t count)
1145 {
1146 	struct asus_laptop *asus = dev_get_drvdata(dev);
1147 	int rv, value;
1148 
1149 	rv = parse_arg(buf, count, &value);
1150 	if (rv > 0)
1151 		asus_set_display(asus, value);
1152 	return rv;
1153 }
1154 static DEVICE_ATTR_WO(display);
1155 
1156 /*
1157  * Light Sens
1158  */
1159 static void asus_als_switch(struct asus_laptop *asus, int value)
1160 {
1161 	int ret;
1162 
1163 	if (asus->is_pega_lucid) {
1164 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1165 		if (!ret)
1166 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1167 	} else {
1168 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1169 	}
1170 	if (ret)
1171 		pr_warning("Error setting light sensor switch\n");
1172 
1173 	asus->light_switch = value;
1174 }
1175 
1176 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1177 			      char *buf)
1178 {
1179 	struct asus_laptop *asus = dev_get_drvdata(dev);
1180 
1181 	return sprintf(buf, "%d\n", asus->light_switch);
1182 }
1183 
1184 static ssize_t ls_switch_store(struct device *dev,
1185 			       struct device_attribute *attr, const char *buf,
1186 			       size_t count)
1187 {
1188 	struct asus_laptop *asus = dev_get_drvdata(dev);
1189 	int rv, value;
1190 
1191 	rv = parse_arg(buf, count, &value);
1192 	if (rv > 0)
1193 		asus_als_switch(asus, value ? 1 : 0);
1194 
1195 	return rv;
1196 }
1197 static DEVICE_ATTR_RW(ls_switch);
1198 
1199 static void asus_als_level(struct asus_laptop *asus, int value)
1200 {
1201 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1202 		pr_warn("Error setting light sensor level\n");
1203 	asus->light_level = value;
1204 }
1205 
1206 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1207 			     char *buf)
1208 {
1209 	struct asus_laptop *asus = dev_get_drvdata(dev);
1210 
1211 	return sprintf(buf, "%d\n", asus->light_level);
1212 }
1213 
1214 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1215 			      const char *buf, size_t count)
1216 {
1217 	struct asus_laptop *asus = dev_get_drvdata(dev);
1218 	int rv, value;
1219 
1220 	rv = parse_arg(buf, count, &value);
1221 	if (rv > 0) {
1222 		value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1223 		/* 0 <= value <= 15 */
1224 		asus_als_level(asus, value);
1225 	}
1226 
1227 	return rv;
1228 }
1229 static DEVICE_ATTR_RW(ls_level);
1230 
1231 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1232 {
1233 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1234 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1235 				     &buffer);
1236 	if (!err) {
1237 		union acpi_object *obj = buffer.pointer;
1238 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1239 			*result = obj->integer.value;
1240 		else
1241 			err = -EIO;
1242 	}
1243 	return err;
1244 }
1245 
1246 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1247 			     char *buf)
1248 {
1249 	struct asus_laptop *asus = dev_get_drvdata(dev);
1250 	int err, hi, lo;
1251 
1252 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1253 	if (!err)
1254 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1255 	if (!err)
1256 		return sprintf(buf, "%d\n", 10 * hi + lo);
1257 	return err;
1258 }
1259 static DEVICE_ATTR_RO(ls_value);
1260 
1261 /*
1262  * GPS
1263  */
1264 static int asus_gps_status(struct asus_laptop *asus)
1265 {
1266 	unsigned long long status;
1267 	acpi_status rv = AE_OK;
1268 
1269 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1270 				   NULL, &status);
1271 	if (ACPI_FAILURE(rv)) {
1272 		pr_warn("Error reading GPS status\n");
1273 		return -ENODEV;
1274 	}
1275 	return !!status;
1276 }
1277 
1278 static int asus_gps_switch(struct asus_laptop *asus, int status)
1279 {
1280 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1281 
1282 	if (write_acpi_int(asus->handle, meth, 0x02))
1283 		return -ENODEV;
1284 	return 0;
1285 }
1286 
1287 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1288 			char *buf)
1289 {
1290 	struct asus_laptop *asus = dev_get_drvdata(dev);
1291 
1292 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1293 }
1294 
1295 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1296 			 const char *buf, size_t count)
