xref: /openbmc/linux/drivers/platform/chrome/cros_ec_spi.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_data/cros_ec_commands.h>
11 #include <linux/platform_data/cros_ec_proto.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <uapi/linux/sched/types.h>
16 
17 #include "cros_ec.h"
18 
19 /* The header byte, which follows the preamble */
20 #define EC_MSG_HEADER			0xec
21 
22 /*
23  * Number of EC preamble bytes we read at a time. Since it takes
24  * about 400-500us for the EC to respond there is not a lot of
25  * point in tuning this. If the EC could respond faster then
26  * we could increase this so that might expect the preamble and
27  * message to occur in a single transaction. However, the maximum
28  * SPI transfer size is 256 bytes, so at 5MHz we need a response
29  * time of perhaps <320us (200 bytes / 1600 bits).
30  */
31 #define EC_MSG_PREAMBLE_COUNT		32
32 
33 /*
34  * Allow for a long time for the EC to respond.  We support i2c
35  * tunneling and support fairly long messages for the tunnel (249
36  * bytes long at the moment).  If we're talking to a 100 kHz device
37  * on the other end and need to transfer ~256 bytes, then we need:
38  *  10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
39  *
40  * We'll wait 8 times that to handle clock stretching and other
41  * paranoia.  Note that some battery gas gauge ICs claim to have a
42  * clock stretch of 144ms in rare situations.  That's incentive for
43  * not directly passing i2c through, but it's too late for that for
44  * existing hardware.
45  *
46  * It's pretty unlikely that we'll really see a 249 byte tunnel in
47  * anything other than testing.  If this was more common we might
48  * consider having slow commands like this require a GET_STATUS
49  * wait loop.  The 'flash write' command would be another candidate
50  * for this, clocking in at 2-3ms.
51  */
52 #define EC_MSG_DEADLINE_MS		200
53 
54 /*
55   * Time between raising the SPI chip select (for the end of a
56   * transaction) and dropping it again (for the next transaction).
57   * If we go too fast, the EC will miss the transaction. We know that we
58   * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
59   * safe.
60   */
61 #define EC_SPI_RECOVERY_TIME_NS	(200 * 1000)
62 
63 /**
64  * struct cros_ec_spi - information about a SPI-connected EC
65  *
66  * @spi: SPI device we are connected to
67  * @last_transfer_ns: time that we last finished a transfer.
68  * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69  *      is sent when we want to turn on CS at the start of a transaction.
70  * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
71  *      is sent when we want to turn off CS at the end of a transaction.
72  * @high_pri_worker: Used to schedule high priority work.
73  */
74 struct cros_ec_spi {
75 	struct spi_device *spi;
76 	s64 last_transfer_ns;
77 	unsigned int start_of_msg_delay;
78 	unsigned int end_of_msg_delay;
79 	struct kthread_worker *high_pri_worker;
80 };
81 
82 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
83 				  struct cros_ec_command *ec_msg);
84 
85 /**
86  * struct cros_ec_xfer_work_params - params for our high priority workers
87  *
88  * @work: The work_struct needed to queue work
89  * @fn: The function to use to transfer
90  * @ec_dev: ChromeOS EC device
91  * @ec_msg: Message to transfer
92  * @ret: The return value of the function
93  */
94 
95 struct cros_ec_xfer_work_params {
96 	struct kthread_work work;
97 	cros_ec_xfer_fn_t fn;
98 	struct cros_ec_device *ec_dev;
99 	struct cros_ec_command *ec_msg;
100 	int ret;
101 };
102 
103 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
104 			 int len)
105 {
106 #ifdef DEBUG
107 	int i;
108 
109 	dev_dbg(dev, "%s: ", name);
110 	for (i = 0; i < len; i++)
111 		pr_cont(" %02x", ptr[i]);
112 
113 	pr_cont("\n");
114 #endif
115 }
116 
117 static int terminate_request(struct cros_ec_device *ec_dev)
118 {
119 	struct cros_ec_spi *ec_spi = ec_dev->priv;
120 	struct spi_message msg;
121 	struct spi_transfer trans;
122 	int ret;
123 
124 	/*
125 	 * Turn off CS, possibly adding a delay to ensure the rising edge
126 	 * doesn't come too soon after the end of the data.
