1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Main SSAM/SSH controller structure and functionality. 4 * 5 * Copyright (C) 2019-2022 Maximilian Luz <luzmaximilian@gmail.com> 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/atomic.h> 10 #include <linux/completion.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/limits.h> 15 #include <linux/list.h> 16 #include <linux/lockdep.h> 17 #include <linux/mutex.h> 18 #include <linux/rculist.h> 19 #include <linux/rbtree.h> 20 #include <linux/rwsem.h> 21 #include <linux/serdev.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/srcu.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 28 #include <linux/surface_aggregator/controller.h> 29 #include <linux/surface_aggregator/serial_hub.h> 30 31 #include "controller.h" 32 #include "ssh_msgb.h" 33 #include "ssh_request_layer.h" 34 35 #include "trace.h" 36 37 38 /* -- Safe counters. -------------------------------------------------------- */ 39 40 /** 41 * ssh_seq_reset() - Reset/initialize sequence ID counter. 42 * @c: The counter to reset. 43 */ 44 static void ssh_seq_reset(struct ssh_seq_counter *c) 45 { 46 WRITE_ONCE(c->value, 0); 47 } 48 49 /** 50 * ssh_seq_next() - Get next sequence ID. 51 * @c: The counter providing the sequence IDs. 52 * 53 * Return: Returns the next sequence ID of the counter. 54 */ 55 static u8 ssh_seq_next(struct ssh_seq_counter *c) 56 { 57 u8 old = READ_ONCE(c->value); 58 u8 new = old + 1; 59 u8 ret; 60 61 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) { 62 old = ret; 63 new = old + 1; 64 } 65 66 return old; 67 } 68 69 /** 70 * ssh_rqid_reset() - Reset/initialize request ID counter. 71 * @c: The counter to reset. 72 */ 73 static void ssh_rqid_reset(struct ssh_rqid_counter *c) 74 { 75 WRITE_ONCE(c->value, 0); 76 } 77 78 /** 79 * ssh_rqid_next() - Get next request ID. 80 * @c: The counter providing the request IDs. 81 * 82 * Return: Returns the next request ID of the counter, skipping any reserved 83 * request IDs. 84 */ 85 static u16 ssh_rqid_next(struct ssh_rqid_counter *c) 86 { 87 u16 old = READ_ONCE(c->value); 88 u16 new = ssh_rqid_next_valid(old); 89 u16 ret; 90 91 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) { 92 old = ret; 93 new = ssh_rqid_next_valid(old); 94 } 95 96 return old; 97 } 98 99 100 /* -- Event notifier/callbacks. --------------------------------------------- */ 101 /* 102 * The notifier system is based on linux/notifier.h, specifically the SRCU 103 * implementation. The difference to that is, that some bits of the notifier 104 * call return value can be tracked across multiple calls. This is done so 105 * that handling of events can be tracked and a warning can be issued in case 106 * an event goes unhandled. The idea of that warning is that it should help 107 * discover and identify new/currently unimplemented features. 108 */ 109 110 /** 111 * ssam_event_matches_notifier() - Test if an event matches a notifier. 112 * @n: The event notifier to test against. 113 * @event: The event to test. 114 * 115 * Return: Returns %true if the given event matches the given notifier 116 * according to the rules set in the notifier's event mask, %false otherwise. 117 */ 118 static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n, 119 const struct ssam_event *event) 120 { 121 bool match = n->event.id.target_category == event->target_category; 122 123 if (n->event.mask & SSAM_EVENT_MASK_TARGET) 124 match &= n->event.reg.target_id == event->target_id; 125 126 if (n->event.mask & SSAM_EVENT_MASK_INSTANCE) 127 match &= n->event.id.instance == event->instance_id; 128 129 return match; 130 } 131 132 /** 133 * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain. 134 * @nh: The notifier head for which the notifier callbacks should be called. 135 * @event: The event data provided to the callbacks. 136 * 137 * Call all registered notifier callbacks in order of their priority until 138 * either no notifier is left or a notifier returns a value with the 139 * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via 140 * ssam_notifier_from_errno() on any non-zero error value. 141 * 142 * Return: Returns the notifier status value, which contains the notifier 143 * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a 144 * potential error value returned from the last executed notifier callback. 145 * Use ssam_notifier_to_errno() to convert this value to the original error 146 * value. 147 */ 148 static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event) 149 { 150 struct ssam_event_notifier *nf; 151 int ret = 0, idx; 152 153 idx = srcu_read_lock(&nh->srcu); 154 155 list_for_each_entry_rcu(nf, &nh->head, base.node, 156 srcu_read_lock_held(&nh->srcu)) { 157 if (ssam_event_matches_notifier(nf, event)) { 158 ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event); 159 if (ret & SSAM_NOTIF_STOP) 160 break; 161 } 162 } 163 164 srcu_read_unlock(&nh->srcu, idx); 165 return ret; 166 } 167 168 /** 169 * ssam_nfblk_insert() - Insert a new notifier block into the given notifier 170 * list. 171 * @nh: The notifier head into which the block should be inserted. 172 * @nb: The notifier block to add. 173 * 174 * Note: This function must be synchronized by the caller with respect to other 175 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 176 * 177 * Return: Returns zero on success, %-EEXIST if the notifier block has already 178 * been registered. 179 */ 180 static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb) 181 { 182 struct ssam_notifier_block *p; 183 struct list_head *h; 184 185 /* Runs under lock, no need for RCU variant. */ 186 list_for_each(h, &nh->head) { 187 p = list_entry(h, struct ssam_notifier_block, node); 188 189 if (unlikely(p == nb)) { 190 WARN(1, "double register detected"); 191 return -EEXIST; 192 } 193 194 if (nb->priority > p->priority) 195 break; 196 } 197 198 list_add_tail_rcu(&nb->node, h); 199 return 0; 200 } 201 202 /** 203 * ssam_nfblk_find() - Check if a notifier block is registered on the given 204 * notifier head. 205 * list. 206 * @nh: The notifier head on which to search. 207 * @nb: The notifier block to search for. 208 * 209 * Note: This function must be synchronized by the caller with respect to other 210 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 211 * 212 * Return: Returns true if the given notifier block is registered on the given 213 * notifier head, false otherwise. 214 */ 215 static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb) 216 { 217 struct ssam_notifier_block *p; 218 219 /* Runs under lock, no need for RCU variant. */ 220 list_for_each_entry(p, &nh->head, node) { 221 if (p == nb) 222 return true; 223 } 224 225 return false; 226 } 227 228 /** 229 * ssam_nfblk_remove() - Remove a notifier block from its notifier list. 230 * @nb: The notifier block to be removed. 231 * 232 * Note: This function must be synchronized by the caller with respect to 233 * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 234 * Furthermore, the caller _must_ ensure SRCU synchronization by calling 235 * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to 236 * ensure that the removed notifier block is not in use any more. 237 */ 238 static void ssam_nfblk_remove(struct ssam_notifier_block *nb) 239 { 240 list_del_rcu(&nb->node); 241 } 242 243 /** 244 * ssam_nf_head_init() - Initialize the given notifier head. 245 * @nh: The notifier head to initialize. 246 */ 247 static int ssam_nf_head_init(struct ssam_nf_head *nh) 248 { 249 int status; 250 251 status = init_srcu_struct(&nh->srcu); 252 if (status) 253 return status; 254 255 INIT_LIST_HEAD(&nh->head); 256 return 0; 257 } 258 259 /** 260 * ssam_nf_head_destroy() - Deinitialize the given notifier head. 261 * @nh: The notifier head to deinitialize. 262 */ 263 static void ssam_nf_head_destroy(struct ssam_nf_head *nh) 264 { 265 cleanup_srcu_struct(&nh->srcu); 266 } 267 268 269 /* -- Event/notification registry. ------------------------------------------ */ 270 271 /** 272 * struct ssam_nf_refcount_key - Key used for event activation reference 273 * counting. 274 * @reg: The registry via which the event is enabled/disabled. 275 * @id: The ID uniquely describing the event. 276 */ 277 struct ssam_nf_refcount_key { 278 struct ssam_event_registry reg; 279 struct ssam_event_id id; 280 }; 281 282 /** 283 * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event 284 * activations. 285 * @node: The node of this entry in the rb-tree. 286 * @key: The key of the event. 287 * @refcount: The reference-count of the event. 288 * @flags: The flags used when enabling the event. 289 */ 290 struct ssam_nf_refcount_entry { 291 struct rb_node node; 292 struct ssam_nf_refcount_key key; 293 int refcount; 294 u8 flags; 295 }; 296 297 /** 298 * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given 299 * event. 300 * @nf: The notifier system reference. 301 * @reg: The registry used to enable/disable the event. 302 * @id: The event ID. 303 * 304 * Increments the reference-/activation-count associated with the specified 305 * event type/ID, allocating a new entry for this event ID if necessary. A 306 * newly allocated entry will have a refcount of one. 307 * 308 * Note: ``nf->lock`` must be held when calling this function. 309 * 310 * Return: Returns the refcount entry on success. Returns an error pointer 311 * with %-ENOSPC if there have already been %INT_MAX events of the specified 312 * ID and type registered, or %-ENOMEM if the entry could not be allocated. 313 */ 314 static struct ssam_nf_refcount_entry * 315 ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg, 316 struct ssam_event_id id) 317 { 318 struct ssam_nf_refcount_entry *entry; 319 struct ssam_nf_refcount_key key; 320 struct rb_node **link = &nf->refcount.rb_node; 321 struct rb_node *parent = NULL; 322 int cmp; 323 324 lockdep_assert_held(&nf->lock); 325 326 key.reg = reg; 327 key.id = id; 328 329 while (*link) { 330 entry = rb_entry(*link, struct ssam_nf_refcount_entry, node); 331 parent = *link; 332 333 cmp = memcmp(&key, &entry->key, sizeof(key)); 334 if (cmp < 0) { 335 link = &(*link)->rb_left; 336 } else if (cmp > 0) { 337 link = &(*link)->rb_right; 338 } else if (entry->refcount < INT_MAX) { 339 entry->refcount++; 340 return entry; 341 } else { 342 WARN_ON(1); 343 return ERR_PTR(-ENOSPC); 344 } 345 } 346 347 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 348 if (!entry) 349 return ERR_PTR(-ENOMEM); 350 351 entry->key = key; 352 entry->refcount = 1; 353 354 rb_link_node(&entry->node, parent, link); 355 rb_insert_color(&entry->node, &nf->refcount); 356 357 return entry; 358 } 359 360 /** 361 * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given 362 * event. 363 * @nf: The notifier system reference. 364 * @reg: The registry used to enable/disable the event. 365 * @id: The event ID. 366 * 367 * Decrements the reference-/activation-count of the specified event, 368 * returning its entry. If the returned entry has a refcount of zero, the 369 * caller is responsible for freeing it using kfree(). 370 * 371 * Note: ``nf->lock`` must be held when calling this function. 372 * 373 * Return: Returns the refcount entry on success or %NULL if the entry has not 374 * been found. 375 */ 376 static struct ssam_nf_refcount_entry * 377 ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg, 378 struct ssam_event_id id) 379 { 380 struct ssam_nf_refcount_entry *entry; 381 struct ssam_nf_refcount_key key; 382 struct rb_node *node = nf->refcount.rb_node; 383 int cmp; 384 385 lockdep_assert_held(&nf->lock); 386 387 key.reg = reg; 388 key.id = id; 389 390 while (node) { 391 entry = rb_entry(node, struct ssam_nf_refcount_entry, node); 392 393 cmp = memcmp(&key, &entry->key, sizeof(key)); 394 if (cmp < 0) { 395 node = node->rb_left; 396 } else if (cmp > 0) { 397 node = node->rb_right; 398 } else { 399 entry->refcount--; 400 if (entry->refcount == 0) 401 rb_erase(&entry->node, &nf->refcount); 402 403 return entry; 404 } 405 } 406 407 return NULL; 408 } 409 410 /** 411 * ssam_nf_refcount_dec_free() - Decrement reference-/activation-count of the 412 * given event and free its entry if the reference count reaches zero. 413 * @nf: The notifier system reference. 