1297 {
1298 	struct asus_laptop *asus = dev_get_drvdata(dev);
1299 	int rv, value;
1300 	int ret;
1301 
1302 	rv = parse_arg(buf, count, &value);
1303 	if (rv <= 0)
1304 		return -EINVAL;
1305 	ret = asus_gps_switch(asus, !!value);
1306 	if (ret)
1307 		return ret;
1308 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1309 	return rv;
1310 }
1311 static DEVICE_ATTR_RW(gps);
1312 
1313 /*
1314  * rfkill
1315  */
1316 static int asus_gps_rfkill_set(void *data, bool blocked)
1317 {
1318 	struct asus_laptop *asus = data;
1319 
1320 	return asus_gps_switch(asus, !blocked);
1321 }
1322 
1323 static const struct rfkill_ops asus_gps_rfkill_ops = {
1324 	.set_block = asus_gps_rfkill_set,
1325 };
1326 
1327 static int asus_rfkill_set(void *data, bool blocked)
1328 {
1329 	struct asus_rfkill *rfk = data;
1330 	struct asus_laptop *asus = rfk->asus;
1331 
1332 	if (rfk->control_id == WL_RSTS)
1333 		return asus_wlan_set(asus, !blocked);
1334 	else if (rfk->control_id == BT_RSTS)
1335 		return asus_bluetooth_set(asus, !blocked);
1336 	else if (rfk->control_id == WM_RSTS)
1337 		return asus_wimax_set(asus, !blocked);
1338 	else if (rfk->control_id == WW_RSTS)
1339 		return asus_wwan_set(asus, !blocked);
1340 
1341 	return -EINVAL;
1342 }
1343 
1344 static const struct rfkill_ops asus_rfkill_ops = {
1345 	.set_block = asus_rfkill_set,
1346 };
1347 
1348 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1349 {
1350 	if (!rfk->rfkill)
1351 		return ;
1352 
1353 	rfkill_unregister(rfk->rfkill);
1354 	rfkill_destroy(rfk->rfkill);
1355 	rfk->rfkill = NULL;
1356 }
1357 
1358 static void asus_rfkill_exit(struct asus_laptop *asus)
1359 {
1360 	asus_rfkill_terminate(&asus->wwan);
1361 	asus_rfkill_terminate(&asus->bluetooth);
1362 	asus_rfkill_terminate(&asus->wlan);
1363 	asus_rfkill_terminate(&asus->gps);
1364 }
1365 
1366 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1367 			     const char *name, int control_id, int type,
1368 			     const struct rfkill_ops *ops)
1369 {
1370 	int result;
1371 
1372 	rfk->control_id = control_id;
1373 	rfk->asus = asus;
1374 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1375 				   type, ops, rfk);
1376 	if (!rfk->rfkill)
1377 		return -EINVAL;
1378 
1379 	result = rfkill_register(rfk->rfkill);
1380 	if (result) {
1381 		rfkill_destroy(rfk->rfkill);
1382 		rfk->rfkill = NULL;
1383 	}
1384 
1385 	return result;
1386 }
1387 
1388 static int asus_rfkill_init(struct asus_laptop *asus)
1389 {
1390 	int result = 0;
1391 
1392 	if (asus->is_pega_lucid)
1393 		return -ENODEV;
1394 
1395 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1396 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1397 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1398 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1399 					   -1, RFKILL_TYPE_GPS,
1400 					   &asus_gps_rfkill_ops);
1401 	if (result)
1402 		goto exit;
1403 
1404 
1405 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1406 	    asus->wled_type == TYPE_RFKILL)
1407 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1408 					   WL_RSTS, RFKILL_TYPE_WLAN,
1409 					   &asus_rfkill_ops);
1410 	if (result)
1411 		goto exit;
1412 
1413 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1414 	    asus->bled_type == TYPE_RFKILL)
1415 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1416 					   "asus-bluetooth", BT_RSTS,
1417 					   RFKILL_TYPE_BLUETOOTH,
1418 					   &asus_rfkill_ops);
1419 	if (result)
1420 		goto exit;
1421 
1422 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1423 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1424 					   WW_RSTS, RFKILL_TYPE_WWAN,
1425 					   &asus_rfkill_ops);
1426 	if (result)
1427 		goto exit;
1428 
1429 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1430 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1431 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1432 					   &asus_rfkill_ops);
1433 	if (result)
1434 		goto exit;
1435 
1436 exit:
1437 	if (result)
1438 		asus_rfkill_exit(asus);
1439 
1440 	return result;
1441 }
1442 
1443 static int pega_rfkill_set(void *data, bool blocked)
