xref: /openbmc/linux/drivers/platform/surface/aggregator/controller.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Main SSAM/SSH controller structure and functionality.
4  *
5  * Copyright (C) 2019-2020 Maximilian Luz <luzmaximilian@gmail.com>
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/limits.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/mutex.h>
18 #include <linux/rculist.h>
19 #include <linux/rbtree.h>
20 #include <linux/rwsem.h>
21 #include <linux/serdev.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/srcu.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <linux/surface_aggregator/controller.h>
29 #include <linux/surface_aggregator/serial_hub.h>
30 
31 #include "controller.h"
32 #include "ssh_msgb.h"
33 #include "ssh_request_layer.h"
34 
35 #include "trace.h"
36 
37 
38 /* -- Safe counters. -------------------------------------------------------- */
39 
40 /**
41  * ssh_seq_reset() - Reset/initialize sequence ID counter.
42  * @c: The counter to reset.
43  */
44 static void ssh_seq_reset(struct ssh_seq_counter *c)
45 {
46 	WRITE_ONCE(c->value, 0);
47 }
48 
49 /**
50  * ssh_seq_next() - Get next sequence ID.
51  * @c: The counter providing the sequence IDs.
52  *
53  * Return: Returns the next sequence ID of the counter.
54  */
55 static u8 ssh_seq_next(struct ssh_seq_counter *c)
56 {
57 	u8 old = READ_ONCE(c->value);
58 	u8 new = old + 1;
59 	u8 ret;
60 
61 	while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
62 		old = ret;
63 		new = old + 1;
64 	}
65 
66 	return old;
67 }
68 
69 /**
70  * ssh_rqid_reset() - Reset/initialize request ID counter.
71  * @c: The counter to reset.
72  */
73 static void ssh_rqid_reset(struct ssh_rqid_counter *c)
74 {
75 	WRITE_ONCE(c->value, 0);
76 }
77 
78 /**
79  * ssh_rqid_next() - Get next request ID.
80  * @c: The counter providing the request IDs.
81  *
82  * Return: Returns the next request ID of the counter, skipping any reserved
83  * request IDs.
84  */
85 static u16 ssh_rqid_next(struct ssh_rqid_counter *c)
86 {
87 	u16 old = READ_ONCE(c->value);
88 	u16 new = ssh_rqid_next_valid(old);
89 	u16 ret;
90 
91 	while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
92 		old = ret;
93 		new = ssh_rqid_next_valid(old);
94 	}
95 
96 	return old;
97 }
98 
99 
100 /* -- Event notifier/callbacks. --------------------------------------------- */
101 /*
102  * The notifier system is based on linux/notifier.h, specifically the SRCU
103  * implementation. The difference to that is, that some bits of the notifier
104  * call return value can be tracked across multiple calls. This is done so
105  * that handling of events can be tracked and a warning can be issued in case
106  * an event goes unhandled. The idea of that warning is that it should help
107  * discover and identify new/currently unimplemented features.
108  */
109 
110 /**
111  * ssam_event_matches_notifier() - Test if an event matches a notifier.
112  * @n: The event notifier to test against.
113  * @event: The event to test.
114  *
115  * Return: Returns %true if the given event matches the given notifier
116  * according to the rules set in the notifier's event mask, %false otherwise.
117  */
118 static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n,
119 					const struct ssam_event *event)
120 {
121 	bool match = n->event.id.target_category == event->target_category;
122 
123 	if (n->event.mask & SSAM_EVENT_MASK_TARGET)
124 		match &= n->event.reg.target_id == event->target_id;
125 
126 	if (n->event.mask & SSAM_EVENT_MASK_INSTANCE)
127 		match &= n->event.id.instance == event->instance_id;
128 
129 	return match;
130 }
131 
132 /**
133  * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain.
134  * @nh:    The notifier head for which the notifier callbacks should be called.
135  * @event: The event data provided to the callbacks.
136  *
137  * Call all registered notifier callbacks in order of their priority until
138  * either no notifier is left or a notifier returns a value with the
139  * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via
140  * ssam_notifier_from_errno() on any non-zero error value.
141  *
142  * Return: Returns the notifier status value, which contains the notifier
143  * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a
144  * potential error value returned from the last executed notifier callback.
145  * Use ssam_notifier_to_errno() to convert this value to the original error
146  * value.
147  */
148 static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event)
149 {
150 	struct ssam_event_notifier *nf;
151 	int ret = 0, idx;
152 
153 	idx = srcu_read_lock(&nh->srcu);
154 
155 	list_for_each_entry_rcu(nf, &nh->head, base.node,
156 				srcu_read_lock_held(&nh->srcu)) {
157 		if (ssam_event_matches_notifier(nf, event)) {
158 			ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event);
159 			if (ret & SSAM_NOTIF_STOP)
160 				break;
161 		}
162 	}
163 
164 	srcu_read_unlock(&nh->srcu, idx);
165 	return ret;
166 }
167 
168 /**
169  * ssam_nfblk_insert() - Insert a new notifier block into the given notifier
170  * list.
171  * @nh: The notifier head into which the block should be inserted.
172  * @nb: The notifier block to add.
173  *
174  * Note: This function must be synchronized by the caller with respect to other
175  * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
176  *
177  * Return: Returns zero on success, %-EEXIST if the notifier block has already
178  * been registered.
179  */
180 static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
181 {
182 	struct ssam_notifier_block *p;
183 	struct list_head *h;
184 
185 	/* Runs under lock, no need for RCU variant. */
186 	list_for_each(h, &nh->head) {
187 		p = list_entry(h, struct ssam_notifier_block, node);
188 
189 		if (unlikely(p == nb)) {
190 			WARN(1, "double register detected");
191 			return -EEXIST;
192 		}
193 
194 		if (nb->priority > p->priority)
195 			break;
196 	}
197 
198 	list_add_tail_rcu(&nb->node, h);
199 	return 0;
200 }
201 
202 /**
203  * ssam_nfblk_find() - Check if a notifier block is registered on the given
204  * notifier head.
205  * list.
206  * @nh: The notifier head on which to search.
207  * @nb: The notifier block to search for.
208  *
209  * Note: This function must be synchronized by the caller with respect to other
210  * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
211  *
212  * Return: Returns true if the given notifier block is registered on the given
213  * notifier head, false otherwise.
214  */
215 static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
216 {
217 	struct ssam_notifier_block *p;
218 
219 	/* Runs under lock, no need for RCU variant. */
220 	list_for_each_entry(p, &nh->head, node) {
221 		if (p == nb)
222 			return true;
223 	}
224 
225 	return false;
226 }
227 
228 /**
229  * ssam_nfblk_remove() - Remove a notifier block from its notifier list.
230  * @nb: The notifier block to be removed.
231  *
232  * Note: This function must be synchronized by the caller with respect to
233  * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
234  * Furthermore, the caller _must_ ensure SRCU synchronization by calling
235  * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to
236  * ensure that the removed notifier block is not in use any more.
237  */
238 static void ssam_nfblk_remove(struct ssam_notifier_block *nb)
239 {
240 	list_del_rcu(&nb->node);
241 }
242 
243 /**
244  * ssam_nf_head_init() - Initialize the given notifier head.
245  * @nh: The notifier head to initialize.
246  */
247 static int ssam_nf_head_init(struct ssam_nf_head *nh)
248 {
249 	int status;
250 
251 	status = init_srcu_struct(&nh->srcu);
252 	if (status)
253 		return status;
254 
255 	INIT_LIST_HEAD(&nh->head);
256 	return 0;
257 }
258 
259 /**
260  * ssam_nf_head_destroy() - Deinitialize the given notifier head.
261  * @nh: The notifier head to deinitialize.
262  */
263 static void ssam_nf_head_destroy(struct ssam_nf_head *nh)
264 {
265 	cleanup_srcu_struct(&nh->srcu);
266 }
267 
268 
269 /* -- Event/notification registry. ------------------------------------------ */
270 
271 /**
272  * struct ssam_nf_refcount_key - Key used for event activation reference
273  * counting.
274  * @reg: The registry via which the event is enabled/disabled.
275  * @id:  The ID uniquely describing the event.
276  */
277 struct ssam_nf_refcount_key {
278 	struct ssam_event_registry reg;
279 	struct ssam_event_id id;
280 };
281 
282 /**
283  * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event
284  * activations.
285  * @node:     The node of this entry in the rb-tree.
286  * @key:      The key of the event.
287  * @refcount: The reference-count of the event.
288  * @flags:    The flags used when enabling the event.
289  */
290 struct ssam_nf_refcount_entry {
291 	struct rb_node node;
292 	struct ssam_nf_refcount_key key;
293 	int refcount;
294 	u8 flags;
295 };
296 
297 /**
298  * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given
299  * event.
300  * @nf:  The notifier system reference.
301  * @reg: The registry used to enable/disable the event.
302  * @id:  The event ID.
303  *
304  * Increments the reference-/activation-count associated with the specified
305  * event type/ID, allocating a new entry for this event ID if necessary. A
306  * newly allocated entry will have a refcount of one.
307  *
308  * Note: ``nf->lock`` must be held when calling this function.
309  *
310  * Return: Returns the refcount entry on success. Returns an error pointer
311  * with %-ENOSPC if there have already been %INT_MAX events of the specified
312  * ID and type registered, or %-ENOMEM if the entry could not be allocated.
313  */
314 static struct ssam_nf_refcount_entry *
315 ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg,
316 		     struct ssam_event_id id)
317 {
318 	struct ssam_nf_refcount_entry *entry;
319 	struct ssam_nf_refcount_key key;
320 	struct rb_node **link = &nf->refcount.rb_node;
321 	struct rb_node *parent = NULL;
322 	int cmp;
323 
324 	lockdep_assert_held(&nf->lock);
325 
326 	key.reg = reg;
327 	key.id = id;
328 
329 	while (*link) {
330 		entry = rb_entry(*link, struct ssam_nf_refcount_entry, node);
331 		parent = *link;
332 
333 		cmp = memcmp(&key, &entry->key, sizeof(key));
334 		if (cmp < 0) {
335 			link = &(*link)->rb_left;
336 		} else if (cmp > 0) {
337 			link = &(*link)->rb_right;
338 		} else if (entry->refcount < INT_MAX) {
339 			entry->refcount++;
340 			return entry;
341 		} else {
342 			WARN_ON(1);
343 			return ERR_PTR(-ENOSPC);
344 		}
345 	}
346 
347 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
348 	if (!entry)
349 		return ERR_PTR(-ENOMEM);
350 
351 	entry->key = key;
352 	entry->refcount = 1;
353 
354 	rb_link_node(&entry->node, parent, link);
355 	rb_insert_color(&entry->node, &nf->refcount);
356 
357 	return entry;
358 }
359 
360 /**
361  * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given
362  * event.
363  * @nf:  The notifier system reference.
364  * @reg: The registry used to enable/disable the event.
