xref: /openbmc/linux/drivers/platform/chrome/cros_ec_spi.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/mfd/cros_ec.h>
10 #include <linux/mfd/cros_ec_commands.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 
16 
17 /* The header byte, which follows the preamble */
18 #define EC_MSG_HEADER			0xec
19 
20 /*
21  * Number of EC preamble bytes we read at a time. Since it takes
22  * about 400-500us for the EC to respond there is not a lot of
23  * point in tuning this. If the EC could respond faster then
24  * we could increase this so that might expect the preamble and
25  * message to occur in a single transaction. However, the maximum
26  * SPI transfer size is 256 bytes, so at 5MHz we need a response
27  * time of perhaps <320us (200 bytes / 1600 bits).
28  */
29 #define EC_MSG_PREAMBLE_COUNT		32
30 
31 /*
32  * Allow for a long time for the EC to respond.  We support i2c
33  * tunneling and support fairly long messages for the tunnel (249
34  * bytes long at the moment).  If we're talking to a 100 kHz device
35  * on the other end and need to transfer ~256 bytes, then we need:
36  *  10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
37  *
38  * We'll wait 8 times that to handle clock stretching and other
39  * paranoia.  Note that some battery gas gauge ICs claim to have a
40  * clock stretch of 144ms in rare situations.  That's incentive for
41  * not directly passing i2c through, but it's too late for that for
42  * existing hardware.
43  *
44  * It's pretty unlikely that we'll really see a 249 byte tunnel in
45  * anything other than testing.  If this was more common we might
46  * consider having slow commands like this require a GET_STATUS
47  * wait loop.  The 'flash write' command would be another candidate
48  * for this, clocking in at 2-3ms.
49  */
50 #define EC_MSG_DEADLINE_MS		200
51 
52 /*
53   * Time between raising the SPI chip select (for the end of a
54   * transaction) and dropping it again (for the next transaction).
55   * If we go too fast, the EC will miss the transaction. We know that we
56   * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
57   * safe.
58   */
59 #define EC_SPI_RECOVERY_TIME_NS	(200 * 1000)
60 
61 /**
62  * struct cros_ec_spi - information about a SPI-connected EC
63  *
64  * @spi: SPI device we are connected to
65  * @last_transfer_ns: time that we last finished a transfer.
66  * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
67  *      is sent when we want to turn on CS at the start of a transaction.
68  * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69  *      is sent when we want to turn off CS at the end of a transaction.
70  */
71 struct cros_ec_spi {
72 	struct spi_device *spi;
73 	s64 last_transfer_ns;
74 	unsigned int start_of_msg_delay;
75 	unsigned int end_of_msg_delay;
76 };
77 
78 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
79 				  struct cros_ec_command *ec_msg);
80 
81 /**
82  * struct cros_ec_xfer_work_params - params for our high priority workers
83  *
84  * @work: The work_struct needed to queue work
85  * @fn: The function to use to transfer
86  * @ec_dev: ChromeOS EC device
87  * @ec_msg: Message to transfer
88  * @ret: The return value of the function
89  */
90 
91 struct cros_ec_xfer_work_params {
92 	struct work_struct work;
93 	cros_ec_xfer_fn_t fn;
94 	struct cros_ec_device *ec_dev;
95 	struct cros_ec_command *ec_msg;
96 	int ret;
97 };
98 
99 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
100 			 int len)
101 {
102 #ifdef DEBUG
103 	int i;
104 
105 	dev_dbg(dev, "%s: ", name);
106 	for (i = 0; i < len; i++)
107 		pr_cont(" %02x", ptr[i]);
108 
109 	pr_cont("\n");
110 #endif
111 }
112 
113 static int terminate_request(struct cros_ec_device *ec_dev)
114 {
115 	struct cros_ec_spi *ec_spi = ec_dev->priv;
116 	struct spi_message msg;
117 	struct spi_transfer trans;
118 	int ret;
119 
120 	/*
121 	 * Turn off CS, possibly adding a delay to ensure the rising edge
122 	 * doesn't come too soon after the end of the data.
