1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_data/cros_ec_commands.h>
11 #include <linux/platform_data/cros_ec_proto.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <uapi/linux/sched/types.h>
16 
17 #include "cros_ec.h"
18 
19 /* The header byte, which follows the preamble */
20 #define EC_MSG_HEADER			0xec
21 
22 /*
23  * Number of EC preamble bytes we read at a time. Since it takes
24  * about 400-500us for the EC to respond there is not a lot of
25  * point in tuning this. If the EC could respond faster then
26  * we could increase this so that might expect the preamble and
27  * message to occur in a single transaction. However, the maximum
28  * SPI transfer size is 256 bytes, so at 5MHz we need a response
29  * time of perhaps <320us (200 bytes / 1600 bits).
30  */
31 #define EC_MSG_PREAMBLE_COUNT		32
32 
33 /*
34  * Allow for a long time for the EC to respond.  We support i2c
35  * tunneling and support fairly long messages for the tunnel (249
36  * bytes long at the moment).  If we're talking to a 100 kHz device
37  * on the other end and need to transfer ~256 bytes, then we need:
38  *  10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
39  *
40  * We'll wait 8 times that to handle clock stretching and other
41  * paranoia.  Note that some battery gas gauge ICs claim to have a
42  * clock stretch of 144ms in rare situations.  That's incentive for
43  * not directly passing i2c through, but it's too late for that for
44  * existing hardware.
45  *
46  * It's pretty unlikely that we'll really see a 249 byte tunnel in
47  * anything other than testing.  If this was more common we might
48  * consider having slow commands like this require a GET_STATUS
49  * wait loop.  The 'flash write' command would be another candidate
50  * for this, clocking in at 2-3ms.
51  */
52 #define EC_MSG_DEADLINE_MS		200
53 
54 /*
55   * Time between raising the SPI chip select (for the end of a
56   * transaction) and dropping it again (for the next transaction).
57   * If we go too fast, the EC will miss the transaction. We know that we
58   * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
59   * safe.
60   */
61 #define EC_SPI_RECOVERY_TIME_NS	(200 * 1000)
62 
63 /**
64  * struct cros_ec_spi - information about a SPI-connected EC
65  *
66  * @spi: SPI device we are connected to
67  * @last_transfer_ns: time that we last finished a transfer.
68  * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69  *      is sent when we want to turn on CS at the start of a transaction.
70  * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
71  *      is sent when we want to turn off CS at the end of a transaction.
72  * @high_pri_worker: Used to schedule high priority work.
73  */
74 struct cros_ec_spi {
75 	struct spi_device *spi;
76 	s64 last_transfer_ns;
77 	unsigned int start_of_msg_delay;
78 	unsigned int end_of_msg_delay;
79 	struct kthread_worker *high_pri_worker;
80 };
81 
82 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
83 				  struct cros_ec_command *ec_msg);
84 
85 /**
86  * struct cros_ec_xfer_work_params - params for our high priority workers
87  *
88  * @work: The work_struct needed to queue work
89  * @fn: The function to use to transfer
90  * @ec_dev: ChromeOS EC device
91  * @ec_msg: Message to transfer
92  * @ret: The return value of the function
93  */
94 
95 struct cros_ec_xfer_work_params {
96 	struct kthread_work work;
97 	cros_ec_xfer_fn_t fn;
98 	struct cros_ec_device *ec_dev;
99 	struct cros_ec_command *ec_msg;
100 	int ret;
101 };
102 
103 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
104 			 int len)
105 {
106 #ifdef DEBUG
107 	int i;
108 
109 	dev_dbg(dev, "%s: ", name);
110 	for (i = 0; i < len; i++)
111 		pr_cont(" %02x", ptr[i]);
112 
113 	pr_cont("\n");
114 #endif
115 }
116 
117 static int terminate_request(struct cros_ec_device *ec_dev)
118 {
119 	struct cros_ec_spi *ec_spi = ec_dev->priv;
120 	struct spi_message msg;
121 	struct spi_transfer trans;
122 	int ret;
123 
124 	/*
125 	 * Turn off CS, possibly adding a delay to ensure the rising edge
126 	 * doesn't come too soon after the end of the data.