414 * @reg: The registry used to enable/disable the event. 415 * @id: The event ID. 416 * 417 * Decrements the reference-/activation-count of the specified event, freeing 418 * its entry if it reaches zero. 419 * 420 * Note: ``nf->lock`` must be held when calling this function. 421 */ 422 static void ssam_nf_refcount_dec_free(struct ssam_nf *nf, 423 struct ssam_event_registry reg, 424 struct ssam_event_id id) 425 { 426 struct ssam_nf_refcount_entry *entry; 427 428 lockdep_assert_held(&nf->lock); 429 430 entry = ssam_nf_refcount_dec(nf, reg, id); 431 if (entry && entry->refcount == 0) 432 kfree(entry); 433 } 434 435 /** 436 * ssam_nf_refcount_empty() - Test if the notification system has any 437 * enabled/active events. 438 * @nf: The notification system. 439 */ 440 static bool ssam_nf_refcount_empty(struct ssam_nf *nf) 441 { 442 return RB_EMPTY_ROOT(&nf->refcount); 443 } 444 445 /** 446 * ssam_nf_call() - Call notification callbacks for the provided event. 447 * @nf: The notifier system 448 * @dev: The associated device, only used for logging. 449 * @rqid: The request ID of the event. 450 * @event: The event provided to the callbacks. 451 * 452 * Execute registered callbacks in order of their priority until either no 453 * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP 454 * bit set. Note that this bit is set automatically when converting non-zero 455 * error values via ssam_notifier_from_errno() to notifier values. 456 * 457 * Also note that any callback that could handle an event should return a value 458 * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go 459 * unhandled/ignored. In case no registered callback could handle an event, 460 * this function will emit a warning. 461 * 462 * In case a callback failed, this function will emit an error message. 463 */ 464 static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid, 465 struct ssam_event *event) 466 { 467 struct ssam_nf_head *nf_head; 468 int status, nf_ret; 469 470 if (!ssh_rqid_is_event(rqid)) { 471 dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid); 472 return; 473 } 474 475 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 476 nf_ret = ssam_nfblk_call_chain(nf_head, event); 477 status = ssam_notifier_to_errno(nf_ret); 478 479 if (status < 0) { 480 dev_err(dev, 481 "event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n", 482 status, event->target_category, event->target_id, 483 event->command_id, event->instance_id); 484 } else if (!(nf_ret & SSAM_NOTIF_HANDLED)) { 485 dev_warn(dev, 486 "event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n", 487 rqid, event->target_category, event->target_id, 488 event->command_id, event->instance_id); 489 } 490 } 491 492 /** 493 * ssam_nf_init() - Initialize the notifier system. 494 * @nf: The notifier system to initialize. 495 */ 496 static int ssam_nf_init(struct ssam_nf *nf) 497 { 498 int i, status; 499 500 for (i = 0; i < SSH_NUM_EVENTS; i++) { 501 status = ssam_nf_head_init(&nf->head[i]); 502 if (status) 503 break; 504 } 505 506 if (status) { 507 while (i--) 508 ssam_nf_head_destroy(&nf->head[i]); 509 510 return status; 511 } 512 513 mutex_init(&nf->lock); 514 return 0; 515 } 516 517 /** 518 * ssam_nf_destroy() - Deinitialize the notifier system. 519 * @nf: The notifier system to deinitialize. 520 */ 521 static void ssam_nf_destroy(struct ssam_nf *nf) 522 { 523 int i; 524 525 for (i = 0; i < SSH_NUM_EVENTS; i++) 526 ssam_nf_head_destroy(&nf->head[i]); 527 528 mutex_destroy(&nf->lock); 529 } 530 531 532 /* -- Event/async request completion system. -------------------------------- */ 533 534 #define SSAM_CPLT_WQ_NAME "ssam_cpltq" 535 536 /* 537 * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per 538 * work execution. Used to prevent livelocking of the workqueue. Value chosen 539 * via educated guess, may be adjusted. 540 */ 541 #define SSAM_CPLT_WQ_BATCH 10 542 543 /* 544 * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached 545 * &struct ssam_event_item. 546 * 547 * This length has been chosen to be accommodate standard touchpad and 548 * keyboard input events. Events with larger payloads will be allocated 549 * separately. 550 */ 551 #define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN 32 552 553 static struct kmem_cache *ssam_event_item_cache; 554 555 /** 556 * ssam_event_item_cache_init() - Initialize the event item cache. 557 */ 558 int ssam_event_item_cache_init(void) 559 { 560 const unsigned int size = sizeof(struct ssam_event_item) 561 + SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN; 562 const unsigned int align = __alignof__(struct ssam_event_item); 563 struct kmem_cache *cache; 564 565 cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL); 566 if (!cache) 567 return -ENOMEM; 568 569 ssam_event_item_cache = cache; 570 return 0; 571 } 572 573 /** 574 * ssam_event_item_cache_destroy() - Deinitialize the event item cache. 575 */ 576 void ssam_event_item_cache_destroy(void) 577 { 578 kmem_cache_destroy(ssam_event_item_cache); 579 ssam_event_item_cache = NULL; 580 } 581 582 static void __ssam_event_item_free_cached(struct ssam_event_item *item) 583 { 584 kmem_cache_free(ssam_event_item_cache, item); 585 } 586 587 static void __ssam_event_item_free_generic(struct ssam_event_item *item) 588 { 589 kfree(item); 590 } 591 592 /** 593 * ssam_event_item_free() - Free the provided event item. 594 * @item: The event item to free. 595 */ 596 static void ssam_event_item_free(struct ssam_event_item *item) 597 { 598 trace_ssam_event_item_free(item); 599 item->ops.free(item); 600 } 601 602 /** 603 * ssam_event_item_alloc() - Allocate an event item with the given payload size. 604 * @len: The event payload length. 605 * @flags: The flags used for allocation. 606 * 607 * Allocate an event item with the given payload size, preferring allocation 608 * from the event item cache if the payload is small enough (i.e. smaller than 609 * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload 610 * length values. The item free callback (``ops.free``) should not be 611 * overwritten after this call. 612 * 613 * Return: Returns the newly allocated event item. 614 */ 615 static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags) 616 { 617 struct ssam_event_item *item; 618 619 if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) { 620 item = kmem_cache_alloc(ssam_event_item_cache, flags); 621 if (!item) 622 return NULL; 623 624 item->ops.free = __ssam_event_item_free_cached; 625 } else { 626 item = kzalloc(struct_size(item, event.data, len), flags); 627 if (!item) 628 return NULL; 629 630 item->ops.free = __ssam_event_item_free_generic; 631 } 632 633 item->event.length = len; 634 635 trace_ssam_event_item_alloc(item, len); 636 return item; 637 } 638 639 /** 640 * ssam_event_queue_push() - Push an event item to the event queue. 641 * @q: The event queue. 642 * @item: The item to add. 643 */ 644 static void ssam_event_queue_push(struct ssam_event_queue *q, 645 struct ssam_event_item *item) 646 { 647 spin_lock(&q->lock); 648 list_add_tail(&item->node, &q->head); 649 spin_unlock(&q->lock); 650 } 651 652 /** 653 * ssam_event_queue_pop() - Pop the next event item from the event queue. 654 * @q: The event queue. 655 * 656 * Returns and removes the next event item from the queue. Returns %NULL If 657 * there is no event item left. 658 */ 659 static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q) 660 { 661 struct ssam_event_item *item; 662 663 spin_lock(&q->lock); 664 item = list_first_entry_or_null(&q->head, struct ssam_event_item, node); 665 if (item) 666 list_del(&item->node); 667 spin_unlock(&q->lock); 668 669 return item; 670 } 671 672 /** 673 * ssam_event_queue_is_empty() - Check if the event queue is empty. 674 * @q: The event queue. 675 */ 676 static bool ssam_event_queue_is_empty(struct ssam_event_queue *q) 677 { 678 bool empty; 679 680 spin_lock(&q->lock); 681 empty = list_empty(&q->head); 682 spin_unlock(&q->lock); 683 684 return empty; 685 } 686 687 /** 688 * ssam_cplt_get_event_queue() - Get the event queue for the given parameters. 689 * @cplt: The completion system on which to look for the queue. 690 * @tid: The target ID of the queue. 691 * @rqid: The request ID representing the event ID for which to get the queue. 692 * 693 * Return: Returns the event queue corresponding to the event type described 694 * by the given parameters. If the request ID does not represent an event, 695 * this function returns %NULL. If the target ID is not supported, this 696 * function will fall back to the default target ID (``tid = 1``). 697 */ 698 static 699 struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt, 700 u8 tid, u16 rqid) 701 { 702 u16 event = ssh_rqid_to_event(rqid); 703 u16 tidx = ssh_tid_to_index(tid); 704 705 if (!ssh_rqid_is_event(rqid)) { 706 dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid); 707 return NULL; 708 } 709 710 if (!ssh_tid_is_valid(tid)) { 711 dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid); 712 tidx = 0; 713 } 714 715 return &cplt->event.target[tidx].queue[event]; 716 } 717 718 /** 719 * ssam_cplt_submit() - Submit a work item to the completion system workqueue. 720 * @cplt: The completion system. 721 * @work: The work item to submit. 722 */ 723 static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work) 724 { 725 return queue_work(cplt->wq, work); 726 } 727 728 /** 729 * ssam_cplt_submit_event() - Submit an event to the completion system. 730 * @cplt: The completion system. 731 * @item: The event item to submit. 732 * 733 * Submits the event to the completion system by queuing it on the event item 734 * queue and queuing the respective event queue work item on the completion 735 * workqueue, which will eventually complete the event. 736 * 737 * Return: Returns zero on success, %-EINVAL if there is no event queue that 738 * can handle the given event item. 739 */ 740 static int ssam_cplt_submit_event(struct ssam_cplt *cplt, 741 struct ssam_event_item *item) 742 { 743 struct ssam_event_queue *evq; 744 745 evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid); 746 if (!evq) 747 return -EINVAL; 748 749 ssam_event_queue_push(evq, item); 750 ssam_cplt_submit(cplt, &evq->work); 751 return 0; 752 } 753 754 /** 755 * ssam_cplt_flush() - Flush the completion system. 756 * @cplt: The completion system. 757 * 758 * Flush the completion system by waiting until all currently submitted work 759 * items have been completed. 760 * 761 * Note: This function does not guarantee that all events will have been 762 * handled once this call terminates. In case of a larger number of 763 * to-be-completed events, the event queue work function may re-schedule its 764 * work item, which this flush operation will ignore. 765 * 766 * This operation is only intended to, during normal operation prior to 767 * shutdown, try to complete most events and requests to get them out of the 768 * system while the system is still fully operational. It does not aim to 769 * provide any guarantee that all of them have been handled. 