1 /*
2  *  asus-laptop.c - Asus Laptop Support
3  *
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or
12  *  (at your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  *
24  *  The development page for this driver is located at
25  *  http://sourceforge.net/projects/acpi4asus/
26  *
27  *  Credits:
28  *  Pontus Fuchs   - Helper functions, cleanup
29  *  Johann Wiesner - Small compile fixes
30  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
31  *  Eric Burghard  - LED display support for W1N
32  *  Josh Green     - Light Sens support
33  *  Thomas Tuttle  - His first patch for led support was very helpful
34  *  Sam Lin        - GPS support
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/types.h>
43 #include <linux/err.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/fb.h>
47 #include <linux/leds.h>
48 #include <linux/platform_device.h>
49 #include <linux/uaccess.h>
50 #include <linux/input.h>
51 #include <linux/input/sparse-keymap.h>
52 #include <linux/input-polldev.h>
53 #include <linux/rfkill.h>
54 #include <linux/slab.h>
55 #include <linux/dmi.h>
56 #include <linux/acpi.h>
57 
58 #define ASUS_LAPTOP_VERSION	"0.42"
59 
60 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
61 #define ASUS_LAPTOP_CLASS	"hotkey"
62 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
63 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
64 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
65 
66 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
67 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
68 MODULE_LICENSE("GPL");
69 
70 /*
71  * WAPF defines the behavior of the Fn+Fx wlan key
72  * The significance of values is yet to be found, but
73  * most of the time:
74  * Bit | Bluetooth | WLAN
75  *  0  | Hardware  | Hardware
76  *  1  | Hardware  | Software
77  *  4  | Software  | Software
78  */
79 static uint wapf = 1;
80 module_param(wapf, uint, 0444);
81 MODULE_PARM_DESC(wapf, "WAPF value");
82 
83 static char *wled_type = "unknown";
84 static char *bled_type = "unknown";
85 
86 module_param(wled_type, charp, 0444);
87 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
88 		 "(unknown, led or rfkill). "
89 		 "default is unknown");
90 
91 module_param(bled_type, charp, 0444);
92 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
93 		 "(unknown, led or rfkill). "
94 		 "default is unknown");
95 
96 static int wlan_status = 1;
97 static int bluetooth_status = 1;
98 static int wimax_status = -1;
99 static int wwan_status = -1;
100 static int als_status;
101 
102 module_param(wlan_status, int, 0444);
103 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
104 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
105 		 "default is -1");
106 
107 module_param(bluetooth_status, int, 0444);
108 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
109 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
110 		 "default is -1");
111 
112 module_param(wimax_status, int, 0444);
113 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
114 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
115 		 "default is -1");
116 
117 module_param(wwan_status, int, 0444);
118 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
119 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
120 		 "default is -1");
121 
122 module_param(als_status, int, 0444);
123 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
124 		 "(0 = disabled, 1 = enabled). "
125 		 "default is 0");
126 
127 /*
128  * Some events we use, same for all Asus
129  */
130 #define ATKD_BRNUP_MIN		0x10
131 #define ATKD_BRNUP_MAX		0x1f
132 #define ATKD_BRNDOWN_MIN	0x20
133 #define ATKD_BRNDOWN_MAX	0x2f
134 #define ATKD_BRNDOWN		0x20
135 #define ATKD_BRNUP		0x2f
136 #define ATKD_LCD_ON	0x33
137 #define ATKD_LCD_OFF	0x34
138 
139 /*
140  * Known bits returned by \_SB.ATKD.HWRS
141  */
142 #define WL_HWRS		0x80
143 #define BT_HWRS		0x100
144 
145 /*
146  * Flags for hotk status
147  * WL_ON and BT_ON are also used for wireless_status()
148  */
149 #define WL_RSTS		0x01	/* internal Wifi */
150 #define BT_RSTS		0x02	/* internal Bluetooth */
151 #define WM_RSTS		0x08    /* internal wimax */
152 #define WW_RSTS		0x20    /* internal wwan */
153 
154 /* WLED and BLED type */
155 #define TYPE_UNKNOWN	0
156 #define TYPE_LED	1
157 #define TYPE_RFKILL	2
158 
159 /* LED */
160 #define METHOD_MLED		"MLED"
161 #define METHOD_TLED		"TLED"
162 #define METHOD_RLED		"RLED"	/* W1JC */
163 #define METHOD_PLED		"PLED"	/* A7J */
164 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
165 
166 /* LEDD */
167 #define METHOD_LEDD		"SLCM"
168 
169 /*
170  * Bluetooth and WLAN
171  * WLED and BLED are not handled like other XLED, because in some dsdt
172  * they also control the WLAN/Bluetooth device.
173  */
174 #define METHOD_WLAN		"WLED"
175 #define METHOD_BLUETOOTH	"BLED"
176 
177 /* WWAN and WIMAX */
178 #define METHOD_WWAN		"GSMC"
179 #define METHOD_WIMAX		"WMXC"
180 
181 #define METHOD_WL_STATUS	"RSTS"
182 
183 /* Brightness */
184 #define METHOD_BRIGHTNESS_SET	"SPLV"
185 #define METHOD_BRIGHTNESS_GET	"GPLV"
186 
187 /* Display */
188 #define METHOD_SWITCH_DISPLAY	"SDSP"
189 
190 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
191 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
192 
193 /* GPS */
194 /* R2H use different handle for GPS on/off */
195 #define METHOD_GPS_ON		"SDON"
196 #define METHOD_GPS_OFF		"SDOF"
197 #define METHOD_GPS_STATUS	"GPST"
198 
199 /* Keyboard light */
200 #define METHOD_KBD_LIGHT_SET	"SLKB"
201 #define METHOD_KBD_LIGHT_GET	"GLKB"
202 
203 /* For Pegatron Lucid tablet */
204 #define DEVICE_NAME_PEGA	"Lucid"
205 
206 #define METHOD_PEGA_ENABLE	"ENPR"
207 #define METHOD_PEGA_DISABLE	"DAPR"
208 #define PEGA_WLAN	0x00
209 #define PEGA_BLUETOOTH	0x01
210 #define PEGA_WWAN	0x02
211 #define PEGA_ALS	0x04
212 #define PEGA_ALS_POWER	0x05
213 
214 #define METHOD_PEGA_READ	"RDLN"
215 #define PEGA_READ_ALS_H	0x02
216 #define PEGA_READ_ALS_L	0x03
217 
218 #define PEGA_ACCEL_NAME "pega_accel"
219 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
220 #define METHOD_XLRX "XLRX"
221 #define METHOD_XLRY "XLRY"
222 #define METHOD_XLRZ "XLRZ"
223 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
224 #define PEGA_ACC_RETRIES 3
225 
226 /*
227  * Define a specific led structure to keep the main structure clean
228  */
229 struct asus_led {
230 	int wk;
231 	struct work_struct work;
232 	struct led_classdev led;
233 	struct asus_laptop *asus;
234 	const char *method;
235 };
236 
237 /*
238  * Same thing for rfkill
239  */
240 struct asus_rfkill {
241 	/* type of control. Maps to PEGA_* values or *_RSTS  */
242 	int control_id;
243 	struct rfkill *rfkill;
244 	struct asus_laptop *asus;
245 };
246 
247 /*
248  * This is the main structure, we can use it to store anything interesting
249  * about the hotk device
250  */
251 struct asus_laptop {
252 	char *name;		/* laptop name */
253 
254 	struct acpi_table_header *dsdt_info;
255 	struct platform_device *platform_device;
256 	struct acpi_device *device;		/* the device we are in */
257 	struct backlight_device *backlight_device;
258 
259 	struct input_dev *inputdev;
260 	struct key_entry *keymap;
261 	struct input_polled_dev *pega_accel_poll;
262 
263 	struct asus_led wled;
264 	struct asus_led bled;
265 	struct asus_led mled;
266 	struct asus_led tled;
267 	struct asus_led rled;
268 	struct asus_led pled;
269 	struct asus_led gled;
270 	struct asus_led kled;
271 	struct workqueue_struct *led_workqueue;
272 
273 	int wled_type;