127 	 */
128 	spi_message_init(&msg);
129 	memset(&trans, 0, sizeof(trans));
130 	trans.delay.value = ec_spi->end_of_msg_delay;
131 	trans.delay.unit = SPI_DELAY_UNIT_USECS;
132 	spi_message_add_tail(&trans, &msg);
133 
134 	ret = spi_sync_locked(ec_spi->spi, &msg);
135 
136 	/* Reset end-of-response timer */
137 	ec_spi->last_transfer_ns = ktime_get_ns();
138 	if (ret < 0) {
139 		dev_err(ec_dev->dev,
140 			"cs-deassert spi transfer failed: %d\n",
141 			ret);
142 	}
143 
144 	return ret;
145 }
146 
147 /**
148  * receive_n_bytes - receive n bytes from the EC.
149  *
150  * Assumes buf is a pointer into the ec_dev->din buffer
151  */
152 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
153 {
154 	struct cros_ec_spi *ec_spi = ec_dev->priv;
155 	struct spi_transfer trans;
156 	struct spi_message msg;
157 	int ret;
158 
159 	BUG_ON(buf - ec_dev->din + n > ec_dev->din_size);
160 
161 	memset(&trans, 0, sizeof(trans));
162 	trans.cs_change = 1;
163 	trans.rx_buf = buf;
164 	trans.len = n;
165 
166 	spi_message_init(&msg);
167 	spi_message_add_tail(&trans, &msg);
168 	ret = spi_sync_locked(ec_spi->spi, &msg);
169 	if (ret < 0)
170 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
171 
172 	return ret;
173 }
174 
175 /**
176  * cros_ec_spi_receive_packet - Receive a packet from the EC.
177  *
178  * This function has two phases: reading the preamble bytes (since if we read
179  * data from the EC before it is ready to send, we just get preamble) and
180  * reading the actual message.
181  *
182  * The received data is placed into ec_dev->din.
183  *
184  * @ec_dev: ChromeOS EC device
185  * @need_len: Number of message bytes we need to read
186  */
187 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
188 				      int need_len)
189 {
190 	struct ec_host_response *response;
191 	u8 *ptr, *end;
192 	int ret;
193 	unsigned long deadline;
194 	int todo;
195 
196 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
197 
198 	/* Receive data until we see the header byte */
199 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
200 	while (true) {
201 		unsigned long start_jiffies = jiffies;
202 
203 		ret = receive_n_bytes(ec_dev,
204 				      ec_dev->din,
205 				      EC_MSG_PREAMBLE_COUNT);
206 		if (ret < 0)
207 			return ret;
208 
209 		ptr = ec_dev->din;
210 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
211 			if (*ptr == EC_SPI_FRAME_START) {
212 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
213 					ptr - ec_dev->din);
214 				break;
215 			}
216 		}
217 		if (ptr != end)
218 			break;
219 
220 		/*
221 		 * Use the time at the start of the loop as a timeout.  This
222 		 * gives us one last shot at getting the transfer and is useful
223 		 * in case we got context switched out for a while.
224 		 */
225 		if (time_after(start_jiffies, deadline)) {
226 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
227 			return -ETIMEDOUT;
228 		}
229 	}
230 
231 	/*
232 	 * ptr now points to the header byte. Copy any valid data to the
233 	 * start of our buffer
234 	 */
235 	todo = end - ++ptr;
236 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
237 	todo = min(todo, need_len);
238 	memmove(ec_dev->din, ptr, todo);
239 	ptr = ec_dev->din + todo;
240 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
241 		need_len, todo);
242 	need_len -= todo;
243 
244 	/* If the entire response struct wasn't read, get the rest of it. */
245 	if (todo < sizeof(*response)) {
246 		ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
247 		if (ret < 0)
248 			return -EBADMSG;
249 		ptr += (sizeof(*response) - todo);
250 		todo = sizeof(*response);
251 	}
252 
253 	response = (struct ec_host_response *)ec_dev->din;
254 
255 	/* Abort if data_len is too large. */
256 	if (response->data_len > ec_dev->din_size)
257 		return -EMSGSIZE;
258 
259 	/* Receive data until we have it all */
260 	while (need_len > 0) {
261 		/*
262 		 * We can't support transfers larger than the SPI FIFO size
263 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
264 		 * for Exynos. We need a way of asking SPI driver for
265 		 * maximum-supported transfer size.
266 		 */
267 		todo = min(need_len, 256);
268 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
269 			todo, need_len, ptr - ec_dev->din);
270 
271 		ret = receive_n_bytes(ec_dev, ptr, todo);
272 		if (ret < 0)
273 			return ret;
274 
275 		ptr += todo;
276 		need_len -= todo;
277 	}
278 
279 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
280 
281 	return 0;
282 }
283 
284 /**
285  * cros_ec_spi_receive_response - Receive a response from the EC.