770 */ 771 static void ssam_cplt_flush(struct ssam_cplt *cplt) 772 { 773 flush_workqueue(cplt->wq); 774 } 775 776 static void ssam_event_queue_work_fn(struct work_struct *work) 777 { 778 struct ssam_event_queue *queue; 779 struct ssam_event_item *item; 780 struct ssam_nf *nf; 781 struct device *dev; 782 unsigned int iterations = SSAM_CPLT_WQ_BATCH; 783 784 queue = container_of(work, struct ssam_event_queue, work); 785 nf = &queue->cplt->event.notif; 786 dev = queue->cplt->dev; 787 788 /* Limit number of processed events to avoid livelocking. */ 789 do { 790 item = ssam_event_queue_pop(queue); 791 if (!item) 792 return; 793 794 ssam_nf_call(nf, dev, item->rqid, &item->event); 795 ssam_event_item_free(item); 796 } while (--iterations); 797 798 if (!ssam_event_queue_is_empty(queue)) 799 ssam_cplt_submit(queue->cplt, &queue->work); 800 } 801 802 /** 803 * ssam_event_queue_init() - Initialize an event queue. 804 * @cplt: The completion system on which the queue resides. 805 * @evq: The event queue to initialize. 806 */ 807 static void ssam_event_queue_init(struct ssam_cplt *cplt, 808 struct ssam_event_queue *evq) 809 { 810 evq->cplt = cplt; 811 spin_lock_init(&evq->lock); 812 INIT_LIST_HEAD(&evq->head); 813 INIT_WORK(&evq->work, ssam_event_queue_work_fn); 814 } 815 816 /** 817 * ssam_cplt_init() - Initialize completion system. 818 * @cplt: The completion system to initialize. 819 * @dev: The device used for logging. 820 */ 821 static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev) 822 { 823 struct ssam_event_target *target; 824 int status, c, i; 825 826 cplt->dev = dev; 827 828 cplt->wq = create_workqueue(SSAM_CPLT_WQ_NAME); 829 if (!cplt->wq) 830 return -ENOMEM; 831 832 for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) { 833 target = &cplt->event.target[c]; 834 835 for (i = 0; i < ARRAY_SIZE(target->queue); i++) 836 ssam_event_queue_init(cplt, &target->queue[i]); 837 } 838 839 status = ssam_nf_init(&cplt->event.notif); 840 if (status) 841 destroy_workqueue(cplt->wq); 842 843 return status; 844 } 845 846 /** 847 * ssam_cplt_destroy() - Deinitialize the completion system. 848 * @cplt: The completion system to deinitialize. 849 * 850 * Deinitialize the given completion system and ensure that all pending, i.e. 851 * yet-to-be-completed, event items and requests have been handled. 852 */ 853 static void ssam_cplt_destroy(struct ssam_cplt *cplt) 854 { 855 /* 856 * Note: destroy_workqueue ensures that all currently queued work will 857 * be fully completed and the workqueue drained. This means that this 858 * call will inherently also free any queued ssam_event_items, thus we 859 * don't have to take care of that here explicitly. 860 */ 861 destroy_workqueue(cplt->wq); 862 ssam_nf_destroy(&cplt->event.notif); 863 } 864 865 866 /* -- Main SSAM device structures. ------------------------------------------ */ 867 868 /** 869 * ssam_controller_device() - Get the &struct device associated with this 870 * controller. 871 * @c: The controller for which to get the device. 872 * 873 * Return: Returns the &struct device associated with this controller, 874 * providing its lower-level transport. 875 */ 876 struct device *ssam_controller_device(struct ssam_controller *c) 877 { 878 return ssh_rtl_get_device(&c->rtl); 879 } 880 EXPORT_SYMBOL_GPL(ssam_controller_device); 881 882 static void __ssam_controller_release(struct kref *kref) 883 { 884 struct ssam_controller *ctrl = to_ssam_controller(kref, kref); 885 886 /* 887 * The lock-call here is to satisfy lockdep. At this point we really 888 * expect this to be the last remaining reference to the controller. 889 * Anything else is a bug. 890 */ 891 ssam_controller_lock(ctrl); 892 ssam_controller_destroy(ctrl); 893 ssam_controller_unlock(ctrl); 894 895 kfree(ctrl); 896 } 897 898 /** 899 * ssam_controller_get() - Increment reference count of controller. 900 * @c: The controller. 901 * 902 * Return: Returns the controller provided as input. 903 */ 904 struct ssam_controller *ssam_controller_get(struct ssam_controller *c) 905 { 906 if (c) 907 kref_get(&c->kref); 908 return c; 909 } 910 EXPORT_SYMBOL_GPL(ssam_controller_get); 911 912 /** 913 * ssam_controller_put() - Decrement reference count of controller. 914 * @c: The controller. 915 */ 916 void ssam_controller_put(struct ssam_controller *c) 917 { 918 if (c) 919 kref_put(&c->kref, __ssam_controller_release); 920 } 921 EXPORT_SYMBOL_GPL(ssam_controller_put); 922 923 /** 924 * ssam_controller_statelock() - Lock the controller against state transitions. 925 * @c: The controller to lock. 926 * 927 * Lock the controller against state transitions. Holding this lock guarantees 928 * that the controller will not transition between states, i.e. if the 929 * controller is in state "started", when this lock has been acquired, it will 930 * remain in this state at least until the lock has been released. 931 * 932 * Multiple clients may concurrently hold this lock. In other words: The 933 * ``statelock`` functions represent the read-lock part of a r/w-semaphore. 934 * Actions causing state transitions of the controller must be executed while 935 * holding the write-part of this r/w-semaphore (see ssam_controller_lock() 936 * and ssam_controller_unlock() for that). 937 * 938 * See ssam_controller_stateunlock() for the corresponding unlock function. 939 */ 940 void ssam_controller_statelock(struct ssam_controller *c) 941 { 942 down_read(&c->lock); 943 } 944 EXPORT_SYMBOL_GPL(ssam_controller_statelock); 945 946 /** 947 * ssam_controller_stateunlock() - Unlock controller state transitions. 948 * @c: The controller to unlock. 949 * 950 * See ssam_controller_statelock() for the corresponding lock function. 951 */ 952 void ssam_controller_stateunlock(struct ssam_controller *c) 953 { 954 up_read(&c->lock); 955 } 956 EXPORT_SYMBOL_GPL(ssam_controller_stateunlock); 957 958 /** 959 * ssam_controller_lock() - Acquire the main controller lock. 960 * @c: The controller to lock. 961 * 962 * This lock must be held for any state transitions, including transition to 963 * suspend/resumed states and during shutdown. See ssam_controller_statelock() 964 * for more details on controller locking. 965 * 966 * See ssam_controller_unlock() for the corresponding unlock function. 967 */ 968 void ssam_controller_lock(struct ssam_controller *c) 969 { 970 down_write(&c->lock); 971 } 972 973 /* 974 * ssam_controller_unlock() - Release the main controller lock. 975 * @c: The controller to unlock. 976 * 977 * See ssam_controller_lock() for the corresponding lock function. 978 */ 979 void ssam_controller_unlock(struct ssam_controller *c) 980 { 981 up_write(&c->lock); 982 } 983 984 static void ssam_handle_event(struct ssh_rtl *rtl, 985 const struct ssh_command *cmd, 986 const struct ssam_span *data) 987 { 988 struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl); 989 struct ssam_event_item *item; 990 991 item = ssam_event_item_alloc(data->len, GFP_KERNEL); 992 if (!item) 993 return; 994 995 item->rqid = get_unaligned_le16(&cmd->rqid); 996 item->event.target_category = cmd->tc; 997 item->event.target_id = cmd->tid_in; 998 item->event.command_id = cmd->cid; 999 item->event.instance_id = cmd->iid; 1000 memcpy(&item->event.data[0], data->ptr, data->len); 1001 1002 if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item))) 1003 ssam_event_item_free(item); 1004 } 1005 1006 static const struct ssh_rtl_ops ssam_rtl_ops = { 1007 .handle_event = ssam_handle_event, 1008 }; 1009 1010 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl); 1011 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl); 1012 1013 #define SSAM_SSH_DSM_REVISION 0 1014 1015 /* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */ 1016 static const guid_t SSAM_SSH_DSM_GUID = 1017 GUID_INIT(0xd5e383e1, 0xd892, 0x4a76, 1018 0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5); 1019 1020 enum ssh_dsm_fn { 1021 SSH_DSM_FN_SSH_POWER_PROFILE = 0x05, 1022 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT = 0x06, 1023 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07, 1024 SSH_DSM_FN_D3_CLOSES_HANDLE = 0x08, 1025 SSH_DSM_FN_SSH_BUFFER_SIZE = 0x09, 1026 }; 1027 1028 static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs) 1029 { 1030 union acpi_object *obj; 1031 u64 mask = 0; 1032 int i; 1033 1034 *funcs = 0; 1035 1036 /* 1037 * The _DSM function is only present on newer models. It is not 1038 * present on 5th and 6th generation devices (i.e. up to and including 1039 * Surface Pro 6, Surface Laptop 2, Surface Book 2). 1040 * 1041 * If the _DSM is not present, indicate that no function is supported. 1042 * This will result in default values being set. 1043 */ 1044 if (!acpi_has_method(handle, "_DSM")) 1045 return 0; 1046 1047 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID, 1048 SSAM_SSH_DSM_REVISION, 0, NULL, 1049 ACPI_TYPE_BUFFER); 1050 if (!obj) 1051 return -EIO; 1052 1053 for (i = 0; i < obj->buffer.length && i < 8; i++) 1054 mask |= (((u64)obj->buffer.pointer[i]) << (i * 8)); 1055 1056 if (mask & BIT(0)) 1057 *funcs = mask; 1058 1059 ACPI_FREE(obj); 1060 return 0; 1061 } 1062 1063 static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret) 1064 { 1065 union acpi_object *obj; 1066 u64 val; 1067 1068 if (!(funcs & BIT_ULL(func))) 1069 return 0; /* Not supported, leave *ret at its default value */ 1070 1071 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID, 1072 SSAM_SSH_DSM_REVISION, func, NULL, 1073 ACPI_TYPE_INTEGER); 1074 if (!obj) 1075 return -EIO; 1076 1077 val = obj->integer.value; 1078 ACPI_FREE(obj); 1079 1080 if (val > U32_MAX) 1081 return -ERANGE; 1082 1083 *ret = val; 1084 return 0; 1085 } 1086 1087 /** 1088 * ssam_controller_caps_load_from_acpi() - Load controller capabilities from 1089 * ACPI _DSM. 1090 * @handle: The handle of the ACPI controller/SSH device. 1091 * @caps: Where to store the capabilities in. 1092 * 1093 * Initializes the given controller capabilities with default values, then 1094 * checks and, if the respective _DSM functions are available, loads the 1095 * actual capabilities from the _DSM. 1096 * 1097 * Return: Returns zero on success, a negative error code on failure. 1098 */ 1099 static 1100 int ssam_controller_caps_load_from_acpi(acpi_handle handle, 1101 struct ssam_controller_caps *caps) 1102 { 1103 u32 d3_closes_handle = false; 1104 u64 funcs; 1105 int status; 1106 1107 /* Set defaults. */ 1108 caps->ssh_power_profile = U32_MAX; 1109 caps->screen_on_sleep_idle_timeout = U32_MAX; 1110 caps->screen_off_sleep_idle_timeout = U32_MAX; 1111 caps->d3_closes_handle = false; 1112 caps->ssh_buffer_size = U32_MAX; 1113 1114 /* Pre-load supported DSM functions. */ 1115 status = ssam_dsm_get_functions(handle, &funcs); 1116 if (status) 1117 return status; 1118 1119 /* Load actual values from ACPI, if present. */ 1120 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE, 1121 &caps->ssh_power_profile); 1122 if (status) 1123 return status; 1124 1125 status = ssam_dsm_load_u32(handle, funcs, 1126 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT, 1127 &caps->screen_on_sleep_idle_timeout); 1128 if (status) 1129 return status; 1130 1131 status = ssam_dsm_load_u32(handle, funcs, 1132 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT, 1133 &caps->screen_off_sleep_idle_timeout); 1134 if (status) 1135 return status; 1136 1137 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE, 1138 &d3_closes_handle); 1139 if (status) 1140 return status; 1141 1142 caps->d3_closes_handle = !!d3_closes_handle; 1143 1144 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE, 1145 &caps->ssh_buffer_size); 1146 if (status) 1147 return status; 1148 1149 return 0; 1150 } 1151 1152 /** 1153 * ssam_controller_init() - Initialize SSAM controller. 1154 * @ctrl: The controller to initialize. 1155 * @serdev: The serial device representing the underlying data transport. 1156 * 1157 * Initializes the given controller. Does neither start receiver nor 1158 * transmitter threads. After this call, the controller has to be hooked up to 1159 * the serdev core separately via &struct serdev_device_ops, relaying calls to 1160 * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the 1161 * controller has been hooked up, transmitter and receiver threads may be 1162 * started via ssam_controller_start(). These setup steps need to be completed 1163 * before controller can be used for requests. 