274 	int bled_type;
275 	int wireless_status;
276 	bool have_rsts;
277 	bool is_pega_lucid;
278 	bool pega_acc_live;
279 	int pega_acc_x;
280 	int pega_acc_y;
281 	int pega_acc_z;
282 
283 	struct asus_rfkill wlan;
284 	struct asus_rfkill bluetooth;
285 	struct asus_rfkill wwan;
286 	struct asus_rfkill wimax;
287 	struct asus_rfkill gps;
288 
289 	acpi_handle handle;	/* the handle of the hotk device */
290 	u32 ledd_status;	/* status of the LED display */
291 	u8 light_level;		/* light sensor level */
292 	u8 light_switch;	/* light sensor switch value */
293 	u16 event_count[128];	/* count for each event TODO make this better */
294 };
295 
296 static const struct key_entry asus_keymap[] = {
297 	/* Lenovo SL Specific keycodes */
298 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
299 	{KE_KEY, 0x05, { KEY_WLAN } },
300 	{KE_KEY, 0x08, { KEY_F13 } },
301 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
302 	{KE_KEY, 0x17, { KEY_ZOOM } },
303 	{KE_KEY, 0x1f, { KEY_BATTERY } },
304 	/* End of Lenovo SL Specific keycodes */
305 	{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
306 	{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
307 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
308 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
309 	{KE_KEY, 0x32, { KEY_MUTE } },
310 	{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
311 	{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
312 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
313 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
314 	{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
315 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
316 	{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
317 	{KE_KEY, 0x50, { KEY_EMAIL } },
318 	{KE_KEY, 0x51, { KEY_WWW } },
319 	{KE_KEY, 0x55, { KEY_CALC } },
320 	{KE_IGNORE, 0x57, },  /* Battery mode */
321 	{KE_IGNORE, 0x58, },  /* AC mode */
322 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
323 	{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
324 	{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
325 	{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
326 	{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
327 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
328 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
329 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
330 	{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
331 	{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
332 	{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
333 	{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
334 	{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
335 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
336 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
337 	{KE_IGNORE, 0x6E, },  /* Low Battery notification */
338 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
339 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
340 	{KE_KEY, 0x82, { KEY_CAMERA } },
341 	{KE_KEY, 0x88, { KEY_RFKILL  } }, /* Radio Toggle Key */
342 	{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
343 	{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
344 	{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
345 	{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
346 	{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
347 	{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
348 	{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
349 	{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
350 	{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
351 	{KE_KEY, 0x95, { KEY_MEDIA } },
352 	{KE_KEY, 0x99, { KEY_PHONE } },
353 	{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
354 	{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
355 	{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
356 	{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
357 	{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
358 	{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
359 	{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
360 	{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
361 	{KE_KEY, 0xB5, { KEY_CALC } },
362 	{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
363 	{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
364 	{KE_END, 0},
365 };
366 
367 
368 /*
369  * This function evaluates an ACPI method, given an int as parameter, the
370  * method is searched within the scope of the handle, can be NULL. The output
371  * of the method is written is output, which can also be NULL
372  *
373  * returns 0 if write is successful, -1 else.
374  */
375 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
376 			      struct acpi_buffer *output)
377 {
378 	struct acpi_object_list params;	/* list of input parameters (an int) */
379 	union acpi_object in_obj;	/* the only param we use */
380 	acpi_status status;
381 
382 	if (!handle)
383 		return -1;
384 
385 	params.count = 1;
386 	params.pointer = &in_obj;
387 	in_obj.type = ACPI_TYPE_INTEGER;
388 	in_obj.integer.value = val;
389 
390 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
391 	if (status == AE_OK)
392 		return 0;
393 	else
394 		return -1;
395 }
396 
397 static int write_acpi_int(acpi_handle handle, const char *method, int val)
398 {
399 	return write_acpi_int_ret(handle, method, val, NULL);
400 }
401 
402 static int acpi_check_handle(acpi_handle handle, const char *method,
403 			     acpi_handle *ret)
404 {
405 	acpi_status status;
406 
407 	if (method == NULL)
408 		return -ENODEV;
409 
410 	if (ret)
411 		status = acpi_get_handle(handle, (char *)method,
412 					 ret);
413 	else {
414 		acpi_handle dummy;
415 
416 		status = acpi_get_handle(handle, (char *)method,
417 					 &dummy);
418 	}
419 
420 	if (status != AE_OK) {
421 		if (ret)
422 			pr_warn("Error finding %s\n", method);
423 		return -ENODEV;
424 	}
425 	return 0;
426 }
427 
428 static bool asus_check_pega_lucid(struct asus_laptop *asus)
429 {
430 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
431 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
432 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
433 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
434 }
435 
436 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
437 {
438 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
439 	return write_acpi_int(asus->handle, method, unit);
440 }
441 
442 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
443 {
444 	int i, delta;
445 	unsigned long long val;
446 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
447 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
448 
449 		/* The output is noisy.  From reading the ASL
450 		 * dissassembly, timeout errors are returned with 1's
451 		 * in the high word, and the lack of locking around
452 		 * thei hi/lo byte reads means that a transition
453 		 * between (for example) -1 and 0 could be read as
454 		 * 0xff00 or 0x00ff. */
455 		delta = abs(curr - (short)val);
456 		if (delta < 128 && !(val & ~0xffff))
457 			break;
458 	}
459 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
460 }
461 
462 static void pega_accel_poll(struct input_polled_dev *ipd)
463 {
464 	struct device *parent = ipd->input->dev.parent;
465 	struct asus_laptop *asus = dev_get_drvdata(parent);
466 
467 	/* In some cases, the very first call to poll causes a
468 	 * recursive fault under the polldev worker.  This is