365  * @id:  The event ID.
366  *
367  * Decrements the reference-/activation-count of the specified event,
368  * returning its entry. If the returned entry has a refcount of zero, the
369  * caller is responsible for freeing it using kfree().
370  *
371  * Note: ``nf->lock`` must be held when calling this function.
372  *
373  * Return: Returns the refcount entry on success or %NULL if the entry has not
374  * been found.
375  */
376 static struct ssam_nf_refcount_entry *
377 ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg,
378 		     struct ssam_event_id id)
379 {
380 	struct ssam_nf_refcount_entry *entry;
381 	struct ssam_nf_refcount_key key;
382 	struct rb_node *node = nf->refcount.rb_node;
383 	int cmp;
384 
385 	lockdep_assert_held(&nf->lock);
386 
387 	key.reg = reg;
388 	key.id = id;
389 
390 	while (node) {
391 		entry = rb_entry(node, struct ssam_nf_refcount_entry, node);
392 
393 		cmp = memcmp(&key, &entry->key, sizeof(key));
394 		if (cmp < 0) {
395 			node = node->rb_left;
396 		} else if (cmp > 0) {
397 			node = node->rb_right;
398 		} else {
399 			entry->refcount--;
400 			if (entry->refcount == 0)
401 				rb_erase(&entry->node, &nf->refcount);
402 
403 			return entry;
404 		}
405 	}
406 
407 	return NULL;
408 }
409 
410 /**
411  * ssam_nf_refcount_empty() - Test if the notification system has any
412  * enabled/active events.
413  * @nf: The notification system.
414  */
415 static bool ssam_nf_refcount_empty(struct ssam_nf *nf)
416 {
417 	return RB_EMPTY_ROOT(&nf->refcount);
418 }
419 
420 /**
421  * ssam_nf_call() - Call notification callbacks for the provided event.
422  * @nf:    The notifier system
423  * @dev:   The associated device, only used for logging.
424  * @rqid:  The request ID of the event.
425  * @event: The event provided to the callbacks.
426  *
427  * Execute registered callbacks in order of their priority until either no
428  * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP
429  * bit set. Note that this bit is set automatically when converting non-zero
430  * error values via ssam_notifier_from_errno() to notifier values.
431  *
432  * Also note that any callback that could handle an event should return a value
433  * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go
434  * unhandled/ignored. In case no registered callback could handle an event,
435  * this function will emit a warning.
436  *
437  * In case a callback failed, this function will emit an error message.
438  */
439 static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid,
440 			 struct ssam_event *event)
441 {
442 	struct ssam_nf_head *nf_head;
443 	int status, nf_ret;
444 
445 	if (!ssh_rqid_is_event(rqid)) {
446 		dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid);
447 		return;
448 	}
449 
450 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
451 	nf_ret = ssam_nfblk_call_chain(nf_head, event);
452 	status = ssam_notifier_to_errno(nf_ret);
453 
454 	if (status < 0) {
455 		dev_err(dev,
456 			"event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
457 			status, event->target_category, event->target_id,
458 			event->command_id, event->instance_id);
459 	} else if (!(nf_ret & SSAM_NOTIF_HANDLED)) {
460 		dev_warn(dev,
461 			 "event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
462 			 rqid, event->target_category, event->target_id,
463 			 event->command_id, event->instance_id);
464 	}
465 }
466 
467 /**
468  * ssam_nf_init() - Initialize the notifier system.
469  * @nf: The notifier system to initialize.
470  */
471 static int ssam_nf_init(struct ssam_nf *nf)
472 {
473 	int i, status;
474 
475 	for (i = 0; i < SSH_NUM_EVENTS; i++) {
476 		status = ssam_nf_head_init(&nf->head[i]);
477 		if (status)
478 			break;
479 	}
480 
481 	if (status) {
482 		while (i--)
483 			ssam_nf_head_destroy(&nf->head[i]);
484 
485 		return status;
486 	}
487 
488 	mutex_init(&nf->lock);
489 	return 0;
490 }
491 
492 /**
493  * ssam_nf_destroy() - Deinitialize the notifier system.
494  * @nf: The notifier system to deinitialize.
495  */
496 static void ssam_nf_destroy(struct ssam_nf *nf)
497 {
498 	int i;
499 
500 	for (i = 0; i < SSH_NUM_EVENTS; i++)
501 		ssam_nf_head_destroy(&nf->head[i]);
502 
503 	mutex_destroy(&nf->lock);
504 }
505 
506 
507 /* -- Event/async request completion system. -------------------------------- */
508 
509 #define SSAM_CPLT_WQ_NAME	"ssam_cpltq"
510 
511 /*
512  * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per
513  * work execution. Used to prevent livelocking of the workqueue. Value chosen
514  * via educated guess, may be adjusted.
515  */
516 #define SSAM_CPLT_WQ_BATCH	10
517 
518 /*
519  * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached
520  * &struct ssam_event_item.
521  *
522  * This length has been chosen to be accommodate standard touchpad and
523  * keyboard input events. Events with larger payloads will be allocated
524  * separately.
525  */
526 #define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN	32
527 
528 static struct kmem_cache *ssam_event_item_cache;
529 
530 /**
531  * ssam_event_item_cache_init() - Initialize the event item cache.
532  */
533 int ssam_event_item_cache_init(void)
534 {
535 	const unsigned int size = sizeof(struct ssam_event_item)
536 				  + SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN;
537 	const unsigned int align = __alignof__(struct ssam_event_item);
538 	struct kmem_cache *cache;
539 
540 	cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL);
541 	if (!cache)
542 		return -ENOMEM;
543 
544 	ssam_event_item_cache = cache;
545 	return 0;
546 }
547 
548 /**
549  * ssam_event_item_cache_destroy() - Deinitialize the event item cache.
550  */
551 void ssam_event_item_cache_destroy(void)
552 {
553 	kmem_cache_destroy(ssam_event_item_cache);
554 	ssam_event_item_cache = NULL;
555 }
556 
557 static void __ssam_event_item_free_cached(struct ssam_event_item *item)
558 {
559 	kmem_cache_free(ssam_event_item_cache, item);
560 }
561 
562 static void __ssam_event_item_free_generic(struct ssam_event_item *item)
563 {
564 	kfree(item);
565 }
566 
567 /**
568  * ssam_event_item_free() - Free the provided event item.
569  * @item: The event item to free.
570  */
571 static void ssam_event_item_free(struct ssam_event_item *item)
572 {
573 	trace_ssam_event_item_free(item);
574 	item->ops.free(item);
575 }
576 
577 /**
578  * ssam_event_item_alloc() - Allocate an event item with the given payload size.
579  * @len:   The event payload length.
580  * @flags: The flags used for allocation.
581  *
582  * Allocate an event item with the given payload size, preferring allocation
583  * from the event item cache if the payload is small enough (i.e. smaller than
584  * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload
585  * length values. The item free callback (``ops.free``) should not be
586  * overwritten after this call.
587  *
588  * Return: Returns the newly allocated event item.
589  */
590 static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags)
591 {
592 	struct ssam_event_item *item;
593 
594 	if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) {
595 		item = kmem_cache_alloc(ssam_event_item_cache, flags);
596 		if (!item)
597 			return NULL;
598 
599 		item->ops.free = __ssam_event_item_free_cached;
600 	} else {
601 		item = kzalloc(struct_size(item, event.data, len), flags);
602 		if (!item)
603 			return NULL;
604 
605 		item->ops.free = __ssam_event_item_free_generic;
606 	}
607 
608 	item->event.length = len;
609 
610 	trace_ssam_event_item_alloc(item, len);
611 	return item;
612 }
613 
614 /**
615  * ssam_event_queue_push() - Push an event item to the event queue.
616  * @q:    The event queue.
617  * @item: The item to add.
618  */
619 static void ssam_event_queue_push(struct ssam_event_queue *q,
620 				  struct ssam_event_item *item)
621 {
622 	spin_lock(&q->lock);
623 	list_add_tail(&item->node, &q->head);
624 	spin_unlock(&q->lock);
625 }
626 
627 /**
628  * ssam_event_queue_pop() - Pop the next event item from the event queue.
629  * @q: The event queue.
630  *
631  * Returns and removes the next event item from the queue. Returns %NULL If
632  * there is no event item left.
633  */
634 static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q)
635 {
636 	struct ssam_event_item *item;
637 
638 	spin_lock(&q->lock);
639 	item = list_first_entry_or_null(&q->head, struct ssam_event_item, node);
640 	if (item)
641 		list_del(&item->node);
642 	spin_unlock(&q->lock);
643 
644 	return item;
645 }
646 
647 /**
648  * ssam_event_queue_is_empty() - Check if the event queue is empty.
649  * @q: The event queue.
650  */
651 static bool ssam_event_queue_is_empty(struct ssam_event_queue *q)
652 {
653 	bool empty;
654 
655 	spin_lock(&q->lock);
656 	empty = list_empty(&q->head);
657 	spin_unlock(&q->lock);
658 
659 	return empty;
660 }
661 
662 /**
663  * ssam_cplt_get_event_queue() - Get the event queue for the given parameters.
664  * @cplt: The completion system on which to look for the queue.
665  * @tid:  The target ID of the queue.
666  * @rqid: The request ID representing the event ID for which to get the queue.
667  *
668  * Return: Returns the event queue corresponding to the event type described
669  * by the given parameters. If the request ID does not represent an event,
670  * this function returns %NULL. If the target ID is not supported, this
671  * function will fall back to the default target ID (``tid = 1``).
672  */
673 static
674 struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt,
675 						   u8 tid, u16 rqid)
676 {
677 	u16 event = ssh_rqid_to_event(rqid);
678 	u16 tidx = ssh_tid_to_index(tid);
679 
680 	if (!ssh_rqid_is_event(rqid)) {
681 		dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid);
682 		return NULL;
683 	}
684 
685 	if (!ssh_tid_is_valid(tid)) {
686 		dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid);
687 		tidx = 0;
688 	}
689 
690 	return &cplt->event.target[tidx].queue[event];
691 }
692 
693 /**
694  * ssam_cplt_submit() - Submit a work item to the completion system workqueue.
695  * @cplt: The completion system.
696  * @work: The work item to submit.
697  */
698 static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work)
699 {
700 	return queue_work(cplt->wq, work);
701 }
702 
703 /**
704  * ssam_cplt_submit_event() - Submit an event to the completion system.
705  * @cplt: The completion system.
706  * @item: The event item to submit.
707  *
708  * Submits the event to the completion system by queuing it on the event item
709  * queue and queuing the respective event queue work item on the completion
710  * workqueue, which will eventually complete the event.
711  *
712  * Return: Returns zero on success, %-EINVAL if there is no event queue that
713  * can handle the given event item.