1164 */ 1165 int ssam_controller_init(struct ssam_controller *ctrl, 1166 struct serdev_device *serdev) 1167 { 1168 acpi_handle handle = ACPI_HANDLE(&serdev->dev); 1169 int status; 1170 1171 init_rwsem(&ctrl->lock); 1172 kref_init(&ctrl->kref); 1173 1174 status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps); 1175 if (status) 1176 return status; 1177 1178 dev_dbg(&serdev->dev, 1179 "device capabilities:\n" 1180 " ssh_power_profile: %u\n" 1181 " ssh_buffer_size: %u\n" 1182 " screen_on_sleep_idle_timeout: %u\n" 1183 " screen_off_sleep_idle_timeout: %u\n" 1184 " d3_closes_handle: %u\n", 1185 ctrl->caps.ssh_power_profile, 1186 ctrl->caps.ssh_buffer_size, 1187 ctrl->caps.screen_on_sleep_idle_timeout, 1188 ctrl->caps.screen_off_sleep_idle_timeout, 1189 ctrl->caps.d3_closes_handle); 1190 1191 ssh_seq_reset(&ctrl->counter.seq); 1192 ssh_rqid_reset(&ctrl->counter.rqid); 1193 1194 /* Initialize event/request completion system. */ 1195 status = ssam_cplt_init(&ctrl->cplt, &serdev->dev); 1196 if (status) 1197 return status; 1198 1199 /* Initialize request and packet transport layers. */ 1200 status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops); 1201 if (status) { 1202 ssam_cplt_destroy(&ctrl->cplt); 1203 return status; 1204 } 1205 1206 /* 1207 * Set state via write_once even though we expect to be in an 1208 * exclusive context, due to smoke-testing in 1209 * ssam_request_sync_submit(). 1210 */ 1211 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED); 1212 return 0; 1213 } 1214 1215 /** 1216 * ssam_controller_start() - Start the receiver and transmitter threads of the 1217 * controller. 1218 * @ctrl: The controller. 1219 * 1220 * Note: When this function is called, the controller should be properly 1221 * hooked up to the serdev core via &struct serdev_device_ops. Please refer 1222 * to ssam_controller_init() for more details on controller initialization. 1223 * 1224 * This function must be called with the main controller lock held (i.e. by 1225 * calling ssam_controller_lock()). 1226 */ 1227 int ssam_controller_start(struct ssam_controller *ctrl) 1228 { 1229 int status; 1230 1231 lockdep_assert_held_write(&ctrl->lock); 1232 1233 if (ctrl->state != SSAM_CONTROLLER_INITIALIZED) 1234 return -EINVAL; 1235 1236 status = ssh_rtl_start(&ctrl->rtl); 1237 if (status) 1238 return status; 1239 1240 /* 1241 * Set state via write_once even though we expect to be locked/in an 1242 * exclusive context, due to smoke-testing in 1243 * ssam_request_sync_submit(). 1244 */ 1245 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED); 1246 return 0; 1247 } 1248 1249 /* 1250 * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during 1251 * shutdown. 1252 * 1253 * Chosen to be larger than one full request timeout, including packets timing 1254 * out. This value should give ample time to complete any outstanding requests 1255 * during normal operation and account for the odd package timeout. 1256 */ 1257 #define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT msecs_to_jiffies(5000) 1258 1259 /** 1260 * ssam_controller_shutdown() - Shut down the controller. 1261 * @ctrl: The controller. 1262 * 1263 * Shuts down the controller by flushing all pending requests and stopping the 1264 * transmitter and receiver threads. All requests submitted after this call 1265 * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function 1266 * is safe to use in parallel with ongoing request submission. 1267 * 1268 * In the course of this shutdown procedure, all currently registered 1269 * notifiers will be unregistered. It is, however, strongly recommended to not 1270 * rely on this behavior, and instead the party registering the notifier 1271 * should unregister it before the controller gets shut down, e.g. via the 1272 * SSAM bus which guarantees client devices to be removed before a shutdown. 1273 * 1274 * Note that events may still be pending after this call, but, due to the 1275 * notifiers being unregistered, these events will be dropped when the 1276 * controller is subsequently destroyed via ssam_controller_destroy(). 1277 * 1278 * This function must be called with the main controller lock held (i.e. by 1279 * calling ssam_controller_lock()). 1280 */ 1281 void ssam_controller_shutdown(struct ssam_controller *ctrl) 1282 { 1283 enum ssam_controller_state s = ctrl->state; 1284 int status; 1285 1286 lockdep_assert_held_write(&ctrl->lock); 1287 1288 if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED) 1289 return; 1290 1291 /* 1292 * Try to flush pending events and requests while everything still 1293 * works. Note: There may still be packets and/or requests in the 1294 * system after this call (e.g. via control packets submitted by the 1295 * packet transport layer or flush timeout / failure, ...). Those will 1296 * be handled with the ssh_rtl_shutdown() call below. 1297 */ 1298 status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT); 1299 if (status) { 1300 ssam_err(ctrl, "failed to flush request transport layer: %d\n", 1301 status); 1302 } 1303 1304 /* Try to flush all currently completing requests and events. */ 1305 ssam_cplt_flush(&ctrl->cplt); 1306 1307 /* 1308 * We expect all notifiers to have been removed by the respective client 1309 * driver that set them up at this point. If this warning occurs, some 1310 * client driver has not done that... 1311 */ 1312 WARN_ON(!ssam_notifier_is_empty(ctrl)); 1313 1314 /* 1315 * Nevertheless, we should still take care of drivers that don't behave 1316 * well. Thus disable all enabled events, unregister all notifiers. 1317 */ 1318 ssam_notifier_unregister_all(ctrl); 1319 1320 /* 1321 * Cancel remaining requests. Ensure no new ones can be queued and stop 1322 * threads. 1323 */ 1324 ssh_rtl_shutdown(&ctrl->rtl); 1325 1326 /* 1327 * Set state via write_once even though we expect to be locked/in an 1328 * exclusive context, due to smoke-testing in 1329 * ssam_request_sync_submit(). 1330 */ 1331 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED); 1332 ctrl->rtl.ptl.serdev = NULL; 1333 } 1334 1335 /** 1336 * ssam_controller_destroy() - Destroy the controller and free its resources. 1337 * @ctrl: The controller. 1338 * 1339 * Ensures that all resources associated with the controller get freed. This 1340 * function should only be called after the controller has been stopped via 1341 * ssam_controller_shutdown(). In general, this function should not be called 1342 * directly. The only valid place to call this function directly is during 1343 * initialization, before the controller has been fully initialized and passed 1344 * to other processes. This function is called automatically when the 1345 * reference count of the controller reaches zero. 1346 * 1347 * This function must be called with the main controller lock held (i.e. by 1348 * calling ssam_controller_lock()). 1349 */ 1350 void ssam_controller_destroy(struct ssam_controller *ctrl) 1351 { 1352 lockdep_assert_held_write(&ctrl->lock); 1353 1354 if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED) 1355 return; 1356 1357 WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED); 1358 1359 /* 1360 * Note: New events could still have been received after the previous 1361 * flush in ssam_controller_shutdown, before the request transport layer 1362 * has been shut down. At this point, after the shutdown, we can be sure 1363 * that no new events will be queued. The call to ssam_cplt_destroy will 1364 * ensure that those remaining are being completed and freed. 1365 */ 1366 1367 /* Actually free resources. */ 1368 ssam_cplt_destroy(&ctrl->cplt); 1369 ssh_rtl_destroy(&ctrl->rtl); 1370 1371 /* 1372 * Set state via write_once even though we expect to be locked/in an 1373 * exclusive context, due to smoke-testing in 1374 * ssam_request_sync_submit(). 1375 */ 1376 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED); 1377 } 1378 1379 /** 1380 * ssam_controller_suspend() - Suspend the controller. 1381 * @ctrl: The controller to suspend. 1382 * 1383 * Marks the controller as suspended. Note that display-off and D0-exit 1384 * notifications have to be sent manually before transitioning the controller 1385 * into the suspended state via this function. 1386 * 1387 * See ssam_controller_resume() for the corresponding resume function. 1388 * 1389 * Return: Returns %-EINVAL if the controller is currently not in the 1390 * "started" state. 1391 */ 1392 int ssam_controller_suspend(struct ssam_controller *ctrl) 1393 { 1394 ssam_controller_lock(ctrl); 1395 1396 if (ctrl->state != SSAM_CONTROLLER_STARTED) { 1397 ssam_controller_unlock(ctrl); 1398 return -EINVAL; 1399 } 1400 1401 ssam_dbg(ctrl, "pm: suspending controller\n"); 1402 1403 /* 1404 * Set state via write_once even though we're locked, due to 1405 * smoke-testing in ssam_request_sync_submit(). 1406 */ 1407 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED); 1408 1409 ssam_controller_unlock(ctrl); 1410 return 0; 1411 } 1412 1413 /** 1414 * ssam_controller_resume() - Resume the controller from suspend. 1415 * @ctrl: The controller to resume. 1416 * 1417 * Resume the controller from the suspended state it was put into via 1418 * ssam_controller_suspend(). This function does not issue display-on and 1419 * D0-entry notifications. If required, those have to be sent manually after 1420 * this call. 1421 * 1422 * Return: Returns %-EINVAL if the controller is currently not suspended. 1423 */ 1424 int ssam_controller_resume(struct ssam_controller *ctrl) 1425 { 1426 ssam_controller_lock(ctrl); 1427 1428 if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) { 1429 ssam_controller_unlock(ctrl); 1430 return -EINVAL; 1431 } 1432 1433 ssam_dbg(ctrl, "pm: resuming controller\n"); 1434 1435 /* 1436 * Set state via write_once even though we're locked, due to 1437 * smoke-testing in ssam_request_sync_submit(). 1438 */ 1439 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED); 1440 1441 ssam_controller_unlock(ctrl); 1442 return 0; 1443 } 1444 1445 1446 /* -- Top-level request interface ------------------------------------------- */ 1447 1448 /** 1449 * ssam_request_write_data() - Construct and write SAM request message to 1450 * buffer. 1451 * @buf: The buffer to write the data to. 1452 * @ctrl: The controller via which the request will be sent. 1453 * @spec: The request data and specification. 1454 * 1455 * Constructs a SAM/SSH request message and writes it to the provided buffer. 1456 * The request and transport counters, specifically RQID and SEQ, will be set 1457 * in this call. These counters are obtained from the controller. It is thus 1458 * only valid to send the resulting message via the controller specified here. 1459 * 1460 * For calculation of the required buffer size, refer to the 1461 * SSH_COMMAND_MESSAGE_LENGTH() macro. 1462 * 1463 * Return: Returns the number of bytes used in the buffer on success. Returns 1464 * %-EINVAL if the payload length provided in the request specification is too 1465 * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer 1466 * is too small. 