469 	 * apparently related to very early userspace access to the
470 	 * device, and perhaps a firmware bug. Fake the first report. */
471 	if (!asus->pega_acc_live) {
472 		asus->pega_acc_live = true;
473 		input_report_abs(ipd->input, ABS_X, 0);
474 		input_report_abs(ipd->input, ABS_Y, 0);
475 		input_report_abs(ipd->input, ABS_Z, 0);
476 		input_sync(ipd->input);
477 		return;
478 	}
479 
480 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
481 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
482 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
483 
484 	/* Note transform, convert to "right/up/out" in the native
485 	 * landscape orientation (i.e. the vector is the direction of
486 	 * "real up" in the device's cartiesian coordinates). */
487 	input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x);
488 	input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y);
489 	input_report_abs(ipd->input, ABS_Z,  asus->pega_acc_z);
490 	input_sync(ipd->input);
491 }
492 
493 static void pega_accel_exit(struct asus_laptop *asus)
494 {
495 	if (asus->pega_accel_poll) {
496 		input_unregister_polled_device(asus->pega_accel_poll);
497 		input_free_polled_device(asus->pega_accel_poll);
498 	}
499 	asus->pega_accel_poll = NULL;
500 }
501 
502 static int pega_accel_init(struct asus_laptop *asus)
503 {
504 	int err;
505 	struct input_polled_dev *ipd;
506 
507 	if (!asus->is_pega_lucid)
508 		return -ENODEV;
509 
510 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
511 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
512 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
513 		return -ENODEV;
514 
515 	ipd = input_allocate_polled_device();
516 	if (!ipd)
517 		return -ENOMEM;
518 
519 	ipd->poll = pega_accel_poll;
520 	ipd->poll_interval = 125;
521 	ipd->poll_interval_min = 50;
522 	ipd->poll_interval_max = 2000;
523 
524 	ipd->input->name = PEGA_ACCEL_DESC;
525 	ipd->input->phys = PEGA_ACCEL_NAME "/input0";
526 	ipd->input->dev.parent = &asus->platform_device->dev;
527 	ipd->input->id.bustype = BUS_HOST;
528 
529 	set_bit(EV_ABS, ipd->input->evbit);
530 	input_set_abs_params(ipd->input, ABS_X,
531 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
532 	input_set_abs_params(ipd->input, ABS_Y,
533 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
534 	input_set_abs_params(ipd->input, ABS_Z,
535 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
536 
537 	err = input_register_polled_device(ipd);
538 	if (err)
539 		goto exit;
540 
541 	asus->pega_accel_poll = ipd;
542 	return 0;
543 
544 exit:
545 	input_free_polled_device(ipd);
546 	return err;
547 }
548 
549 /* Generic LED function */
550 static int asus_led_set(struct asus_laptop *asus, const char *method,
551 			 int value)
552 {
553 	if (!strcmp(method, METHOD_MLED))
554 		value = !value;
555 	else if (!strcmp(method, METHOD_GLED))
556 		value = !value + 1;
557 	else
558 		value = !!value;
559 
560 	return write_acpi_int(asus->handle, method, value);
561 }
562 
563 /*
564  * LEDs
565  */
566 /* /sys/class/led handlers */
567 static void asus_led_cdev_set(struct led_classdev *led_cdev,
568 			 enum led_brightness value)
569 {
570 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
571 	struct asus_laptop *asus = led->asus;
572 
573 	led->wk = !!value;
574 	queue_work(asus->led_workqueue, &led->work);
575 }
576 
577 static void asus_led_cdev_update(struct work_struct *work)
578 {
579 	struct asus_led *led = container_of(work, struct asus_led, work);
580 	struct asus_laptop *asus = led->asus;
581 
582 	asus_led_set(asus, led->method, led->wk);
583 }
584 
585 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
586 {
587 	return led_cdev->brightness;
588 }
589 
590 /*
591  * Keyboard backlight (also a LED)
592  */
593 static int asus_kled_lvl(struct asus_laptop *asus)
594 {
595 	unsigned long long kblv;
596 	struct acpi_object_list params;
597 	union acpi_object in_obj;
598 	acpi_status rv;
599 
600 	params.count = 1;
601 	params.pointer = &in_obj;
602 	in_obj.type = ACPI_TYPE_INTEGER;
603 	in_obj.integer.value = 2;
604 
605 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
606 				   &params, &kblv);
607 	if (ACPI_FAILURE(rv)) {
608 		pr_warn("Error reading kled level\n");
609 		return -ENODEV;
610 	}
611 	return kblv;
612 }
613 
614 static int asus_kled_set(struct asus_laptop *asus, int kblv)
615 {
616 	if (kblv > 0)
617 		kblv = (1 << 7) | (kblv & 0x7F);
618 	else
619 		kblv = 0;
620 
621 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
622 		pr_warn("Keyboard LED display write failed\n");
623 		return -EINVAL;
624 	}
625 	return 0;
626 }
627 
628 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
629 			      enum led_brightness value)
630 {
631 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
632 	struct asus_laptop *asus = led->asus;
633 
634 	led->wk = value;
635 	queue_work(asus->led_workqueue, &led->work);
636 }
637 
638 static void asus_kled_cdev_update(struct work_struct *work)
639 {
640 	struct asus_led *led = container_of(work, struct asus_led, work);
641 	struct asus_laptop *asus = led->asus;
642 
643 	asus_kled_set(asus, led->wk);
644 }
645 
646 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
647 {
648 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
649 	struct asus_laptop *asus = led->asus;
650 
651 	return asus_kled_lvl(asus);
652 }
653 
654 static void asus_led_exit(struct asus_laptop *asus)
655 {
656 	if (!IS_ERR_OR_NULL(asus->wled.led.dev))
657 		led_classdev_unregister(&asus->wled.led);
658 	if (!IS_ERR_OR_NULL(asus->bled.led.dev))
659 		led_classdev_unregister(&asus->bled.led);
660 	if (!IS_ERR_OR_NULL(asus->mled.led.dev))
661 		led_classdev_unregister(&asus->mled.led);
662 	if (!IS_ERR_OR_NULL(asus->tled.led.dev))
663 		led_classdev_unregister(&asus->tled.led);
664 	if (!IS_ERR_OR_NULL(asus->pled.led.dev))
665 		led_classdev_unregister(&asus->pled.led);
666 	if (!IS_ERR_OR_NULL(asus->rled.led.dev))
667 		led_classdev_unregister(&asus->rled.led);
668 	if (!IS_ERR_OR_NULL(asus->gled.led.dev))
669 		led_classdev_unregister(&asus->gled.led);
670 	if (!IS_ERR_OR_NULL(asus->kled.led.dev))
671 		led_classdev_unregister(&asus->kled.led);
672 	if (asus->led_workqueue) {
673 		destroy_workqueue(asus->led_workqueue);
674 		asus->led_workqueue = NULL;
675 	}
676 }
677 
678 /*  Ugly macro, need to fix that later */
679 static int asus_led_register(struct asus_laptop *asus,
680 			     struct asus_led *led,
681 			     const char *name, const char *method)
682 {
683 	struct led_classdev *led_cdev = &led->led;
684 
685 	if (!method || acpi_check_handle(asus->handle, method, NULL))
686 		return 0; /* Led not present */
687 
688 	led->asus = asus;
689 	led->method = method;
690 
691 	INIT_WORK(&led->work, asus_led_cdev_update);
692 	led_cdev->name = name;
693 	led_cdev->brightness_set = asus_led_cdev_set;
694 	led_cdev->brightness_get = asus_led_cdev_get;
695 	led_cdev->max_brightness = 1;
696 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
697 }
698 
699 static int asus_led_init(struct asus_laptop *asus)
700 {
701 	int r = 0;
702 
703 	/*
704 	 * The Pegatron Lucid has no physical leds, but all methods are
705 	 * available in the DSDT...
706 	 */
707 	if (asus->is_pega_lucid)
708 		return 0;
709 
710 	/*
711 	 * Functions that actually update the LED's are called from a
712 	 * workqueue. By doing this as separate work rather than when the LED
713 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
714 	 * potentially bad time, such as a timer interrupt.
