1 // SPDX-License-Identifier: GPL-2.0 2 // SPI interface for ChromeOS Embedded Controller 3 // 4 // Copyright (C) 2012 Google, Inc 5 6 #include <linux/delay.h> 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/of.h> 10 #include <linux/platform_data/cros_ec_commands.h> 11 #include <linux/platform_data/cros_ec_proto.h> 12 #include <linux/platform_device.h> 13 #include <linux/slab.h> 14 #include <linux/spi/spi.h> 15 #include <uapi/linux/sched/types.h> 16 17 #include "cros_ec.h" 18 19 /* The header byte, which follows the preamble */ 20 #define EC_MSG_HEADER 0xec 21 22 /* 23 * Number of EC preamble bytes we read at a time. Since it takes 24 * about 400-500us for the EC to respond there is not a lot of 25 * point in tuning this. If the EC could respond faster then 26 * we could increase this so that might expect the preamble and 27 * message to occur in a single transaction. However, the maximum 28 * SPI transfer size is 256 bytes, so at 5MHz we need a response 29 * time of perhaps <320us (200 bytes / 1600 bits). 30 */ 31 #define EC_MSG_PREAMBLE_COUNT 32 32 33 /* 34 * Allow for a long time for the EC to respond. We support i2c 35 * tunneling and support fairly long messages for the tunnel (249 36 * bytes long at the moment). If we're talking to a 100 kHz device 37 * on the other end and need to transfer ~256 bytes, then we need: 38 * 10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms 39 * 40 * We'll wait 8 times that to handle clock stretching and other 41 * paranoia. Note that some battery gas gauge ICs claim to have a 42 * clock stretch of 144ms in rare situations. That's incentive for 43 * not directly passing i2c through, but it's too late for that for 44 * existing hardware. 45 * 46 * It's pretty unlikely that we'll really see a 249 byte tunnel in 47 * anything other than testing. If this was more common we might 48 * consider having slow commands like this require a GET_STATUS 49 * wait loop. The 'flash write' command would be another candidate 50 * for this, clocking in at 2-3ms. 51 */ 52 #define EC_MSG_DEADLINE_MS 200 53 54 /* 55 * Time between raising the SPI chip select (for the end of a 56 * transaction) and dropping it again (for the next transaction). 57 * If we go too fast, the EC will miss the transaction. We know that we 58 * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be 59 * safe. 60 */ 61 #define EC_SPI_RECOVERY_TIME_NS (200 * 1000) 62 63 /** 64 * struct cros_ec_spi - information about a SPI-connected EC 65 * 66 * @spi: SPI device we are connected to 67 * @last_transfer_ns: time that we last finished a transfer. 68 * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that 69 * is sent when we want to turn on CS at the start of a transaction. 70 * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that 71 * is sent when we want to turn off CS at the end of a transaction. 72 * @high_pri_worker: Used to schedule high priority work. 73 */ 74 struct cros_ec_spi { 75 struct spi_device *spi; 76 s64 last_transfer_ns; 77 unsigned int start_of_msg_delay; 78 unsigned int end_of_msg_delay; 79 struct kthread_worker *high_pri_worker; 80 }; 81 82 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev, 83 struct cros_ec_command *ec_msg); 84 85 /** 86 * struct cros_ec_xfer_work_params - params for our high priority workers 87 * 88 * @work: The work_struct needed to queue work 89 * @fn: The function to use to transfer 