1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Chrome OS EC Sensor hub FIFO. 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/iio/iio.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/platform_data/cros_ec_commands.h> 14 #include <linux/platform_data/cros_ec_proto.h> 15 #include <linux/platform_data/cros_ec_sensorhub.h> 16 #include <linux/platform_device.h> 17 #include <linux/sort.h> 18 #include <linux/slab.h> 19 20 /* Precision of fixed point for the m values from the filter */ 21 #define M_PRECISION BIT(23) 22 23 /* Only activate the filter once we have at least this many elements. */ 24 #define TS_HISTORY_THRESHOLD 8 25 26 /* 27 * If we don't have any history entries for this long, empty the filter to 28 * make sure there are no big discontinuities. 29 */ 30 #define TS_HISTORY_BORED_US 500000 31 32 /* To measure by how much the filter is overshooting, if it happens. */ 33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100 34 35 static inline int 36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub, 37 struct cros_ec_sensors_ring_sample *sample) 38 { 39 cros_ec_sensorhub_push_data_cb_t cb; 40 int id = sample->sensor_id; 41 struct iio_dev *indio_dev; 42 43 if (id >= sensorhub->sensor_num) 44 return -EINVAL; 45 46 cb = sensorhub->push_data[id].push_data_cb; 47 if (!cb) 48 return 0; 49 50 indio_dev = sensorhub->push_data[id].indio_dev; 51 52 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 53 return 0; 54 55 return cb(indio_dev, sample->vector, sample->timestamp); 56 } 57 58 /** 59 * cros_ec_sensorhub_register_push_data() - register the callback to the hub. 60 * 61 * @sensorhub : Sensor Hub object 62 * @sensor_num : The sensor the caller is interested in. 63 * @indio_dev : The iio device to use when a sample arrives. 64 * @cb : The callback to call when a sample arrives. 65 * 66 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events 67 * from the EC. 68 * 69 * Return: 0 when callback is registered. 70 * EINVAL is the sensor number is invalid or the slot already used. 71 */ 72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub, 73 u8 sensor_num, 74 struct iio_dev *indio_dev, 75 cros_ec_sensorhub_push_data_cb_t cb) 76 { 77 if (sensor_num >= sensorhub->sensor_num) 78 return -EINVAL; 79 if (sensorhub->push_data[sensor_num].indio_dev) 80 return -EINVAL; 81 82 sensorhub->push_data[sensor_num].indio_dev = indio_dev; 83 sensorhub->push_data[sensor_num].push_data_cb = cb; 84 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data); 88 89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub, 90 u8 sensor_num) 91 { 92 sensorhub->push_data[sensor_num].indio_dev = NULL; 93 sensorhub->push_data[sensor_num].push_data_cb = NULL; 94 } 95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data); 96 97 /** 98 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation 99 * for FIFO events. 100 * @sensorhub: Sensor Hub object 101 * @on: true when events are requested. 102 * 103 * To be called before sleeping or when noone is listening. 104 * Return: 0 on success, or an error when we can not communicate with the EC. 105 * 106 */ 107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, 108 bool on) 109 { 110 int ret, i; 111 112 mutex_lock(&sensorhub->cmd_lock); 113 if (sensorhub->tight_timestamps) 114 for (i = 0; i < sensorhub->sensor_num; i++) 115 sensorhub->batch_state[i].last_len = 0; 116 117 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE; 118 sensorhub->params->fifo_int_enable.enable = on; 119 120 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense); 121 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense); 122 123 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg); 124 mutex_unlock(&sensorhub->cmd_lock); 125 126 /* We expect to receive a payload of 4 bytes, ignore. */ 127 if (ret > 0) 128 ret = 0; 129 130 return ret; 131 } 132 133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2) 134 { 135 s64 v1 = *(s64 *)pv1; 136 s64 v2 = *(s64 *)pv2; 137 138 if (v1 > v2) 139 return 1; 140 else if (v1 < v2) 141 return -1; 142 else 143 return 0; 144 } 145 146 /* 147 * cros_ec_sensor_ring_median: Gets median of an array of numbers 148 * 149 * For now it's implemented using an inefficient > O(n) sort then return 150 * the middle element. A more optimal method would be something like 151 * quickselect, but given that n = 64 we can probably live with it in the 152 * name of clarity. 