714  */
715 static int ssam_cplt_submit_event(struct ssam_cplt *cplt,
716 				  struct ssam_event_item *item)
717 {
718 	struct ssam_event_queue *evq;
719 
720 	evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid);
721 	if (!evq)
722 		return -EINVAL;
723 
724 	ssam_event_queue_push(evq, item);
725 	ssam_cplt_submit(cplt, &evq->work);
726 	return 0;
727 }
728 
729 /**
730  * ssam_cplt_flush() - Flush the completion system.
731  * @cplt: The completion system.
732  *
733  * Flush the completion system by waiting until all currently submitted work
734  * items have been completed.
735  *
736  * Note: This function does not guarantee that all events will have been
737  * handled once this call terminates. In case of a larger number of
738  * to-be-completed events, the event queue work function may re-schedule its
739  * work item, which this flush operation will ignore.
740  *
741  * This operation is only intended to, during normal operation prior to
742  * shutdown, try to complete most events and requests to get them out of the
743  * system while the system is still fully operational. It does not aim to
744  * provide any guarantee that all of them have been handled.
745  */
746 static void ssam_cplt_flush(struct ssam_cplt *cplt)
747 {
748 	flush_workqueue(cplt->wq);
749 }
750 
751 static void ssam_event_queue_work_fn(struct work_struct *work)
752 {
753 	struct ssam_event_queue *queue;
754 	struct ssam_event_item *item;
755 	struct ssam_nf *nf;
756 	struct device *dev;
757 	unsigned int iterations = SSAM_CPLT_WQ_BATCH;
758 
759 	queue = container_of(work, struct ssam_event_queue, work);
760 	nf = &queue->cplt->event.notif;
761 	dev = queue->cplt->dev;
762 
763 	/* Limit number of processed events to avoid livelocking. */
764 	do {
765 		item = ssam_event_queue_pop(queue);
766 		if (!item)
767 			return;
768 
769 		ssam_nf_call(nf, dev, item->rqid, &item->event);
770 		ssam_event_item_free(item);
771 	} while (--iterations);
772 
773 	if (!ssam_event_queue_is_empty(queue))
774 		ssam_cplt_submit(queue->cplt, &queue->work);
775 }
776 
777 /**
778  * ssam_event_queue_init() - Initialize an event queue.
779  * @cplt: The completion system on which the queue resides.
780  * @evq:  The event queue to initialize.
781  */
782 static void ssam_event_queue_init(struct ssam_cplt *cplt,
783 				  struct ssam_event_queue *evq)
784 {
785 	evq->cplt = cplt;
786 	spin_lock_init(&evq->lock);
787 	INIT_LIST_HEAD(&evq->head);
788 	INIT_WORK(&evq->work, ssam_event_queue_work_fn);
789 }
790 
791 /**
792  * ssam_cplt_init() - Initialize completion system.
793  * @cplt: The completion system to initialize.
794  * @dev:  The device used for logging.
795  */
796 static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev)
797 {
798 	struct ssam_event_target *target;
799 	int status, c, i;
800 
801 	cplt->dev = dev;
802 
803 	cplt->wq = create_workqueue(SSAM_CPLT_WQ_NAME);
804 	if (!cplt->wq)
805 		return -ENOMEM;
806 
807 	for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) {
808 		target = &cplt->event.target[c];
809 
810 		for (i = 0; i < ARRAY_SIZE(target->queue); i++)
811 			ssam_event_queue_init(cplt, &target->queue[i]);
812 	}
813 
814 	status = ssam_nf_init(&cplt->event.notif);
815 	if (status)
816 		destroy_workqueue(cplt->wq);
817 
818 	return status;
819 }
820 
821 /**
822  * ssam_cplt_destroy() - Deinitialize the completion system.
823  * @cplt: The completion system to deinitialize.
824  *
825  * Deinitialize the given completion system and ensure that all pending, i.e.
826  * yet-to-be-completed, event items and requests have been handled.
827  */
828 static void ssam_cplt_destroy(struct ssam_cplt *cplt)
829 {
830 	/*
831 	 * Note: destroy_workqueue ensures that all currently queued work will
832 	 * be fully completed and the workqueue drained. This means that this
833 	 * call will inherently also free any queued ssam_event_items, thus we
834 	 * don't have to take care of that here explicitly.
835 	 */
836 	destroy_workqueue(cplt->wq);
837 	ssam_nf_destroy(&cplt->event.notif);
838 }
839 
840 
841 /* -- Main SSAM device structures. ------------------------------------------ */
842 
843 /**
844  * ssam_controller_device() - Get the &struct device associated with this
845  * controller.
846  * @c: The controller for which to get the device.
847  *
848  * Return: Returns the &struct device associated with this controller,
849  * providing its lower-level transport.
850  */
851 struct device *ssam_controller_device(struct ssam_controller *c)
852 {
853 	return ssh_rtl_get_device(&c->rtl);
854 }
855 EXPORT_SYMBOL_GPL(ssam_controller_device);
856 
857 static void __ssam_controller_release(struct kref *kref)
858 {
859 	struct ssam_controller *ctrl = to_ssam_controller(kref, kref);
860 
861 	/*
862 	 * The lock-call here is to satisfy lockdep. At this point we really
863 	 * expect this to be the last remaining reference to the controller.
864 	 * Anything else is a bug.
865 	 */
866 	ssam_controller_lock(ctrl);
867 	ssam_controller_destroy(ctrl);
868 	ssam_controller_unlock(ctrl);
869 
870 	kfree(ctrl);
871 }
872 
873 /**
874  * ssam_controller_get() - Increment reference count of controller.
875  * @c: The controller.
876  *
877  * Return: Returns the controller provided as input.
878  */
879 struct ssam_controller *ssam_controller_get(struct ssam_controller *c)
880 {
881 	if (c)
882 		kref_get(&c->kref);
883 	return c;
884 }
885 EXPORT_SYMBOL_GPL(ssam_controller_get);
886 
887 /**
888  * ssam_controller_put() - Decrement reference count of controller.
889  * @c: The controller.
890  */
891 void ssam_controller_put(struct ssam_controller *c)
892 {
893 	if (c)
894 		kref_put(&c->kref, __ssam_controller_release);
895 }
896 EXPORT_SYMBOL_GPL(ssam_controller_put);
897 
898 /**
899  * ssam_controller_statelock() - Lock the controller against state transitions.
900  * @c: The controller to lock.
901  *
902  * Lock the controller against state transitions. Holding this lock guarantees
903  * that the controller will not transition between states, i.e. if the
904  * controller is in state "started", when this lock has been acquired, it will
905  * remain in this state at least until the lock has been released.
906  *
907  * Multiple clients may concurrently hold this lock. In other words: The
908  * ``statelock`` functions represent the read-lock part of a r/w-semaphore.
909  * Actions causing state transitions of the controller must be executed while
910  * holding the write-part of this r/w-semaphore (see ssam_controller_lock()
911  * and ssam_controller_unlock() for that).
912  *
913  * See ssam_controller_stateunlock() for the corresponding unlock function.
914  */
915 void ssam_controller_statelock(struct ssam_controller *c)
916 {
917 	down_read(&c->lock);
918 }
919 EXPORT_SYMBOL_GPL(ssam_controller_statelock);
920 
921 /**
922  * ssam_controller_stateunlock() - Unlock controller state transitions.
923  * @c: The controller to unlock.
924  *
925  * See ssam_controller_statelock() for the corresponding lock function.
926  */
927 void ssam_controller_stateunlock(struct ssam_controller *c)
928 {
929 	up_read(&c->lock);
930 }
931 EXPORT_SYMBOL_GPL(ssam_controller_stateunlock);
932 
933 /**
934  * ssam_controller_lock() - Acquire the main controller lock.
935  * @c: The controller to lock.
936  *
937  * This lock must be held for any state transitions, including transition to
938  * suspend/resumed states and during shutdown. See ssam_controller_statelock()
939  * for more details on controller locking.
940  *
941  * See ssam_controller_unlock() for the corresponding unlock function.
942  */
943 void ssam_controller_lock(struct ssam_controller *c)
944 {
945 	down_write(&c->lock);
946 }
947 
948 /*
949  * ssam_controller_unlock() - Release the main controller lock.
950  * @c: The controller to unlock.
951  *
952  * See ssam_controller_lock() for the corresponding lock function.
953  */
954 void ssam_controller_unlock(struct ssam_controller *c)
955 {
956 	up_write(&c->lock);
957 }
958 
959 static void ssam_handle_event(struct ssh_rtl *rtl,
960 			      const struct ssh_command *cmd,
961 			      const struct ssam_span *data)
962 {
963 	struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl);
964 	struct ssam_event_item *item;
965 
966 	item = ssam_event_item_alloc(data->len, GFP_KERNEL);
967 	if (!item)
968 		return;
969 
970 	item->rqid = get_unaligned_le16(&cmd->rqid);
971 	item->event.target_category = cmd->tc;
972 	item->event.target_id = cmd->tid_in;
973 	item->event.command_id = cmd->cid;
974 	item->event.instance_id = cmd->iid;
975 	memcpy(&item->event.data[0], data->ptr, data->len);
976 
977 	if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item)))
978 		ssam_event_item_free(item);
979 }
980 
981 static const struct ssh_rtl_ops ssam_rtl_ops = {
982 	.handle_event = ssam_handle_event,
983 };
984 
985 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl);
986 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl);
987 
988 #define SSAM_SSH_DSM_REVISION	0
989 
990 /* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */
991 static const guid_t SSAM_SSH_DSM_GUID =
992 	GUID_INIT(0xd5e383e1, 0xd892, 0x4a76,
993 		  0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5);
994 
995 enum ssh_dsm_fn {
996 	SSH_DSM_FN_SSH_POWER_PROFILE             = 0x05,
997 	SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT  = 0x06,
998 	SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07,
999 	SSH_DSM_FN_D3_CLOSES_HANDLE              = 0x08,
1000 	SSH_DSM_FN_SSH_BUFFER_SIZE               = 0x09,
1001 };
1002 
1003 static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs)
1004 {
1005 	union acpi_object *obj;
1006 	u64 mask = 0;
1007 	int i;
1008 
1009 	*funcs = 0;
1010 
1011 	/*
1012 	 * The _DSM function is only present on newer models. It is not
1013 	 * present on 5th and 6th generation devices (i.e. up to and including
1014 	 * Surface Pro 6, Surface Laptop 2, Surface Book 2).
1015 	 *
1016 	 * If the _DSM is not present, indicate that no function is supported.
1017 	 * This will result in default values being set.