90 * @ec_dev: ChromeOS EC device 91 * @ec_msg: Message to transfer 92 * @ret: The return value of the function 93 */ 94 95 struct cros_ec_xfer_work_params { 96 struct kthread_work work; 97 cros_ec_xfer_fn_t fn; 98 struct cros_ec_device *ec_dev; 99 struct cros_ec_command *ec_msg; 100 int ret; 101 }; 102 103 static void debug_packet(struct device *dev, const char *name, u8 *ptr, 104 int len) 105 { 106 #ifdef DEBUG 107 int i; 108 109 dev_dbg(dev, "%s: ", name); 110 for (i = 0; i < len; i++) 111 pr_cont(" %02x", ptr[i]); 112 113 pr_cont("\n"); 114 #endif 115 } 116 117 static int terminate_request(struct cros_ec_device *ec_dev) 118 { 119 struct cros_ec_spi *ec_spi = ec_dev->priv; 120 struct spi_message msg; 121 struct spi_transfer trans; 122 int ret; 123 124 /* 125 * Turn off CS, possibly adding a delay to ensure the rising edge 126 * doesn't come too soon after the end of the data. 127 */ 128 spi_message_init(&msg); 129 memset(&trans, 0, sizeof(trans)); 130 trans.delay_usecs = ec_spi->end_of_msg_delay; 131 spi_message_add_tail(&trans, &msg); 132 133 ret = spi_sync_locked(ec_spi->spi, &msg); 134 135 /* Reset end-of-response timer */ 136 ec_spi->last_transfer_ns = ktime_get_ns(); 137 if (ret < 0) { 138 dev_err(ec_dev->dev, 139 "cs-deassert spi transfer failed: %d\n", 140 ret); 141 } 142 143 return ret; 144 } 145 146 /** 147 * receive_n_bytes - receive n bytes from the EC. 148 * 149 * Assumes buf is a pointer into the ec_dev->din buffer 150 */ 151 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n) 152 { 153 struct cros_ec_spi *ec_spi = ec_dev->priv; 154 struct spi_transfer trans; 155 struct spi_message msg; 156 int ret; 157 158 BUG_ON(buf - ec_dev->din + n > ec_dev->din_size); 159 160 memset(&trans, 0, sizeof(trans)); 161 trans.cs_change = 1; 162 trans.rx_buf = buf; 163 trans.len = n; 164 165 spi_message_init(&msg); 166 spi_message_add_tail(&trans, &msg); 167 ret = spi_sync_locked(ec_spi->spi, &msg); 168 if (ret < 0) 169 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret); 170 171 return ret; 172 } 173 174 /** 175 * cros_ec_spi_receive_packet - Receive a packet from the EC. 176 * 177 * This function has two phases: reading the preamble bytes (since if we read 178 * data from the EC before it is ready to send, we just get preamble) and 179 * reading the actual message. 180 * 181 * The received data is placed into ec_dev->din. 182 * 183 * @ec_dev: ChromeOS EC device 184 * @need_len: Number of message bytes we need to read 185 */ 186 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev, 187 int need_len) 188 { 189 struct ec_host_response *response; 190 u8 *ptr, *end; 191 int ret; 192 unsigned long deadline; 193 int todo; 194 195 BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT); 196 197 /* Receive data until we see the header byte */ 198 deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS); 199 while (true) { 200 unsigned long start_jiffies = jiffies; 201 202 ret = receive_n_bytes(ec_dev, 203 ec_dev->din, 204 EC_MSG_PREAMBLE_COUNT); 205 if (ret < 0) 206 return ret; 207 208 ptr = ec_dev->din; 209 for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) { 210 if (*ptr == EC_SPI_FRAME_START) { 211 dev_dbg(ec_dev->dev, "msg found at %zd\n", 212 ptr - ec_dev->din); 213 break; 214 } 215 } 216 if (ptr != end) 217 break; 218 219 /* 220 * Use the time at the start of the loop as a timeout. This 221 * gives us one last shot at getting the transfer and is useful 222 * in case we got context switched out for a while. 