153 * 154 * Warning: the input array gets modified (sorted)! 155 */ 156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) 157 { 158 sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL); 159 return array[length / 2]; 160 } 161 162 /* 163 * IRQ Timestamp Filtering 164 * 165 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event 166 * we have to calculate it's timestamp in the AP timebase. There are 3 time 167 * points: 168 * a - EC timebase, sensor event 169 * b - EC timebase, IRQ 170 * c - AP timebase, IRQ 171 * a' - what we want: sensor even in AP timebase 172 * 173 * While a and b are recorded at accurate times (due to the EC real time 174 * nature); c is pretty untrustworthy, even though it's recorded the 175 * first thing in ec_irq_handler(). There is a very good change we'll get 176 * added lantency due to: 177 * other irqs 178 * ddrfreq 179 * cpuidle 180 * 181 * Normally a' = c - b + a, but if we do that naive math any jitter in c 182 * will get coupled in a', which we don't want. We want a function 183 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c. 184 * 185 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis. 186 * The slope of the line won't be exactly 1, there will be some clock drift 187 * between the 2 chips for various reasons (mechanical stress, temperature, 188 * voltage). We need to extrapolate values for a future x, without trusting 189 * recent y values too much. 190 * 191 * We use a median filter for the slope, then another median filter for the 192 * y-intercept to calculate this function: 193 * dx[n] = x[n-1] - x[n] 194 * dy[n] = x[n-1] - x[n] 195 * m[n] = dy[n] / dx[n] 196 * median_m = median(m[n-k:n]) 197 * error[i] = y[n-i] - median_m * x[n-i] 198 * median_error = median(error[:k]) 199 * predicted_y = median_m * x + median_error 200 * 201 * Implementation differences from above: 202 * - Redefined y to be actually c - b, this gives us a lot more precision 203 * to do the math. (c-b)/b variations are more obvious than c/b variations. 204 * - Since we don't have floating point, any operations involving slope are 205 * done using fixed point math (*M_PRECISION) 206 * - Since x and y grow with time, we keep zeroing the graph (relative to 207 * the last sample), this way math involving *x[n-i] will not overflow 208 * - EC timestamps are kept in us, it improves the slope calculation precision 209 */ 210 211 /** 212 * cros_ec_sensor_ring_ts_filter_update() - Update filter history. 213 * 214 * @state: Filter information. 215 * @b: IRQ timestamp, EC timebase (us) 216 * @c: IRQ timestamp, AP timebase (ns) 217 * 218 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter 219 * history. 220 */ 221 static void 222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state 223 *state, 224 s64 b, s64 c) 225 { 226 s64 x, y; 227 s64 dx, dy; 228 s64 m; /* stored as *M_PRECISION */ 229 s64 *m_history_copy = state->temp_buf; 230 s64 *error = state->temp_buf; 231 int i; 232 233 /* we trust b the most, that'll be our independent variable */ 234 x = b; 235 /* y is the offset between AP and EC times, in ns */ 236 y = c - b * 1000; 237 238 dx = (state->x_history[0] + state->x_offset) - x; 239 if (dx == 0) 240 return; /* we already have this irq in the history */ 241 dy = (state->y_history[0] + state->y_offset) - y; 242 m = div64_s64(dy * M_PRECISION, dx); 243 244 /* Empty filter if we haven't seen any action in a while. */ 245 if (-dx > TS_HISTORY_BORED_US) 246 state->history_len = 0; 247 248 /* Move everything over, also update offset to all absolute coords .