1444 {
1445 	struct asus_rfkill *rfk = data;
1446 
1447 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1448 	return ret;
1449 }
1450 
1451 static const struct rfkill_ops pega_rfkill_ops = {
1452 	.set_block = pega_rfkill_set,
1453 };
1454 
1455 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1456 			     const char *name, int controlid, int rfkill_type)
1457 {
1458 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1459 				 &pega_rfkill_ops);
1460 }
1461 
1462 static int pega_rfkill_init(struct asus_laptop *asus)
1463 {
1464 	int ret = 0;
1465 
1466 	if(!asus->is_pega_lucid)
1467 		return -ENODEV;
1468 
1469 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1470 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1471 	if(ret)
1472 		goto exit;
1473 
1474 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1475 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1476 	if(ret)
1477 		goto exit;
1478 
1479 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1480 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1481 
1482 exit:
1483 	if (ret)
1484 		asus_rfkill_exit(asus);
1485 
1486 	return ret;
1487 }
1488 
1489 /*
1490  * Input device (i.e. hotkeys)
1491  */
1492 static void asus_input_notify(struct asus_laptop *asus, int event)
1493 {
1494 	if (!asus->inputdev)
1495 		return ;
1496 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1497 		pr_info("Unknown key %x pressed\n", event);
1498 }
1499 
1500 static int asus_input_init(struct asus_laptop *asus)
1501 {
1502 	struct input_dev *input;
1503 	int error;
1504 
1505 	input = input_allocate_device();
1506 	if (!input)
1507 		return -ENOMEM;
1508 
1509 	input->name = "Asus Laptop extra buttons";
1510 	input->phys = ASUS_LAPTOP_FILE "/input0";
1511 	input->id.bustype = BUS_HOST;
1512 	input->dev.parent = &asus->platform_device->dev;
1513 
1514 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1515 	if (error) {
1516 		pr_err("Unable to setup input device keymap\n");
1517 		goto err_free_dev;
1518 	}
1519 	error = input_register_device(input);
1520 	if (error) {
1521 		pr_warn("Unable to register input device\n");
1522 		goto err_free_keymap;
1523 	}
1524 
1525 	asus->inputdev = input;
1526 	return 0;
1527 
1528 err_free_keymap:
1529 	sparse_keymap_free(input);
1530 err_free_dev:
1531 	input_free_device(input);
1532 	return error;
1533 }
1534 
1535 static void asus_input_exit(struct asus_laptop *asus)
1536 {
1537 	if (asus->inputdev) {
1538 		sparse_keymap_free(asus->inputdev);
1539 		input_unregister_device(asus->inputdev);
1540 	}
1541 	asus->inputdev = NULL;
1542 }
1543 
1544 /*
1545  * ACPI driver
1546  */
1547 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1548 {
1549 	struct asus_laptop *asus = acpi_driver_data(device);
1550 	u16 count;
1551 
1552 	/* TODO Find a better way to handle events count. */
1553 	count = asus->event_count[event % 128]++;
1554 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1555 					dev_name(&asus->device->dev), event,
1556 					count);
1557 
1558 	if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1559 		event = ATKD_BRNUP;
1560 	else if (event >= ATKD_BRNDOWN_MIN &&
1561 		 event <= ATKD_BRNDOWN_MAX)
1562 		event = ATKD_BRNDOWN;
1563 
1564 	/* Brightness events are special */
1565 	if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1566 		if (asus->backlight_device != NULL) {
1567 			/* Update the backlight device. */
1568 			asus_backlight_notify(asus);
1569 			return ;
1570 		}
1571 	}
1572 
1573 	/* Accelerometer "coarse orientation change" event */
1574 	if (asus->pega_accel_poll && event == 0xEA) {
1575 		kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1576 			       KOBJ_CHANGE);
1577 		return ;
1578 	}
1579 
1580 	asus_input_notify(asus, event);
1581 }
1582 
1583 static struct attribute *asus_attributes[] = {
1584 	&dev_attr_infos.attr,
1585 	&dev_attr_wlan.attr,
1586 	&dev_attr_bluetooth.attr,
1587 	&dev_attr_wimax.attr,
1588 	&dev_attr_wwan.attr,
1589 	&dev_attr_display.attr,
1590 	&dev_attr_ledd.attr,
1591 	&dev_attr_ls_value.attr,
1592 	&dev_attr_ls_level.attr,