223 */ 224 if (time_after(start_jiffies, deadline)) { 225 dev_warn(ec_dev->dev, "EC failed to respond in time\n"); 226 return -ETIMEDOUT; 227 } 228 } 229 230 /* 231 * ptr now points to the header byte. Copy any valid data to the 232 * start of our buffer 233 */ 234 todo = end - ++ptr; 235 BUG_ON(todo < 0 || todo > ec_dev->din_size); 236 todo = min(todo, need_len); 237 memmove(ec_dev->din, ptr, todo); 238 ptr = ec_dev->din + todo; 239 dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n", 240 need_len, todo); 241 need_len -= todo; 242 243 /* If the entire response struct wasn't read, get the rest of it. */ 244 if (todo < sizeof(*response)) { 245 ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo); 246 if (ret < 0) 247 return -EBADMSG; 248 ptr += (sizeof(*response) - todo); 249 todo = sizeof(*response); 250 } 251 252 response = (struct ec_host_response *)ec_dev->din; 253 254 /* Abort if data_len is too large. */ 255 if (response->data_len > ec_dev->din_size) 256 return -EMSGSIZE; 257 258 /* Receive data until we have it all */ 259 while (need_len > 0) { 260 /* 261 * We can't support transfers larger than the SPI FIFO size 262 * unless we have DMA. We don't have DMA on the ISP SPI ports 263 * for Exynos. We need a way of asking SPI driver for 264 * maximum-supported transfer size. 265 */ 266 todo = min(need_len, 256); 267 dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n", 268 todo, need_len, ptr - ec_dev->din); 269 270 ret = receive_n_bytes(ec_dev, ptr, todo); 271 if (ret < 0) 272 return ret; 273 274 ptr += todo; 275 need_len -= todo; 276 } 277 278 dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din); 279 280 return 0; 281 } 282 283 /** 284 * cros_ec_spi_receive_response - Receive a response from the EC. 285 * 286 * This function has two phases: reading the preamble bytes (since if we read 287 * data from the EC before it is ready to send, we just get preamble) and 288 * reading the actual message. 289 * 290 * The received data is placed into ec_dev->din. 291 * 292 * @ec_dev: ChromeOS EC device 293 * @need_len: Number of message bytes we need to read 294 */ 295 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev, 296 int need_len) 297 { 298 u8 *ptr, *end; 299 int ret; 300 unsigned long deadline; 301 int todo; 302 303 BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT); 304 305 /* Receive data until we see the header byte */ 306 deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS); 307 while (true) { 308 unsigned long start_jiffies = jiffies; 309 310 ret = receive_n_bytes(ec_dev, 311 ec_dev->din, 312 EC_MSG_PREAMBLE_COUNT); 313 if (ret < 0) 314 return ret; 315 316 ptr = ec_dev->din; 317 for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) { 318 if (*ptr == EC_SPI_FRAME_START) { 319 dev_dbg(ec_dev->dev, "msg found at %zd\n", 320 ptr - ec_dev->din); 321 break; 322 } 323 } 324 if (ptr != end) 325 break; 326 327 /* 328 * Use the time at the start of the loop as a timeout. This 329 * gives us one last shot at getting the transfer and is useful 330 * in case we got context switched out for a while. 