*/ 249 for (i = state->history_len - 1; i >= 1; i--) { 250 state->x_history[i] = state->x_history[i - 1] + dx; 251 state->y_history[i] = state->y_history[i - 1] + dy; 252 253 state->m_history[i] = state->m_history[i - 1]; 254 /* 255 * Also use the same loop to copy m_history for future 256 * median extraction. 257 */ 258 m_history_copy[i] = state->m_history[i - 1]; 259 } 260 261 /* Store the x and y, but remember offset is actually last sample. */ 262 state->x_offset = x; 263 state->y_offset = y; 264 state->x_history[0] = 0; 265 state->y_history[0] = 0; 266 267 state->m_history[0] = m; 268 m_history_copy[0] = m; 269 270 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE) 271 state->history_len++; 272 273 /* Precalculate things for the filter. */ 274 if (state->history_len > TS_HISTORY_THRESHOLD) { 275 state->median_m = 276 cros_ec_sensor_ring_median(m_history_copy, 277 state->history_len - 1); 278 279 /* 280 * Calculate y-intercepts as if m_median is the slope and 281 * points in the history are on the line. median_error will 282 * still be in the offset coordinate system. 283 */ 284 for (i = 0; i < state->history_len; i++) 285 error[i] = state->y_history[i] - 286 div_s64(state->median_m * state->x_history[i], 287 M_PRECISION); 288 state->median_error = 289 cros_ec_sensor_ring_median(error, state->history_len); 290 } else { 291 state->median_m = 0; 292 state->median_error = 0; 293 } 294 } 295 296 /** 297 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP 298 * timebase 299 * 300 * @state: filter information. 301 * @x: any ec timestamp (us): 302 * 303 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase 304 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ 305 * should have happened on the AP, with low jitter 306 * 307 * Note: The filter will only activate once state->history_len goes 308 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a 309 * transform. 310 * 311 * How to derive the formula, starting from: 312 * f(x) = median_m * x + median_error 313 * That's the calculated AP - EC offset (at the x point in time) 314 * Undo the coordinate system transform: 315 * f(x) = median_m * (x - x_offset) + median_error + y_offset 316 * Remember to undo the "y = c - b * 1000" modification: 317 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000 318 * 319 * Return: timestamp in AP timebase (ns) 320 */ 321 static s64 322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state, 323 s64 x) 324 { 325 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION) 326 + state->median_error + state->y_offset + x * 1000; 327 } 328 329 /* 330 * Since a and b were originally 32 bit values from the EC, 331 * they overflow relatively often, casting is not enough, so we need to 332 * add an offset. 333 */ 334 static void 335 cros_ec_sensor_ring_fix_overflow(s64 *ts, 336 const s64 overflow_period, 337 struct cros_ec_sensors_ec_overflow_state 338 *state) 339 { 340 s64 adjust; 341 342 *ts += state->offset; 343 if (abs(state->last - *ts) > (overflow_period / 2)) { 344 adjust = state->last > *ts ? overflow_period : -overflow_period; 345 state->offset += adjust; 346 *ts += adjust; 347 } 348 state->last = *ts; 349 } 350 351 static void 352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub 353 *sensorhub, 354 struct cros_ec_sensors_ring_sample 355 *sample) 356 { 357 const u8 sensor_id = sample->sensor_id; 358 359 /* If this event is earlier than one we saw before... */ 360 if (sensorhub->batch_state[sensor_id].newest_sensor_event > 361 sample->timestamp) 362 /* mark it for spreading. */ 363 sample->timestamp = 364 sensorhub->batch_state[sensor_id].last_ts; 365 else 366 sensorhub->batch_state[sensor_id].newest_sensor_event = 367 sample->timestamp; 368 } 369 370 /** 371 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event 372 * 373 * @sensorhub: Sensor Hub object. 