123 	 */
124 	spi_message_init(&msg);
125 	memset(&trans, 0, sizeof(trans));
126 	trans.delay_usecs = ec_spi->end_of_msg_delay;
127 	spi_message_add_tail(&trans, &msg);
128 
129 	ret = spi_sync_locked(ec_spi->spi, &msg);
130 
131 	/* Reset end-of-response timer */
132 	ec_spi->last_transfer_ns = ktime_get_ns();
133 	if (ret < 0) {
134 		dev_err(ec_dev->dev,
135 			"cs-deassert spi transfer failed: %d\n",
136 			ret);
137 	}
138 
139 	return ret;
140 }
141 
142 /**
143  * receive_n_bytes - receive n bytes from the EC.
144  *
145  * Assumes buf is a pointer into the ec_dev->din buffer
146  */
147 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
148 {
149 	struct cros_ec_spi *ec_spi = ec_dev->priv;
150 	struct spi_transfer trans;
151 	struct spi_message msg;
152 	int ret;
153 
154 	BUG_ON(buf - ec_dev->din + n > ec_dev->din_size);
155 
156 	memset(&trans, 0, sizeof(trans));
157 	trans.cs_change = 1;
158 	trans.rx_buf = buf;
159 	trans.len = n;
160 
161 	spi_message_init(&msg);
162 	spi_message_add_tail(&trans, &msg);
163 	ret = spi_sync_locked(ec_spi->spi, &msg);
164 	if (ret < 0)
165 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
166 
167 	return ret;
168 }
169 
170 /**
171  * cros_ec_spi_receive_packet - Receive a packet from the EC.
172  *
173  * This function has two phases: reading the preamble bytes (since if we read
174  * data from the EC before it is ready to send, we just get preamble) and
175  * reading the actual message.
176  *
177  * The received data is placed into ec_dev->din.
178  *
179  * @ec_dev: ChromeOS EC device
180  * @need_len: Number of message bytes we need to read
181  */
182 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
183 				      int need_len)
184 {
185 	struct ec_host_response *response;
186 	u8 *ptr, *end;
187 	int ret;
188 	unsigned long deadline;
189 	int todo;
190 
191 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
192 
193 	/* Receive data until we see the header byte */
194 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
195 	while (true) {
196 		unsigned long start_jiffies = jiffies;
197 
198 		ret = receive_n_bytes(ec_dev,
199 				      ec_dev->din,
200 				      EC_MSG_PREAMBLE_COUNT);
201 		if (ret < 0)
202 			return ret;
203 
204 		ptr = ec_dev->din;
205 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
206 			if (*ptr == EC_SPI_FRAME_START) {
207 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
208 					ptr - ec_dev->din);
209 				break;
210 			}
211 		}
212 		if (ptr != end)
213 			break;
214 
215 		/*
216 		 * Use the time at the start of the loop as a timeout.  This
217 		 * gives us one last shot at getting the transfer and is useful
218 		 * in case we got context switched out for a while.
219 		 */
220 		if (time_after(start_jiffies, deadline)) {
221 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
222 			return -ETIMEDOUT;
223 		}
224 	}
225 
226 	/*
227 	 * ptr now points to the header byte. Copy any valid data to the
228 	 * start of our buffer
229 	 */
230 	todo = end - ++ptr;
231 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
232 	todo = min(todo, need_len);
233 	memmove(ec_dev->din, ptr, todo);
234 	ptr = ec_dev->din + todo;
235 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
236 		need_len, todo);
237 	need_len -= todo;
238 
239 	/* If the entire response struct wasn't read, get the rest of it. */
240 	if (todo < sizeof(*response)) {
241 		ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
242 		if (ret < 0)
243 			return -EBADMSG;
244 		ptr += (sizeof(*response) - todo);
245 		todo = sizeof(*response);
246 	}
247 
248 	response = (struct ec_host_response *)ec_dev->din;
249 
250 	/* Abort if data_len is too large. */
251 	if (response->data_len > ec_dev->din_size)
252 		return -EMSGSIZE;
253 
254 	/* Receive data until we have it all */
255 	while (need_len > 0) {
256 		/*
257 		 * We can't support transfers larger than the SPI FIFO size
258 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
259 		 * for Exynos. We need a way of asking SPI driver for
260 		 * maximum-supported transfer size.