331 */ 332 if (time_after(start_jiffies, deadline)) { 333 dev_warn(ec_dev->dev, "EC failed to respond in time\n"); 334 return -ETIMEDOUT; 335 } 336 } 337 338 /* 339 * ptr now points to the header byte. Copy any valid data to the 340 * start of our buffer 341 */ 342 todo = end - ++ptr; 343 BUG_ON(todo < 0 || todo > ec_dev->din_size); 344 todo = min(todo, need_len); 345 memmove(ec_dev->din, ptr, todo); 346 ptr = ec_dev->din + todo; 347 dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n", 348 need_len, todo); 349 need_len -= todo; 350 351 /* Receive data until we have it all */ 352 while (need_len > 0) { 353 /* 354 * We can't support transfers larger than the SPI FIFO size 355 * unless we have DMA. We don't have DMA on the ISP SPI ports 356 * for Exynos. We need a way of asking SPI driver for 357 * maximum-supported transfer size. 358 */ 359 todo = min(need_len, 256); 360 dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n", 361 todo, need_len, ptr - ec_dev->din); 362 363 ret = receive_n_bytes(ec_dev, ptr, todo); 364 if (ret < 0) 365 return ret; 366 367 debug_packet(ec_dev->dev, "interim", ptr, todo); 368 ptr += todo; 369 need_len -= todo; 370 } 371 372 dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din); 373 374 return 0; 375 } 376 377 /** 378 * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply 379 * 380 * @ec_dev: ChromeOS EC device 381 * @ec_msg: Message to transfer 382 */ 383 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev, 384 struct cros_ec_command *ec_msg) 385 { 386 struct ec_host_response *response; 387 struct cros_ec_spi *ec_spi = ec_dev->priv; 388 struct spi_transfer trans, trans_delay; 389 struct spi_message msg; 390 int i, len; 391 u8 *ptr; 392 u8 *rx_buf; 393 u8 sum; 394 u8 rx_byte; 395 int ret = 0, final_ret; 396 unsigned long delay; 397 398 len = cros_ec_prepare_tx(ec_dev, ec_msg); 399 dev_dbg(ec_dev->dev, "prepared, len=%d\n", len); 400 401 /* If it's too soon to do another transaction, wait */ 402 delay = ktime_get_ns() - ec_spi->last_transfer_ns; 403 if (delay < EC_SPI_RECOVERY_TIME_NS) 404 ndelay(EC_SPI_RECOVERY_TIME_NS - delay); 405 406 rx_buf = kzalloc(len, GFP_KERNEL); 407 if (!rx_buf) 408 return -ENOMEM; 409 410 spi_bus_lock(ec_spi->spi->master); 411 412 /* 413 * Leave a gap between CS assertion and clocking of data to allow the 414 * EC time to wakeup. 415 */ 416 spi_message_init(&msg); 417 if (ec_spi->start_of_msg_delay) { 418 memset(&trans_delay, 0, sizeof(trans_delay)); 419 trans_delay.delay_usecs = ec_spi->start_of_msg_delay; 420 spi_message_add_tail(&trans_delay, &msg); 421 } 422 423 /* Transmit phase - send our message */ 424 memset(&trans, 0, sizeof(trans)); 425 trans.tx_buf = ec_dev->dout; 426 trans.rx_buf = rx_buf; 427 trans.len = len; 428 trans.cs_change = 1; 429 spi_message_add_tail(&trans, &msg); 430 ret = spi_sync_locked(ec_spi->spi, &msg); 431 432 /* Get the response */ 433 if (!ret) { 434 /* Verify that EC can process command */ 435 for (i = 0; i < len; i++) { 436 rx_byte = rx_buf[i]; 437 /* 438 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY 439 * markers are all signs that the EC didn't fully 440 * receive our command. e.g., if the EC is flashing 441 * itself, it can't respond to any commands and instead 442 * clocks out EC_SPI_PAST_END from its SPI hardware 443 * buffer. Similar occurrences can happen if the AP is 444 * too slow to clock out data after asserting CS -- the 445 * EC will abort and fill its buffer with 446 * EC_SPI_RX_BAD_DATA. 447 * 448 * In all cases, these errors should be safe to retry. 