1467 */ 1468 ssize_t ssam_request_write_data(struct ssam_span *buf, 1469 struct ssam_controller *ctrl, 1470 const struct ssam_request *spec) 1471 { 1472 struct msgbuf msgb; 1473 u16 rqid; 1474 u8 seq; 1475 1476 if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE) 1477 return -EINVAL; 1478 1479 if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len) 1480 return -EINVAL; 1481 1482 msgb_init(&msgb, buf->ptr, buf->len); 1483 seq = ssh_seq_next(&ctrl->counter.seq); 1484 rqid = ssh_rqid_next(&ctrl->counter.rqid); 1485 msgb_push_cmd(&msgb, seq, rqid, spec); 1486 1487 return msgb_bytes_used(&msgb); 1488 } 1489 EXPORT_SYMBOL_GPL(ssam_request_write_data); 1490 1491 static void ssam_request_sync_complete(struct ssh_request *rqst, 1492 const struct ssh_command *cmd, 1493 const struct ssam_span *data, int status) 1494 { 1495 struct ssh_rtl *rtl = ssh_request_rtl(rqst); 1496 struct ssam_request_sync *r; 1497 1498 r = container_of(rqst, struct ssam_request_sync, base); 1499 r->status = status; 1500 1501 if (r->resp) 1502 r->resp->length = 0; 1503 1504 if (status) { 1505 rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status); 1506 return; 1507 } 1508 1509 if (!data) /* Handle requests without a response. */ 1510 return; 1511 1512 if (!r->resp || !r->resp->pointer) { 1513 if (data->len) 1514 rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n"); 1515 return; 1516 } 1517 1518 if (data->len > r->resp->capacity) { 1519 rtl_err(rtl, 1520 "rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n", 1521 r->resp->capacity, data->len); 1522 r->status = -ENOSPC; 1523 return; 1524 } 1525 1526 r->resp->length = data->len; 1527 memcpy(r->resp->pointer, data->ptr, data->len); 1528 } 1529 1530 static void ssam_request_sync_release(struct ssh_request *rqst) 1531 { 1532 complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp); 1533 } 1534 1535 static const struct ssh_request_ops ssam_request_sync_ops = { 1536 .release = ssam_request_sync_release, 1537 .complete = ssam_request_sync_complete, 1538 }; 1539 1540 /** 1541 * ssam_request_sync_alloc() - Allocate a synchronous request. 1542 * @payload_len: The length of the request payload. 1543 * @flags: Flags used for allocation. 1544 * @rqst: Where to store the pointer to the allocated request. 1545 * @buffer: Where to store the buffer descriptor for the message buffer of 1546 * the request. 1547 * 1548 * Allocates a synchronous request with corresponding message buffer. The 1549 * request still needs to be initialized ssam_request_sync_init() before 1550 * it can be submitted, and the message buffer data must still be set to the 1551 * returned buffer via ssam_request_sync_set_data() after it has been filled, 1552 * if need be with adjusted message length. 1553 * 1554 * After use, the request and its corresponding message buffer should be freed 1555 * via ssam_request_sync_free(). The buffer must not be freed separately. 1556 * 1557 * Return: Returns zero on success, %-ENOMEM if the request could not be 1558 * allocated. 1559 */ 1560 int ssam_request_sync_alloc(size_t payload_len, gfp_t flags, 1561 struct ssam_request_sync **rqst, 1562 struct ssam_span *buffer) 1563 { 1564 size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len); 1565 1566 *rqst = kzalloc(sizeof(**rqst) + msglen, flags); 1567 if (!*rqst) 1568 return -ENOMEM; 1569 1570 buffer->ptr = (u8 *)(*rqst + 1); 1571 buffer->len = msglen; 1572 1573 return 0; 1574 } 1575 EXPORT_SYMBOL_GPL(ssam_request_sync_alloc); 1576 1577 /** 1578 * ssam_request_sync_free() - Free a synchronous request. 1579 * @rqst: The request to be freed. 1580 * 1581 * Free a synchronous request and its corresponding buffer allocated with 1582 * ssam_request_sync_alloc(). Do not use for requests allocated on the stack 1583 * or via any other function. 1584 * 1585 * Warning: The caller must ensure that the request is not in use any more. 1586 * I.e. the caller must ensure that it has the only reference to the request 1587 * and the request is not currently pending. This means that the caller has 1588 * either never submitted the request, request submission has failed, or the 1589 * caller has waited until the submitted request has been completed via 1590 * ssam_request_sync_wait(). 1591 */ 1592 void ssam_request_sync_free(struct ssam_request_sync *rqst) 1593 { 1594 kfree(rqst); 1595 } 1596 EXPORT_SYMBOL_GPL(ssam_request_sync_free); 1597 1598 /** 1599 * ssam_request_sync_init() - Initialize a synchronous request struct. 1600 * @rqst: The request to initialize. 1601 * @flags: The request flags. 1602 * 1603 * Initializes the given request struct. Does not initialize the request 1604 * message data. This has to be done explicitly after this call via 1605 * ssam_request_sync_set_data() and the actual message data has to be written 1606 * via ssam_request_write_data(). 1607 * 1608 * Return: Returns zero on success or %-EINVAL if the given flags are invalid. 1609 */ 1610 int ssam_request_sync_init(struct ssam_request_sync *rqst, 1611 enum ssam_request_flags flags) 1612 { 1613 int status; 1614 1615 status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops); 1616 if (status) 1617 return status; 1618 1619 init_completion(&rqst->comp); 1620 rqst->resp = NULL; 1621 rqst->status = 0; 1622 1623 return 0; 1624 } 1625 EXPORT_SYMBOL_GPL(ssam_request_sync_init); 1626 1627 /** 1628 * ssam_request_sync_submit() - Submit a synchronous request. 1629 * @ctrl: The controller with which to submit the request. 1630 * @rqst: The request to submit. 1631 * 1632 * Submit a synchronous request. The request has to be initialized and 1633 * properly set up, including response buffer (may be %NULL if no response is 1634 * expected) and command message data. This function does not wait for the 1635 * request to be completed. 1636 * 1637 * If this function succeeds, ssam_request_sync_wait() must be used to ensure 1638 * that the request has been completed before the response data can be 1639 * accessed and/or the request can be freed. On failure, the request may 1640 * immediately be freed. 1641 * 1642 * This function may only be used if the controller is active, i.e. has been 1643 * initialized and not suspended. 1644 */ 1645 int ssam_request_sync_submit(struct ssam_controller *ctrl, 1646 struct ssam_request_sync *rqst) 1647 { 1648 int status; 1649 1650 /* 1651 * This is only a superficial check. In general, the caller needs to 1652 * ensure that the controller is initialized and is not (and does not 1653 * get) suspended during use, i.e. until the request has been completed 1654 * (if _absolutely_ necessary, by use of ssam_controller_statelock/ 1655 * ssam_controller_stateunlock, but something like ssam_client_link 1656 * should be preferred as this needs to last until the request has been 1657 * completed). 1658 * 1659 * Note that it is actually safe to use this function while the 1660 * controller is in the process of being shut down (as ssh_rtl_submit 1661 * is safe with regards to this), but it is generally discouraged to do 1662 * so. 1663 */ 1664 if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) { 1665 ssh_request_put(&rqst->base); 1666 return -ENODEV; 1667 } 1668 1669 status = ssh_rtl_submit(&ctrl->rtl, &rqst->base); 1670 ssh_request_put(&rqst->base); 1671 1672 return status; 1673 } 1674 EXPORT_SYMBOL_GPL(ssam_request_sync_submit); 1675 1676 /** 1677 * ssam_request_sync() - Execute a synchronous request. 1678 * @ctrl: The controller via which the request will be submitted. 1679 * @spec: The request specification and payload. 1680 * @rsp: The response buffer. 1681 * 1682 * Allocates a synchronous request with its message data buffer on the heap 1683 * via ssam_request_sync_alloc(), fully initializes it via the provided 1684 * request specification, submits it, and finally waits for its completion 1685 * before freeing it and returning its status. 1686 * 1687 * Return: Returns the status of the request or any failure during setup. 1688 */ 1689 int ssam_request_sync(struct ssam_controller *ctrl, 1690 const struct ssam_request *spec, 1691 struct ssam_response *rsp) 1692 { 1693 struct ssam_request_sync *rqst; 1694 struct ssam_span buf; 1695 ssize_t len; 1696 int status; 1697 1698 status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf); 1699 if (status) 1700 return status; 1701 1702 status = ssam_request_sync_init(rqst, spec->flags); 1703 if (status) 1704 return status; 1705 1706 ssam_request_sync_set_resp(rqst, rsp); 1707 1708 len = ssam_request_write_data(&buf, ctrl, spec); 1709 if (len < 0) { 1710 ssam_request_sync_free(rqst); 1711 return len; 1712 } 1713 1714 ssam_request_sync_set_data(rqst, buf.ptr, len); 1715 1716 status = ssam_request_sync_submit(ctrl, rqst); 1717 if (!status) 1718 status = ssam_request_sync_wait(rqst); 1719 1720 ssam_request_sync_free(rqst); 1721 return status; 1722 } 1723 EXPORT_SYMBOL_GPL(ssam_request_sync); 1724 1725 /** 1726 * ssam_request_sync_with_buffer() - Execute a synchronous request with the 1727 * provided buffer as back-end for the message buffer. 1728 * @ctrl: The controller via which the request will be submitted. 1729 * @spec: The request specification and payload. 1730 * @rsp: The response buffer. 1731 * @buf: The buffer for the request message data. 1732 * 1733 * Allocates a synchronous request struct on the stack, fully initializes it 1734 * using the provided buffer as message data buffer, submits it, and then 1735 * waits for its completion before returning its status. The 1736 * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required 1737 * message buffer size. 1738 * 1739 * This function does essentially the same as ssam_request_sync(), but instead 1740 * of dynamically allocating the request and message data buffer, it uses the 1741 * provided message data buffer and stores the (small) request struct on the 1742 * heap. 1743 * 1744 * Return: Returns the status of the request or any failure during setup. 1745 */ 1746 int ssam_request_sync_with_buffer(struct ssam_controller *ctrl, 1747 const struct ssam_request *spec, 1748 struct ssam_response *rsp, 1749 struct ssam_span *buf) 1750 { 1751 struct ssam_request_sync rqst; 1752 ssize_t len; 1753 int status; 1754 1755 status = ssam_request_sync_init(&rqst, spec->flags); 1756 if (status) 1757 return status; 1758 1759 ssam_request_sync_set_resp(&rqst, rsp); 1760 1761 len = ssam_request_write_data(buf, ctrl, spec); 1762 if (len < 0) 1763 return len; 1764 1765 ssam_request_sync_set_data(&rqst, buf->ptr, len); 1766 1767 status = ssam_request_sync_submit(ctrl, &rqst); 1768 if (!status) 1769 status = ssam_request_sync_wait(&rqst); 1770 1771 return status; 1772 } 1773 EXPORT_SYMBOL_GPL(ssam_request_sync_with_buffer); 1774 1775 1776 /* -- Internal SAM requests. ------------------------------------------------ */ 1777 1778 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, { 1779 .target_category = SSAM_SSH_TC_SAM, 1780 .target_id = 0x01, 1781 .command_id = 0x13, 1782 .instance_id = 0x00, 1783 }); 1784 1785 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, { 1786 .target_category = SSAM_SSH_TC_SAM, 1787 .target_id = 0x01, 1788 .command_id = 0x15, 1789 .instance_id = 0x00, 1790 }); 1791 1792 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, { 1793 .target_category = SSAM_SSH_TC_SAM, 1794 .target_id = 0x01, 1795 .command_id = 0x16, 1796 .instance_id = 0x00, 1797 }); 1798 1799 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, { 1800 .target_category = SSAM_SSH_TC_SAM, 1801 .target_id = 0x01, 1802 .command_id = 0x33, 1803 .instance_id = 0x00, 1804 }); 1805 1806 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, { 1807 .target_category = SSAM_SSH_TC_SAM, 1808 .target_id = 0x01, 1809 .command_id = 0x34, 1810 .instance_id = 0x00, 1811 }); 1812 1813 /** 1814 * struct ssh_notification_params - Command payload to enable/disable SSH 1815 * notifications. 1816 * @target_category: The target category for which notifications should be 1817 * enabled/disabled. 1818 * @flags: Flags determining how notifications are being sent. 1819 * @request_id: The request ID that is used to send these notifications. 1820 * @instance_id: The specific instance in the given target category for 1821 * which notifications should be enabled. 