715 	 */
716 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
717 	if (!asus->led_workqueue)
718 		return -ENOMEM;
719 
720 	if (asus->wled_type == TYPE_LED)
721 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
722 				      METHOD_WLAN);
723 	if (r)
724 		goto error;
725 	if (asus->bled_type == TYPE_LED)
726 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
727 				      METHOD_BLUETOOTH);
728 	if (r)
729 		goto error;
730 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
731 	if (r)
732 		goto error;
733 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
734 	if (r)
735 		goto error;
736 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
737 	if (r)
738 		goto error;
739 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
740 	if (r)
741 		goto error;
742 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
743 	if (r)
744 		goto error;
745 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
746 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
747 		struct asus_led *led = &asus->kled;
748 		struct led_classdev *cdev = &led->led;
749 
750 		led->asus = asus;
751 
752 		INIT_WORK(&led->work, asus_kled_cdev_update);
753 		cdev->name = "asus::kbd_backlight";
754 		cdev->brightness_set = asus_kled_cdev_set;
755 		cdev->brightness_get = asus_kled_cdev_get;
756 		cdev->max_brightness = 3;
757 		r = led_classdev_register(&asus->platform_device->dev, cdev);
758 	}
759 error:
760 	if (r)
761 		asus_led_exit(asus);
762 	return r;
763 }
764 
765 /*
766  * Backlight device
767  */
768 static int asus_read_brightness(struct backlight_device *bd)
769 {
770 	struct asus_laptop *asus = bl_get_data(bd);
771 	unsigned long long value;
772 	acpi_status rv = AE_OK;
773 
774 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
775 				   NULL, &value);
776 	if (ACPI_FAILURE(rv))
777 		pr_warn("Error reading brightness\n");
778 
779 	return value;
780 }
781 
782 static int asus_set_brightness(struct backlight_device *bd, int value)
783 {
784 	struct asus_laptop *asus = bl_get_data(bd);
785 
786 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
787 		pr_warn("Error changing brightness\n");
788 		return -EIO;
789 	}
790 	return 0;
791 }
792 
793 static int update_bl_status(struct backlight_device *bd)
794 {
795 	int value = bd->props.brightness;
796 
797 	return asus_set_brightness(bd, value);
798 }
799 
800 static const struct backlight_ops asusbl_ops = {
801 	.get_brightness = asus_read_brightness,
802 	.update_status = update_bl_status,
803 };
804 
805 static int asus_backlight_notify(struct asus_laptop *asus)
806 {
807 	struct backlight_device *bd = asus->backlight_device;
808 	int old = bd->props.brightness;
809 
810 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
811 
812 	return old;
813 }
814 
815 static int asus_backlight_init(struct asus_laptop *asus)
816 {
817 	struct backlight_device *bd;
818 	struct backlight_properties props;
819 
820 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
821 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
822 		return 0;
823 
824 	memset(&props, 0, sizeof(struct backlight_properties));
825 	props.max_brightness = 15;
826 	props.type = BACKLIGHT_PLATFORM;
827 
828 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
829 				       &asus->platform_device->dev, asus,
830 				       &asusbl_ops, &props);
831 	if (IS_ERR(bd)) {
832 		pr_err("Could not register asus backlight device\n");
833 		asus->backlight_device = NULL;
834 		return PTR_ERR(bd);
835 	}
836 
837 	asus->backlight_device = bd;
838 	bd->props.brightness = asus_read_brightness(bd);
839 	bd->props.power = FB_BLANK_UNBLANK;
840 	backlight_update_status(bd);
841 	return 0;
842 }
843 
844 static void asus_backlight_exit(struct asus_laptop *asus)
845 {
846 	backlight_device_unregister(asus->backlight_device);
847 	asus->backlight_device = NULL;
848 }
849 
850 /*
851  * Platform device handlers
852  */
853 
854 /*
855  * We write our info in page, we begin at offset off and cannot write more
856  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
857  * number of bytes written in page
858  */
859 static ssize_t show_infos(struct device *dev,
860 			  struct device_attribute *attr, char *page)
861 {
862 	struct asus_laptop *asus = dev_get_drvdata(dev);
863 	int len = 0;
864 	unsigned long long temp;
865 	char buf[16];		/* enough for all info */
866 	acpi_status rv = AE_OK;
867 
868 	/*
869 	 * We use the easy way, we don't care of off and count,
870 	 * so we don't set eof to 1
871 	 */
872 
873 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
874 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
875 	/*
876 	 * The SFUN method probably allows the original driver to get the list
877 	 * of features supported by a given model. For now, 0x0100 or 0x0800
878 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
879 	 * The significance of others is yet to be found.
880 	 */
881 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
882 	if (!ACPI_FAILURE(rv))
883 		len += sprintf(page + len, "SFUN value         : %#x\n",
884 			       (uint) temp);
885 	/*
886 	 * The HWRS method return informations about the hardware.
887 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
888 	 * 0x40 for WWAN, 0x10 for WIMAX.
889 	 * The significance of others is yet to be found.
890 	 * We don't currently use this for device detection, and it
891 	 * takes several seconds to run on some systems.
892 	 */
893 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
894 	if (!ACPI_FAILURE(rv))
895 		len += sprintf(page + len, "HWRS value         : %#x\n",
896 			       (uint) temp);
897 	/*
898 	 * Another value for userspace: the ASYM method returns 0x02 for
899 	 * battery low and 0x04 for battery critical, its readings tend to be
900 	 * more accurate than those provided by _BST.
901 	 * Note: since not all the laptops provide this method, errors are
902 	 * silently ignored.
903 	 */
904 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
905 	if (!ACPI_FAILURE(rv))
906 		len += sprintf(page + len, "ASYM value         : %#x\n",
907 			       (uint) temp);
908 	if (asus->dsdt_info) {
909 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
910 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
911 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
912 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
913 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
914 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
915 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
916 		len += sprintf(page + len, "OEM id             : %s\n", buf);
917 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
918 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
919 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
920 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
921 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
922 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
923 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
924 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
925 	}
926 
927 	return len;
928 }
929 
930 static int parse_arg(const char *buf, unsigned long count, int *val)
931 {
932 	if (!count)
933 		return 0;
934 	if (count > 31)
935 		return -EINVAL;
936 	if (sscanf(buf, "%i", val) != 1)
937 		return -EINVAL;
938 	return count;
939 }
940 
941 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
942 			      const char *buf, size_t count,
943 			      const char *method)
944 {
945 	int rv, value;
946 	int out = 0;
947 
948 	rv = parse_arg(buf, count, &value);
949 	if (rv > 0)
950 		out = value ? 1 : 0;
951 
952 	if (write_acpi_int(asus->handle, method, value))
953 		return -ENODEV;
954 	return rv;
955 }
956 
957 /*
958  * LEDD display
959  */
960 static ssize_t show_ledd(struct device *dev,