449 * Report -EAGAIN and let the caller decide what to do 450 * about that. 451 */ 452 if (rx_byte == EC_SPI_PAST_END || 453 rx_byte == EC_SPI_RX_BAD_DATA || 454 rx_byte == EC_SPI_NOT_READY) { 455 ret = -EAGAIN; 456 break; 457 } 458 } 459 } 460 461 if (!ret) 462 ret = cros_ec_spi_receive_packet(ec_dev, 463 ec_msg->insize + sizeof(*response)); 464 else if (ret != -EAGAIN) 465 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret); 466 467 final_ret = terminate_request(ec_dev); 468 469 spi_bus_unlock(ec_spi->spi->master); 470 471 if (!ret) 472 ret = final_ret; 473 if (ret < 0) 474 goto exit; 475 476 ptr = ec_dev->din; 477 478 /* check response error code */ 479 response = (struct ec_host_response *)ptr; 480 ec_msg->result = response->result; 481 482 ret = cros_ec_check_result(ec_dev, ec_msg); 483 if (ret) 484 goto exit; 485 486 len = response->data_len; 487 sum = 0; 488 if (len > ec_msg->insize) { 489 dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)", 490 len, ec_msg->insize); 491 ret = -EMSGSIZE; 492 goto exit; 493 } 494 495 for (i = 0; i < sizeof(*response); i++) 496 sum += ptr[i]; 497 498 /* copy response packet payload and compute checksum */ 499 memcpy(ec_msg->data, ptr + sizeof(*response), len); 500 for (i = 0; i < len; i++) 501 sum += ec_msg->data[i]; 502 503 if (sum) { 504 dev_err(ec_dev->dev, 505 "bad packet checksum, calculated %x\n", 506 sum); 507 ret = -EBADMSG; 508 goto exit; 509 } 510 511 ret = len; 512 exit: 513 kfree(rx_buf); 514 if (ec_msg->command == EC_CMD_REBOOT_EC) 515 msleep(EC_REBOOT_DELAY_MS); 516 517 return ret; 518 } 519 520 /** 521 * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply 522 * 523 * @ec_dev: ChromeOS EC device 524 * @ec_msg: Message to transfer 525 */ 526 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev, 527 struct cros_ec_command *ec_msg) 528 { 529 struct cros_ec_spi *ec_spi = ec_dev->priv; 530 struct spi_transfer trans; 531 struct spi_message msg; 532 int i, len; 533 u8 *ptr; 534 u8 *rx_buf; 535 u8 rx_byte; 536 int sum; 537 int ret = 0, final_ret; 538 unsigned long delay; 539 540 len = cros_ec_prepare_tx(ec_dev, ec_msg); 541 dev_dbg(ec_dev->dev, "prepared, len=%d\n", len); 542 543 /* If it's too soon to do another transaction, wait */ 544 delay = ktime_get_ns() - ec_spi->last_transfer_ns; 545 if (delay < EC_SPI_RECOVERY_TIME_NS) 546 ndelay(EC_SPI_RECOVERY_TIME_NS - delay); 547 548 rx_buf = kzalloc(len, GFP_KERNEL); 549 if (!rx_buf) 550 return -ENOMEM; 551 552 spi_bus_lock(ec_spi->spi->master); 553 554 /* Transmit phase - send our message */ 555 debug_packet(ec_dev->dev, "out", ec_dev->dout, len); 556 memset(&trans, 0, sizeof(trans)); 557 trans.tx_buf = ec_dev->dout; 558 trans.rx_buf = rx_buf; 559 trans.len = len; 560 trans.cs_change = 1; 561 spi_message_init(&msg); 562 spi_message_add_tail(&trans, &msg); 563 ret = spi_sync_locked(ec_spi->spi, &msg); 564 565 /* Get the response */ 566 if (!ret) { 567 /* Verify that EC can process command */ 568 for (i = 0; i < len; i++) { 569 rx_byte = rx_buf[i]; 570 /* See comments in cros_ec_pkt_xfer_spi() */ 571 if (rx_byte == EC_SPI_PAST_END || 572 rx_byte == EC_SPI_RX_BAD_DATA || 573 rx_byte == EC_SPI_NOT_READY) { 574 ret = -EAGAIN; 575 break; 576 } 577 } 578 } 579 580 if (!ret) 581 ret = cros_ec_spi_receive_response(ec_dev, 582 ec_msg->insize + EC_MSG_TX_PROTO_BYTES); 583 else if (ret != -EAGAIN) 584 dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret); 585 586 final_ret = terminate_request(ec_dev); 587 588 