1593 	&dev_attr_ls_switch.attr,
1594 	&dev_attr_gps.attr,
1595 	NULL
1596 };
1597 
1598 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1599 				    struct attribute *attr,
1600 				    int idx)
1601 {
1602 	struct device *dev = container_of(kobj, struct device, kobj);
1603 	struct platform_device *pdev = to_platform_device(dev);
1604 	struct asus_laptop *asus = platform_get_drvdata(pdev);
1605 	acpi_handle handle = asus->handle;
1606 	bool supported;
1607 
1608 	if (asus->is_pega_lucid) {
1609 		/* no ls_level interface on the Lucid */
1610 		if (attr == &dev_attr_ls_switch.attr)
1611 			supported = true;
1612 		else if (attr == &dev_attr_ls_level.attr)
1613 			supported = false;
1614 		else
1615 			goto normal;
1616 
1617 		return supported ? attr->mode : 0;
1618 	}
1619 
1620 normal:
1621 	if (attr == &dev_attr_wlan.attr) {
1622 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1623 
1624 	} else if (attr == &dev_attr_bluetooth.attr) {
1625 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1626 
1627 	} else if (attr == &dev_attr_display.attr) {
1628 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1629 
1630 	} else if (attr == &dev_attr_wimax.attr) {
1631 		supported =
1632 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1633 
1634 	} else if (attr == &dev_attr_wwan.attr) {
1635 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1636 
1637 	} else if (attr == &dev_attr_ledd.attr) {
1638 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1639 
1640 	} else if (attr == &dev_attr_ls_switch.attr ||
1641 		   attr == &dev_attr_ls_level.attr) {
1642 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1643 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1644 	} else if (attr == &dev_attr_ls_value.attr) {
1645 		supported = asus->is_pega_lucid;
1646 	} else if (attr == &dev_attr_gps.attr) {
1647 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1648 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1649 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1650 	} else {
1651 		supported = true;
1652 	}
1653 
1654 	return supported ? attr->mode : 0;
1655 }
1656 
1657 
1658 static const struct attribute_group asus_attr_group = {
1659 	.is_visible	= asus_sysfs_is_visible,
1660 	.attrs		= asus_attributes,
1661 };
1662 
1663 static int asus_platform_init(struct asus_laptop *asus)
1664 {
1665 	int result;
1666 
1667 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1668 	if (!asus->platform_device)
1669 		return -ENOMEM;
1670 	platform_set_drvdata(asus->platform_device, asus);
1671 
1672 	result = platform_device_add(asus->platform_device);
1673 	if (result)
1674 		goto fail_platform_device;
1675 
1676 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1677 				    &asus_attr_group);
1678 	if (result)
1679 		goto fail_sysfs;
1680 
1681 	return 0;
1682 
1683 fail_sysfs:
1684 	platform_device_del(asus->platform_device);
1685 fail_platform_device:
1686 	platform_device_put(asus->platform_device);
1687 	return result;
1688 }
1689 
1690 static void asus_platform_exit(struct asus_laptop *asus)
1691 {
1692 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1693 	platform_device_unregister(asus->platform_device);
1694 }
1695 
1696 static struct platform_driver platform_driver = {
1697 	.driver = {
1698 		.name = ASUS_LAPTOP_FILE,
1699 	},
1700 };
1701 
1702 /*
1703  * This function is used to initialize the context with right values. In this
1704  * method, we can make all the detection we want, and modify the asus_laptop
1705  * struct
1706  */
1707 static int asus_laptop_get_info(struct asus_laptop *asus)
1708 {
1709 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1710 	union acpi_object *model = NULL;
1711 	unsigned long long bsts_result;
1712 	char *string = NULL;
1713 	acpi_status status;
1714 
1715 	/*
1716 	 * Get DSDT headers early enough to allow for differentiating between
1717 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1718 	 * before doing anything ACPI-specific. Should we encounter a machine,
1719 	 * which needs special handling (i.e. its hotkey device has a different
1720 	 * HID), this bit will be moved.