1018 	 */
1019 	if (!acpi_has_method(handle, "_DSM"))
1020 		return 0;
1021 
1022 	obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1023 				      SSAM_SSH_DSM_REVISION, 0, NULL,
1024 				      ACPI_TYPE_BUFFER);
1025 	if (!obj)
1026 		return -EIO;
1027 
1028 	for (i = 0; i < obj->buffer.length && i < 8; i++)
1029 		mask |= (((u64)obj->buffer.pointer[i]) << (i * 8));
1030 
1031 	if (mask & BIT(0))
1032 		*funcs = mask;
1033 
1034 	ACPI_FREE(obj);
1035 	return 0;
1036 }
1037 
1038 static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret)
1039 {
1040 	union acpi_object *obj;
1041 	u64 val;
1042 
1043 	if (!(funcs & BIT_ULL(func)))
1044 		return 0; /* Not supported, leave *ret at its default value */
1045 
1046 	obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1047 				      SSAM_SSH_DSM_REVISION, func, NULL,
1048 				      ACPI_TYPE_INTEGER);
1049 	if (!obj)
1050 		return -EIO;
1051 
1052 	val = obj->integer.value;
1053 	ACPI_FREE(obj);
1054 
1055 	if (val > U32_MAX)
1056 		return -ERANGE;
1057 
1058 	*ret = val;
1059 	return 0;
1060 }
1061 
1062 /**
1063  * ssam_controller_caps_load_from_acpi() - Load controller capabilities from
1064  * ACPI _DSM.
1065  * @handle: The handle of the ACPI controller/SSH device.
1066  * @caps:   Where to store the capabilities in.
1067  *
1068  * Initializes the given controller capabilities with default values, then
1069  * checks and, if the respective _DSM functions are available, loads the
1070  * actual capabilities from the _DSM.
1071  *
1072  * Return: Returns zero on success, a negative error code on failure.
1073  */
1074 static
1075 int ssam_controller_caps_load_from_acpi(acpi_handle handle,
1076 					struct ssam_controller_caps *caps)
1077 {
1078 	u32 d3_closes_handle = false;
1079 	u64 funcs;
1080 	int status;
1081 
1082 	/* Set defaults. */
1083 	caps->ssh_power_profile = U32_MAX;
1084 	caps->screen_on_sleep_idle_timeout = U32_MAX;
1085 	caps->screen_off_sleep_idle_timeout = U32_MAX;
1086 	caps->d3_closes_handle = false;
1087 	caps->ssh_buffer_size = U32_MAX;
1088 
1089 	/* Pre-load supported DSM functions. */
1090 	status = ssam_dsm_get_functions(handle, &funcs);
1091 	if (status)
1092 		return status;
1093 
1094 	/* Load actual values from ACPI, if present. */
1095 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE,
1096 				   &caps->ssh_power_profile);
1097 	if (status)
1098 		return status;
1099 
1100 	status = ssam_dsm_load_u32(handle, funcs,
1101 				   SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT,
1102 				   &caps->screen_on_sleep_idle_timeout);
1103 	if (status)
1104 		return status;
1105 
1106 	status = ssam_dsm_load_u32(handle, funcs,
1107 				   SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT,
1108 				   &caps->screen_off_sleep_idle_timeout);
1109 	if (status)
1110 		return status;
1111 
1112 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE,
1113 				   &d3_closes_handle);
1114 	if (status)
1115 		return status;
1116 
1117 	caps->d3_closes_handle = !!d3_closes_handle;
1118 
1119 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE,
1120 				   &caps->ssh_buffer_size);
1121 	if (status)
1122 		return status;
1123 
1124 	return 0;
1125 }
1126 
1127 /**
1128  * ssam_controller_init() - Initialize SSAM controller.
1129  * @ctrl:   The controller to initialize.
1130  * @serdev: The serial device representing the underlying data transport.
1131  *
1132  * Initializes the given controller. Does neither start receiver nor
1133  * transmitter threads. After this call, the controller has to be hooked up to
1134  * the serdev core separately via &struct serdev_device_ops, relaying calls to
1135  * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the
1136  * controller has been hooked up, transmitter and receiver threads may be
1137  * started via ssam_controller_start(). These setup steps need to be completed
1138  * before controller can be used for requests.
1139  */
1140 int ssam_controller_init(struct ssam_controller *ctrl,
1141 			 struct serdev_device *serdev)
1142 {
1143 	acpi_handle handle = ACPI_HANDLE(&serdev->dev);
1144 	int status;
1145 
1146 	init_rwsem(&ctrl->lock);
1147 	kref_init(&ctrl->kref);
1148 
1149 	status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps);
1150 	if (status)
1151 		return status;
1152 
1153 	dev_dbg(&serdev->dev,
1154 		"device capabilities:\n"
1155 		"  ssh_power_profile:             %u\n"
1156 		"  ssh_buffer_size:               %u\n"
1157 		"  screen_on_sleep_idle_timeout:  %u\n"
1158 		"  screen_off_sleep_idle_timeout: %u\n"
1159 		"  d3_closes_handle:              %u\n",
1160 		ctrl->caps.ssh_power_profile,
1161 		ctrl->caps.ssh_buffer_size,
1162 		ctrl->caps.screen_on_sleep_idle_timeout,
1163 		ctrl->caps.screen_off_sleep_idle_timeout,
1164 		ctrl->caps.d3_closes_handle);
1165 
1166 	ssh_seq_reset(&ctrl->counter.seq);
1167 	ssh_rqid_reset(&ctrl->counter.rqid);
1168 
1169 	/* Initialize event/request completion system. */
1170 	status = ssam_cplt_init(&ctrl->cplt, &serdev->dev);
1171 	if (status)
1172 		return status;
1173 
1174 	/* Initialize request and packet transport layers. */
1175 	status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops);
1176 	if (status) {
1177 		ssam_cplt_destroy(&ctrl->cplt);
1178 		return status;
1179 	}
1180 
1181 	/*
1182 	 * Set state via write_once even though we expect to be in an
1183 	 * exclusive context, due to smoke-testing in
1184 	 * ssam_request_sync_submit().
1185 	 */
1186 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED);
1187 	return 0;
1188 }
1189 
1190 /**
1191  * ssam_controller_start() - Start the receiver and transmitter threads of the
1192  * controller.
1193  * @ctrl: The controller.
1194  *
1195  * Note: When this function is called, the controller should be properly
1196  * hooked up to the serdev core via &struct serdev_device_ops. Please refer
1197  * to ssam_controller_init() for more details on controller initialization.
1198  *
1199  * This function must be called with the main controller lock held (i.e. by
1200  * calling ssam_controller_lock()).
1201  */
1202 int ssam_controller_start(struct ssam_controller *ctrl)
1203 {
1204 	int status;
1205 
1206 	lockdep_assert_held_write(&ctrl->lock);
1207 
1208 	if (ctrl->state != SSAM_CONTROLLER_INITIALIZED)
1209 		return -EINVAL;
1210 
1211 	status = ssh_rtl_start(&ctrl->rtl);
1212 	if (status)
1213 		return status;
1214 
1215 	/*
1216 	 * Set state via write_once even though we expect to be locked/in an
1217 	 * exclusive context, due to smoke-testing in
1218 	 * ssam_request_sync_submit().
1219 	 */
1220 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1221 	return 0;
1222 }
1223 
1224 /*
1225  * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during
1226  * shutdown.
1227  *
1228  * Chosen to be larger than one full request timeout, including packets timing
1229  * out. This value should give ample time to complete any outstanding requests
1230  * during normal operation and account for the odd package timeout.
1231  */
1232 #define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT	msecs_to_jiffies(5000)
1233 
1234 /**
1235  * ssam_controller_shutdown() - Shut down the controller.
1236  * @ctrl: The controller.
1237  *
1238  * Shuts down the controller by flushing all pending requests and stopping the
1239  * transmitter and receiver threads. All requests submitted after this call
1240  * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function
1241  * is safe to use in parallel with ongoing request submission.
1242  *
1243  * In the course of this shutdown procedure, all currently registered
1244  * notifiers will be unregistered. It is, however, strongly recommended to not
1245  * rely on this behavior, and instead the party registering the notifier
1246  * should unregister it before the controller gets shut down, e.g. via the
1247  * SSAM bus which guarantees client devices to be removed before a shutdown.
1248  *
1249  * Note that events may still be pending after this call, but, due to the
1250  * notifiers being unregistered, these events will be dropped when the
1251  * controller is subsequently destroyed via ssam_controller_destroy().
1252  *
1253  * This function must be called with the main controller lock held (i.e. by
1254  * calling ssam_controller_lock()).
1255  */
1256 void ssam_controller_shutdown(struct ssam_controller *ctrl)
1257 {
1258 	enum ssam_controller_state s = ctrl->state;
1259 	int status;
1260 
1261 	lockdep_assert_held_write(&ctrl->lock);
1262 
1263 	if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED)
1264 		return;
1265 
1266 	/*
1267 	 * Try to flush pending events and requests while everything still
1268 	 * works. Note: There may still be packets and/or requests in the
1269 	 * system after this call (e.g. via control packets submitted by the
1270 	 * packet transport layer or flush timeout / failure, ...). Those will
1271 	 * be handled with the ssh_rtl_shutdown() call below.
1272 	 */
1273 	status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT);
1274 	if (status) {
1275 		ssam_err(ctrl, "failed to flush request transport layer: %d\n",
1276 			 status);
1277 	}
1278 
1279 	/* Try to flush all currently completing requests and events. */
1280 	ssam_cplt_flush(&ctrl->cplt);
1281 
1282 	/*
1283 	 * We expect all notifiers to have been removed by the respective client
1284 	 * driver that set them up at this point. If this warning occurs, some
1285 	 * client driver has not done that...
1286 	 */
1287 	WARN_ON(!ssam_notifier_is_empty(ctrl));
1288 
1289 	/*
1290 	 * Nevertheless, we should still take care of drivers that don't behave
1291 	 * well. Thus disable all enabled events, unregister all notifiers.
1292 	 */
1293 	ssam_notifier_unregister_all(ctrl);
1294 
1295 	/*
1296 	 * Cancel remaining requests. Ensure no new ones can be queued and stop
1297 	 * threads.
1298 	 */
1299 	ssh_rtl_shutdown(&ctrl->rtl);
1300 
1301 	/*
1302 	 * Set state via write_once even though we expect to be locked/in an
1303 	 * exclusive context, due to smoke-testing in
1304 	 * ssam_request_sync_submit().
1305 	 */
1306 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED);
1307 	ctrl->rtl.ptl.serdev = NULL;
1308 }
1309 
1310 /**
1311  * ssam_controller_destroy() - Destroy the controller and free its resources.
1312  * @ctrl: The controller.
1313  *
1314  * Ensures that all resources associated with the controller get freed. This
1315  * function should only be called after the controller has been stopped via
1316  * ssam_controller_shutdown(). In general, this function should not be called
1317  * directly. The only valid place to call this function directly is during
1318  * initialization, before the controller has been fully initialized and passed
1319  * to other processes. This function is called automatically when the
1320  * reference count of the controller reaches zero.
1321  *
1322  * This function must be called with the main controller lock held (i.e. by
1323  * calling ssam_controller_lock()).