1822 */ 1823 struct ssh_notification_params { 1824 u8 target_category; 1825 u8 flags; 1826 __le16 request_id; 1827 u8 instance_id; 1828 } __packed; 1829 1830 static_assert(sizeof(struct ssh_notification_params) == 5); 1831 1832 static int __ssam_ssh_event_request(struct ssam_controller *ctrl, 1833 struct ssam_event_registry reg, u8 cid, 1834 struct ssam_event_id id, u8 flags) 1835 { 1836 struct ssh_notification_params params; 1837 struct ssam_request rqst; 1838 struct ssam_response result; 1839 int status; 1840 1841 u16 rqid = ssh_tc_to_rqid(id.target_category); 1842 u8 buf = 0; 1843 1844 /* Only allow RQIDs that lie within the event spectrum. */ 1845 if (!ssh_rqid_is_event(rqid)) 1846 return -EINVAL; 1847 1848 params.target_category = id.target_category; 1849 params.instance_id = id.instance; 1850 params.flags = flags; 1851 put_unaligned_le16(rqid, ¶ms.request_id); 1852 1853 rqst.target_category = reg.target_category; 1854 rqst.target_id = reg.target_id; 1855 rqst.command_id = cid; 1856 rqst.instance_id = 0x00; 1857 rqst.flags = SSAM_REQUEST_HAS_RESPONSE; 1858 rqst.length = sizeof(params); 1859 rqst.payload = (u8 *)¶ms; 1860 1861 result.capacity = sizeof(buf); 1862 result.length = 0; 1863 result.pointer = &buf; 1864 1865 status = ssam_retry(ssam_request_sync_onstack, ctrl, &rqst, &result, 1866 sizeof(params)); 1867 1868 return status < 0 ? status : buf; 1869 } 1870 1871 /** 1872 * ssam_ssh_event_enable() - Enable SSH event. 1873 * @ctrl: The controller for which to enable the event. 1874 * @reg: The event registry describing what request to use for enabling and 1875 * disabling the event. 1876 * @id: The event identifier. 1877 * @flags: The event flags. 1878 * 1879 * Enables the specified event on the EC. This function does not manage 1880 * reference counting of enabled events and is basically only a wrapper for 1881 * the raw EC request. If the specified event is already enabled, the EC will 1882 * ignore this request. 1883 * 1884 * Return: Returns the status of the executed SAM request (zero on success and 1885 * negative on direct failure) or %-EPROTO if the request response indicates a 1886 * failure. 1887 */ 1888 static int ssam_ssh_event_enable(struct ssam_controller *ctrl, 1889 struct ssam_event_registry reg, 1890 struct ssam_event_id id, u8 flags) 1891 { 1892 int status; 1893 1894 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags); 1895 1896 if (status < 0 && status != -EINVAL) { 1897 ssam_err(ctrl, 1898 "failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1899 id.target_category, id.instance, reg.target_category); 1900 } 1901 1902 if (status > 0) { 1903 ssam_err(ctrl, 1904 "unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1905 status, id.target_category, id.instance, reg.target_category); 1906 return -EPROTO; 1907 } 1908 1909 return status; 1910 } 1911 1912 /** 1913 * ssam_ssh_event_disable() - Disable SSH event. 1914 * @ctrl: The controller for which to disable the event. 1915 * @reg: The event registry describing what request to use for enabling and 1916 * disabling the event (must be same as used when enabling the event). 1917 * @id: The event identifier. 1918 * @flags: The event flags (likely ignored for disabling of events). 1919 * 1920 * Disables the specified event on the EC. This function does not manage 1921 * reference counting of enabled events and is basically only a wrapper for 1922 * the raw EC request. If the specified event is already disabled, the EC will 1923 * ignore this request. 1924 * 1925 * Return: Returns the status of the executed SAM request (zero on success and 1926 * negative on direct failure) or %-EPROTO if the request response indicates a 1927 * failure. 1928 */ 1929 static int ssam_ssh_event_disable(struct ssam_controller *ctrl, 1930 struct ssam_event_registry reg, 1931 struct ssam_event_id id, u8 flags) 1932 { 1933 int status; 1934 1935 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_disable, id, flags); 1936 1937 if (status < 0 && status != -EINVAL) { 1938 ssam_err(ctrl, 1939 "failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1940 id.target_category, id.instance, reg.target_category); 1941 } 1942 1943 if (status > 0) { 1944 ssam_err(ctrl, 1945 "unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1946 status, id.target_category, id.instance, reg.target_category); 1947 return -EPROTO; 1948 } 1949 1950 return status; 1951 } 1952 1953 1954 /* -- Wrappers for internal SAM requests. ----------------------------------- */ 1955 1956 /** 1957 * ssam_get_firmware_version() - Get the SAM/EC firmware version. 1958 * @ctrl: The controller. 1959 * @version: Where to store the version number. 1960 * 1961 * Return: Returns zero on success or the status of the executed SAM request 1962 * if that request failed. 1963 */ 1964 int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version) 1965 { 1966 __le32 __version; 1967 int status; 1968 1969 status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version); 1970 if (status) 1971 return status; 1972 1973 *version = le32_to_cpu(__version); 1974 return 0; 1975 } 1976 1977 /** 1978 * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned 1979 * off. 1980 * @ctrl: The controller. 1981 * 1982 * Notify the EC that the display has been turned off and the driver may enter 1983 * a lower-power state. This will prevent events from being sent directly. 1984 * Rather, the EC signals an event by pulling the wakeup GPIO high for as long 1985 * as there are pending events. The events then need to be manually released, 1986 * one by one, via the GPIO callback request. All pending events accumulated 1987 * during this state can also be released by issuing the display-on 1988 * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset 1989 * the GPIO. 1990 * 1991 * On some devices, specifically ones with an integrated keyboard, the keyboard 1992 * backlight will be turned off by this call. 1993 * 1994 * This function will only send the display-off notification command if 1995 * display notifications are supported by the EC. Currently all known devices 1996 * support these notifications. 1997 * 1998 * Use ssam_ctrl_notif_display_on() to reverse the effects of this function. 1999 * 2000 * Return: Returns zero on success or if no request has been executed, the 2001 * status of the executed SAM request if that request failed, or %-EPROTO if 2002 * an unexpected response has been received. 2003 */ 2004 int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl) 2005 { 2006 int status; 2007 u8 response; 2008 2009 ssam_dbg(ctrl, "pm: notifying display off\n"); 2010 2011 status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response); 2012 if (status) 2013 return status; 2014 2015 if (response != 0) { 2016 ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n", 2017 response); 2018 return -EPROTO; 2019 } 2020 2021 return 0; 2022 } 2023 2024 /** 2025 * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on. 2026 * @ctrl: The controller. 2027 * 2028 * Notify the EC that the display has been turned back on and the driver has 2029 * exited its lower-power state. This notification is the counterpart to the 2030 * display-off notification sent via ssam_ctrl_notif_display_off() and will 2031 * reverse its effects, including resetting events to their default behavior. 2032 * 2033 * This function will only send the display-on notification command if display 2034 * notifications are supported by the EC. Currently all known devices support 2035 * these notifications. 2036 * 2037 * See ssam_ctrl_notif_display_off() for more details. 2038 * 2039 * Return: Returns zero on success or if no request has been executed, the 2040 * status of the executed SAM request if that request failed, or %-EPROTO if 2041 * an unexpected response has been received. 2042 */ 2043 int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl) 2044 { 2045 int status; 2046 u8 response; 2047 2048 ssam_dbg(ctrl, "pm: notifying display on\n"); 2049 2050 status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response); 2051 if (status) 2052 return status; 2053 2054 if (response != 0) { 2055 ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n", 2056 response); 2057 return -EPROTO; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /** 2064 * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0 2065 * power state. 2066 * @ctrl: The controller 2067 * 2068 * Notifies the EC that the driver prepares to exit the D0 power state in 2069 * favor of a lower-power state. Exact effects of this function related to the 2070 * EC are currently unknown. 2071 * 2072 * This function will only send the D0-exit notification command if D0-state 2073 * notifications are supported by the EC. Only newer Surface generations 2074 * support these notifications. 2075 * 2076 * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function. 2077 * 2078 * Return: Returns zero on success or if no request has been executed, the 2079 * status of the executed SAM request if that request failed, or %-EPROTO if 2080 * an unexpected response has been received. 2081 */ 2082 int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl) 2083 { 2084 int status; 2085 u8 response; 2086 2087 if (!ctrl->caps.d3_closes_handle) 2088 return 0; 2089 2090 ssam_dbg(ctrl, "pm: notifying D0 exit\n"); 2091 2092 status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response); 2093 if (status) 2094 return status; 2095 2096 if (response != 0) { 2097 ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n", 2098 response); 2099 return -EPROTO; 2100 } 2101 2102 return 0; 2103 } 2104 2105 /** 2106 * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0 2107 * power state. 2108 * @ctrl: The controller 2109 * 2110 * Notifies the EC that the driver has exited a lower-power state and entered 2111 * the D0 power state. Exact effects of this function related to the EC are 2112 * currently unknown. 2113 * 2114 * This function will only send the D0-entry notification command if D0-state 2115 * notifications are supported by the EC. Only newer Surface generations 2116 * support these notifications. 2117 * 2118 * See ssam_ctrl_notif_d0_exit() for more details. 2119 * 2120 * Return: Returns zero on success or if no request has been executed, the 2121 * status of the executed SAM request if that request failed, or %-EPROTO if 2122 * an unexpected response has been received. 2123 */ 2124 int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl) 2125 { 2126 int status; 2127 u8 response; 2128 2129 if (!ctrl->caps.d3_closes_handle) 2130 return 0; 2131 2132 ssam_dbg(ctrl, "pm: notifying D0 entry\n"); 2133 2134 status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response); 2135 if (status) 2136 return status; 2137 2138 if (response != 0) { 2139 ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n", 2140 response); 2141 return -EPROTO; 2142 } 2143 2144 return 0; 2145 } 2146 2147 2148 /* -- Top-level event registry interface. ----------------------------------- */ 2149 2150 /** 2151 * ssam_nf_refcount_enable() - Enable event for reference count entry if it has 2152 * not already been enabled. 2153 * @ctrl: The controller to enable the event on. 2154 * @entry: The reference count entry for the event to be enabled. 2155 * @flags: The flags used for enabling the event on the EC. 2156 * 2157 * Enable the event associated with the given reference count entry if the 2158 * reference count equals one, i.e. the event has not previously been enabled. 2159 * If the event has already been enabled (i.e. reference count not equal to 2160 * one), check that the flags used for enabling match and warn about this if 2161 * they do not. 2162 * 2163 * This does not modify the reference count itself, which is done with 2164 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec(). 2165 * 2166 * Note: ``nf->lock`` must be held when calling this function. 2167 * 2168 * Return: Returns zero on success. If the event is enabled by this call, 2169 * returns the status of the event-enable EC command. 