127 	 */
128 	spi_message_init(&msg);
129 	memset(&trans, 0, sizeof(trans));
130 	trans.delay_usecs = ec_spi->end_of_msg_delay;
131 	spi_message_add_tail(&trans, &msg);
132 
133 	ret = spi_sync_locked(ec_spi->spi, &msg);
134 
135 	/* Reset end-of-response timer */
136 	ec_spi->last_transfer_ns = ktime_get_ns();
137 	if (ret < 0) {
138 		dev_err(ec_dev->dev,
139 			"cs-deassert spi transfer failed: %d\n",
140 			ret);
141 	}
142 
143 	return ret;
144 }
145 
146 /**
147  * receive_n_bytes - receive n bytes from the EC.
148  *
149  * Assumes buf is a pointer into the ec_dev->din buffer
150  */
151 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
152 {
153 	struct cros_ec_spi *ec_spi = ec_dev->priv;
154 	struct spi_transfer trans;
155 	struct spi_message msg;
156 	int ret;
157 
158 	BUG_ON(buf - ec_dev->din + n > ec_dev->din_size);
159 
160 	memset(&trans, 0, sizeof(trans));
161 	trans.cs_change = 1;
162 	trans.rx_buf = buf;
163 	trans.len = n;
164 
165 	spi_message_init(&msg);
166 	spi_message_add_tail(&trans, &msg);
167 	ret = spi_sync_locked(ec_spi->spi, &msg);
168 	if (ret < 0)
169 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
170 
171 	return ret;
172 }
173 
174 /**
175  * cros_ec_spi_receive_packet - Receive a packet from the EC.
176  *
177  * This function has two phases: reading the preamble bytes (since if we read
178  * data from the EC before it is ready to send, we just get preamble) and
179  * reading the actual message.
180  *
181  * The received data is placed into ec_dev->din.
182  *
183  * @ec_dev: ChromeOS EC device
184  * @need_len: Number of message bytes we need to read
185  */
186 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
187 				      int need_len)
188 {
189 	struct ec_host_response *response;
190 	u8 *ptr, *end;
191 	int ret;
192 	unsigned long deadline;
193 	int todo;
194 
195 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
196 
197 	/* Receive data until we see the header byte */
198 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
199 	while (true) {
200 		unsigned long start_jiffies = jiffies;
201 
202 		ret = receive_n_bytes(ec_dev,
203 				      ec_dev->din,
204 				      EC_MSG_PREAMBLE_COUNT);
205 		if (ret < 0)
206 			return ret;
207 
208 		ptr = ec_dev->din;
209 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
210 			if (*ptr == EC_SPI_FRAME_START) {
211 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
212 					ptr - ec_dev->din);
213 				break;
214 			}
215 		}
216 		if (ptr != end)
217 			break;
218 
219 		/*
220 		 * Use the time at the start of the loop as a timeout.  This
221 		 * gives us one last shot at getting the transfer and is useful
222 		 * in case we got context switched out for a while.
223 		 */
224 		if (time_after(start_jiffies, deadline)) {
225 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
226 			return -ETIMEDOUT;
227 		}
228 	}
229 
230 	/*
231 	 * ptr now points to the header byte. Copy any valid data to the
232 	 * start of our buffer
233 	 */
234 	todo = end - ++ptr;
235 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
236 	todo = min(todo, need_len);
237 	memmove(ec_dev->din, ptr, todo);
238 	ptr = ec_dev->din + todo;
239 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
240 		need_len, todo);
241 	need_len -= todo;
242 
243 	/* If the entire response struct wasn't read, get the rest of it. */
244 	if (todo < sizeof(*response)) {
245 		ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
246 		if (ret < 0)
247 			return -EBADMSG;
248 		ptr += (sizeof(*response) - todo);
249 		todo = sizeof(*response);
250 	}
251 
252 	response = (struct ec_host_response *)ec_dev->din;
253 
254 	/* Abort if data_len is too large. */
255 	if (response->data_len > ec_dev->din_size)
256 		return -EMSGSIZE;
257 
258 	/* Receive data until we have it all */
259 	while (need_len > 0) {
260 		/*
261 		 * We can't support transfers larger than the SPI FIFO size
262 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
263 		 * for Exynos. We need a way of asking SPI driver for
264 		 * maximum-supported transfer size.
265 		 */
266 		todo = min(need_len, 256);
267 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
268 			todo, need_len, ptr - ec_dev->din);
269 
270 		ret = receive_n_bytes(ec_dev, ptr, todo);
271 		if (ret < 0)
272 			return ret;
273 
274 		ptr += todo;
275 		need_len -= todo;
276 	}
277 
278 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
279 
280 	return 0;
281 }
282 
283 /**
284  * cros_ec_spi_receive_response - Receive a response from the EC.