1324  */
1325 void ssam_controller_destroy(struct ssam_controller *ctrl)
1326 {
1327 	lockdep_assert_held_write(&ctrl->lock);
1328 
1329 	if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED)
1330 		return;
1331 
1332 	WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED);
1333 
1334 	/*
1335 	 * Note: New events could still have been received after the previous
1336 	 * flush in ssam_controller_shutdown, before the request transport layer
1337 	 * has been shut down. At this point, after the shutdown, we can be sure
1338 	 * that no new events will be queued. The call to ssam_cplt_destroy will
1339 	 * ensure that those remaining are being completed and freed.
1340 	 */
1341 
1342 	/* Actually free resources. */
1343 	ssam_cplt_destroy(&ctrl->cplt);
1344 	ssh_rtl_destroy(&ctrl->rtl);
1345 
1346 	/*
1347 	 * Set state via write_once even though we expect to be locked/in an
1348 	 * exclusive context, due to smoke-testing in
1349 	 * ssam_request_sync_submit().
1350 	 */
1351 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED);
1352 }
1353 
1354 /**
1355  * ssam_controller_suspend() - Suspend the controller.
1356  * @ctrl: The controller to suspend.
1357  *
1358  * Marks the controller as suspended. Note that display-off and D0-exit
1359  * notifications have to be sent manually before transitioning the controller
1360  * into the suspended state via this function.
1361  *
1362  * See ssam_controller_resume() for the corresponding resume function.
1363  *
1364  * Return: Returns %-EINVAL if the controller is currently not in the
1365  * "started" state.
1366  */
1367 int ssam_controller_suspend(struct ssam_controller *ctrl)
1368 {
1369 	ssam_controller_lock(ctrl);
1370 
1371 	if (ctrl->state != SSAM_CONTROLLER_STARTED) {
1372 		ssam_controller_unlock(ctrl);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ssam_dbg(ctrl, "pm: suspending controller\n");
1377 
1378 	/*
1379 	 * Set state via write_once even though we're locked, due to
1380 	 * smoke-testing in ssam_request_sync_submit().
1381 	 */
1382 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED);
1383 
1384 	ssam_controller_unlock(ctrl);
1385 	return 0;
1386 }
1387 
1388 /**
1389  * ssam_controller_resume() - Resume the controller from suspend.
1390  * @ctrl: The controller to resume.
1391  *
1392  * Resume the controller from the suspended state it was put into via
1393  * ssam_controller_suspend(). This function does not issue display-on and
1394  * D0-entry notifications. If required, those have to be sent manually after
1395  * this call.
1396  *
1397  * Return: Returns %-EINVAL if the controller is currently not suspended.
1398  */
1399 int ssam_controller_resume(struct ssam_controller *ctrl)
1400 {
1401 	ssam_controller_lock(ctrl);
1402 
1403 	if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) {
1404 		ssam_controller_unlock(ctrl);
1405 		return -EINVAL;
1406 	}
1407 
1408 	ssam_dbg(ctrl, "pm: resuming controller\n");
1409 
1410 	/*
1411 	 * Set state via write_once even though we're locked, due to
1412 	 * smoke-testing in ssam_request_sync_submit().
1413 	 */
1414 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1415 
1416 	ssam_controller_unlock(ctrl);
1417 	return 0;
1418 }
1419 
1420 
1421 /* -- Top-level request interface ------------------------------------------- */
1422 
1423 /**
1424  * ssam_request_write_data() - Construct and write SAM request message to
1425  * buffer.
1426  * @buf:  The buffer to write the data to.
1427  * @ctrl: The controller via which the request will be sent.
1428  * @spec: The request data and specification.
1429  *
1430  * Constructs a SAM/SSH request message and writes it to the provided buffer.
1431  * The request and transport counters, specifically RQID and SEQ, will be set
1432  * in this call. These counters are obtained from the controller. It is thus
1433  * only valid to send the resulting message via the controller specified here.
1434  *
1435  * For calculation of the required buffer size, refer to the
1436  * SSH_COMMAND_MESSAGE_LENGTH() macro.
1437  *
1438  * Return: Returns the number of bytes used in the buffer on success. Returns
1439  * %-EINVAL if the payload length provided in the request specification is too
1440  * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer
1441  * is too small.
1442  */
1443 ssize_t ssam_request_write_data(struct ssam_span *buf,
1444 				struct ssam_controller *ctrl,
1445 				const struct ssam_request *spec)
1446 {
1447 	struct msgbuf msgb;
1448 	u16 rqid;
1449 	u8 seq;
1450 
1451 	if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE)
1452 		return -EINVAL;
1453 
1454 	if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len)
1455 		return -EINVAL;
1456 
1457 	msgb_init(&msgb, buf->ptr, buf->len);
1458 	seq = ssh_seq_next(&ctrl->counter.seq);
1459 	rqid = ssh_rqid_next(&ctrl->counter.rqid);
1460 	msgb_push_cmd(&msgb, seq, rqid, spec);
1461 
1462 	return msgb_bytes_used(&msgb);
1463 }
1464 EXPORT_SYMBOL_GPL(ssam_request_write_data);
1465 
1466 static void ssam_request_sync_complete(struct ssh_request *rqst,
1467 				       const struct ssh_command *cmd,
1468 				       const struct ssam_span *data, int status)
1469 {
1470 	struct ssh_rtl *rtl = ssh_request_rtl(rqst);
1471 	struct ssam_request_sync *r;
1472 
1473 	r = container_of(rqst, struct ssam_request_sync, base);
1474 	r->status = status;
1475 
1476 	if (r->resp)
1477 		r->resp->length = 0;
1478 
1479 	if (status) {
1480 		rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status);
1481 		return;
1482 	}
1483 
1484 	if (!data)	/* Handle requests without a response. */
1485 		return;
1486 
1487 	if (!r->resp || !r->resp->pointer) {
1488 		if (data->len)
1489 			rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n");
1490 		return;
1491 	}
1492 
1493 	if (data->len > r->resp->capacity) {
1494 		rtl_err(rtl,
1495 			"rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n",
1496 			r->resp->capacity, data->len);
1497 		r->status = -ENOSPC;
1498 		return;
1499 	}
1500 
1501 	r->resp->length = data->len;
1502 	memcpy(r->resp->pointer, data->ptr, data->len);
1503 }
1504 
1505 static void ssam_request_sync_release(struct ssh_request *rqst)
1506 {
1507 	complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp);
1508 }
1509 
1510 static const struct ssh_request_ops ssam_request_sync_ops = {
1511 	.release = ssam_request_sync_release,
1512 	.complete = ssam_request_sync_complete,
1513 };
1514 
1515 /**
1516  * ssam_request_sync_alloc() - Allocate a synchronous request.
1517  * @payload_len: The length of the request payload.
1518  * @flags:       Flags used for allocation.
1519  * @rqst:        Where to store the pointer to the allocated request.
1520  * @buffer:      Where to store the buffer descriptor for the message buffer of
1521  *               the request.
1522  *
1523  * Allocates a synchronous request with corresponding message buffer. The
1524  * request still needs to be initialized ssam_request_sync_init() before
1525  * it can be submitted, and the message buffer data must still be set to the
1526  * returned buffer via ssam_request_sync_set_data() after it has been filled,
1527  * if need be with adjusted message length.
1528  *
1529  * After use, the request and its corresponding message buffer should be freed
1530  * via ssam_request_sync_free(). The buffer must not be freed separately.
1531  *
1532  * Return: Returns zero on success, %-ENOMEM if the request could not be
1533  * allocated.
1534  */
1535 int ssam_request_sync_alloc(size_t payload_len, gfp_t flags,
1536 			    struct ssam_request_sync **rqst,
1537 			    struct ssam_span *buffer)
1538 {
1539 	size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len);
1540 
1541 	*rqst = kzalloc(sizeof(**rqst) + msglen, flags);
1542 	if (!*rqst)
1543 		return -ENOMEM;
1544 
1545 	buffer->ptr = (u8 *)(*rqst + 1);
1546 	buffer->len = msglen;
1547 
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL_GPL(ssam_request_sync_alloc);
1551 
1552 /**
1553  * ssam_request_sync_free() - Free a synchronous request.
1554  * @rqst: The request to be freed.
1555  *
1556  * Free a synchronous request and its corresponding buffer allocated with
1557  * ssam_request_sync_alloc(). Do not use for requests allocated on the stack
1558  * or via any other function.
1559  *
1560  * Warning: The caller must ensure that the request is not in use any more.
1561  * I.e. the caller must ensure that it has the only reference to the request
1562  * and the request is not currently pending. This means that the caller has
1563  * either never submitted the request, request submission has failed, or the
1564  * caller has waited until the submitted request has been completed via
1565  * ssam_request_sync_wait().
1566  */
1567 void ssam_request_sync_free(struct ssam_request_sync *rqst)
1568 {
1569 	kfree(rqst);
1570 }
1571 EXPORT_SYMBOL_GPL(ssam_request_sync_free);
1572 
1573 /**
1574  * ssam_request_sync_init() - Initialize a synchronous request struct.
1575  * @rqst:  The request to initialize.
1576  * @flags: The request flags.
1577  *
1578  * Initializes the given request struct. Does not initialize the request
1579  * message data. This has to be done explicitly after this call via
1580  * ssam_request_sync_set_data() and the actual message data has to be written
1581  * via ssam_request_write_data().
1582  *
1583  * Return: Returns zero on success or %-EINVAL if the given flags are invalid.
1584  */
1585 int ssam_request_sync_init(struct ssam_request_sync *rqst,
1586 			   enum ssam_request_flags flags)
1587 {
1588 	int status;
1589 
1590 	status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops);
1591 	if (status)
1592 		return status;
1593 
1594 	init_completion(&rqst->comp);
1595 	rqst->resp = NULL;
1596 	rqst->status = 0;
1597 
1598 	return 0;
1599 }
1600 EXPORT_SYMBOL_GPL(ssam_request_sync_init);
1601 
1602 /**
1603  * ssam_request_sync_submit() - Submit a synchronous request.
1604  * @ctrl: The controller with which to submit the request.
1605  * @rqst: The request to submit.
1606  *
1607  * Submit a synchronous request. The request has to be initialized and
1608  * properly set up, including response buffer (may be %NULL if no response is
1609  * expected) and command message data. This function does not wait for the
1610  * request to be completed.
1611  *
1612  * If this function succeeds, ssam_request_sync_wait() must be used to ensure
1613  * that the request has been completed before the response data can be
1614  * accessed and/or the request can be freed. On failure, the request may
1615  * immediately be freed.
1616  *
1617  * This function may only be used if the controller is active, i.e. has been
1618  * initialized and not suspended.