286  *
287  * This function has two phases: reading the preamble bytes (since if we read
288  * data from the EC before it is ready to send, we just get preamble) and
289  * reading the actual message.
290  *
291  * The received data is placed into ec_dev->din.
292  *
293  * @ec_dev: ChromeOS EC device
294  * @need_len: Number of message bytes we need to read
295  */
296 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
297 					int need_len)
298 {
299 	u8 *ptr, *end;
300 	int ret;
301 	unsigned long deadline;
302 	int todo;
303 
304 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
305 
306 	/* Receive data until we see the header byte */
307 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
308 	while (true) {
309 		unsigned long start_jiffies = jiffies;
310 
311 		ret = receive_n_bytes(ec_dev,
312 				      ec_dev->din,
313 				      EC_MSG_PREAMBLE_COUNT);
314 		if (ret < 0)
315 			return ret;
316 
317 		ptr = ec_dev->din;
318 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
319 			if (*ptr == EC_SPI_FRAME_START) {
320 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
321 					ptr - ec_dev->din);
322 				break;
323 			}
324 		}
325 		if (ptr != end)
326 			break;
327 
328 		/*
329 		 * Use the time at the start of the loop as a timeout.  This
330 		 * gives us one last shot at getting the transfer and is useful
331 		 * in case we got context switched out for a while.
332 		 */
333 		if (time_after(start_jiffies, deadline)) {
334 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
335 			return -ETIMEDOUT;
336 		}
337 	}
338 
339 	/*
340 	 * ptr now points to the header byte. Copy any valid data to the
341 	 * start of our buffer
342 	 */
343 	todo = end - ++ptr;
344 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
345 	todo = min(todo, need_len);
346 	memmove(ec_dev->din, ptr, todo);
347 	ptr = ec_dev->din + todo;
348 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
349 		 need_len, todo);
350 	need_len -= todo;
351 
352 	/* Receive data until we have it all */
353 	while (need_len > 0) {
354 		/*
355 		 * We can't support transfers larger than the SPI FIFO size
356 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
357 		 * for Exynos. We need a way of asking SPI driver for
358 		 * maximum-supported transfer size.
359 		 */
360 		todo = min(need_len, 256);
361 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
362 			todo, need_len, ptr - ec_dev->din);
363 
364 		ret = receive_n_bytes(ec_dev, ptr, todo);
365 		if (ret < 0)
366 			return ret;
367 
368 		debug_packet(ec_dev->dev, "interim", ptr, todo);
369 		ptr += todo;
370 		need_len -= todo;
371 	}
372 
373 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
374 
375 	return 0;
376 }
377 
378 /**
379  * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
380  *
381  * @ec_dev: ChromeOS EC device
382  * @ec_msg: Message to transfer
383  */
384 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
385 				   struct cros_ec_command *ec_msg)
386 {
387 	struct ec_host_response *response;
388 	struct cros_ec_spi *ec_spi = ec_dev->priv;
389 	struct spi_transfer trans, trans_delay;
390 	struct spi_message msg;
391 	int i, len;
392 	u8 *ptr;
393 	u8 *rx_buf;
394 	u8 sum;
395 	u8 rx_byte;
396 	int ret = 0, final_ret;
397 	unsigned long delay;
398 
399 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
400 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
401 
402 	/* If it's too soon to do another transaction, wait */
403 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
404 	if (delay < EC_SPI_RECOVERY_TIME_NS)
405 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
406 
407 	rx_buf = kzalloc(len, GFP_KERNEL);
408 	if (!rx_buf)
409 		return -ENOMEM;
410 
411 	spi_bus_lock(ec_spi->spi->master);
412 
413 	/*
414 	 * Leave a gap between CS assertion and clocking of data to allow the
415 	 * EC time to wakeup.