961 			 struct device_attribute *attr, char *buf)
962 {
963 	struct asus_laptop *asus = dev_get_drvdata(dev);
964 
965 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
966 }
967 
968 static ssize_t store_ledd(struct device *dev, struct device_attribute *attr,
969 			  const char *buf, size_t count)
970 {
971 	struct asus_laptop *asus = dev_get_drvdata(dev);
972 	int rv, value;
973 
974 	rv = parse_arg(buf, count, &value);
975 	if (rv > 0) {
976 		if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
977 			pr_warn("LED display write failed\n");
978 			return -ENODEV;
979 		}
980 		asus->ledd_status = (u32) value;
981 	}
982 	return rv;
983 }
984 
985 /*
986  * Wireless
987  */
988 static int asus_wireless_status(struct asus_laptop *asus, int mask)
989 {
990 	unsigned long long status;
991 	acpi_status rv = AE_OK;
992 
993 	if (!asus->have_rsts)
994 		return (asus->wireless_status & mask) ? 1 : 0;
995 
996 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
997 				   NULL, &status);
998 	if (ACPI_FAILURE(rv)) {
999 		pr_warn("Error reading Wireless status\n");
1000 		return -EINVAL;
1001 	}
1002 	return !!(status & mask);
1003 }
1004 
1005 /*
1006  * WLAN
1007  */
1008 static int asus_wlan_set(struct asus_laptop *asus, int status)
1009 {
1010 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
1011 		pr_warn("Error setting wlan status to %d\n", status);
1012 		return -EIO;
1013 	}
1014 	return 0;
1015 }
1016 
1017 static ssize_t show_wlan(struct device *dev,
1018 			 struct device_attribute *attr, char *buf)
1019 {
1020 	struct asus_laptop *asus = dev_get_drvdata(dev);
1021 
1022 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
1023 }
1024 
1025 static ssize_t store_wlan(struct device *dev, struct device_attribute *attr,
1026 			  const char *buf, size_t count)
1027 {
1028 	struct asus_laptop *asus = dev_get_drvdata(dev);
1029 
1030 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1031 }
1032 
1033 /*e
1034  * Bluetooth
1035  */
1036 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1037 {
1038 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1039 		pr_warn("Error setting bluetooth status to %d\n", status);
1040 		return -EIO;
1041 	}
1042 	return 0;
1043 }
1044 
1045 static ssize_t show_bluetooth(struct device *dev,
1046 			      struct device_attribute *attr, char *buf)
1047 {
1048 	struct asus_laptop *asus = dev_get_drvdata(dev);
1049 
1050 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1051 }
1052 
1053 static ssize_t store_bluetooth(struct device *dev,
1054 			       struct device_attribute *attr, const char *buf,
1055 			       size_t count)
1056 {
1057 	struct asus_laptop *asus = dev_get_drvdata(dev);
1058 
1059 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1060 }
1061 
1062 /*
1063  * Wimax
1064  */
1065 static int asus_wimax_set(struct asus_laptop *asus, int status)
1066 {
1067 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1068 		pr_warn("Error setting wimax status to %d\n", status);
1069 		return -EIO;
1070 	}
1071 	return 0;
1072 }
1073 
1074 static ssize_t show_wimax(struct device *dev,
1075 			      struct device_attribute *attr, char *buf)
1076 {
1077 	struct asus_laptop *asus = dev_get_drvdata(dev);
1078 
1079 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1080 }
1081 
1082 static ssize_t store_wimax(struct device *dev,
1083 			       struct device_attribute *attr, const char *buf,
1084 			       size_t count)
1085 {
1086 	struct asus_laptop *asus = dev_get_drvdata(dev);
1087 
1088 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1089 }
1090 
1091 /*
1092  * Wwan
1093  */
1094 static int asus_wwan_set(struct asus_laptop *asus, int status)
1095 {
1096 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1097 		pr_warn("Error setting wwan status to %d\n", status);
1098 		return -EIO;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static ssize_t show_wwan(struct device *dev,
1104 			      struct device_attribute *attr, char *buf)
1105 {
1106 	struct asus_laptop *asus = dev_get_drvdata(dev);
1107 
1108 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1109 }
1110 
1111 static ssize_t store_wwan(struct device *dev,
1112 			       struct device_attribute *attr, const char *buf,
1113 			       size_t count)
1114 {
1115 	struct asus_laptop *asus = dev_get_drvdata(dev);
1116 
1117 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1118 }
1119 
1120 /*
1121  * Display
1122  */
1123 static void asus_set_display(struct asus_laptop *asus, int value)
1124 {
1125 	/* no sanity check needed for now */
1126 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1127 		pr_warn("Error setting display\n");
1128 	return;
1129 }
1130 
1131 /*
1132  * Experimental support for display switching. As of now: 1 should activate
1133  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1134  * Any combination (bitwise) of these will suffice. I never actually tested 4
1135  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1136  * for more info.
1137  */
1138 static ssize_t store_disp(struct device *dev, struct device_attribute *attr,
1139 			  const char *buf, size_t count)
1140 {
1141 	struct asus_laptop *asus = dev_get_drvdata(dev);
1142 	int rv, value;
1143 
1144 	rv = parse_arg(buf, count, &value);
1145 	if (rv > 0)
1146 		asus_set_display(asus, value);
1147 	return rv;
1148 }
1149 
1150 /*
1151  * Light Sens
1152  */
1153 static void asus_als_switch(struct asus_laptop *asus, int value)
1154 {
1155 	int ret;
1156 
1157 	if (asus->is_pega_lucid) {
1158 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1159 		if (!ret)
1160 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1161 	} else {
1162 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1163 	}
1164 	if (ret)
1165 		pr_warning("Error setting light sensor switch\n");
1166 
1167 	asus->light_switch = value;
1168 }
1169 
1170 static ssize_t show_lssw(struct device *dev,
1171 			 struct device_attribute *attr, char *buf)
1172 {
1173 	struct asus_laptop *asus = dev_get_drvdata(dev);
1174 
1175 	return sprintf(buf, "%d\n", asus->light_switch);
1176 }
1177 
1178 static ssize_t store_lssw(struct device *dev, struct device_attribute *attr,
1179 			  const char *buf, size_t count)
1180 {
1181 	struct asus_laptop *asus = dev_get_drvdata(dev);
1182 	int rv, value;
1183 
1184 	rv = parse_arg(buf, count, &value);
1185 	if (rv > 0)
1186 		asus_als_switch(asus, value ? 1 : 0);
1187 
1188 	return rv;
1189 }
1190 
1191 static void asus_als_level(struct asus_laptop *asus, int value)
1192 {
1193 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1194 		pr_warn("Error setting light sensor level\n");
1195 	asus->light_level = value;
1196 }
1197 
1198 static ssize_t show_lslvl(struct device *dev,
1199 			  struct device_attribute *attr, char *buf)
1200 {
1201 	struct asus_laptop *asus = dev_get_drvdata(dev);
1202 
1203 	return sprintf(buf, "%d\n", asus->light_level);
1204 }
1205 
1206 static ssize_t store_lslvl(struct device *dev, struct device_attribute *attr,
1207 			   const char *buf, size_t count)
1208 {
1209 	struct asus_laptop *asus = dev_get_drvdata(dev);
1210 	int rv, value;
1211 
1212 	rv = parse_arg(buf, count, &value);
1213 	if (rv > 0) {
1214 		value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1215 		/* 0 <= value <= 15 */
1216 		asus_als_level(asus, value);
1217 	}
1218 
1219 	return rv;
1220 }
1221 
1222 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1223 {
1224 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1225 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1226 				     &buffer);
1227 	if (!err) {
1228 		union acpi_object *obj = buffer.pointer;
1229 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1230 			*result = obj->integer.value;
1231 		else
1232 			err = -EIO;
1233 	}
1234 	return err;
1235 }
1236 
1237 static ssize_t show_lsvalue(struct device *dev,