285  *
286  * This function has two phases: reading the preamble bytes (since if we read
287  * data from the EC before it is ready to send, we just get preamble) and
288  * reading the actual message.
289  *
290  * The received data is placed into ec_dev->din.
291  *
292  * @ec_dev: ChromeOS EC device
293  * @need_len: Number of message bytes we need to read
294  */
295 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
296 					int need_len)
297 {
298 	u8 *ptr, *end;
299 	int ret;
300 	unsigned long deadline;
301 	int todo;
302 
303 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
304 
305 	/* Receive data until we see the header byte */
306 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
307 	while (true) {
308 		unsigned long start_jiffies = jiffies;
309 
310 		ret = receive_n_bytes(ec_dev,
311 				      ec_dev->din,
312 				      EC_MSG_PREAMBLE_COUNT);
313 		if (ret < 0)
314 			return ret;
315 
316 		ptr = ec_dev->din;
317 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
318 			if (*ptr == EC_SPI_FRAME_START) {
319 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
320 					ptr - ec_dev->din);
321 				break;
322 			}
323 		}
324 		if (ptr != end)
325 			break;
326 
327 		/*
328 		 * Use the time at the start of the loop as a timeout.  This
329 		 * gives us one last shot at getting the transfer and is useful
330 		 * in case we got context switched out for a while.
331 		 */
332 		if (time_after(start_jiffies, deadline)) {
333 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
334 			return -ETIMEDOUT;
335 		}
336 	}
337 
338 	/*
339 	 * ptr now points to the header byte. Copy any valid data to the
340 	 * start of our buffer
341 	 */
342 	todo = end - ++ptr;
343 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
344 	todo = min(todo, need_len);
345 	memmove(ec_dev->din, ptr, todo);
346 	ptr = ec_dev->din + todo;
347 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
348 		 need_len, todo);
349 	need_len -= todo;
350 
351 	/* Receive data until we have it all */
352 	while (need_len > 0) {
353 		/*
354 		 * We can't support transfers larger than the SPI FIFO size
355 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
356 		 * for Exynos. We need a way of asking SPI driver for
357 		 * maximum-supported transfer size.
358 		 */
359 		todo = min(need_len, 256);
360 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
361 			todo, need_len, ptr - ec_dev->din);
362 
363 		ret = receive_n_bytes(ec_dev, ptr, todo);
364 		if (ret < 0)
365 			return ret;
366 
367 		debug_packet(ec_dev->dev, "interim", ptr, todo);
368 		ptr += todo;
369 		need_len -= todo;
370 	}
371 
372 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
373 
374 	return 0;
375 }
376 
377 /**
378  * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
379  *
380  * @ec_dev: ChromeOS EC device
381  * @ec_msg: Message to transfer
382  */
383 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
384 				   struct cros_ec_command *ec_msg)
385 {
386 	struct ec_host_response *response;
387 	struct cros_ec_spi *ec_spi = ec_dev->priv;
388 	struct spi_transfer trans, trans_delay;
389 	struct spi_message msg;
390 	int i, len;
391 	u8 *ptr;
392 	u8 *rx_buf;
393 	u8 sum;
394 	u8 rx_byte;
395 	int ret = 0, final_ret;
396 	unsigned long delay;
397 
398 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
399 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
400 
401 	/* If it's too soon to do another transaction, wait */
402 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
403 	if (delay < EC_SPI_RECOVERY_TIME_NS)
404 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
405 
406 	rx_buf = kzalloc(len, GFP_KERNEL);
407 	if (!rx_buf)
408 		return -ENOMEM;
409 
410 	spi_bus_lock(ec_spi->spi->master);
411 
412 	/*
413 	 * Leave a gap between CS assertion and clocking of data to allow the
414 	 * EC time to wakeup.