261 		 */
262 		todo = min(need_len, 256);
263 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
264 			todo, need_len, ptr - ec_dev->din);
265 
266 		ret = receive_n_bytes(ec_dev, ptr, todo);
267 		if (ret < 0)
268 			return ret;
269 
270 		ptr += todo;
271 		need_len -= todo;
272 	}
273 
274 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
275 
276 	return 0;
277 }
278 
279 /**
280  * cros_ec_spi_receive_response - Receive a response from the EC.
281  *
282  * This function has two phases: reading the preamble bytes (since if we read
283  * data from the EC before it is ready to send, we just get preamble) and
284  * reading the actual message.
285  *
286  * The received data is placed into ec_dev->din.
287  *
288  * @ec_dev: ChromeOS EC device
289  * @need_len: Number of message bytes we need to read
290  */
291 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
292 					int need_len)
293 {
294 	u8 *ptr, *end;
295 	int ret;
296 	unsigned long deadline;
297 	int todo;
298 
299 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
300 
301 	/* Receive data until we see the header byte */
302 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
303 	while (true) {
304 		unsigned long start_jiffies = jiffies;
305 
306 		ret = receive_n_bytes(ec_dev,
307 				      ec_dev->din,
308 				      EC_MSG_PREAMBLE_COUNT);
309 		if (ret < 0)
310 			return ret;
311 
312 		ptr = ec_dev->din;
313 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
314 			if (*ptr == EC_SPI_FRAME_START) {
315 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
316 					ptr - ec_dev->din);
317 				break;
318 			}
319 		}
320 		if (ptr != end)
321 			break;
322 
323 		/*
324 		 * Use the time at the start of the loop as a timeout.  This
325 		 * gives us one last shot at getting the transfer and is useful
326 		 * in case we got context switched out for a while.
327 		 */
328 		if (time_after(start_jiffies, deadline)) {
329 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
330 			return -ETIMEDOUT;
331 		}
332 	}
333 
334 	/*
335 	 * ptr now points to the header byte. Copy any valid data to the
336 	 * start of our buffer
337 	 */
338 	todo = end - ++ptr;
339 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
340 	todo = min(todo, need_len);
341 	memmove(ec_dev->din, ptr, todo);
342 	ptr = ec_dev->din + todo;
343 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
344 		 need_len, todo);
345 	need_len -= todo;
346 
347 	/* Receive data until we have it all */
348 	while (need_len > 0) {
349 		/*
350 		 * We can't support transfers larger than the SPI FIFO size
351 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
352 		 * for Exynos. We need a way of asking SPI driver for
353 		 * maximum-supported transfer size.
354 		 */
355 		todo = min(need_len, 256);
356 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
357 			todo, need_len, ptr - ec_dev->din);
358 
359 		ret = receive_n_bytes(ec_dev, ptr, todo);
360 		if (ret < 0)
361 			return ret;
362 
363 		debug_packet(ec_dev->dev, "interim", ptr, todo);
364 		ptr += todo;
365 		need_len -= todo;
366 	}
367 
368 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
369 
370 	return 0;
371 }
372 
373 /**
374  * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
375  *
376  * @ec_dev: ChromeOS EC device
377  * @ec_msg: Message to transfer
378  */
379 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
380 				   struct cros_ec_command *ec_msg)
381 {
382 	struct ec_host_response *response;
383 	struct cros_ec_spi *ec_spi = ec_dev->priv;
384 	struct spi_transfer trans, trans_delay;
385 	struct spi_message msg;
386 	int i, len;
387 	u8 *ptr;
388 	u8 *rx_buf;
389 	u8 sum;
390 	u8 rx_byte;
391 	int ret = 0, final_ret;
392 	unsigned long delay;
393 
394 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
395 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
396 
397 	/* If it's too soon to do another transaction, wait */
398 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
399 	if (delay < EC_SPI_RECOVERY_TIME_NS)
400 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
401 
402 	rx_buf = kzalloc(len, GFP_KERNEL);
403 	if (!rx_buf)
404 		return -ENOMEM;
405 
406 	spi_bus_lock(ec_spi->spi->master);
407 
408 	/*
409 	 * Leave a gap between CS assertion and clocking of data to allow the
410 	 * EC time to wakeup.