1238 			    struct device_attribute *attr, char *buf)
1239 {
1240 	struct asus_laptop *asus = dev_get_drvdata(dev);
1241 	int err, hi, lo;
1242 
1243 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1244 	if (!err)
1245 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1246 	if (!err)
1247 		return sprintf(buf, "%d\n", 10 * hi + lo);
1248 	return err;
1249 }
1250 
1251 /*
1252  * GPS
1253  */
1254 static int asus_gps_status(struct asus_laptop *asus)
1255 {
1256 	unsigned long long status;
1257 	acpi_status rv = AE_OK;
1258 
1259 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1260 				   NULL, &status);
1261 	if (ACPI_FAILURE(rv)) {
1262 		pr_warn("Error reading GPS status\n");
1263 		return -ENODEV;
1264 	}
1265 	return !!status;
1266 }
1267 
1268 static int asus_gps_switch(struct asus_laptop *asus, int status)
1269 {
1270 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1271 
1272 	if (write_acpi_int(asus->handle, meth, 0x02))
1273 		return -ENODEV;
1274 	return 0;
1275 }
1276 
1277 static ssize_t show_gps(struct device *dev,
1278 			struct device_attribute *attr, char *buf)
1279 {
1280 	struct asus_laptop *asus = dev_get_drvdata(dev);
1281 
1282 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1283 }
1284 
1285 static ssize_t store_gps(struct device *dev, struct device_attribute *attr,
1286 			 const char *buf, size_t count)
1287 {
1288 	struct asus_laptop *asus = dev_get_drvdata(dev);
1289 	int rv, value;
1290 	int ret;
1291 
1292 	rv = parse_arg(buf, count, &value);
1293 	if (rv <= 0)
1294 		return -EINVAL;
1295 	ret = asus_gps_switch(asus, !!value);
1296 	if (ret)
1297 		return ret;
1298 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1299 	return rv;
1300 }
1301 
1302 /*
1303  * rfkill
1304  */
1305 static int asus_gps_rfkill_set(void *data, bool blocked)
1306 {
1307 	struct asus_laptop *asus = data;
1308 
1309 	return asus_gps_switch(asus, !blocked);
1310 }
1311 
1312 static const struct rfkill_ops asus_gps_rfkill_ops = {
1313 	.set_block = asus_gps_rfkill_set,
1314 };
1315 
1316 static int asus_rfkill_set(void *data, bool blocked)
1317 {
1318 	struct asus_rfkill *rfk = data;
1319 	struct asus_laptop *asus = rfk->asus;
1320 
1321 	if (rfk->control_id == WL_RSTS)
1322 		return asus_wlan_set(asus, !blocked);
1323 	else if (rfk->control_id == BT_RSTS)
1324 		return asus_bluetooth_set(asus, !blocked);
1325 	else if (rfk->control_id == WM_RSTS)
1326 		return asus_wimax_set(asus, !blocked);
1327 	else if (rfk->control_id == WW_RSTS)
1328 		return asus_wwan_set(asus, !blocked);
1329 
1330 	return -EINVAL;
1331 }
1332 
1333 static const struct rfkill_ops asus_rfkill_ops = {
1334 	.set_block = asus_rfkill_set,
1335 };
1336 
1337 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1338 {
1339 	if (!rfk->rfkill)
1340 		return ;
1341 
1342 	rfkill_unregister(rfk->rfkill);
1343 	rfkill_destroy(rfk->rfkill);
1344 	rfk->rfkill = NULL;
1345 }
1346 
1347 static void asus_rfkill_exit(struct asus_laptop *asus)
1348 {
1349 	asus_rfkill_terminate(&asus->wwan);
1350 	asus_rfkill_terminate(&asus->bluetooth);
1351 	asus_rfkill_terminate(&asus->wlan);
1352 	asus_rfkill_terminate(&asus->gps);
1353 }
1354 
1355 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1356 			     const char *name, int control_id, int type,
1357 			     const struct rfkill_ops *ops)
1358 {
1359 	int result;
1360 
1361 	rfk->control_id = control_id;
1362 	rfk->asus = asus;
1363 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1364 				   type, ops, rfk);
1365 	if (!rfk->rfkill)
1366 		return -EINVAL;
1367 
1368 	result = rfkill_register(rfk->rfkill);
1369 	if (result) {
1370 		rfkill_destroy(rfk->rfkill);
1371 		rfk->rfkill = NULL;
1372 	}
1373 
1374 	return result;
1375 }
1376 
1377 static int asus_rfkill_init(struct asus_laptop *asus)
1378 {
1379 	int result = 0;
1380 
1381 	if (asus->is_pega_lucid)
1382 		return -ENODEV;
1383 
1384 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1385 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1386 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1387 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1388 					   -1, RFKILL_TYPE_GPS,
1389 					   &asus_gps_rfkill_ops);
1390 	if (result)
1391 		goto exit;
1392 
1393 
1394 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1395 	    asus->wled_type == TYPE_RFKILL)
1396 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1397 					   WL_RSTS, RFKILL_TYPE_WLAN,
1398 					   &asus_rfkill_ops);
1399 	if (result)
1400 		goto exit;
1401 
1402 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1403 	    asus->bled_type == TYPE_RFKILL)
1404 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1405 					   "asus-bluetooth", BT_RSTS,
1406 					   RFKILL_TYPE_BLUETOOTH,
1407 					   &asus_rfkill_ops);
1408 	if (result)
1409 		goto exit;
1410 
1411 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1412 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1413 					   WW_RSTS, RFKILL_TYPE_WWAN,
1414 					   &asus_rfkill_ops);
1415 	if (result)
1416 		goto exit;
1417 
1418 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1419 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1420 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1421 					   &asus_rfkill_ops);
1422 	if (result)
1423 		goto exit;
1424 
1425 exit:
1426 	if (result)
1427 		asus_rfkill_exit(asus);
1428 
1429 	return result;
1430 }
1431 
1432 static int pega_rfkill_set(void *data, bool blocked)
1433 {
1434 	struct asus_rfkill *rfk = data;
1435 
1436 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1437 	return ret;
1438 }
1439 
1440 static const struct rfkill_ops pega_rfkill_ops = {
1441 	.set_block = pega_rfkill_set,
1442 };
1443 
1444 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1445 			     const char *name, int controlid, int rfkill_type)
1446 {
1447 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1448 				 &pega_rfkill_ops);
1449 }
1450 
1451 static int pega_rfkill_init(struct asus_laptop *asus)
1452 {
1453 	int ret = 0;
1454 
1455 	if(!asus->is_pega_lucid)
1456 		return -ENODEV;
1457 
1458 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1459 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1460 	if(ret)
1461 		goto exit;
1462 
1463 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1464 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1465 	if(ret)
1466 		goto exit;
1467 
1468 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1469 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1470 
1471 exit:
1472 	if (ret)
1473 		asus_rfkill_exit(asus);
1474 
1475 	return ret;
1476 }
1477 
1478 /*
1479  * Input device (i.e. hotkeys)
1480  */
1481 static void asus_input_notify(struct asus_laptop *asus, int event)
1482 {
1483 	if (!asus->inputdev)
1484 		return ;
1485 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1486 		pr_info("Unknown key %x pressed\n", event);
1487 }
1488 
1489 static int asus_input_init(struct asus_laptop *asus)
1490 {
1491 	struct input_dev *input;
1492 	int error;
1493 
1494 	input = input_allocate_device();
1495 	if (!input)
1496 		return -ENOMEM;
1497 
1498 	input->name = "Asus Laptop extra buttons";
1499 	input->phys = ASUS_LAPTOP_FILE "/input0";
1500 	input->id.bustype = BUS_HOST;
1501 	input->dev.parent = &asus->platform_device->dev;
1502 
1503 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1504 	if (error) {
1505 		pr_err("Unable to setup input device keymap\n");
1506 		goto err_free_dev;
1507 	}
1508 	error = input_register_device(input);
1509 	if (error) {
1510 		pr_warn("Unable to register input device\n");
1511 		goto err_free_keymap;
1512 	}
1513 
1514 	asus->inputdev = input;
1515 	return 0;
1516 
1517 err_free_keymap:
1518 	sparse_keymap_free(input);
1519 err_free_dev:
1520 	input_free_device(input);
1521 	return error;
1522 }