374 * @fifo_info: FIFO information from the EC (includes b point, EC timebase). 375 * @fifo_timestamp: EC IRQ, kernel timebase (aka c). 376 * @current_timestamp: calculated event timestamp, kernel timebase (aka a'). 377 * @in: incoming FIFO event from EC (includes a point, EC timebase). 378 * @out: outgoing event to user space (includes a'). 379 * 380 * Process one EC event, add it in the ring if necessary. 381 * 382 * Return: true if out event has been populated. 383 */ 384 static bool 385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub, 386 const struct ec_response_motion_sense_fifo_info 387 *fifo_info, 388 const ktime_t fifo_timestamp, 389 ktime_t *current_timestamp, 390 struct ec_response_motion_sensor_data *in, 391 struct cros_ec_sensors_ring_sample *out) 392 { 393 const s64 now = cros_ec_get_time_ns(); 394 int axis, async_flags; 395 396 /* Do not populate the filter based on asynchronous events. */ 397 async_flags = in->flags & 398 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH); 399 400 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) { 401 s64 a = in->timestamp; 402 s64 b = fifo_info->timestamp; 403 s64 c = fifo_timestamp; 404 405 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32, 406 &sensorhub->overflow_a); 407 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32, 408 &sensorhub->overflow_b); 409 410 if (sensorhub->tight_timestamps) { 411 cros_ec_sensor_ring_ts_filter_update( 412 &sensorhub->filter, b, c); 413 *current_timestamp = cros_ec_sensor_ring_ts_filter( 414 &sensorhub->filter, a); 415 } else { 416 s64 new_timestamp; 417 418 /* 419 * Disable filtering since we might add more jitter 420 * if b is in a random point in time. 421 */ 422 new_timestamp = fifo_timestamp - 423 fifo_info->timestamp * 1000 + 424 in->timestamp * 1000; 425 /* 426 * The timestamp can be stale if we had to use the fifo 427 * info timestamp. 428 */ 429 if (new_timestamp - *current_timestamp > 0) 430 *current_timestamp = new_timestamp; 431 } 432 } 433 434 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) { 435 if (sensorhub->tight_timestamps) { 436 sensorhub->batch_state[in->sensor_num].last_len = 0; 437 sensorhub->batch_state[in->sensor_num].penul_len = 0; 438 } 439 /* 440 * ODR change is only useful for the sensor_ring, it does not 441 * convey information to clients. 442 */ 443 return false; 444 } 445 446 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 447 out->sensor_id = in->sensor_num; 448 out->timestamp = *current_timestamp; 449 out->flag = in->flags; 450 if (sensorhub->tight_timestamps) 451 sensorhub->batch_state[out->sensor_id].last_len = 0; 452 /* 453 * No other payload information provided with 454 * flush ack. 455 */ 456 return true; 457 } 458 459 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP) 460 /* If we just have a timestamp, skip this entry. */ 461 return false; 462 463 /* Regular sample */ 464 out->sensor_id = in->sensor_num; 465 if (*current_timestamp - now > 0) { 466 /* 467 * This fix is needed to overcome the timestamp filter putting 468 * events in the future. 469 */ 470 sensorhub->future_timestamp_total_ns += 471 *current_timestamp - now; 472 if (++sensorhub->future_timestamp_count == 473 FUTURE_TS_ANALYTICS_COUNT_MAX) { 474 s64 avg = div_s64(sensorhub->future_timestamp_total_ns, 475 sensorhub->future_timestamp_count); 476 dev_warn_ratelimited(sensorhub->dev, 477 "100 timestamps in the future, %lldns shaved on average\n", 478 avg); 479 sensorhub->future_timestamp_count = 0; 480 sensorhub->future_timestamp_total_ns = 0; 481 } 482 out->timestamp = now; 483 } else { 484 out->timestamp = *current_timestamp; 485 } 486 487 out->flag = in->flags; 488 for (axis = 0; axis < 3; axis++) 489 out->vector[axis] = in->data[axis]; 490 491 if (sensorhub->tight_timestamps) 492 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out); 493 return true; 494 } 495 496 /* 497 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to 498 * ringbuffer. 