1721 	 */
1722 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1723 	if (ACPI_FAILURE(status))
1724 		pr_warn("Couldn't get the DSDT table header\n");
1725 
1726 	/* We have to write 0 on init this far for all ASUS models */
1727 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1728 		pr_err("Hotkey initialization failed\n");
1729 		return -ENODEV;
1730 	}
1731 
1732 	/* This needs to be called for some laptops to init properly */
1733 	status =
1734 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1735 	if (ACPI_FAILURE(status))
1736 		pr_warn("Error calling BSTS\n");
1737 	else if (bsts_result)
1738 		pr_notice("BSTS called, 0x%02x returned\n",
1739 		       (uint) bsts_result);
1740 
1741 	/* This too ... */
1742 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1743 		pr_err("Error calling CWAP(%d)\n", wapf);
1744 	/*
1745 	 * Try to match the object returned by INIT to the specific model.
1746 	 * Handle every possible object (or the lack of thereof) the DSDT
1747 	 * writers might throw at us. When in trouble, we pass NULL to
1748 	 * asus_model_match() and try something completely different.
1749 	 */
1750 	if (buffer.pointer) {
1751 		model = buffer.pointer;
1752 		switch (model->type) {
1753 		case ACPI_TYPE_STRING:
1754 			string = model->string.pointer;
1755 			break;
1756 		case ACPI_TYPE_BUFFER:
1757 			string = model->buffer.pointer;
1758 			break;
1759 		default:
1760 			string = "";
1761 			break;
1762 		}
1763 	}
1764 	asus->name = kstrdup(string, GFP_KERNEL);
1765 	if (!asus->name) {
1766 		kfree(buffer.pointer);
1767 		return -ENOMEM;
1768 	}
1769 
1770 	if (string)
1771 		pr_notice("  %s model detected\n", string);
1772 
1773 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1774 		asus->have_rsts = true;
1775 
1776 	kfree(model);
1777 
1778 	return AE_OK;
1779 }
1780 
1781 static int asus_acpi_init(struct asus_laptop *asus)
1782 {
1783 	int result = 0;
1784 
1785 	result = acpi_bus_get_status(asus->device);
1786 	if (result)
1787 		return result;
1788 	if (!asus->device->status.present) {
1789 		pr_err("Hotkey device not present, aborting\n");
1790 		return -ENODEV;
1791 	}
1792 
1793 	result = asus_laptop_get_info(asus);
1794 	if (result)
1795 		return result;
1796 
1797 	if (!strcmp(bled_type, "led"))
1798 		asus->bled_type = TYPE_LED;
1799 	else if (!strcmp(bled_type, "rfkill"))
1800 		asus->bled_type = TYPE_RFKILL;
1801 
1802 	if (!strcmp(wled_type, "led"))
1803 		asus->wled_type = TYPE_LED;
1804 	else if (!strcmp(wled_type, "rfkill"))
1805 		asus->wled_type = TYPE_RFKILL;
1806 
1807 	if (bluetooth_status >= 0)
1808 		asus_bluetooth_set(asus, !!bluetooth_status);
1809 
1810 	if (wlan_status >= 0)
1811 		asus_wlan_set(asus, !!wlan_status);
1812 
1813 	if (wimax_status >= 0)
1814 		asus_wimax_set(asus, !!wimax_status);
1815 
1816 	if (wwan_status >= 0)
1817 		asus_wwan_set(asus, !!wwan_status);
1818 
1819 	/* Keyboard Backlight is on by default */
1820 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1821 		asus_kled_set(asus, 1);
1822 
1823 	/* LED display is off by default */
1824 	asus->ledd_status = 0xFFF;
1825 
1826 	/* Set initial values of light sensor and level */
1827 	asus->light_switch = !!als_status;
1828 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1829 
1830 	if (asus->is_pega_lucid) {
1831 		asus_als_switch(asus, asus->light_switch);
1832 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1833 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1834 		asus_als_switch(asus, asus->light_switch);
1835 		asus_als_level(asus, asus->light_level);
1836 	}
1837 
1838 	return result;
1839 }
1840 
1841 static void asus_dmi_check(void)
1842 {
1843 	const char *model;
1844 
1845 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1846 	if (!model)
1847 		return;
1848 
1849 	/* On L1400B WLED control the sound card, don't mess with it ... */
1850 	if (strncmp(model, "L1400B", 6) == 0) {
1851 		wlan_status = -1;
1852 	}
1853 }
1854 
1855 static bool asus_device_present;
1856 
1857 static int asus_acpi_add(struct acpi_device *device)
1858 {
1859 	struct asus_laptop *asus;
1860 	int result;
1861 
1862 	pr_notice("Asus Laptop Support version %s\n",
1863 		  ASUS_LAPTOP_VERSION);
1864 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1865 	if (!asus)
1866 		return -ENOMEM;
1867 	asus->handle = device->handle;
1868 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1869 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1870 	device->driver_data = asus;
1871 	asus->device = device;
1872 
1873 	asus_dmi_check();
1874 
1875 	result = asus_acpi_init(asus);
1876 	if (result)
1877 		goto fail_platform;
1878 
1879 	/*
1880 	 * Need platform type detection first, then the platform
1881 	 * device.  It is used as a parent for the sub-devices below.