1523 
1524 static void asus_input_exit(struct asus_laptop *asus)
1525 {
1526 	if (asus->inputdev) {
1527 		sparse_keymap_free(asus->inputdev);
1528 		input_unregister_device(asus->inputdev);
1529 	}
1530 	asus->inputdev = NULL;
1531 }
1532 
1533 /*
1534  * ACPI driver
1535  */
1536 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1537 {
1538 	struct asus_laptop *asus = acpi_driver_data(device);
1539 	u16 count;
1540 
1541 	/* TODO Find a better way to handle events count. */
1542 	count = asus->event_count[event % 128]++;
1543 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1544 					dev_name(&asus->device->dev), event,
1545 					count);
1546 
1547 	if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1548 		event = ATKD_BRNUP;
1549 	else if (event >= ATKD_BRNDOWN_MIN &&
1550 		 event <= ATKD_BRNDOWN_MAX)
1551 		event = ATKD_BRNDOWN;
1552 
1553 	/* Brightness events are special */
1554 	if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1555 		if (asus->backlight_device != NULL) {
1556 			/* Update the backlight device. */
1557 			asus_backlight_notify(asus);
1558 			return ;
1559 		}
1560 	}
1561 
1562 	/* Accelerometer "coarse orientation change" event */
1563 	if (asus->pega_accel_poll && event == 0xEA) {
1564 		kobject_uevent(&asus->pega_accel_poll->input->dev.kobj,
1565 			       KOBJ_CHANGE);
1566 		return ;
1567 	}
1568 
1569 	asus_input_notify(asus, event);
1570 }
1571 
1572 static DEVICE_ATTR(infos, S_IRUGO, show_infos, NULL);
1573 static DEVICE_ATTR(wlan, S_IRUGO | S_IWUSR, show_wlan, store_wlan);
1574 static DEVICE_ATTR(bluetooth, S_IRUGO | S_IWUSR,
1575 		   show_bluetooth, store_bluetooth);
1576 static DEVICE_ATTR(wimax, S_IRUGO | S_IWUSR, show_wimax, store_wimax);
1577 static DEVICE_ATTR(wwan, S_IRUGO | S_IWUSR, show_wwan, store_wwan);
1578 static DEVICE_ATTR(display, S_IWUSR, NULL, store_disp);
1579 static DEVICE_ATTR(ledd, S_IRUGO | S_IWUSR, show_ledd, store_ledd);
1580 static DEVICE_ATTR(ls_value, S_IRUGO, show_lsvalue, NULL);
1581 static DEVICE_ATTR(ls_level, S_IRUGO | S_IWUSR, show_lslvl, store_lslvl);
1582 static DEVICE_ATTR(ls_switch, S_IRUGO | S_IWUSR, show_lssw, store_lssw);
1583 static DEVICE_ATTR(gps, S_IRUGO | S_IWUSR, show_gps, store_gps);
1584 
1585 static struct attribute *asus_attributes[] = {
1586 	&dev_attr_infos.attr,
1587 	&dev_attr_wlan.attr,
1588 	&dev_attr_bluetooth.attr,
1589 	&dev_attr_wimax.attr,
1590 	&dev_attr_wwan.attr,
1591 	&dev_attr_display.attr,
1592 	&dev_attr_ledd.attr,
1593 	&dev_attr_ls_value.attr,
1594 	&dev_attr_ls_level.attr,
1595 	&dev_attr_ls_switch.attr,
1596 	&dev_attr_gps.attr,
1597 	NULL
1598 };
1599 
1600 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1601 				    struct attribute *attr,
1602 				    int idx)
1603 {
1604 	struct device *dev = container_of(kobj, struct device, kobj);
1605 	struct platform_device *pdev = to_platform_device(dev);
1606 	struct asus_laptop *asus = platform_get_drvdata(pdev);
1607 	acpi_handle handle = asus->handle;
1608 	bool supported;
1609 
1610 	if (asus->is_pega_lucid) {
1611 		/* no ls_level interface on the Lucid */
1612 		if (attr == &dev_attr_ls_switch.attr)
1613 			supported = true;
1614 		else if (attr == &dev_attr_ls_level.attr)
1615 			supported = false;
1616 		else
1617 			goto normal;
1618 
1619 		return supported;
1620 	}
1621 
1622 normal:
1623 	if (attr == &dev_attr_wlan.attr) {
1624 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1625 
1626 	} else if (attr == &dev_attr_bluetooth.attr) {
1627 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1628 
1629 	} else if (attr == &dev_attr_display.attr) {
1630 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1631 
1632 	} else if (attr == &dev_attr_wimax.attr) {
1633 		supported =
1634 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1635 
1636 	} else if (attr == &dev_attr_wwan.attr) {
1637 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1638 
1639 	} else if (attr == &dev_attr_ledd.attr) {
1640 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1641 
1642 	} else if (attr == &dev_attr_ls_switch.attr ||
1643 		   attr == &dev_attr_ls_level.attr) {
1644 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1645 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1646 	} else if (attr == &dev_attr_ls_value.attr) {
1647 		supported = asus->is_pega_lucid;
1648 	} else if (attr == &dev_attr_gps.attr) {
1649 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1650 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1651 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1652 	} else {
1653 		supported = true;
1654 	}
1655 
1656 	return supported ? attr->mode : 0;
1657 }
1658 
1659 
1660 static const struct attribute_group asus_attr_group = {
1661 	.is_visible	= asus_sysfs_is_visible,
1662 	.attrs		= asus_attributes,
1663 };
1664 
1665 static int asus_platform_init(struct asus_laptop *asus)
1666 {
1667 	int result;
1668 
1669 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1);
1670 	if (!asus->platform_device)
1671 		return -ENOMEM;
1672 	platform_set_drvdata(asus->platform_device, asus);
1673 
1674 	result = platform_device_add(asus->platform_device);
1675 	if (result)
1676 		goto fail_platform_device;
1677 
1678 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1679 				    &asus_attr_group);
1680 	if (result)
1681 		goto fail_sysfs;
1682 
1683 	return 0;
1684 
1685 fail_sysfs:
1686 	platform_device_del(asus->platform_device);
1687 fail_platform_device:
1688 	platform_device_put(asus->platform_device);
1689 	return result;
1690 }
1691 
1692 static void asus_platform_exit(struct asus_laptop *asus)
1693 {
1694 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1695 	platform_device_unregister(asus->platform_device);
1696 }
1697 
1698 static struct platform_driver platform_driver = {
1699 	.driver = {
1700 		.name = ASUS_LAPTOP_FILE,
1701 		.owner = THIS_MODULE,
1702 	},
1703 };
1704 
1705 /*
1706  * This function is used to initialize the context with right values. In this
1707  * method, we can make all the detection we want, and modify the asus_laptop
1708  * struct
1709  */
1710 static int asus_laptop_get_info(struct asus_laptop *asus)
1711 {
1712 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1713 	union acpi_object *model = NULL;
1714 	unsigned long long bsts_result;
1715 	char *string = NULL;
1716 	acpi_status status;
1717 
1718 	/*
1719 	 * Get DSDT headers early enough to allow for differentiating between
1720 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1721 	 * before doing anything ACPI-specific. Should we encounter a machine,
1722 	 * which needs special handling (i.e. its hotkey device has a different
1723 	 * HID), this bit will be moved.
1724 	 */
1725 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1726 	if (ACPI_FAILURE(status))
1727 		pr_warn("Couldn't get the DSDT table header\n");
1728 
1729 	/* We have to write 0 on init this far for all ASUS models */
1730 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1731 		pr_err("Hotkey initialization failed\n");
1732 		return -ENODEV;
1733 	}
1734 
1735 	/* This needs to be called for some laptops to init properly */
1736 	status =
1737 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1738 	if (ACPI_FAILURE(status))
1739 		pr_warn("Error calling BSTS\n");
1740 	else if (bsts_result)
1741 		pr_notice("BSTS called, 0x%02x returned\n",
1742 		       (uint) bsts_result);
1743 
1744 	/* This too ... */
1745 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1746 		pr_err("Error calling CWAP(%d)\n", wapf);
1747 	/*
1748 	 * Try to match the object returned by INIT to the specific model.
1749 	 * Handle every possible object (or the lack of thereof) the DSDT
1750 	 * writers might throw at us. When in trouble, we pass NULL to
1751 	 * asus_model_match() and try something completely different.