499 * 500 * This is the new spreading code, assumes every sample's timestamp 501 * preceeds the sample. Run if tight_timestamps == true. 502 * 503 * Sometimes the EC receives only one interrupt (hence timestamp) for 504 * a batch of samples. Only the first sample will have the correct 505 * timestamp. So we must interpolate the other samples. 506 * We use the previous batch timestamp and our current batch timestamp 507 * as a way to calculate period, then spread the samples evenly. 508 * 509 * s0 int, 0ms 510 * s1 int, 10ms 511 * s2 int, 20ms 512 * 30ms point goes by, no interrupt, previous one is still asserted 513 * downloading s2 and s3 514 * s3 sample, 20ms (incorrect timestamp) 515 * s4 int, 40ms 516 * 517 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch 518 * has 2 samples in them, we adjust the timestamp of s3. 519 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have 520 * been part of a bigger batch things would have gotten a little 521 * more complicated. 522 * 523 * Note: we also assume another sensor sample doesn't break up a batch 524 * in 2 or more partitions. Example, there can't ever be a sync sensor 525 * in between S2 and S3. This simplifies the following code. 526 */ 527 static void 528 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub, 529 unsigned long sensor_mask, 530 struct cros_ec_sensors_ring_sample *last_out) 531 { 532 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start; 533 int id; 534 535 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) { 536 for (batch_start = sensorhub->ring; batch_start < last_out; 537 batch_start = next_batch_start) { 538 /* 539 * For each batch (where all samples have the same 540 * timestamp). 541 */ 542 int batch_len, sample_idx; 543 struct cros_ec_sensors_ring_sample *batch_end = 544 batch_start; 545 struct cros_ec_sensors_ring_sample *s; 546 s64 batch_timestamp = batch_start->timestamp; 547 s64 sample_period; 548 549 /* 550 * Skip over batches that start with the sensor types 551 * we're not looking at right now. 552 */ 553 if (batch_start->sensor_id != id) { 554 next_batch_start = batch_start + 1; 555 continue; 556 } 557 558 /* 559 * Do not start a batch 560 * from a flush, as it happens asynchronously to the 561 * regular flow of events. 562 */ 563 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 564 cros_sensorhub_send_sample(sensorhub, 565 batch_start); 566 next_batch_start = batch_start + 1; 567 continue; 568 } 569 570 if (batch_start->timestamp <= 571 sensorhub->batch_state[id].last_ts) { 572 batch_timestamp = 573 sensorhub->batch_state[id].last_ts; 574 batch_len = sensorhub->batch_state[id].last_len; 575 576 sample_idx = batch_len; 577 578 sensorhub->batch_state[id].last_ts = 579 sensorhub->batch_state[id].penul_ts; 580 sensorhub->batch_state[id].last_len = 581 sensorhub->batch_state[id].penul_len; 582 } else { 583 /* 584 * Push first sample in the batch to the, 585 * kifo, it's guaranteed to be correct, the 586 * rest will follow later on. 587 */ 588 sample_idx = 1; 589 batch_len = 1; 590 cros_sensorhub_send_sample(sensorhub, 591 batch_start); 592 batch_start++; 593 } 594 595 /* Find all samples have the same timestamp. */ 596 for (s = batch_start; s < last_out; s++) { 597 if (s->sensor_id != id) 598 /* 599 * Skip over other sensor types that 600 * are interleaved, don't count them. 601 */ 602 continue; 603 if (s->timestamp != batch_timestamp) 604 /* we discovered the next batch */ 605 break; 606 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 607 /* break on flush packets */ 608 break; 609 batch_end = s; 610 batch_len++; 611 } 612 613 if (batch_len == 1) 614 goto done_with_this_batch; 615 616 /* Can we calculate period? */ 617 if (sensorhub->batch_state[id].last_len == 0) { 618 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n", 619 id, batch_len - 1); 620 goto done_with_this_batch; 621 /* 622 * Note: we're dropping the rest of the samples 623 * in this batch since we have no idea where 624 * they're supposed to go without a period 625 * calculation. 