411 	 */
412 	spi_message_init(&msg);
413 	if (ec_spi->start_of_msg_delay) {
414 		memset(&trans_delay, 0, sizeof(trans_delay));
415 		trans_delay.delay_usecs = ec_spi->start_of_msg_delay;
416 		spi_message_add_tail(&trans_delay, &msg);
417 	}
418 
419 	/* Transmit phase - send our message */
420 	memset(&trans, 0, sizeof(trans));
421 	trans.tx_buf = ec_dev->dout;
422 	trans.rx_buf = rx_buf;
423 	trans.len = len;
424 	trans.cs_change = 1;
425 	spi_message_add_tail(&trans, &msg);
426 	ret = spi_sync_locked(ec_spi->spi, &msg);
427 
428 	/* Get the response */
429 	if (!ret) {
430 		/* Verify that EC can process command */
431 		for (i = 0; i < len; i++) {
432 			rx_byte = rx_buf[i];
433 			/*
434 			 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
435 			 * markers are all signs that the EC didn't fully
436 			 * receive our command. e.g., if the EC is flashing
437 			 * itself, it can't respond to any commands and instead
438 			 * clocks out EC_SPI_PAST_END from its SPI hardware
439 			 * buffer. Similar occurrences can happen if the AP is
440 			 * too slow to clock out data after asserting CS -- the
441 			 * EC will abort and fill its buffer with
442 			 * EC_SPI_RX_BAD_DATA.
443 			 *
444 			 * In all cases, these errors should be safe to retry.
445 			 * Report -EAGAIN and let the caller decide what to do
446 			 * about that.
447 			 */
448 			if (rx_byte == EC_SPI_PAST_END  ||
449 			    rx_byte == EC_SPI_RX_BAD_DATA ||
450 			    rx_byte == EC_SPI_NOT_READY) {
451 				ret = -EAGAIN;
452 				break;
453 			}
454 		}
455 	}
456 
457 	if (!ret)
458 		ret = cros_ec_spi_receive_packet(ec_dev,
459 				ec_msg->insize + sizeof(*response));
460 	else if (ret != -EAGAIN)
461 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
462 
463 	final_ret = terminate_request(ec_dev);
464 
465 	spi_bus_unlock(ec_spi->spi->master);
466 
467 	if (!ret)
468 		ret = final_ret;
469 	if (ret < 0)
470 		goto exit;
471 
472 	ptr = ec_dev->din;
473 
474 	/* check response error code */
475 	response = (struct ec_host_response *)ptr;
476 	ec_msg->result = response->result;
477 
478 	ret = cros_ec_check_result(ec_dev, ec_msg);
479 	if (ret)
480 		goto exit;
481 
482 	len = response->data_len;
483 	sum = 0;
484 	if (len > ec_msg->insize) {
485 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
486 			len, ec_msg->insize);
487 		ret = -EMSGSIZE;
488 		goto exit;
489 	}
490 
491 	for (i = 0; i < sizeof(*response); i++)
492 		sum += ptr[i];
493 
494 	/* copy response packet payload and compute checksum */
495 	memcpy(ec_msg->data, ptr + sizeof(*response), len);
496 	for (i = 0; i < len; i++)
497 		sum += ec_msg->data[i];
498 
499 	if (sum) {
500 		dev_err(ec_dev->dev,
501 			"bad packet checksum, calculated %x\n",
502 			sum);
503 		ret = -EBADMSG;
504 		goto exit;
505 	}
506 
507 	ret = len;
508 exit:
509 	kfree(rx_buf);
510 	if (ec_msg->command == EC_CMD_REBOOT_EC)
511 		msleep(EC_REBOOT_DELAY_MS);
512 
513 	return ret;
514 }
515 
516 /**
517  * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
518  *
519  * @ec_dev: ChromeOS EC device
520  * @ec_msg: Message to transfer
521  */
522 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
523 				   struct cros_ec_command *ec_msg)
524 {
525 	struct cros_ec_spi *ec_spi = ec_dev->priv;
526 	struct spi_transfer trans;
527 	struct spi_message msg;
528 	int i, len;
529 	u8 *ptr;
530 	u8 *rx_buf;
531 	u8 rx_byte;
532 	int sum;
533 	int ret = 0, final_ret;
534 	unsigned long delay;
535 
536 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
537 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