415 	 */
416 	spi_message_init(&msg);
417 	if (ec_spi->start_of_msg_delay) {
418 		memset(&trans_delay, 0, sizeof(trans_delay));
419 		trans_delay.delay_usecs = ec_spi->start_of_msg_delay;
420 		spi_message_add_tail(&trans_delay, &msg);
421 	}
422 
423 	/* Transmit phase - send our message */
424 	memset(&trans, 0, sizeof(trans));
425 	trans.tx_buf = ec_dev->dout;
426 	trans.rx_buf = rx_buf;
427 	trans.len = len;
428 	trans.cs_change = 1;
429 	spi_message_add_tail(&trans, &msg);
430 	ret = spi_sync_locked(ec_spi->spi, &msg);
431 
432 	/* Get the response */
433 	if (!ret) {
434 		/* Verify that EC can process command */
435 		for (i = 0; i < len; i++) {
436 			rx_byte = rx_buf[i];
437 			/*
438 			 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
439 			 * markers are all signs that the EC didn't fully
440 			 * receive our command. e.g., if the EC is flashing
441 			 * itself, it can't respond to any commands and instead
442 			 * clocks out EC_SPI_PAST_END from its SPI hardware
443 			 * buffer. Similar occurrences can happen if the AP is
444 			 * too slow to clock out data after asserting CS -- the
445 			 * EC will abort and fill its buffer with
446 			 * EC_SPI_RX_BAD_DATA.
447 			 *
448 			 * In all cases, these errors should be safe to retry.
449 			 * Report -EAGAIN and let the caller decide what to do
450 			 * about that.
451 			 */
452 			if (rx_byte == EC_SPI_PAST_END  ||
453 			    rx_byte == EC_SPI_RX_BAD_DATA ||
454 			    rx_byte == EC_SPI_NOT_READY) {
455 				ret = -EAGAIN;
456 				break;
457 			}
458 		}
459 	}
460 
461 	if (!ret)
462 		ret = cros_ec_spi_receive_packet(ec_dev,
463 				ec_msg->insize + sizeof(*response));
464 	else if (ret != -EAGAIN)
465 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
466 
467 	final_ret = terminate_request(ec_dev);
468 
469 	spi_bus_unlock(ec_spi->spi->master);
470 
471 	if (!ret)
472 		ret = final_ret;
473 	if (ret < 0)
474 		goto exit;
475 
476 	ptr = ec_dev->din;
477 
478 	/* check response error code */
479 	response = (struct ec_host_response *)ptr;
480 	ec_msg->result = response->result;
481 
482 	ret = cros_ec_check_result(ec_dev, ec_msg);
483 	if (ret)
484 		goto exit;
485 
486 	len = response->data_len;
487 	sum = 0;
488 	if (len > ec_msg->insize) {
489 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
490 			len, ec_msg->insize);
491 		ret = -EMSGSIZE;
492 		goto exit;
493 	}
494 
495 	for (i = 0; i < sizeof(*response); i++)
496 		sum += ptr[i];
497 
498 	/* copy response packet payload and compute checksum */
499 	memcpy(ec_msg->data, ptr + sizeof(*response), len);
500 	for (i = 0; i < len; i++)
501 		sum += ec_msg->data[i];
502 
503 	if (sum) {
504 		dev_err(ec_dev->dev,
505 			"bad packet checksum, calculated %x\n",
506 			sum);
507 		ret = -EBADMSG;
508 		goto exit;
509 	}
510 
511 	ret = len;
512 exit:
513 	kfree(rx_buf);
514 	if (ec_msg->command == EC_CMD_REBOOT_EC)
515 		msleep(EC_REBOOT_DELAY_MS);
516 
517 	return ret;
518 }
519 
520 /**
521  * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
522  *
523  * @ec_dev: ChromeOS EC device
524  * @ec_msg: Message to transfer
525  */
526 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
527 				   struct cros_ec_command *ec_msg)
528 {
529 	struct cros_ec_spi *ec_spi = ec_dev->priv;
530 	struct spi_transfer trans;
531 	struct spi_message msg;
532 	int i, len;
533 	u8 *ptr;
534 	u8 *rx_buf;
535 	u8 rx_byte;
536 	int sum;
537 	int ret = 0, final_ret;
538 	unsigned long delay;
539 
540 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
541 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
542 