416 	 */
417 	spi_message_init(&msg);
418 	if (ec_spi->start_of_msg_delay) {
419 		memset(&trans_delay, 0, sizeof(trans_delay));
420 		trans_delay.delay.value = ec_spi->start_of_msg_delay;
421 		trans_delay.delay.unit = SPI_DELAY_UNIT_USECS;
422 		spi_message_add_tail(&trans_delay, &msg);
423 	}
424 
425 	/* Transmit phase - send our message */
426 	memset(&trans, 0, sizeof(trans));
427 	trans.tx_buf = ec_dev->dout;
428 	trans.rx_buf = rx_buf;
429 	trans.len = len;
430 	trans.cs_change = 1;
431 	spi_message_add_tail(&trans, &msg);
432 	ret = spi_sync_locked(ec_spi->spi, &msg);
433 
434 	/* Get the response */
435 	if (!ret) {
436 		/* Verify that EC can process command */
437 		for (i = 0; i < len; i++) {
438 			rx_byte = rx_buf[i];
439 			/*
440 			 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
441 			 * markers are all signs that the EC didn't fully
442 			 * receive our command. e.g., if the EC is flashing
443 			 * itself, it can't respond to any commands and instead
444 			 * clocks out EC_SPI_PAST_END from its SPI hardware
445 			 * buffer. Similar occurrences can happen if the AP is
446 			 * too slow to clock out data after asserting CS -- the
447 			 * EC will abort and fill its buffer with
448 			 * EC_SPI_RX_BAD_DATA.
449 			 *
450 			 * In all cases, these errors should be safe to retry.
451 			 * Report -EAGAIN and let the caller decide what to do
452 			 * about that.
453 			 */
454 			if (rx_byte == EC_SPI_PAST_END  ||
455 			    rx_byte == EC_SPI_RX_BAD_DATA ||
456 			    rx_byte == EC_SPI_NOT_READY) {
457 				ret = -EAGAIN;
458 				break;
459 			}
460 		}
461 	}
462 
463 	if (!ret)
464 		ret = cros_ec_spi_receive_packet(ec_dev,
465 				ec_msg->insize + sizeof(*response));
466 	else if (ret != -EAGAIN)
467 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
468 
469 	final_ret = terminate_request(ec_dev);
470 
471 	spi_bus_unlock(ec_spi->spi->master);
472 
473 	if (!ret)
474 		ret = final_ret;
475 	if (ret < 0)
476 		goto exit;
477 
478 	ptr = ec_dev->din;
479 
480 	/* check response error code */
481 	response = (struct ec_host_response *)ptr;
482 	ec_msg->result = response->result;
483 
484 	ret = cros_ec_check_result(ec_dev, ec_msg);
485 	if (ret)
486 		goto exit;
487 
488 	len = response->data_len;
489 	sum = 0;
490 	if (len > ec_msg->insize) {
491 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
492 			len, ec_msg->insize);
493 		ret = -EMSGSIZE;
494 		goto exit;
495 	}
496 
497 	for (i = 0; i < sizeof(*response); i++)
498 		sum += ptr[i];
499 
500 	/* copy response packet payload and compute checksum */
501 	memcpy(ec_msg->data, ptr + sizeof(*response), len);
502 	for (i = 0; i < len; i++)
503 		sum += ec_msg->data[i];
504 
505 	if (sum) {
506 		dev_err(ec_dev->dev,
507 			"bad packet checksum, calculated %x\n",
508 			sum);
509 		ret = -EBADMSG;
510 		goto exit;
511 	}
512 
513 	ret = len;
514 exit:
515 	kfree(rx_buf);
516 	if (ec_msg->command == EC_CMD_REBOOT_EC)
517 		msleep(EC_REBOOT_DELAY_MS);
518 
519 	return ret;
520 }
521 
522 /**
523  * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
524  *
525  * @ec_dev: ChromeOS EC device
526  * @ec_msg: Message to transfer
527  */
528 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
529 				   struct cros_ec_command *ec_msg)
530 {
531 	struct cros_ec_spi *ec_spi = ec_dev->priv;
532 	struct spi_transfer trans;
533 	struct spi_message msg;
534 	int i, len;
535 	u8 *ptr;
536 	u8 *rx_buf;
537 	u8 rx_byte;
538 	int sum;
539 	int ret = 0, final_ret;
540 	unsigned long delay;
541 
542 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
543 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