1619  */
1620 int ssam_request_sync_submit(struct ssam_controller *ctrl,
1621 			     struct ssam_request_sync *rqst)
1622 {
1623 	int status;
1624 
1625 	/*
1626 	 * This is only a superficial check. In general, the caller needs to
1627 	 * ensure that the controller is initialized and is not (and does not
1628 	 * get) suspended during use, i.e. until the request has been completed
1629 	 * (if _absolutely_ necessary, by use of ssam_controller_statelock/
1630 	 * ssam_controller_stateunlock, but something like ssam_client_link
1631 	 * should be preferred as this needs to last until the request has been
1632 	 * completed).
1633 	 *
1634 	 * Note that it is actually safe to use this function while the
1635 	 * controller is in the process of being shut down (as ssh_rtl_submit
1636 	 * is safe with regards to this), but it is generally discouraged to do
1637 	 * so.
1638 	 */
1639 	if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) {
1640 		ssh_request_put(&rqst->base);
1641 		return -ENODEV;
1642 	}
1643 
1644 	status = ssh_rtl_submit(&ctrl->rtl, &rqst->base);
1645 	ssh_request_put(&rqst->base);
1646 
1647 	return status;
1648 }
1649 EXPORT_SYMBOL_GPL(ssam_request_sync_submit);
1650 
1651 /**
1652  * ssam_request_sync() - Execute a synchronous request.
1653  * @ctrl: The controller via which the request will be submitted.
1654  * @spec: The request specification and payload.
1655  * @rsp:  The response buffer.
1656  *
1657  * Allocates a synchronous request with its message data buffer on the heap
1658  * via ssam_request_sync_alloc(), fully initializes it via the provided
1659  * request specification, submits it, and finally waits for its completion
1660  * before freeing it and returning its status.
1661  *
1662  * Return: Returns the status of the request or any failure during setup.
1663  */
1664 int ssam_request_sync(struct ssam_controller *ctrl,
1665 		      const struct ssam_request *spec,
1666 		      struct ssam_response *rsp)
1667 {
1668 	struct ssam_request_sync *rqst;
1669 	struct ssam_span buf;
1670 	ssize_t len;
1671 	int status;
1672 
1673 	status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf);
1674 	if (status)
1675 		return status;
1676 
1677 	status = ssam_request_sync_init(rqst, spec->flags);
1678 	if (status)
1679 		return status;
1680 
1681 	ssam_request_sync_set_resp(rqst, rsp);
1682 
1683 	len = ssam_request_write_data(&buf, ctrl, spec);
1684 	if (len < 0) {
1685 		ssam_request_sync_free(rqst);
1686 		return len;
1687 	}
1688 
1689 	ssam_request_sync_set_data(rqst, buf.ptr, len);
1690 
1691 	status = ssam_request_sync_submit(ctrl, rqst);
1692 	if (!status)
1693 		status = ssam_request_sync_wait(rqst);
1694 
1695 	ssam_request_sync_free(rqst);
1696 	return status;
1697 }
1698 EXPORT_SYMBOL_GPL(ssam_request_sync);
1699 
1700 /**
1701  * ssam_request_sync_with_buffer() - Execute a synchronous request with the
1702  * provided buffer as back-end for the message buffer.
1703  * @ctrl: The controller via which the request will be submitted.
1704  * @spec: The request specification and payload.
1705  * @rsp:  The response buffer.
1706  * @buf:  The buffer for the request message data.
1707  *
1708  * Allocates a synchronous request struct on the stack, fully initializes it
1709  * using the provided buffer as message data buffer, submits it, and then
1710  * waits for its completion before returning its status. The
1711  * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required
1712  * message buffer size.
1713  *
1714  * This function does essentially the same as ssam_request_sync(), but instead
1715  * of dynamically allocating the request and message data buffer, it uses the
1716  * provided message data buffer and stores the (small) request struct on the
1717  * heap.
1718  *
1719  * Return: Returns the status of the request or any failure during setup.
1720  */
1721 int ssam_request_sync_with_buffer(struct ssam_controller *ctrl,
1722 				  const struct ssam_request *spec,
1723 				  struct ssam_response *rsp,
1724 				  struct ssam_span *buf)
1725 {
1726 	struct ssam_request_sync rqst;
1727 	ssize_t len;
1728 	int status;
1729 
1730 	status = ssam_request_sync_init(&rqst, spec->flags);
1731 	if (status)
1732 		return status;
1733 
1734 	ssam_request_sync_set_resp(&rqst, rsp);
1735 
1736 	len = ssam_request_write_data(buf, ctrl, spec);
1737 	if (len < 0)
1738 		return len;
1739 
1740 	ssam_request_sync_set_data(&rqst, buf->ptr, len);
1741 
1742 	status = ssam_request_sync_submit(ctrl, &rqst);
1743 	if (!status)
1744 		status = ssam_request_sync_wait(&rqst);
1745 
1746 	return status;
1747 }
1748 EXPORT_SYMBOL_GPL(ssam_request_sync_with_buffer);
1749 
1750 
1751 /* -- Internal SAM requests. ------------------------------------------------ */
1752 
1753 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, {
1754 	.target_category = SSAM_SSH_TC_SAM,
1755 	.target_id       = 0x01,
1756 	.command_id      = 0x13,
1757 	.instance_id     = 0x00,
1758 });
1759 
1760 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, {
1761 	.target_category = SSAM_SSH_TC_SAM,
1762 	.target_id       = 0x01,
1763 	.command_id      = 0x15,
1764 	.instance_id     = 0x00,
1765 });
1766 
1767 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, {
1768 	.target_category = SSAM_SSH_TC_SAM,
1769 	.target_id       = 0x01,
1770 	.command_id      = 0x16,
1771 	.instance_id     = 0x00,
1772 });
1773 
1774 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, {
1775 	.target_category = SSAM_SSH_TC_SAM,
1776 	.target_id       = 0x01,
1777 	.command_id      = 0x33,
1778 	.instance_id     = 0x00,
1779 });
1780 
1781 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, {
1782 	.target_category = SSAM_SSH_TC_SAM,
1783 	.target_id       = 0x01,
1784 	.command_id      = 0x34,
1785 	.instance_id     = 0x00,
1786 });
1787 
1788 /**
1789  * struct ssh_notification_params - Command payload to enable/disable SSH
1790  * notifications.
1791  * @target_category: The target category for which notifications should be
1792  *                   enabled/disabled.
1793  * @flags:           Flags determining how notifications are being sent.
1794  * @request_id:      The request ID that is used to send these notifications.
1795  * @instance_id:     The specific instance in the given target category for
1796  *                   which notifications should be enabled.
1797  */
1798 struct ssh_notification_params {
1799 	u8 target_category;
1800 	u8 flags;
1801 	__le16 request_id;
1802 	u8 instance_id;
1803 } __packed;
1804 
1805 static_assert(sizeof(struct ssh_notification_params) == 5);
1806 
1807 static int __ssam_ssh_event_request(struct ssam_controller *ctrl,
1808 				    struct ssam_event_registry reg, u8 cid,
1809 				    struct ssam_event_id id, u8 flags)
1810 {
1811 	struct ssh_notification_params params;
1812 	struct ssam_request rqst;
1813 	struct ssam_response result;
1814 	int status;
1815 
1816 	u16 rqid = ssh_tc_to_rqid(id.target_category);
1817 	u8 buf = 0;
1818 
1819 	/* Only allow RQIDs that lie within the event spectrum. */
1820 	if (!ssh_rqid_is_event(rqid))
1821 		return -EINVAL;
1822 
1823 	params.target_category = id.target_category;
1824 	params.instance_id = id.instance;
1825 	params.flags = flags;
1826 	put_unaligned_le16(rqid, &params.request_id);
1827 
1828 	rqst.target_category = reg.target_category;
1829 	rqst.target_id = reg.target_id;
1830 	rqst.command_id = cid;
1831 	rqst.instance_id = 0x00;
1832 	rqst.flags = SSAM_REQUEST_HAS_RESPONSE;
1833 	rqst.length = sizeof(params);
1834 	rqst.payload = (u8 *)&params;
1835 
1836 	result.capacity = sizeof(buf);
1837 	result.length = 0;
1838 	result.pointer = &buf;
1839 
1840 	status = ssam_retry(ssam_request_sync_onstack, ctrl, &rqst, &result,
1841 			    sizeof(params));
1842 
1843 	return status < 0 ? status : buf;
1844 }
1845 
1846 /**
1847  * ssam_ssh_event_enable() - Enable SSH event.
1848  * @ctrl:  The controller for which to enable the event.
1849  * @reg:   The event registry describing what request to use for enabling and
1850  *         disabling the event.
1851  * @id:    The event identifier.
1852  * @flags: The event flags.
1853  *
1854  * Enables the specified event on the EC. This function does not manage
1855  * reference counting of enabled events and is basically only a wrapper for
1856  * the raw EC request. If the specified event is already enabled, the EC will
1857  * ignore this request.
1858  *
1859  * Return: Returns the status of the executed SAM request (zero on success and
1860  * negative on direct failure) or %-EPROTO if the request response indicates a
1861  * failure.
1862  */
1863 static int ssam_ssh_event_enable(struct ssam_controller *ctrl,
1864 				 struct ssam_event_registry reg,
1865 				 struct ssam_event_id id, u8 flags)
1866 {
1867 	int status;
1868 
1869 	status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags);
1870 
1871 	if (status < 0 && status != -EINVAL) {
1872 		ssam_err(ctrl,
1873 			 "failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1874 			 id.target_category, id.instance, reg.target_category);
1875 	}
1876 
1877 	if (status > 0) {
1878 		ssam_err(ctrl,
1879 			 "unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1880 			 status, id.target_category, id.instance, reg.target_category);
1881 		return -EPROTO;
1882 	}
1883 
1884 	return status;
1885 }
1886 
1887 /**
1888  * ssam_ssh_event_disable() - Disable SSH event.
1889  * @ctrl:  The controller for which to disable the event.
1890  * @reg:   The event registry describing what request to use for enabling and
1891  *         disabling the event (must be same as used when enabling the event).
1892  * @id:    The event identifier.
1893  * @flags: The event flags (likely ignored for disabling of events).
1894  *
1895  * Disables the specified event on the EC. This function does not manage
1896  * reference counting of enabled events and is basically only a wrapper for
1897  * the raw EC request. If the specified event is already disabled, the EC will
1898  * ignore this request.
1899  *
1900  * Return: Returns the status of the executed SAM request (zero on success and
1901  * negative on direct failure) or %-EPROTO if the request response indicates a
1902  * failure.