543 	/* If it's too soon to do another transaction, wait */
544 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
545 	if (delay < EC_SPI_RECOVERY_TIME_NS)
546 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
547 
548 	rx_buf = kzalloc(len, GFP_KERNEL);
549 	if (!rx_buf)
550 		return -ENOMEM;
551 
552 	spi_bus_lock(ec_spi->spi->master);
553 
554 	/* Transmit phase - send our message */
555 	debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
556 	memset(&trans, 0, sizeof(trans));
557 	trans.tx_buf = ec_dev->dout;
558 	trans.rx_buf = rx_buf;
559 	trans.len = len;
560 	trans.cs_change = 1;
561 	spi_message_init(&msg);
562 	spi_message_add_tail(&trans, &msg);
563 	ret = spi_sync_locked(ec_spi->spi, &msg);
564 
565 	/* Get the response */
566 	if (!ret) {
567 		/* Verify that EC can process command */
568 		for (i = 0; i < len; i++) {
569 			rx_byte = rx_buf[i];
570 			/* See comments in cros_ec_pkt_xfer_spi() */
571 			if (rx_byte == EC_SPI_PAST_END  ||
572 			    rx_byte == EC_SPI_RX_BAD_DATA ||
573 			    rx_byte == EC_SPI_NOT_READY) {
574 				ret = -EAGAIN;
575 				break;
576 			}
577 		}
578 	}
579 
580 	if (!ret)
581 		ret = cros_ec_spi_receive_response(ec_dev,
582 				ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
583 	else if (ret != -EAGAIN)
584 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
585 
586 	final_ret = terminate_request(ec_dev);
587 
588 	spi_bus_unlock(ec_spi->spi->master);
589 
590 	if (!ret)
591 		ret = final_ret;
592 	if (ret < 0)
593 		goto exit;
594 
595 	ptr = ec_dev->din;
596 
597 	/* check response error code */
598 	ec_msg->result = ptr[0];
599 	ret = cros_ec_check_result(ec_dev, ec_msg);
600 	if (ret)
601 		goto exit;
602 
603 	len = ptr[1];
604 	sum = ptr[0] + ptr[1];
605 	if (len > ec_msg->insize) {
606 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
607 			len, ec_msg->insize);
608 		ret = -ENOSPC;
609 		goto exit;
610 	}
611 
612 	/* copy response packet payload and compute checksum */
613 	for (i = 0; i < len; i++) {
614 		sum += ptr[i + 2];
615 		if (ec_msg->insize)
616 			ec_msg->data[i] = ptr[i + 2];
617 	}
618 	sum &= 0xff;
619 
620 	debug_packet(ec_dev->dev, "in", ptr, len + 3);
621 
622 	if (sum != ptr[len + 2]) {
623 		dev_err(ec_dev->dev,
624 			"bad packet checksum, expected %02x, got %02x\n",
625 			sum, ptr[len + 2]);
626 		ret = -EBADMSG;
627 		goto exit;
628 	}
629 
630 	ret = len;
631 exit:
632 	kfree(rx_buf);
633 	if (ec_msg->command == EC_CMD_REBOOT_EC)
634 		msleep(EC_REBOOT_DELAY_MS);
635 
636 	return ret;
637 }
638 
639 static void cros_ec_xfer_high_pri_work(struct kthread_work *work)
640 {
641 	struct cros_ec_xfer_work_params *params;
642 
643 	params = container_of(work, struct cros_ec_xfer_work_params, work);
644 	params->ret = params->fn(params->ec_dev, params->ec_msg);
645 }
646 
647 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
648 				 struct cros_ec_command *ec_msg,
649 				 cros_ec_xfer_fn_t fn)
650 {
651 	struct cros_ec_spi *ec_spi = ec_dev->priv;
652 	struct cros_ec_xfer_work_params params = {
653 		.work = KTHREAD_WORK_INIT(params.work,
654 					  cros_ec_xfer_high_pri_work),
655 		.ec_dev = ec_dev,
656 		.ec_msg = ec_msg,
657 		.fn = fn,
658 	};
659 
660 	/*
661 	 * This looks a bit ridiculous.  Why do the work on a
662 	 * different thread if we're just going to block waiting for
663 	 * the thread to finish?  The key here is that the thread is
664 	 * running at high priority but the calling context might not
665 	 * be.  We need to be at high priority to avoid getting
666 	 * context switched out for too long and the EC giving up on
667 	 * the transfer.