spi_bus_unlock(ec_spi->spi->master); 589 590 if (!ret) 591 ret = final_ret; 592 if (ret < 0) 593 goto exit; 594 595 ptr = ec_dev->din; 596 597 /* check response error code */ 598 ec_msg->result = ptr[0]; 599 ret = cros_ec_check_result(ec_dev, ec_msg); 600 if (ret) 601 goto exit; 602 603 len = ptr[1]; 604 sum = ptr[0] + ptr[1]; 605 if (len > ec_msg->insize) { 606 dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)", 607 len, ec_msg->insize); 608 ret = -ENOSPC; 609 goto exit; 610 } 611 612 /* copy response packet payload and compute checksum */ 613 for (i = 0; i < len; i++) { 614 sum += ptr[i + 2]; 615 if (ec_msg->insize) 616 ec_msg->data[i] = ptr[i + 2]; 617 } 618 sum &= 0xff; 619 620 debug_packet(ec_dev->dev, "in", ptr, len + 3); 621 622 if (sum != ptr[len + 2]) { 623 dev_err(ec_dev->dev, 624 "bad packet checksum, expected %02x, got %02x\n", 625 sum, ptr[len + 2]); 626 ret = -EBADMSG; 627 goto exit; 628 } 629 630 ret = len; 631 exit: 632 kfree(rx_buf); 633 if (ec_msg->command == EC_CMD_REBOOT_EC) 634 msleep(EC_REBOOT_DELAY_MS); 635 636 return ret; 637 } 638 639 static void cros_ec_xfer_high_pri_work(struct kthread_work *work) 640 { 641 struct cros_ec_xfer_work_params *params; 642 643 params = container_of(work, struct cros_ec_xfer_work_params, work); 644 params->ret = params->fn(params->ec_dev, params->ec_msg); 645 } 646 647 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev, 648 struct cros_ec_command *ec_msg, 649 cros_ec_xfer_fn_t fn) 650 { 651 struct cros_ec_spi *ec_spi = ec_dev->priv; 652 struct cros_ec_xfer_work_params params = { 653 .work = KTHREAD_WORK_INIT(params.work, 654 cros_ec_xfer_high_pri_work), 655 .ec_dev = ec_dev, 656 .ec_msg = ec_msg, 657 .fn = fn, 658 }; 659 660 /* 661 * This looks a bit ridiculous. Why do the work on a 662 * different thread if we're just going to block waiting for 663 * the thread to finish? The key here is that the thread is 664 * running at high priority but the calling context might not 665 * be. We need to be at high priority to avoid getting 666 * context switched out for too long and the EC giving up on 667 * the transfer. 668 */ 669 kthread_queue_work(ec_spi->high_pri_worker, ¶ms.work); 670 kthread_flush_work(¶ms.work); 671 672 return params.ret; 673 } 674 675 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev, 676 struct cros_ec_command *ec_msg) 677 { 678 return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi); 679 } 680 681 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev, 682 struct cros_ec_command *ec_msg) 683 { 684 return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi); 685 } 686 687 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev) 688 { 689 struct device_node *np = dev->of_node; 690 u32 val; 691 int ret; 692 693 ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val); 694 if (!ret) 695 ec_spi->start_of_msg_delay = val; 696 697 ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val); 698 if (!ret) 699 ec_spi->end_of_msg_delay = val; 700 } 701 702 static void cros_ec_spi_high_pri_release(void *worker) 703 { 704 kthread_destroy_worker(worker); 705 } 706 707 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev, 708 struct cros_ec_spi *ec_spi) 709 { 710 struct sched_param sched_priority = { 711 .sched_priority = MAX_RT_PRIO / 2, 712 }; 713 int err; 714 715 ec_spi->high_pri_worker = 716 kthread_create_worker(0, "cros_ec_spi_high_pri"); 717 718 if (IS_ERR(ec_spi->high_pri_worker)) { 719 err = PTR_ERR(ec_spi->high_pri_worker); 720 dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err); 721 return err; 722 } 723 724 err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release, 725 ec_spi->high_pri_worker); 726 if (err) 727 return err; 728 729 err = sched_setscheduler_nocheck(ec_spi->high_pri_worker->task, 730 SCHED_FIFO, &sched_priority); 731 if (err) 732 dev_err(dev, "Can't set cros_ec high pri priority: %d\n", err); 733 return err; 734 } 735 736 static int cros_ec_spi_probe(struct spi_device *spi) 737 { 738 struct device *dev = &spi->dev; 739 struct cros_ec_device *ec_dev; 740 struct cros_ec_spi *ec_spi; 741 int err; 742 743 spi->bits_per_word = 8; 744 spi->mode = SPI_MODE_0; 745 spi->rt = true; 746 err = spi_setup(spi); 747 if (err < 0) 748 return err; 749 750 ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL); 751 if (ec_spi == NULL) 752 return -ENOMEM; 753 ec_spi->spi = spi; 754 ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL); 755 if (!ec_dev) 756 return -ENOMEM; 757 758 /* Check for any DT properties */ 759 cros_ec_spi_dt_probe(ec_spi, dev); 760 761 spi_set_drvdata(spi, ec_dev); 762 ec_dev->dev = dev; 763 ec_dev->priv = ec_spi; 764 ec_dev->irq = spi->irq; 765 ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi; 766 ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi; 767 ec_dev->phys_name = dev_name(&ec_spi->spi->dev); 768 ec_dev->din_size = EC_MSG_PREAMBLE_COUNT + 769 sizeof(struct ec_host_response) + 770 sizeof(struct ec_response_get_protocol_info); 771 ec_dev->dout_size = sizeof(struct ec_host_request); 772 773 ec_spi->last_transfer_ns = ktime_get_ns(); 774 775 err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi); 776 if (err) 777 return err; 778 779 err = cros_ec_register(ec_dev); 780 if (err) { 781 dev_err(dev, "cannot register EC\n"); 782 return err; 783 } 784 785 device_init_wakeup(&spi->dev, true); 786 787 return 0; 788 } 789 790 static int cros_ec_spi_remove(struct spi_device *spi) 791 { 792 struct cros_ec_device *ec_dev = spi_get_drvdata(spi); 793 794 return cros_ec_unregister(ec_dev); 795 } 796 797 #ifdef CONFIG_PM_SLEEP 798 static int cros_ec_spi_suspend(struct device *dev) 799 { 800 struct cros_ec_device *ec_dev = dev_get_drvdata(dev); 801 802 return cros_ec_suspend(ec_dev); 803 } 804 805 static int cros_ec_spi_resume(struct device *dev) 806 { 807 struct cros_ec_device *ec_dev = dev_get_drvdata(dev); 808 809 return cros_ec_resume(ec_dev); 810 } 811 #endif 812 813 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend, 814 cros_ec_spi_resume); 815 816 static const struct of_device_id cros_ec_spi_of_match[] = { 817 { .compatible = "google,cros-ec-spi", }, 818 { /* sentinel */ }, 819 }; 820 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match); 821 822 static const struct spi_device_id cros_ec_spi_id[] = { 823 { "cros-ec-spi", 0 }, 824 { } 825 }; 826 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id); 827 828 static struct spi_driver cros_ec_driver_spi = { 829 .driver = { 830 .name = "cros-ec-spi", 831 .of_match_table = cros_ec_spi_of_match, 832 .pm = &cros_ec_spi_pm_ops, 833 }, 834 .probe = cros_ec_spi_probe, 835 .remove = cros_ec_spi_remove, 836 .id_table = cros_ec_spi_id, 837 }; 838 839 module_spi_driver(cros_ec_driver_spi); 840 841 MODULE_LICENSE("GPL v2"); 842 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller"); 843