1882 	 */
1883 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1884 	result = asus_platform_init(asus);
1885 	if (result)
1886 		goto fail_platform;
1887 
1888 	if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1889 		result = asus_backlight_init(asus);
1890 		if (result)
1891 			goto fail_backlight;
1892 	}
1893 
1894 	result = asus_input_init(asus);
1895 	if (result)
1896 		goto fail_input;
1897 
1898 	result = asus_led_init(asus);
1899 	if (result)
1900 		goto fail_led;
1901 
1902 	result = asus_rfkill_init(asus);
1903 	if (result && result != -ENODEV)
1904 		goto fail_rfkill;
1905 
1906 	result = pega_accel_init(asus);
1907 	if (result && result != -ENODEV)
1908 		goto fail_pega_accel;
1909 
1910 	result = pega_rfkill_init(asus);
1911 	if (result && result != -ENODEV)
1912 		goto fail_pega_rfkill;
1913 
1914 	asus_device_present = true;
1915 	return 0;
1916 
1917 fail_pega_rfkill:
1918 	pega_accel_exit(asus);
1919 fail_pega_accel:
1920 	asus_rfkill_exit(asus);
1921 fail_rfkill:
1922 	asus_led_exit(asus);
1923 fail_led:
1924 	asus_input_exit(asus);
1925 fail_input:
1926 	asus_backlight_exit(asus);
1927 fail_backlight:
1928 	asus_platform_exit(asus);
1929 fail_platform:
1930 	kfree(asus);
1931 
1932 	return result;
1933 }
1934 
1935 static int asus_acpi_remove(struct acpi_device *device)
1936 {
1937 	struct asus_laptop *asus = acpi_driver_data(device);
1938 
1939 	asus_backlight_exit(asus);
1940 	asus_rfkill_exit(asus);
1941 	asus_led_exit(asus);
1942 	asus_input_exit(asus);
1943 	pega_accel_exit(asus);
1944 	asus_platform_exit(asus);
1945 
1946 	kfree(asus->name);
1947 	kfree(asus);
1948 	return 0;
1949 }
1950 
1951 static const struct acpi_device_id asus_device_ids[] = {
1952 	{"ATK0100", 0},
1953 	{"ATK0101", 0},
1954 	{"", 0},
1955 };
1956 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1957 
1958 static struct acpi_driver asus_acpi_driver = {
1959 	.name = ASUS_LAPTOP_NAME,
1960 	.class = ASUS_LAPTOP_CLASS,
1961 	.owner = THIS_MODULE,
1962 	.ids = asus_device_ids,
1963 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1964 	.ops = {
1965 		.add = asus_acpi_add,
1966 		.remove = asus_acpi_remove,
1967 		.notify = asus_acpi_notify,
1968 		},
1969 };
1970 
1971 static int __init asus_laptop_init(void)
1972 {
1973 	int result;
1974 
1975 	result = platform_driver_register(&platform_driver);
1976 	if (result < 0)
1977 		return result;
1978 
1979 	result = acpi_bus_register_driver(&asus_acpi_driver);
1980 	if (result < 0)
1981 		goto fail_acpi_driver;
1982 	if (!asus_device_present) {
1983 		result = -ENODEV;
1984 		goto fail_no_device;
1985 	}
1986 	return 0;
1987 
1988 fail_no_device:
1989 	acpi_bus_unregister_driver(&asus_acpi_driver);
1990 fail_acpi_driver:
1991 	platform_driver_unregister(&platform_driver);
1992 	return result;
1993 }
1994 
1995 static void __exit asus_laptop_exit(void)
1996 {
1997 	acpi_bus_unregister_driver(&asus_acpi_driver);
1998 	platform_driver_unregister(&platform_driver);
1999 }
2000 
2001 module_init(asus_laptop_init);
2002 module_exit(asus_laptop_exit);
2003