668 	 */
669 	kthread_queue_work(ec_spi->high_pri_worker, &params.work);
670 	kthread_flush_work(&params.work);
671 
672 	return params.ret;
673 }
674 
675 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
676 				struct cros_ec_command *ec_msg)
677 {
678 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
679 }
680 
681 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
682 				struct cros_ec_command *ec_msg)
683 {
684 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
685 }
686 
687 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
688 {
689 	struct device_node *np = dev->of_node;
690 	u32 val;
691 	int ret;
692 
693 	ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
694 	if (!ret)
695 		ec_spi->start_of_msg_delay = val;
696 
697 	ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
698 	if (!ret)
699 		ec_spi->end_of_msg_delay = val;
700 }
701 
702 static void cros_ec_spi_high_pri_release(void *worker)
703 {
704 	kthread_destroy_worker(worker);
705 }
706 
707 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev,
708 					   struct cros_ec_spi *ec_spi)
709 {
710 	struct sched_param sched_priority = {
711 		.sched_priority = MAX_RT_PRIO / 2,
712 	};
713 	int err;
714 
715 	ec_spi->high_pri_worker =
716 		kthread_create_worker(0, "cros_ec_spi_high_pri");
717 
718 	if (IS_ERR(ec_spi->high_pri_worker)) {
719 		err = PTR_ERR(ec_spi->high_pri_worker);
720 		dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err);
721 		return err;
722 	}
723 
724 	err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release,
725 				       ec_spi->high_pri_worker);
726 	if (err)
727 		return err;
728 
729 	err = sched_setscheduler_nocheck(ec_spi->high_pri_worker->task,
730 					 SCHED_FIFO, &sched_priority);
731 	if (err)
732 		dev_err(dev, "Can't set cros_ec high pri priority: %d\n", err);
733 	return err;
734 }
735 
736 static int cros_ec_spi_probe(struct spi_device *spi)
737 {
738 	struct device *dev = &spi->dev;
739 	struct cros_ec_device *ec_dev;
740 	struct cros_ec_spi *ec_spi;
741 	int err;
742 
743 	spi->bits_per_word = 8;
744 	spi->mode = SPI_MODE_0;
745 	spi->rt = true;
746 	err = spi_setup(spi);
747 	if (err < 0)
748 		return err;
749 
750 	ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
751 	if (ec_spi == NULL)
752 		return -ENOMEM;
753 	ec_spi->spi = spi;
754 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
755 	if (!ec_dev)
756 		return -ENOMEM;
757 
758 	/* Check for any DT properties */
759 	cros_ec_spi_dt_probe(ec_spi, dev);
760 
761 	spi_set_drvdata(spi, ec_dev);
762 	ec_dev->dev = dev;
763 	ec_dev->priv = ec_spi;
764 	ec_dev->irq = spi->irq;
765 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
766 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
767 	ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
768 	ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
769 			   sizeof(struct ec_host_response) +
770 			   sizeof(struct ec_response_get_protocol_info);
771 	ec_dev->dout_size = sizeof(struct ec_host_request);
772 
773 	ec_spi->last_transfer_ns = ktime_get_ns();
774 
775 	err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi);
776 	if (err)
777 		return err;
778 
779 	err = cros_ec_register(ec_dev);
780 	if (err) {
781 		dev_err(dev, "cannot register EC\n");
782 		return err;
783 	}
784 
785 	device_init_wakeup(&spi->dev, true);
786 
787 	return 0;
788 }
789 
790 static int cros_ec_spi_remove(struct spi_device *spi)
791 {
792 	struct cros_ec_device *ec_dev = spi_get_drvdata(spi);
793 
794 	return cros_ec_unregister(ec_dev);
795 }
796 
797 #ifdef CONFIG_PM_SLEEP
798 static int cros_ec_spi_suspend(struct device *dev)
799 {
800 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
801 
802 	return cros_ec_suspend(ec_dev);
803 }
804 
805 static int cros_ec_spi_resume(struct device *dev)
806 {
807 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
808 
809 	return cros_ec_resume(ec_dev);
810 }
811 #endif
812 
813 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
814 			 cros_ec_spi_resume);
815 
816 static const struct of_device_id cros_ec_spi_of_match[] = {
817 	{ .compatible = "google,cros-ec-spi", },
818 	{ /* sentinel */ },
819 };
820 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
821 
822 static const struct spi_device_id cros_ec_spi_id[] = {
823 	{ "cros-ec-spi", 0 },
824 	{ }
825 };
826 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
827 
828 static struct spi_driver cros_ec_driver_spi = {
829 	.driver	= {
830 		.name	= "cros-ec-spi",
831 		.of_match_table = cros_ec_spi_of_match,
832 		.pm	= &cros_ec_spi_pm_ops,
833 	},
834 	.probe		= cros_ec_spi_probe,
835 	.remove		= cros_ec_spi_remove,
836 	.id_table	= cros_ec_spi_id,
837 };
838 
839 module_spi_driver(cros_ec_driver_spi);
840 
841 MODULE_LICENSE("GPL v2");
842 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");
843