1903  */
1904 static int ssam_ssh_event_disable(struct ssam_controller *ctrl,
1905 				  struct ssam_event_registry reg,
1906 				  struct ssam_event_id id, u8 flags)
1907 {
1908 	int status;
1909 
1910 	status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags);
1911 
1912 	if (status < 0 && status != -EINVAL) {
1913 		ssam_err(ctrl,
1914 			 "failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1915 			 id.target_category, id.instance, reg.target_category);
1916 	}
1917 
1918 	if (status > 0) {
1919 		ssam_err(ctrl,
1920 			 "unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1921 			 status, id.target_category, id.instance, reg.target_category);
1922 		return -EPROTO;
1923 	}
1924 
1925 	return status;
1926 }
1927 
1928 
1929 /* -- Wrappers for internal SAM requests. ----------------------------------- */
1930 
1931 /**
1932  * ssam_get_firmware_version() - Get the SAM/EC firmware version.
1933  * @ctrl:    The controller.
1934  * @version: Where to store the version number.
1935  *
1936  * Return: Returns zero on success or the status of the executed SAM request
1937  * if that request failed.
1938  */
1939 int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version)
1940 {
1941 	__le32 __version;
1942 	int status;
1943 
1944 	status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version);
1945 	if (status)
1946 		return status;
1947 
1948 	*version = le32_to_cpu(__version);
1949 	return 0;
1950 }
1951 
1952 /**
1953  * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned
1954  * off.
1955  * @ctrl: The controller.
1956  *
1957  * Notify the EC that the display has been turned off and the driver may enter
1958  * a lower-power state. This will prevent events from being sent directly.
1959  * Rather, the EC signals an event by pulling the wakeup GPIO high for as long
1960  * as there are pending events. The events then need to be manually released,
1961  * one by one, via the GPIO callback request. All pending events accumulated
1962  * during this state can also be released by issuing the display-on
1963  * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset
1964  * the GPIO.
1965  *
1966  * On some devices, specifically ones with an integrated keyboard, the keyboard
1967  * backlight will be turned off by this call.
1968  *
1969  * This function will only send the display-off notification command if
1970  * display notifications are supported by the EC. Currently all known devices
1971  * support these notifications.
1972  *
1973  * Use ssam_ctrl_notif_display_on() to reverse the effects of this function.
1974  *
1975  * Return: Returns zero on success or if no request has been executed, the
1976  * status of the executed SAM request if that request failed, or %-EPROTO if
1977  * an unexpected response has been received.
1978  */
1979 int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl)
1980 {
1981 	int status;
1982 	u8 response;
1983 
1984 	ssam_dbg(ctrl, "pm: notifying display off\n");
1985 
1986 	status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response);
1987 	if (status)
1988 		return status;
1989 
1990 	if (response != 0) {
1991 		ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n",
1992 			 response);
1993 		return -EPROTO;
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 /**
2000  * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on.
2001  * @ctrl: The controller.
2002  *
2003  * Notify the EC that the display has been turned back on and the driver has
2004  * exited its lower-power state. This notification is the counterpart to the
2005  * display-off notification sent via ssam_ctrl_notif_display_off() and will
2006  * reverse its effects, including resetting events to their default behavior.
2007  *
2008  * This function will only send the display-on notification command if display
2009  * notifications are supported by the EC. Currently all known devices support
2010  * these notifications.
2011  *
2012  * See ssam_ctrl_notif_display_off() for more details.
2013  *
2014  * Return: Returns zero on success or if no request has been executed, the
2015  * status of the executed SAM request if that request failed, or %-EPROTO if
2016  * an unexpected response has been received.
2017  */
2018 int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl)
2019 {
2020 	int status;
2021 	u8 response;
2022 
2023 	ssam_dbg(ctrl, "pm: notifying display on\n");
2024 
2025 	status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response);
2026 	if (status)
2027 		return status;
2028 
2029 	if (response != 0) {
2030 		ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n",
2031 			 response);
2032 		return -EPROTO;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 /**
2039  * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0
2040  * power state.
2041  * @ctrl: The controller
2042  *
2043  * Notifies the EC that the driver prepares to exit the D0 power state in
2044  * favor of a lower-power state. Exact effects of this function related to the
2045  * EC are currently unknown.
2046  *
2047  * This function will only send the D0-exit notification command if D0-state
2048  * notifications are supported by the EC. Only newer Surface generations
2049  * support these notifications.
2050  *
2051  * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function.
2052  *
2053  * Return: Returns zero on success or if no request has been executed, the
2054  * status of the executed SAM request if that request failed, or %-EPROTO if
2055  * an unexpected response has been received.
2056  */
2057 int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl)
2058 {
2059 	int status;
2060 	u8 response;
2061 
2062 	if (!ctrl->caps.d3_closes_handle)
2063 		return 0;
2064 
2065 	ssam_dbg(ctrl, "pm: notifying D0 exit\n");
2066 
2067 	status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response);
2068 	if (status)
2069 		return status;
2070 
2071 	if (response != 0) {
2072 		ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n",
2073 			 response);
2074 		return -EPROTO;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 /**
2081  * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0
2082  * power state.
2083  * @ctrl: The controller
2084  *
2085  * Notifies the EC that the driver has exited a lower-power state and entered
2086  * the D0 power state. Exact effects of this function related to the EC are
2087  * currently unknown.
2088  *
2089  * This function will only send the D0-entry notification command if D0-state
2090  * notifications are supported by the EC. Only newer Surface generations
2091  * support these notifications.
2092  *
2093  * See ssam_ctrl_notif_d0_exit() for more details.
2094  *
2095  * Return: Returns zero on success or if no request has been executed, the
2096  * status of the executed SAM request if that request failed, or %-EPROTO if
2097  * an unexpected response has been received.
2098  */
2099 int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl)
2100 {
2101 	int status;
2102 	u8 response;
2103 
2104 	if (!ctrl->caps.d3_closes_handle)
2105 		return 0;
2106 
2107 	ssam_dbg(ctrl, "pm: notifying D0 entry\n");
2108 
2109 	status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response);
2110 	if (status)
2111 		return status;
2112 
2113 	if (response != 0) {
2114 		ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n",
2115 			 response);
2116 		return -EPROTO;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 
2123 /* -- Top-level event registry interface. ----------------------------------- */
2124 
2125 /**
2126  * ssam_notifier_register() - Register an event notifier.
2127  * @ctrl: The controller to register the notifier on.
2128  * @n:    The event notifier to register.
2129  *
2130  * Register an event notifier and increment the usage counter of the
2131  * associated SAM event. If the event was previously not enabled, it will be
2132  * enabled during this call.
2133  *
2134  * Return: Returns zero on success, %-ENOSPC if there have already been
2135  * %INT_MAX notifiers for the event ID/type associated with the notifier block
2136  * registered, %-ENOMEM if the corresponding event entry could not be
2137  * allocated. If this is the first time that a notifier block is registered
2138  * for the specific associated event, returns the status of the event-enable
2139  * EC-command.
2140  */
2141 int ssam_notifier_register(struct ssam_controller *ctrl,
2142 			   struct ssam_event_notifier *n)
2143 {
2144 	u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2145 	struct ssam_nf_refcount_entry *entry;
2146 	struct ssam_nf_head *nf_head;
2147 	struct ssam_nf *nf;
2148 	int status;
2149 
2150 	if (!ssh_rqid_is_event(rqid))
2151 		return -EINVAL;
2152 
2153 	nf = &ctrl->cplt.event.notif;
2154 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2155 
2156 	mutex_lock(&nf->lock);
2157 
2158 	entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id);
2159 	if (IS_ERR(entry)) {
2160 		mutex_unlock(&nf->lock);
2161 		return PTR_ERR(entry);
2162 	}
2163 
2164 	ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2165 		 n->event.reg.target_category, n->event.id.target_category,
2166 		 n->event.id.instance, entry->refcount);
2167 
2168 	status = ssam_nfblk_insert(nf_head, &n->base);
2169 	if (status) {
2170 		entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
2171 		if (entry->refcount == 0)
2172 			kfree(entry);
2173 
2174 		mutex_unlock(&nf->lock);
2175 		return status;
2176 	}
2177 
2178 	if (entry->refcount == 1) {
2179 		status = ssam_ssh_event_enable(ctrl, n->event.reg, n->event.id,
2180 					       n->event.flags);
2181 		if (status) {
2182 			ssam_nfblk_remove(&n->base);
2183 			kfree(ssam_nf_refcount_dec(nf, n->event.reg, n->event.id));
2184 			mutex_unlock(&nf->lock);
2185 			synchronize_srcu(&nf_head->srcu);
2186 			return status;
2187 		}
2188 
2189 		entry->flags = n->event.flags;
2190 
2191 	} else if (entry->flags != n->event.flags) {
2192 		ssam_warn(ctrl,
2193 			  "inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2194 			  n->event.flags, entry->flags, n->event.reg.target_category,
2195 			  n->event.id.target_category, n->event.id.instance);
2196 	}
2197 
2198 	mutex_unlock(&nf->lock);
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(ssam_notifier_register);
2202 
2203 /**
2204  * ssam_notifier_unregister() - Unregister an event notifier.
2205  * @ctrl: The controller the notifier has been registered on.
2206  * @n:    The event notifier to unregister.
2207  *
2208  * Unregister an event notifier and decrement the usage counter of the
2209  * associated SAM event. If the usage counter reaches zero, the event will be
2210  * disabled.
2211  *
2212  * Return: Returns zero on success, %-ENOENT if the given notifier block has
2213  * not been registered on the controller. If the given notifier block was the
2214  * last one associated with its specific event, returns the status of the
2215  * event-disable EC-command.
2216  */
2217 int ssam_notifier_unregister(struct ssam_controller *ctrl,
2218 			     struct ssam_event_notifier *n)
2219 {
2220 	u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2221 	struct ssam_nf_refcount_entry *entry;
2222 	struct ssam_nf_head *nf_head;
2223 	struct ssam_nf *nf;
2224 	int status = 0;
2225 
2226 	if (!ssh_rqid_is_event(rqid))
2227 		return -EINVAL;
2228 
2229 	nf = &ctrl->cplt.event.notif;
2230 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2231 
2232 	mutex_lock(&nf->lock);
2233 
2234 	if (!ssam_nfblk_find(nf_head, &n->base)) {
2235 		mutex_unlock(&nf->lock);
2236 		return -ENOENT;
2237 	}
2238 
2239 	entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
2240 	if (WARN_ON(!entry)) {
2241 		/*
2242 		 * If this does not return an entry, there's a logic error
2243 		 * somewhere: The notifier block is registered, but the event
2244 		 * refcount entry is not there. Remove the notifier block
2245 		 * anyways.