538 
539 	/* If it's too soon to do another transaction, wait */
540 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
541 	if (delay < EC_SPI_RECOVERY_TIME_NS)
542 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
543 
544 	rx_buf = kzalloc(len, GFP_KERNEL);
545 	if (!rx_buf)
546 		return -ENOMEM;
547 
548 	spi_bus_lock(ec_spi->spi->master);
549 
550 	/* Transmit phase - send our message */
551 	debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
552 	memset(&trans, 0, sizeof(trans));
553 	trans.tx_buf = ec_dev->dout;
554 	trans.rx_buf = rx_buf;
555 	trans.len = len;
556 	trans.cs_change = 1;
557 	spi_message_init(&msg);
558 	spi_message_add_tail(&trans, &msg);
559 	ret = spi_sync_locked(ec_spi->spi, &msg);
560 
561 	/* Get the response */
562 	if (!ret) {
563 		/* Verify that EC can process command */
564 		for (i = 0; i < len; i++) {
565 			rx_byte = rx_buf[i];
566 			/* See comments in cros_ec_pkt_xfer_spi() */
567 			if (rx_byte == EC_SPI_PAST_END  ||
568 			    rx_byte == EC_SPI_RX_BAD_DATA ||
569 			    rx_byte == EC_SPI_NOT_READY) {
570 				ret = -EAGAIN;
571 				break;
572 			}
573 		}
574 	}
575 
576 	if (!ret)
577 		ret = cros_ec_spi_receive_response(ec_dev,
578 				ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
579 	else if (ret != -EAGAIN)
580 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
581 
582 	final_ret = terminate_request(ec_dev);
583 
584 	spi_bus_unlock(ec_spi->spi->master);
585 
586 	if (!ret)
587 		ret = final_ret;
588 	if (ret < 0)
589 		goto exit;
590 
591 	ptr = ec_dev->din;
592 
593 	/* check response error code */
594 	ec_msg->result = ptr[0];
595 	ret = cros_ec_check_result(ec_dev, ec_msg);
596 	if (ret)
597 		goto exit;
598 
599 	len = ptr[1];
600 	sum = ptr[0] + ptr[1];
601 	if (len > ec_msg->insize) {
602 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
603 			len, ec_msg->insize);
604 		ret = -ENOSPC;
605 		goto exit;
606 	}
607 
608 	/* copy response packet payload and compute checksum */
609 	for (i = 0; i < len; i++) {
610 		sum += ptr[i + 2];
611 		if (ec_msg->insize)
612 			ec_msg->data[i] = ptr[i + 2];
613 	}
614 	sum &= 0xff;
615 
616 	debug_packet(ec_dev->dev, "in", ptr, len + 3);
617 
618 	if (sum != ptr[len + 2]) {
619 		dev_err(ec_dev->dev,
620 			"bad packet checksum, expected %02x, got %02x\n",
621 			sum, ptr[len + 2]);
622 		ret = -EBADMSG;
623 		goto exit;
624 	}
625 
626 	ret = len;
627 exit:
628 	kfree(rx_buf);
629 	if (ec_msg->command == EC_CMD_REBOOT_EC)
630 		msleep(EC_REBOOT_DELAY_MS);
631 
632 	return ret;
633 }
634 
635 static void cros_ec_xfer_high_pri_work(struct work_struct *work)
636 {
637 	struct cros_ec_xfer_work_params *params;
638 
639 	params = container_of(work, struct cros_ec_xfer_work_params, work);
640 	params->ret = params->fn(params->ec_dev, params->ec_msg);
641 }
642 
643 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
644 				 struct cros_ec_command *ec_msg,
645 				 cros_ec_xfer_fn_t fn)
646 {
647 	struct cros_ec_xfer_work_params params;
648 
649 	INIT_WORK_ONSTACK(&params.work, cros_ec_xfer_high_pri_work);
650 	params.ec_dev = ec_dev;
651 	params.ec_msg = ec_msg;
652 	params.fn = fn;
653 
654 	/*
655 	 * This looks a bit ridiculous.  Why do the work on a
656 	 * different thread if we're just going to block waiting for
657 	 * the thread to finish?  The key here is that the thread is
658 	 * running at high priority but the calling context might not
659 	 * be.  We need to be at high priority to avoid getting
660 	 * context switched out for too long and the EC giving up on
661 	 * the transfer.