544 
545 	/* If it's too soon to do another transaction, wait */
546 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
547 	if (delay < EC_SPI_RECOVERY_TIME_NS)
548 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
549 
550 	rx_buf = kzalloc(len, GFP_KERNEL);
551 	if (!rx_buf)
552 		return -ENOMEM;
553 
554 	spi_bus_lock(ec_spi->spi->master);
555 
556 	/* Transmit phase - send our message */
557 	debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
558 	memset(&trans, 0, sizeof(trans));
559 	trans.tx_buf = ec_dev->dout;
560 	trans.rx_buf = rx_buf;
561 	trans.len = len;
562 	trans.cs_change = 1;
563 	spi_message_init(&msg);
564 	spi_message_add_tail(&trans, &msg);
565 	ret = spi_sync_locked(ec_spi->spi, &msg);
566 
567 	/* Get the response */
568 	if (!ret) {
569 		/* Verify that EC can process command */
570 		for (i = 0; i < len; i++) {
571 			rx_byte = rx_buf[i];
572 			/* See comments in cros_ec_pkt_xfer_spi() */
573 			if (rx_byte == EC_SPI_PAST_END  ||
574 			    rx_byte == EC_SPI_RX_BAD_DATA ||
575 			    rx_byte == EC_SPI_NOT_READY) {
576 				ret = -EAGAIN;
577 				break;
578 			}
579 		}
580 	}
581 
582 	if (!ret)
583 		ret = cros_ec_spi_receive_response(ec_dev,
584 				ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
585 	else if (ret != -EAGAIN)
586 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
587 
588 	final_ret = terminate_request(ec_dev);
589 
590 	spi_bus_unlock(ec_spi->spi->master);
591 
592 	if (!ret)
593 		ret = final_ret;
594 	if (ret < 0)
595 		goto exit;
596 
597 	ptr = ec_dev->din;
598 
599 	/* check response error code */
600 	ec_msg->result = ptr[0];
601 	ret = cros_ec_check_result(ec_dev, ec_msg);
602 	if (ret)
603 		goto exit;
604 
605 	len = ptr[1];
606 	sum = ptr[0] + ptr[1];
607 	if (len > ec_msg->insize) {
608 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
609 			len, ec_msg->insize);
610 		ret = -ENOSPC;
611 		goto exit;
612 	}
613 
614 	/* copy response packet payload and compute checksum */
615 	for (i = 0; i < len; i++) {
616 		sum += ptr[i + 2];
617 		if (ec_msg->insize)
618 			ec_msg->data[i] = ptr[i + 2];
619 	}
620 	sum &= 0xff;
621 
622 	debug_packet(ec_dev->dev, "in", ptr, len + 3);
623 
624 	if (sum != ptr[len + 2]) {
625 		dev_err(ec_dev->dev,
626 			"bad packet checksum, expected %02x, got %02x\n",
627 			sum, ptr[len + 2]);
628 		ret = -EBADMSG;
629 		goto exit;
630 	}
631 
632 	ret = len;
633 exit:
634 	kfree(rx_buf);
635 	if (ec_msg->command == EC_CMD_REBOOT_EC)
636 		msleep(EC_REBOOT_DELAY_MS);
637 
638 	return ret;
639 }
640 
641 static void cros_ec_xfer_high_pri_work(struct kthread_work *work)
642 {
643 	struct cros_ec_xfer_work_params *params;
644 
645 	params = container_of(work, struct cros_ec_xfer_work_params, work);
646 	params->ret = params->fn(params->ec_dev, params->ec_msg);
647 }
648 
649 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
650 				 struct cros_ec_command *ec_msg,
651 				 cros_ec_xfer_fn_t fn)
652 {
653 	struct cros_ec_spi *ec_spi = ec_dev->priv;
654 	struct cros_ec_xfer_work_params params = {
655 		.work = KTHREAD_WORK_INIT(params.work,
656 					  cros_ec_xfer_high_pri_work),
657 		.ec_dev = ec_dev,
658 		.ec_msg = ec_msg,
659 		.fn = fn,
660 	};
661 
662 	/*
663 	 * This looks a bit ridiculous.  Why do the work on a
664 	 * different thread if we're just going to block waiting for
665 	 * the thread to finish?  The key here is that the thread is
666 	 * running at high priority but the calling context might not
667 	 * be.  We need to be at high priority to avoid getting
668 	 * context switched out for too long and the EC giving up on
669 	 * the transfer.