1752 	 */
1753 	if (buffer.pointer) {
1754 		model = buffer.pointer;
1755 		switch (model->type) {
1756 		case ACPI_TYPE_STRING:
1757 			string = model->string.pointer;
1758 			break;
1759 		case ACPI_TYPE_BUFFER:
1760 			string = model->buffer.pointer;
1761 			break;
1762 		default:
1763 			string = "";
1764 			break;
1765 		}
1766 	}
1767 	asus->name = kstrdup(string, GFP_KERNEL);
1768 	if (!asus->name) {
1769 		kfree(buffer.pointer);
1770 		return -ENOMEM;
1771 	}
1772 
1773 	if (string)
1774 		pr_notice("  %s model detected\n", string);
1775 
1776 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1777 		asus->have_rsts = true;
1778 
1779 	kfree(model);
1780 
1781 	return AE_OK;
1782 }
1783 
1784 static int asus_acpi_init(struct asus_laptop *asus)
1785 {
1786 	int result = 0;
1787 
1788 	result = acpi_bus_get_status(asus->device);
1789 	if (result)
1790 		return result;
1791 	if (!asus->device->status.present) {
1792 		pr_err("Hotkey device not present, aborting\n");
1793 		return -ENODEV;
1794 	}
1795 
1796 	result = asus_laptop_get_info(asus);
1797 	if (result)
1798 		return result;
1799 
1800 	if (!strcmp(bled_type, "led"))
1801 		asus->bled_type = TYPE_LED;
1802 	else if (!strcmp(bled_type, "rfkill"))
1803 		asus->bled_type = TYPE_RFKILL;
1804 
1805 	if (!strcmp(wled_type, "led"))
1806 		asus->wled_type = TYPE_LED;
1807 	else if (!strcmp(wled_type, "rfkill"))
1808 		asus->wled_type = TYPE_RFKILL;
1809 
1810 	if (bluetooth_status >= 0)
1811 		asus_bluetooth_set(asus, !!bluetooth_status);
1812 
1813 	if (wlan_status >= 0)
1814 		asus_wlan_set(asus, !!wlan_status);
1815 
1816 	if (wimax_status >= 0)
1817 		asus_wimax_set(asus, !!wimax_status);
1818 
1819 	if (wwan_status >= 0)
1820 		asus_wwan_set(asus, !!wwan_status);
1821 
1822 	/* Keyboard Backlight is on by default */
1823 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1824 		asus_kled_set(asus, 1);
1825 
1826 	/* LED display is off by default */
1827 	asus->ledd_status = 0xFFF;
1828 
1829 	/* Set initial values of light sensor and level */
1830 	asus->light_switch = !!als_status;
1831 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1832 
1833 	if (asus->is_pega_lucid) {
1834 		asus_als_switch(asus, asus->light_switch);
1835 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1836 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1837 		asus_als_switch(asus, asus->light_switch);
1838 		asus_als_level(asus, asus->light_level);
1839 	}
1840 
1841 	return result;
1842 }
1843 
1844 static void asus_dmi_check(void)
1845 {
1846 	const char *model;
1847 
1848 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1849 	if (!model)
1850 		return;
1851 
1852 	/* On L1400B WLED control the sound card, don't mess with it ... */
1853 	if (strncmp(model, "L1400B", 6) == 0) {
1854 		wlan_status = -1;
1855 	}
1856 }
1857 
1858 static bool asus_device_present;
1859 
1860 static int asus_acpi_add(struct acpi_device *device)
1861 {
1862 	struct asus_laptop *asus;
1863 	int result;
1864 
1865 	pr_notice("Asus Laptop Support version %s\n",
1866 		  ASUS_LAPTOP_VERSION);
1867 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1868 	if (!asus)
1869 		return -ENOMEM;
1870 	asus->handle = device->handle;
1871 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1872 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1873 	device->driver_data = asus;
1874 	asus->device = device;
1875 
1876 	asus_dmi_check();
1877 
1878 	result = asus_acpi_init(asus);
1879 	if (result)
1880 		goto fail_platform;
1881 
1882 	/*
1883 	 * Need platform type detection first, then the platform
1884 	 * device.  It is used as a parent for the sub-devices below.
1885 	 */
1886 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1887 	result = asus_platform_init(asus);
1888 	if (result)
1889 		goto fail_platform;
1890 
1891 	if (!acpi_video_backlight_support()) {
1892 		result = asus_backlight_init(asus);
1893 		if (result)
1894 			goto fail_backlight;
1895 	} else
1896 		pr_info("Backlight controlled by ACPI video driver\n");
1897 
1898 	result = asus_input_init(asus);
1899 	if (result)
1900 		goto fail_input;
1901 
1902 	result = asus_led_init(asus);
1903 	if (result)
1904 		goto fail_led;
1905 
1906 	result = asus_rfkill_init(asus);
1907 	if (result && result != -ENODEV)
1908 		goto fail_rfkill;
1909 
1910 	result = pega_accel_init(asus);
1911 	if (result && result != -ENODEV)
1912 		goto fail_pega_accel;
1913 
1914 	result = pega_rfkill_init(asus);
1915 	if (result && result != -ENODEV)
1916 		goto fail_pega_rfkill;
1917 
1918 	asus_device_present = true;
1919 	return 0;
1920 
1921 fail_pega_rfkill:
1922 	pega_accel_exit(asus);
1923 fail_pega_accel:
1924 	asus_rfkill_exit(asus);
1925 fail_rfkill:
1926 	asus_led_exit(asus);
1927 fail_led:
1928 	asus_input_exit(asus);
1929 fail_input:
1930 	asus_backlight_exit(asus);
1931 fail_backlight:
1932 	asus_platform_exit(asus);
1933 fail_platform:
1934 	kfree(asus);
1935 
1936 	return result;
1937 }
1938 
1939 static int asus_acpi_remove(struct acpi_device *device)
1940 {
1941 	struct asus_laptop *asus = acpi_driver_data(device);
1942 
1943 	asus_backlight_exit(asus);
1944 	asus_rfkill_exit(asus);
1945 	asus_led_exit(asus);
1946 	asus_input_exit(asus);
1947 	pega_accel_exit(asus);
1948 	asus_platform_exit(asus);
1949 
1950 	kfree(asus->name);
1951 	kfree(asus);
1952 	return 0;
1953 }
1954 
1955 static const struct acpi_device_id asus_device_ids[] = {
1956 	{"ATK0100", 0},
1957 	{"ATK0101", 0},
1958 	{"", 0},
1959 };
1960 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1961 
1962 static struct acpi_driver asus_acpi_driver = {
1963 	.name = ASUS_LAPTOP_NAME,
1964 	.class = ASUS_LAPTOP_CLASS,
1965 	.owner = THIS_MODULE,
1966 	.ids = asus_device_ids,
1967 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1968 	.ops = {
1969 		.add = asus_acpi_add,
1970 		.remove = asus_acpi_remove,
1971 		.notify = asus_acpi_notify,
1972 		},
1973 };
1974 
1975 static int __init asus_laptop_init(void)
1976 {
1977 	int result;
1978 
1979 	result = platform_driver_register(&platform_driver);
1980 	if (result < 0)
1981 		return result;
1982 
1983 	result = acpi_bus_register_driver(&asus_acpi_driver);
1984 	if (result < 0)
1985 		goto fail_acpi_driver;
1986 	if (!asus_device_present) {
1987 		result = -ENODEV;
1988 		goto fail_no_device;
1989 	}
1990 	return 0;
1991 
1992 fail_no_device:
1993 	acpi_bus_unregister_driver(&asus_acpi_driver);
1994 fail_acpi_driver:
1995 	platform_driver_unregister(&platform_driver);
1996 	return result;
1997 }
1998 
1999 static void __exit asus_laptop_exit(void)
2000 {
2001 	acpi_bus_unregister_driver(&asus_acpi_driver);
2002 	platform_driver_unregister(&platform_driver);
2003 }
2004 
2005 module_init(asus_laptop_init);
2006 module_exit(asus_laptop_exit);
2007