662 	 */
663 	queue_work(system_highpri_wq, &params.work);
664 	flush_work(&params.work);
665 	destroy_work_on_stack(&params.work);
666 
667 	return params.ret;
668 }
669 
670 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
671 				struct cros_ec_command *ec_msg)
672 {
673 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
674 }
675 
676 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
677 				struct cros_ec_command *ec_msg)
678 {
679 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
680 }
681 
682 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
683 {
684 	struct device_node *np = dev->of_node;
685 	u32 val;
686 	int ret;
687 
688 	ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
689 	if (!ret)
690 		ec_spi->start_of_msg_delay = val;
691 
692 	ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
693 	if (!ret)
694 		ec_spi->end_of_msg_delay = val;
695 }
696 
697 static int cros_ec_spi_probe(struct spi_device *spi)
698 {
699 	struct device *dev = &spi->dev;
700 	struct cros_ec_device *ec_dev;
701 	struct cros_ec_spi *ec_spi;
702 	int err;
703 
704 	spi->bits_per_word = 8;
705 	spi->mode = SPI_MODE_0;
706 	err = spi_setup(spi);
707 	if (err < 0)
708 		return err;
709 
710 	ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
711 	if (ec_spi == NULL)
712 		return -ENOMEM;
713 	ec_spi->spi = spi;
714 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
715 	if (!ec_dev)
716 		return -ENOMEM;
717 
718 	/* Check for any DT properties */
719 	cros_ec_spi_dt_probe(ec_spi, dev);
720 
721 	spi_set_drvdata(spi, ec_dev);
722 	ec_dev->dev = dev;
723 	ec_dev->priv = ec_spi;
724 	ec_dev->irq = spi->irq;
725 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
726 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
727 	ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
728 	ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
729 			   sizeof(struct ec_host_response) +
730 			   sizeof(struct ec_response_get_protocol_info);
731 	ec_dev->dout_size = sizeof(struct ec_host_request);
732 
733 	ec_spi->last_transfer_ns = ktime_get_ns();
734 
735 	err = cros_ec_register(ec_dev);
736 	if (err) {
737 		dev_err(dev, "cannot register EC\n");
738 		return err;
739 	}
740 
741 	device_init_wakeup(&spi->dev, true);
742 
743 	return 0;
744 }
745 
746 #ifdef CONFIG_PM_SLEEP
747 static int cros_ec_spi_suspend(struct device *dev)
748 {
749 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
750 
751 	return cros_ec_suspend(ec_dev);
752 }
753 
754 static int cros_ec_spi_resume(struct device *dev)
755 {
756 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
757 
758 	return cros_ec_resume(ec_dev);
759 }
760 #endif
761 
762 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
763 			 cros_ec_spi_resume);
764 
765 static const struct of_device_id cros_ec_spi_of_match[] = {
766 	{ .compatible = "google,cros-ec-spi", },
767 	{ /* sentinel */ },
768 };
769 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
770 
771 static const struct spi_device_id cros_ec_spi_id[] = {
772 	{ "cros-ec-spi", 0 },
773 	{ }
774 };
775 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
776 
777 static struct spi_driver cros_ec_driver_spi = {
778 	.driver	= {
779 		.name	= "cros-ec-spi",
780 		.of_match_table = of_match_ptr(cros_ec_spi_of_match),
781 		.pm	= &cros_ec_spi_pm_ops,
782 	},
783 	.probe		= cros_ec_spi_probe,
784 	.id_table	= cros_ec_spi_id,
785 };
786 
787 module_spi_driver(cros_ec_driver_spi);
788 
789 MODULE_LICENSE("GPL v2");
790 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");
791