626 */ 627 } 628 629 sample_period = div_s64(batch_timestamp - 630 sensorhub->batch_state[id].last_ts, 631 sensorhub->batch_state[id].last_len); 632 dev_dbg(sensorhub->dev, 633 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n", 634 batch_len, id, 635 sensorhub->batch_state[id].last_ts, 636 sensorhub->batch_state[id].last_len, 637 batch_timestamp, 638 sample_period); 639 640 /* 641 * Adjust timestamps of the samples then push them to 642 * kfifo. 643 */ 644 for (s = batch_start; s <= batch_end; s++) { 645 if (s->sensor_id != id) 646 /* 647 * Skip over other sensor types that 648 * are interleaved, don't change them. 649 */ 650 continue; 651 652 s->timestamp = batch_timestamp + 653 sample_period * sample_idx; 654 sample_idx++; 655 656 cros_sensorhub_send_sample(sensorhub, s); 657 } 658 659 done_with_this_batch: 660 sensorhub->batch_state[id].penul_ts = 661 sensorhub->batch_state[id].last_ts; 662 sensorhub->batch_state[id].penul_len = 663 sensorhub->batch_state[id].last_len; 664 665 sensorhub->batch_state[id].last_ts = 666 batch_timestamp; 667 sensorhub->batch_state[id].last_len = batch_len; 668 669 next_batch_start = batch_end + 1; 670 } 671 } 672 } 673 674 /* 675 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then 676 * add to ringbuffer (legacy). 677 * 678 * Note: This assumes we're running old firmware, where every sample's timestamp 679 * is after the sample. Run if tight_timestamps == false. 680 * 681 * If there is a sample with a proper timestamp 682 * 683 * timestamp | count 684 * ----------------- 685 * older_unprocess_out --> TS1 | 1 686 * TS1 | 2 687 * out --> TS1 | 3 688 * next_out --> TS2 | 689 * 690 * We spread time for the samples [older_unprocess_out .. out] 691 * between TS1 and TS2: [TS1+1/4, TS1+2/4, TS1+3/4, TS2]. 692 * 693 * If we reach the end of the samples, we compare with the 694 * current timestamp: 695 * 696 * older_unprocess_out --> TS1 | 1 697 * TS1 | 2 698 * out --> TS1 | 3 699 * 700 * We know have [TS1+1/3, TS1+2/3, current timestamp] 701 */ 702 static void 703 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub, 704 unsigned long sensor_mask, 705 s64 current_timestamp, 706 struct cros_ec_sensors_ring_sample 707 *last_out) 708 { 709 struct cros_ec_sensors_ring_sample *out; 710 int i; 711 712 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) { 713 s64 older_timestamp; 714 s64 timestamp; 715 struct cros_ec_sensors_ring_sample *older_unprocess_out = 716 sensorhub->ring; 717 struct cros_ec_sensors_ring_sample *next_out; 718 int count = 1; 719 720 for (out = sensorhub->ring; out < last_out; out = next_out) { 721 s64 time_period; 722 723 next_out = out + 1; 724 if (out->sensor_id != i) 725 continue; 726 727 /* Timestamp to start with */ 728 older_timestamp = out->timestamp; 729 730 /* Find next sample. */ 731 while (next_out < last_out && next_out->sensor_id != i) 732 next_out++; 733 734 if (next_out >= last_out) { 735 timestamp = current_timestamp; 736 } else { 737 timestamp = next_out->timestamp; 738 if (timestamp == older_timestamp) { 739 count++; 740 continue; 741 } 742 } 743 744 /* 745 * The next sample has a new timestamp, spread the 746 * unprocessed samples. 