2170 */ 2171 static int ssam_nf_refcount_enable(struct ssam_controller *ctrl, 2172 struct ssam_nf_refcount_entry *entry, u8 flags) 2173 { 2174 const struct ssam_event_registry reg = entry->key.reg; 2175 const struct ssam_event_id id = entry->key.id; 2176 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2177 int status; 2178 2179 lockdep_assert_held(&nf->lock); 2180 2181 ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n", 2182 reg.target_category, id.target_category, id.instance, entry->refcount); 2183 2184 if (entry->refcount == 1) { 2185 status = ssam_ssh_event_enable(ctrl, reg, id, flags); 2186 if (status) 2187 return status; 2188 2189 entry->flags = flags; 2190 2191 } else if (entry->flags != flags) { 2192 ssam_warn(ctrl, 2193 "inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n", 2194 flags, entry->flags, reg.target_category, id.target_category, 2195 id.instance); 2196 } 2197 2198 return 0; 2199 } 2200 2201 /** 2202 * ssam_nf_refcount_disable_free() - Disable event for reference count entry if 2203 * it is no longer in use and free the corresponding entry. 2204 * @ctrl: The controller to disable the event on. 2205 * @entry: The reference count entry for the event to be disabled. 2206 * @flags: The flags used for enabling the event on the EC. 2207 * @ec: Flag specifying if the event should actually be disabled on the EC. 2208 * 2209 * If ``ec`` equals ``true`` and the reference count equals zero (i.e. the 2210 * event is no longer requested by any client), the specified event will be 2211 * disabled on the EC via the corresponding request. 2212 * 2213 * If ``ec`` equals ``false``, no request will be sent to the EC and the event 2214 * can be considered in a detached state (i.e. no longer used but still 2215 * enabled). Disabling an event via this method may be required for 2216 * hot-removable devices, where event disable requests may time out after the 2217 * device has been physically removed. 2218 * 2219 * In both cases, if the reference count equals zero, the corresponding 2220 * reference count entry will be freed. The reference count entry must not be 2221 * used any more after a call to this function. 2222 * 2223 * Also checks if the flags used for disabling the event match the flags used 2224 * for enabling the event and warns if they do not (regardless of reference 2225 * count). 2226 * 2227 * This does not modify the reference count itself, which is done with 2228 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec(). 2229 * 2230 * Note: ``nf->lock`` must be held when calling this function. 2231 * 2232 * Return: Returns zero on success. If the event is disabled by this call, 2233 * returns the status of the event-enable EC command. 2234 */ 2235 static int ssam_nf_refcount_disable_free(struct ssam_controller *ctrl, 2236 struct ssam_nf_refcount_entry *entry, u8 flags, bool ec) 2237 { 2238 const struct ssam_event_registry reg = entry->key.reg; 2239 const struct ssam_event_id id = entry->key.id; 2240 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2241 int status = 0; 2242 2243 lockdep_assert_held(&nf->lock); 2244 2245 ssam_dbg(ctrl, "%s event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n", 2246 ec ? "disabling" : "detaching", reg.target_category, id.target_category, 2247 id.instance, entry->refcount); 2248 2249 if (entry->flags != flags) { 2250 ssam_warn(ctrl, 2251 "inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n", 2252 flags, entry->flags, reg.target_category, id.target_category, 2253 id.instance); 2254 } 2255 2256 if (ec && entry->refcount == 0) { 2257 status = ssam_ssh_event_disable(ctrl, reg, id, flags); 2258 kfree(entry); 2259 } 2260 2261 return status; 2262 } 2263 2264 /** 2265 * ssam_notifier_register() - Register an event notifier. 2266 * @ctrl: The controller to register the notifier on. 2267 * @n: The event notifier to register. 2268 * 2269 * Register an event notifier. Increment the usage counter of the associated 2270 * SAM event if the notifier is not marked as an observer. If the event is not 2271 * marked as an observer and is currently not enabled, it will be enabled 2272 * during this call. If the notifier is marked as an observer, no attempt will 2273 * be made at enabling any event and no reference count will be modified. 2274 * 2275 * Notifiers marked as observers do not need to be associated with one specific 2276 * event, i.e. as long as no event matching is performed, only the event target 2277 * category needs to be set. 2278 * 2279 * Return: Returns zero on success, %-ENOSPC if there have already been 2280 * %INT_MAX notifiers for the event ID/type associated with the notifier block 2281 * registered, %-ENOMEM if the corresponding event entry could not be 2282 * allocated. If this is the first time that a notifier block is registered 2283 * for the specific associated event, returns the status of the event-enable 2284 * EC-command. 2285 */ 2286 int ssam_notifier_register(struct ssam_controller *ctrl, struct ssam_event_notifier *n) 2287 { 2288 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category); 2289 struct ssam_nf_refcount_entry *entry = NULL; 2290 struct ssam_nf_head *nf_head; 2291 struct ssam_nf *nf; 2292 int status; 2293 2294 if (!ssh_rqid_is_event(rqid)) 2295 return -EINVAL; 2296 2297 nf = &ctrl->cplt.event.notif; 2298 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 2299 2300 mutex_lock(&nf->lock); 2301 2302 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) { 2303 entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id); 2304 if (IS_ERR(entry)) { 2305 mutex_unlock(&nf->lock); 2306 return PTR_ERR(entry); 2307 } 2308 } 2309 2310 status = ssam_nfblk_insert(nf_head, &n->base); 2311 if (status) { 2312 if (entry) 2313 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id); 2314 2315 mutex_unlock(&nf->lock); 2316 return status; 2317 } 2318 2319 if (entry) { 2320 status = ssam_nf_refcount_enable(ctrl, entry, n->event.flags); 2321 if (status) { 2322 ssam_nfblk_remove(&n->base); 2323 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id); 2324 mutex_unlock(&nf->lock); 2325 synchronize_srcu(&nf_head->srcu); 2326 return status; 2327 } 2328 } 2329 2330 mutex_unlock(&nf->lock); 2331 return 0; 2332 } 2333 EXPORT_SYMBOL_GPL(ssam_notifier_register); 2334 2335 /** 2336 * __ssam_notifier_unregister() - Unregister an event notifier. 2337 * @ctrl: The controller the notifier has been registered on. 2338 * @n: The event notifier to unregister. 2339 * @disable: Whether to disable the corresponding event on the EC. 2340 * 2341 * Unregister an event notifier. Decrement the usage counter of the associated 2342 * SAM event if the notifier is not marked as an observer. If the usage counter 2343 * reaches zero and ``disable`` equals ``true``, the event will be disabled. 2344 * 2345 * Useful for hot-removable devices, where communication may fail once the 2346 * device has been physically removed. In that case, specifying ``disable`` as 2347 * ``false`` avoids communication with the EC. 2348 * 2349 * Return: Returns zero on success, %-ENOENT if the given notifier block has 2350 * not been registered on the controller. If the given notifier block was the 2351 * last one associated with its specific event, returns the status of the 2352 * event-disable EC-command. 2353 */ 2354 int __ssam_notifier_unregister(struct ssam_controller *ctrl, struct ssam_event_notifier *n, 2355 bool disable) 2356 { 2357 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category); 2358 struct ssam_nf_refcount_entry *entry; 2359 struct ssam_nf_head *nf_head; 2360 struct ssam_nf *nf; 2361 int status = 0; 2362 2363 if (!ssh_rqid_is_event(rqid)) 2364 return -EINVAL; 2365 2366 nf = &ctrl->cplt.event.notif; 2367 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 2368 2369 mutex_lock(&nf->lock); 2370 2371 if (!ssam_nfblk_find(nf_head, &n->base)) { 2372 mutex_unlock(&nf->lock); 2373 return -ENOENT; 2374 } 2375 2376 /* 2377 * If this is an observer notifier, do not attempt to disable the 2378 * event, just remove it. 2379 */ 2380 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) { 2381 entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id); 2382 if (WARN_ON(!entry)) { 2383 /* 2384 * If this does not return an entry, there's a logic 2385 * error somewhere: The notifier block is registered, 2386 * but the event refcount entry is not there. Remove 2387 * the notifier block anyways. 2388 */ 2389 status = -ENOENT; 2390 goto remove; 2391 } 2392 2393 status = ssam_nf_refcount_disable_free(ctrl, entry, n->event.flags, disable); 2394 } 2395 2396 remove: 2397 ssam_nfblk_remove(&n->base); 2398 mutex_unlock(&nf->lock); 2399 synchronize_srcu(&nf_head->srcu); 2400 2401 return status; 2402 } 2403 EXPORT_SYMBOL_GPL(__ssam_notifier_unregister); 2404 2405 /** 2406 * ssam_controller_event_enable() - Enable the specified event. 2407 * @ctrl: The controller to enable the event for. 2408 * @reg: The event registry to use for enabling the event. 2409 * @id: The event ID specifying the event to be enabled. 2410 * @flags: The SAM event flags used for enabling the event. 2411 * 2412 * Increment the event reference count of the specified event. If the event has 2413 * not been enabled previously, it will be enabled by this call. 2414 * 2415 * Note: In general, ssam_notifier_register() with a non-observer notifier 2416 * should be preferred for enabling/disabling events, as this will guarantee 2417 * proper ordering and event forwarding in case of errors during event 2418 * enabling/disabling. 2419 * 2420 * Return: Returns zero on success, %-ENOSPC if the reference count for the 2421 * specified event has reached its maximum, %-ENOMEM if the corresponding event 2422 * entry could not be allocated. If this is the first time that this event has 2423 * been enabled (i.e. the reference count was incremented from zero to one by 2424 * this call), returns the status of the event-enable EC-command. 2425 */ 2426 int ssam_controller_event_enable(struct ssam_controller *ctrl, 2427 struct ssam_event_registry reg, 2428 struct ssam_event_id id, u8 flags) 2429 { 2430 u16 rqid = ssh_tc_to_rqid(id.target_category); 2431 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2432 struct ssam_nf_refcount_entry *entry; 2433 int status; 2434 2435 if (!ssh_rqid_is_event(rqid)) 2436 return -EINVAL; 2437 2438 mutex_lock(&nf->lock); 2439 2440 entry = ssam_nf_refcount_inc(nf, reg, id); 2441 if (IS_ERR(entry)) { 2442 mutex_unlock(&nf->lock); 2443 return PTR_ERR(entry); 2444 } 2445 2446 status = ssam_nf_refcount_enable(ctrl, entry, flags); 2447 if (status) { 2448 ssam_nf_refcount_dec_free(nf, reg, id); 2449 mutex_unlock(&nf->lock); 2450 return status; 2451 } 2452 2453 mutex_unlock(&nf->lock); 2454 return 0; 2455 } 2456 EXPORT_SYMBOL_GPL(ssam_controller_event_enable); 2457 2458 /** 2459 * ssam_controller_event_disable() - Disable the specified event. 2460 * @ctrl: The controller to disable the event for. 2461 * @reg: The event registry to use for disabling the event. 2462 * @id: The event ID specifying the event to be disabled. 2463 * @flags: The flags used when enabling the event. 2464 * 2465 * Decrement the reference count of the specified event. If the reference count 2466 * reaches zero, the event will be disabled. 2467 * 2468 * Note: In general, ssam_notifier_register()/ssam_notifier_unregister() with a 2469 * non-observer notifier should be preferred for enabling/disabling events, as 2470 * this will guarantee proper ordering and event forwarding in case of errors 2471 * during event enabling/disabling. 2472 * 2473 * Return: Returns zero on success, %-ENOENT if the given event has not been 2474 * enabled on the controller. If the reference count of the event reaches zero 2475 * during this call, returns the status of the event-disable EC-command. 