670 	 */
671 	kthread_queue_work(ec_spi->high_pri_worker, &params.work);
672 	kthread_flush_work(&params.work);
673 
674 	return params.ret;
675 }
676 
677 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
678 				struct cros_ec_command *ec_msg)
679 {
680 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
681 }
682 
683 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
684 				struct cros_ec_command *ec_msg)
685 {
686 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
687 }
688 
689 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
690 {
691 	struct device_node *np = dev->of_node;
692 	u32 val;
693 	int ret;
694 
695 	ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
696 	if (!ret)
697 		ec_spi->start_of_msg_delay = val;
698 
699 	ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
700 	if (!ret)
701 		ec_spi->end_of_msg_delay = val;
702 }
703 
704 static void cros_ec_spi_high_pri_release(void *worker)
705 {
706 	kthread_destroy_worker(worker);
707 }
708 
709 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev,
710 					   struct cros_ec_spi *ec_spi)
711 {
712 	struct sched_param sched_priority = {
713 		.sched_priority = MAX_RT_PRIO / 2,
714 	};
715 	int err;
716 
717 	ec_spi->high_pri_worker =
718 		kthread_create_worker(0, "cros_ec_spi_high_pri");
719 
720 	if (IS_ERR(ec_spi->high_pri_worker)) {
721 		err = PTR_ERR(ec_spi->high_pri_worker);
722 		dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err);
723 		return err;
724 	}
725 
726 	err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release,
727 				       ec_spi->high_pri_worker);
728 	if (err)
729 		return err;
730 
731 	err = sched_setscheduler_nocheck(ec_spi->high_pri_worker->task,
732 					 SCHED_FIFO, &sched_priority);
733 	if (err)
734 		dev_err(dev, "Can't set cros_ec high pri priority: %d\n", err);
735 	return err;
736 }
737 
738 static int cros_ec_spi_probe(struct spi_device *spi)
739 {
740 	struct device *dev = &spi->dev;
741 	struct cros_ec_device *ec_dev;
742 	struct cros_ec_spi *ec_spi;
743 	int err;
744 
745 	spi->bits_per_word = 8;
746 	spi->mode = SPI_MODE_0;
747 	spi->rt = true;
748 	err = spi_setup(spi);
749 	if (err < 0)
750 		return err;
751 
752 	ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
753 	if (ec_spi == NULL)
754 		return -ENOMEM;
755 	ec_spi->spi = spi;
756 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
757 	if (!ec_dev)
758 		return -ENOMEM;
759 
760 	/* Check for any DT properties */
761 	cros_ec_spi_dt_probe(ec_spi, dev);
762 
763 	spi_set_drvdata(spi, ec_dev);
764 	ec_dev->dev = dev;
765 	ec_dev->priv = ec_spi;
766 	ec_dev->irq = spi->irq;
767 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
768 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
769 	ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
770 	ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
771 			   sizeof(struct ec_host_response) +
772 			   sizeof(struct ec_response_get_protocol_info);
773 	ec_dev->dout_size = sizeof(struct ec_host_request);
774 
775 	ec_spi->last_transfer_ns = ktime_get_ns();
776 
777 	err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi);
778 	if (err)
779 		return err;
780 
781 	err = cros_ec_register(ec_dev);
782 	if (err) {
783 		dev_err(dev, "cannot register EC\n");
784 		return err;
785 	}
786 
787 	device_init_wakeup(&spi->dev, true);
788 
789 	return 0;
790 }
791 
792 static int cros_ec_spi_remove(struct spi_device *spi)
793 {
794 	struct cros_ec_device *ec_dev = spi_get_drvdata(spi);
795 
796 	return cros_ec_unregister(ec_dev);
797 }
798 
799 #ifdef CONFIG_PM_SLEEP
800 static int cros_ec_spi_suspend(struct device *dev)
801 {
802 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
803 
804 	return cros_ec_suspend(ec_dev);
805 }
806 
807 static int cros_ec_spi_resume(struct device *dev)
808 {
809 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
810 
811 	return cros_ec_resume(ec_dev);
812 }
813 #endif
814 
815 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
816 			 cros_ec_spi_resume);
817 
818 static const struct of_device_id cros_ec_spi_of_match[] = {
819 	{ .compatible = "google,cros-ec-spi", },
820 	{ /* sentinel */ },
821 };
822 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
823 
824 static const struct spi_device_id cros_ec_spi_id[] = {
825 	{ "cros-ec-spi", 0 },
826 	{ }
827 };
828 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
829 
830 static struct spi_driver cros_ec_driver_spi = {
831 	.driver	= {
832 		.name	= "cros-ec-spi",
833 		.of_match_table = cros_ec_spi_of_match,
834 		.pm	= &cros_ec_spi_pm_ops,
835 	},
836 	.probe		= cros_ec_spi_probe,
837 	.remove		= cros_ec_spi_remove,
838 	.id_table	= cros_ec_spi_id,
839 };
840 
841 module_spi_driver(cros_ec_driver_spi);
842 
843 MODULE_LICENSE("GPL v2");
844 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");
845