2246 		 */
2247 		status = -ENOENT;
2248 		goto remove;
2249 	}
2250 
2251 	ssam_dbg(ctrl, "disabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2252 		 n->event.reg.target_category, n->event.id.target_category,
2253 		 n->event.id.instance, entry->refcount);
2254 
2255 	if (entry->flags != n->event.flags) {
2256 		ssam_warn(ctrl,
2257 			  "inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2258 			  n->event.flags, entry->flags, n->event.reg.target_category,
2259 			  n->event.id.target_category, n->event.id.instance);
2260 	}
2261 
2262 	if (entry->refcount == 0) {
2263 		status = ssam_ssh_event_disable(ctrl, n->event.reg, n->event.id,
2264 						n->event.flags);
2265 		kfree(entry);
2266 	}
2267 
2268 remove:
2269 	ssam_nfblk_remove(&n->base);
2270 	mutex_unlock(&nf->lock);
2271 	synchronize_srcu(&nf_head->srcu);
2272 
2273 	return status;
2274 }
2275 EXPORT_SYMBOL_GPL(ssam_notifier_unregister);
2276 
2277 /**
2278  * ssam_notifier_disable_registered() - Disable events for all registered
2279  * notifiers.
2280  * @ctrl: The controller for which to disable the notifiers/events.
2281  *
2282  * Disables events for all currently registered notifiers. In case of an error
2283  * (EC command failing), all previously disabled events will be restored and
2284  * the error code returned.
2285  *
2286  * This function is intended to disable all events prior to hibernation entry.
2287  * See ssam_notifier_restore_registered() to restore/re-enable all events
2288  * disabled with this function.
2289  *
2290  * Note that this function will not disable events for notifiers registered
2291  * after calling this function. It should thus be made sure that no new
2292  * notifiers are going to be added after this call and before the corresponding
2293  * call to ssam_notifier_restore_registered().
2294  *
2295  * Return: Returns zero on success. In case of failure returns the error code
2296  * returned by the failed EC command to disable an event.
2297  */
2298 int ssam_notifier_disable_registered(struct ssam_controller *ctrl)
2299 {
2300 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2301 	struct rb_node *n;
2302 	int status;
2303 
2304 	mutex_lock(&nf->lock);
2305 	for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2306 		struct ssam_nf_refcount_entry *e;
2307 
2308 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2309 		status = ssam_ssh_event_disable(ctrl, e->key.reg,
2310 						e->key.id, e->flags);
2311 		if (status)
2312 			goto err;
2313 	}
2314 	mutex_unlock(&nf->lock);
2315 
2316 	return 0;
2317 
2318 err:
2319 	for (n = rb_prev(n); n; n = rb_prev(n)) {
2320 		struct ssam_nf_refcount_entry *e;
2321 
2322 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2323 		ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2324 	}
2325 	mutex_unlock(&nf->lock);
2326 
2327 	return status;
2328 }
2329 
2330 /**
2331  * ssam_notifier_restore_registered() - Restore/re-enable events for all
2332  * registered notifiers.
2333  * @ctrl: The controller for which to restore the notifiers/events.
2334  *
2335  * Restores/re-enables all events for which notifiers have been registered on
2336  * the given controller. In case of a failure, the error is logged and the
2337  * function continues to try and enable the remaining events.
2338  *
2339  * This function is intended to restore/re-enable all registered events after
2340  * hibernation. See ssam_notifier_disable_registered() for the counter part
2341  * disabling the events and more details.
2342  */
2343 void ssam_notifier_restore_registered(struct ssam_controller *ctrl)
2344 {
2345 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2346 	struct rb_node *n;
2347 
2348 	mutex_lock(&nf->lock);
2349 	for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2350 		struct ssam_nf_refcount_entry *e;
2351 
2352 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2353 
2354 		/* Ignore errors, will get logged in call. */
2355 		ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2356 	}
2357 	mutex_unlock(&nf->lock);
2358 }
2359 
2360 /**
2361  * ssam_notifier_is_empty() - Check if there are any registered notifiers.
2362  * @ctrl: The controller to check on.
2363  *
2364  * Return: Returns %true if there are currently no notifiers registered on the
2365  * controller, %false otherwise.
2366  */
2367 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl)
2368 {
2369 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2370 	bool result;
2371 
2372 	mutex_lock(&nf->lock);
2373 	result = ssam_nf_refcount_empty(nf);
2374 	mutex_unlock(&nf->lock);
2375 
2376 	return result;
2377 }
2378 
2379 /**
2380  * ssam_notifier_unregister_all() - Unregister all currently registered
2381  * notifiers.
2382  * @ctrl: The controller to unregister the notifiers on.
2383  *
2384  * Unregisters all currently registered notifiers. This function is used to
2385  * ensure that all notifiers will be unregistered and associated
2386  * entries/resources freed when the controller is being shut down.
2387  */
2388 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl)
2389 {
2390 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2391 	struct ssam_nf_refcount_entry *e, *n;
2392 
2393 	mutex_lock(&nf->lock);
2394 	rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) {
2395 		/* Ignore errors, will get logged in call. */
2396 		ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags);
2397 		kfree(e);
2398 	}
2399 	nf->refcount = RB_ROOT;
2400 	mutex_unlock(&nf->lock);
2401 }
2402 
2403 
2404 /* -- Wakeup IRQ. ----------------------------------------------------------- */
2405 
2406 static irqreturn_t ssam_irq_handle(int irq, void *dev_id)
2407 {
2408 	struct ssam_controller *ctrl = dev_id;
2409 
2410 	ssam_dbg(ctrl, "pm: wake irq triggered\n");
2411 
2412 	/*
2413 	 * Note: Proper wakeup detection is currently unimplemented.
2414 	 *       When the EC is in display-off or any other non-D0 state, it
2415 	 *       does not send events/notifications to the host. Instead it
2416 	 *       signals that there are events available via the wakeup IRQ.
2417 	 *       This driver is responsible for calling back to the EC to
2418 	 *       release these events one-by-one.
2419 	 *
2420 	 *       This IRQ should not cause a full system resume by its own.
2421 	 *       Instead, events should be handled by their respective subsystem
2422 	 *       drivers, which in turn should signal whether a full system
2423 	 *       resume should be performed.
2424 	 *
2425 	 * TODO: Send GPIO callback command repeatedly to EC until callback
2426 	 *       returns 0x00. Return flag of callback is "has more events".
2427 	 *       Each time the command is sent, one event is "released". Once
2428 	 *       all events have been released (return = 0x00), the GPIO is
2429 	 *       re-armed. Detect wakeup events during this process, go back to
2430 	 *       sleep if no wakeup event has been received.
2431 	 */
2432 
2433 	return IRQ_HANDLED;
2434 }
2435 
2436 /**
2437  * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt.
2438  * @ctrl: The controller for which the IRQ should be set up.
2439  *
2440  * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used
2441  * to wake the device from a low power state.
2442  *
2443  * Note that this IRQ can only be triggered while the EC is in the display-off
2444  * state. In this state, events are not sent to the host in the usual way.
2445  * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending
2446  * events and these events need to be released one-by-one via the GPIO
2447  * callback request, either until there are no events left and the GPIO is
2448  * reset, or all at once by transitioning the EC out of the display-off state,
2449  * which will also clear the GPIO.
2450  *
2451  * Not all events, however, should trigger a full system wakeup. Instead the
2452  * driver should, if necessary, inspect and forward each event to the
2453  * corresponding subsystem, which in turn should decide if the system needs to
2454  * be woken up. This logic has not been implemented yet, thus wakeup by this
2455  * IRQ should be disabled by default to avoid spurious wake-ups, caused, for
2456  * example, by the remaining battery percentage changing. Refer to comments in
2457  * this function and comments in the corresponding IRQ handler for more
2458  * details on how this should be implemented.
2459  *
2460  * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off()
2461  * for functions to transition the EC into and out of the display-off state as
2462  * well as more details on it.
2463  *
2464  * The IRQ is disabled by default and has to be enabled before it can wake up
2465  * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ
2466  * should be freed via ssam_irq_free().
2467  */
2468 int ssam_irq_setup(struct ssam_controller *ctrl)
2469 {
2470 	struct device *dev = ssam_controller_device(ctrl);
2471 	struct gpio_desc *gpiod;
2472 	int irq;
2473 	int status;
2474 
2475 	/*
2476 	 * The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH.
2477 	 * However, the GPIO line only gets reset by sending the GPIO callback
2478 	 * command to SAM (or alternatively the display-on notification). As
2479 	 * proper handling for this interrupt is not implemented yet, leaving
2480 	 * the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback
2481 	 * never gets sent and thus the line never gets reset). To avoid this,
2482 	 * mark the IRQ as TRIGGER_RISING for now, only creating a single
2483 	 * interrupt, and let the SAM resume callback during the controller
2484 	 * resume process clear it.
2485 	 */
2486 	const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN;
2487 
2488 	gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS);
2489 	if (IS_ERR(gpiod))
2490 		return PTR_ERR(gpiod);
2491 
2492 	irq = gpiod_to_irq(gpiod);
2493 	gpiod_put(gpiod);
2494 
2495 	if (irq < 0)
2496 		return irq;
2497 
2498 	status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf,
2499 				      "ssam_wakeup", ctrl);
2500 	if (status)
2501 		return status;
2502 
2503 	ctrl->irq.num = irq;
2504 	return 0;
2505 }
2506 
2507 /**
2508  * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt.
2509  * @ctrl: The controller for which the IRQ should be freed.
2510  *
2511  * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup().
2512  */
2513 void ssam_irq_free(struct ssam_controller *ctrl)
2514 {
2515 	free_irq(ctrl->irq.num, ctrl);
2516 	ctrl->irq.num = -1;
2517 }
2518 
2519 /**
2520  * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled.
2521  * @ctrl: The controller for which the IRQ should be armed.
2522  *
2523  * Sets up the IRQ so that it can be used to wake the device. Specifically,
2524  * this function enables the irq and then, if the device is allowed to wake up
2525  * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the
2526  * corresponding function to disable the IRQ.
2527  *
2528  * This function is intended to arm the IRQ before entering S2idle suspend.
2529  *
2530  * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2531  * be balanced.
2532  */
2533 int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl)
2534 {
2535 	struct device *dev = ssam_controller_device(ctrl);
2536 	int status;
2537 
2538 	enable_irq(ctrl->irq.num);
2539 	if (device_may_wakeup(dev)) {
2540 		status = enable_irq_wake(ctrl->irq.num);
2541 		if (status) {
2542 			ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status);
2543 			disable_irq(ctrl->irq.num);
2544 			return status;
2545 		}
2546 
2547 		ctrl->irq.wakeup_enabled = true;
2548 	} else {
2549 		ctrl->irq.wakeup_enabled = false;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 /**
2556  * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ.
2557  * @ctrl: The controller for which the IRQ should be disarmed.
2558  *
2559  * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup().
2560  *
2561  * This function is intended to disarm the IRQ after exiting S2idle suspend.
2562  *
2563  * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2564  * be balanced.
2565  */
2566 void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl)
2567 {
2568 	int status;
2569 
2570 	if (ctrl->irq.wakeup_enabled) {
2571 		status = disable_irq_wake(ctrl->irq.num);
2572 		if (status)
2573 			ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status);
2574 
2575 		ctrl->irq.wakeup_enabled = false;
2576 	}
2577 	disable_irq(ctrl->irq.num);
2578 }
2579