2476 */ 2477 int ssam_controller_event_disable(struct ssam_controller *ctrl, 2478 struct ssam_event_registry reg, 2479 struct ssam_event_id id, u8 flags) 2480 { 2481 u16 rqid = ssh_tc_to_rqid(id.target_category); 2482 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2483 struct ssam_nf_refcount_entry *entry; 2484 int status; 2485 2486 if (!ssh_rqid_is_event(rqid)) 2487 return -EINVAL; 2488 2489 mutex_lock(&nf->lock); 2490 2491 entry = ssam_nf_refcount_dec(nf, reg, id); 2492 if (!entry) { 2493 mutex_unlock(&nf->lock); 2494 return -ENOENT; 2495 } 2496 2497 status = ssam_nf_refcount_disable_free(ctrl, entry, flags, true); 2498 2499 mutex_unlock(&nf->lock); 2500 return status; 2501 } 2502 EXPORT_SYMBOL_GPL(ssam_controller_event_disable); 2503 2504 /** 2505 * ssam_notifier_disable_registered() - Disable events for all registered 2506 * notifiers. 2507 * @ctrl: The controller for which to disable the notifiers/events. 2508 * 2509 * Disables events for all currently registered notifiers. In case of an error 2510 * (EC command failing), all previously disabled events will be restored and 2511 * the error code returned. 2512 * 2513 * This function is intended to disable all events prior to hibernation entry. 2514 * See ssam_notifier_restore_registered() to restore/re-enable all events 2515 * disabled with this function. 2516 * 2517 * Note that this function will not disable events for notifiers registered 2518 * after calling this function. It should thus be made sure that no new 2519 * notifiers are going to be added after this call and before the corresponding 2520 * call to ssam_notifier_restore_registered(). 2521 * 2522 * Return: Returns zero on success. In case of failure returns the error code 2523 * returned by the failed EC command to disable an event. 2524 */ 2525 int ssam_notifier_disable_registered(struct ssam_controller *ctrl) 2526 { 2527 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2528 struct rb_node *n; 2529 int status; 2530 2531 mutex_lock(&nf->lock); 2532 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) { 2533 struct ssam_nf_refcount_entry *e; 2534 2535 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2536 status = ssam_ssh_event_disable(ctrl, e->key.reg, 2537 e->key.id, e->flags); 2538 if (status) 2539 goto err; 2540 } 2541 mutex_unlock(&nf->lock); 2542 2543 return 0; 2544 2545 err: 2546 for (n = rb_prev(n); n; n = rb_prev(n)) { 2547 struct ssam_nf_refcount_entry *e; 2548 2549 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2550 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags); 2551 } 2552 mutex_unlock(&nf->lock); 2553 2554 return status; 2555 } 2556 2557 /** 2558 * ssam_notifier_restore_registered() - Restore/re-enable events for all 2559 * registered notifiers. 2560 * @ctrl: The controller for which to restore the notifiers/events. 2561 * 2562 * Restores/re-enables all events for which notifiers have been registered on 2563 * the given controller. In case of a failure, the error is logged and the 2564 * function continues to try and enable the remaining events. 2565 * 2566 * This function is intended to restore/re-enable all registered events after 2567 * hibernation. See ssam_notifier_disable_registered() for the counter part 2568 * disabling the events and more details. 2569 */ 2570 void ssam_notifier_restore_registered(struct ssam_controller *ctrl) 2571 { 2572 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2573 struct rb_node *n; 2574 2575 mutex_lock(&nf->lock); 2576 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) { 2577 struct ssam_nf_refcount_entry *e; 2578 2579 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2580 2581 /* Ignore errors, will get logged in call. */ 2582 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags); 2583 } 2584 mutex_unlock(&nf->lock); 2585 } 2586 2587 /** 2588 * ssam_notifier_is_empty() - Check if there are any registered notifiers. 2589 * @ctrl: The controller to check on. 2590 * 2591 * Return: Returns %true if there are currently no notifiers registered on the 2592 * controller, %false otherwise. 2593 */ 2594 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl) 2595 { 2596 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2597 bool result; 2598 2599 mutex_lock(&nf->lock); 2600 result = ssam_nf_refcount_empty(nf); 2601 mutex_unlock(&nf->lock); 2602 2603 return result; 2604 } 2605 2606 /** 2607 * ssam_notifier_unregister_all() - Unregister all currently registered 2608 * notifiers. 2609 * @ctrl: The controller to unregister the notifiers on. 2610 * 2611 * Unregisters all currently registered notifiers. This function is used to 2612 * ensure that all notifiers will be unregistered and associated 2613 * entries/resources freed when the controller is being shut down. 2614 */ 2615 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl) 2616 { 2617 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2618 struct ssam_nf_refcount_entry *e, *n; 2619 2620 mutex_lock(&nf->lock); 2621 rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) { 2622 /* Ignore errors, will get logged in call. */ 2623 ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags); 2624 kfree(e); 2625 } 2626 nf->refcount = RB_ROOT; 2627 mutex_unlock(&nf->lock); 2628 } 2629 2630 2631 /* -- Wakeup IRQ. ----------------------------------------------------------- */ 2632 2633 static irqreturn_t ssam_irq_handle(int irq, void *dev_id) 2634 { 2635 struct ssam_controller *ctrl = dev_id; 2636 2637 ssam_dbg(ctrl, "pm: wake irq triggered\n"); 2638 2639 /* 2640 * Note: Proper wakeup detection is currently unimplemented. 2641 * When the EC is in display-off or any other non-D0 state, it 2642 * does not send events/notifications to the host. Instead it 2643 * signals that there are events available via the wakeup IRQ. 2644 * This driver is responsible for calling back to the EC to 2645 * release these events one-by-one. 2646 * 2647 * This IRQ should not cause a full system resume by its own. 2648 * Instead, events should be handled by their respective subsystem 2649 * drivers, which in turn should signal whether a full system 2650 * resume should be performed. 2651 * 2652 * TODO: Send GPIO callback command repeatedly to EC until callback 2653 * returns 0x00. Return flag of callback is "has more events". 2654 * Each time the command is sent, one event is "released". Once 2655 * all events have been released (return = 0x00), the GPIO is 2656 * re-armed. Detect wakeup events during this process, go back to 2657 * sleep if no wakeup event has been received. 2658 */ 2659 2660 return IRQ_HANDLED; 2661 } 2662 2663 /** 2664 * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt. 2665 * @ctrl: The controller for which the IRQ should be set up. 2666 * 2667 * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used 2668 * to wake the device from a low power state. 2669 * 2670 * Note that this IRQ can only be triggered while the EC is in the display-off 2671 * state. In this state, events are not sent to the host in the usual way. 2672 * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending 2673 * events and these events need to be released one-by-one via the GPIO 2674 * callback request, either until there are no events left and the GPIO is 2675 * reset, or all at once by transitioning the EC out of the display-off state, 2676 * which will also clear the GPIO. 2677 * 2678 * Not all events, however, should trigger a full system wakeup. Instead the 2679 * driver should, if necessary, inspect and forward each event to the 2680 * corresponding subsystem, which in turn should decide if the system needs to 2681 * be woken up. This logic has not been implemented yet, thus wakeup by this 2682 * IRQ should be disabled by default to avoid spurious wake-ups, caused, for 2683 * example, by the remaining battery percentage changing. Refer to comments in 2684 * this function and comments in the corresponding IRQ handler for more 2685 * details on how this should be implemented. 2686 * 2687 * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off() 2688 * for functions to transition the EC into and out of the display-off state as 2689 * well as more details on it. 2690 * 2691 * The IRQ is disabled by default and has to be enabled before it can wake up 2692 * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ 2693 * should be freed via ssam_irq_free(). 2694 */ 2695 int ssam_irq_setup(struct ssam_controller *ctrl) 2696 { 2697 struct device *dev = ssam_controller_device(ctrl); 2698 struct gpio_desc *gpiod; 2699 int irq; 2700 int status; 2701 2702 /* 2703 * The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH. 2704 * However, the GPIO line only gets reset by sending the GPIO callback 2705 * command to SAM (or alternatively the display-on notification). As 2706 * proper handling for this interrupt is not implemented yet, leaving 2707 * the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback 2708 * never gets sent and thus the line never gets reset). To avoid this, 2709 * mark the IRQ as TRIGGER_RISING for now, only creating a single 2710 * interrupt, and let the SAM resume callback during the controller 2711 * resume process clear it. 2712 */ 2713 const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN; 2714 2715 gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS); 2716 if (IS_ERR(gpiod)) 2717 return PTR_ERR(gpiod); 2718 2719 irq = gpiod_to_irq(gpiod); 2720 gpiod_put(gpiod); 2721 2722 if (irq < 0) 2723 return irq; 2724 2725 status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf, 2726 "ssam_wakeup", ctrl); 2727 if (status) 2728 return status; 2729 2730 ctrl->irq.num = irq; 2731 return 0; 2732 } 2733 2734 /** 2735 * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt. 2736 * @ctrl: The controller for which the IRQ should be freed. 2737 * 2738 * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup(). 2739 */ 2740 void ssam_irq_free(struct ssam_controller *ctrl) 2741 { 2742 free_irq(ctrl->irq.num, ctrl); 2743 ctrl->irq.num = -1; 2744 } 2745 2746 /** 2747 * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled. 2748 * @ctrl: The controller for which the IRQ should be armed. 2749 * 2750 * Sets up the IRQ so that it can be used to wake the device. Specifically, 2751 * this function enables the irq and then, if the device is allowed to wake up 2752 * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the 2753 * corresponding function to disable the IRQ. 2754 * 2755 * This function is intended to arm the IRQ before entering S2idle suspend. 2756 * 2757 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must 2758 * be balanced. 2759 */ 2760 int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl) 2761 { 2762 struct device *dev = ssam_controller_device(ctrl); 2763 int status; 2764 2765 enable_irq(ctrl->irq.num); 2766 if (device_may_wakeup(dev)) { 2767 status = enable_irq_wake(ctrl->irq.num); 2768 if (status) { 2769 ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status); 2770 disable_irq(ctrl->irq.num); 2771 return status; 2772 } 2773 2774 ctrl->irq.wakeup_enabled = true; 2775 } else { 2776 ctrl->irq.wakeup_enabled = false; 2777 } 2778 2779 return 0; 2780 } 2781 2782 /** 2783 * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ. 2784 * @ctrl: The controller for which the IRQ should be disarmed. 2785 * 2786 * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup(). 2787 * 2788 * This function is intended to disarm the IRQ after exiting S2idle suspend. 2789 * 2790 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must 2791 * be balanced. 2792 */ 2793 void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl) 2794 { 2795 int status; 2796 2797 if (ctrl->irq.wakeup_enabled) { 2798 status = disable_irq_wake(ctrl->irq.num); 2799 if (status) 2800 ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status); 2801 2802 ctrl->irq.wakeup_enabled = false; 2803 } 2804 disable_irq(ctrl->irq.num); 2805 } 2806