747 */ 748 if (next_out < last_out) 749 count++; 750 time_period = div_s64(timestamp - older_timestamp, 751 count); 752 753 for (; older_unprocess_out <= out; 754 older_unprocess_out++) { 755 if (older_unprocess_out->sensor_id != i) 756 continue; 757 older_timestamp += time_period; 758 older_unprocess_out->timestamp = 759 older_timestamp; 760 } 761 count = 1; 762 /* The next_out sample has a valid timestamp, skip. */ 763 next_out++; 764 older_unprocess_out = next_out; 765 } 766 } 767 768 /* Push the event into the kfifo */ 769 for (out = sensorhub->ring; out < last_out; out++) 770 cros_sensorhub_send_sample(sensorhub, out); 771 } 772 773 /** 774 * cros_ec_sensorhub_ring_handler() - The trigger handler function 775 * 776 * @sensorhub: Sensor Hub object. 777 * 778 * Called by the notifier, process the EC sensor FIFO queue. 779 */ 780 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub) 781 { 782 struct ec_response_motion_sense_fifo_info *fifo_info = 783 sensorhub->fifo_info; 784 struct cros_ec_dev *ec = sensorhub->ec; 785 ktime_t fifo_timestamp, current_timestamp; 786 int i, j, number_data, ret; 787 unsigned long sensor_mask = 0; 788 struct ec_response_motion_sensor_data *in; 789 struct cros_ec_sensors_ring_sample *out, *last_out; 790 791 mutex_lock(&sensorhub->cmd_lock); 792 793 /* Get FIFO information if there are lost vectors. */ 794 if (fifo_info->total_lost) { 795 int fifo_info_length = 796 sizeof(struct ec_response_motion_sense_fifo_info) + 797 sizeof(u16) * sensorhub->sensor_num; 798 799 /* Need to retrieve the number of lost vectors per sensor */ 800 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 801 sensorhub->msg->outsize = 1; 802 sensorhub->msg->insize = fifo_info_length; 803 804 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0) 805 goto error; 806 807 memcpy(fifo_info, &sensorhub->resp->fifo_info, 808 fifo_info_length); 809 810 /* 811 * Update collection time, will not be as precise as the 812 * non-error case. 813 */ 814 fifo_timestamp = cros_ec_get_time_ns(); 815 } else { 816 fifo_timestamp = sensorhub->fifo_timestamp[ 817 CROS_EC_SENSOR_NEW_TS]; 818 } 819 820 if (fifo_info->count > sensorhub->fifo_size || 821 fifo_info->size != sensorhub->fifo_size) { 822 dev_warn(sensorhub->dev, 823 "Mismatch EC data: count %d, size %d - expected %d\n", 824 fifo_info->count, fifo_info->size, 825 sensorhub->fifo_size); 826 goto error; 827 } 828 829 /* Copy elements in the main fifo */ 830 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS]; 831 out = sensorhub->ring; 832 for (i = 0; i < fifo_info->count; i += number_data) { 833 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ; 834 sensorhub->params->fifo_read.max_data_vector = 835 fifo_info->count - i; 836 sensorhub->msg->outsize = 837 sizeof(struct ec_params_motion_sense); 838 sensorhub->msg->insize = 839 sizeof(sensorhub->resp->fifo_read) + 840 sensorhub->params->fifo_read.max_data_vector * 841 sizeof(struct ec_response_motion_sensor_data); 842 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 843 if (ret < 0) { 844 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret); 845 break; 846 } 847 number_data = sensorhub->resp->fifo_read.number_data; 848 if (number_data == 0) { 849 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n"); 850 break; 851 } 852 if (number_data > fifo_info->count - i) { 853 dev_warn(sensorhub->dev, 854 "Invalid EC data: too many entry received: %d, expected %d\n", 855 number_data, fifo_info->count - i); 856 break; 857 } 858 if (out + number_data > 859 sensorhub->ring + fifo_info->count) { 860 dev_warn(sensorhub->dev, 861 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n", 862 i, out - sensorhub->ring, i + number_data, 863 fifo_info->count); 864 break; 865 } 866 867 for (in = sensorhub->resp->fifo_read.data, j = 0; 868 j < number_data; j++, in++) { 869 if (cros_ec_sensor_ring_process_event( 870 sensorhub, fifo_info, 871 fifo_timestamp, 872 ¤t_timestamp, 873 in, out)) { 874 sensor_mask |= BIT(in->sensor_num); 875 out++; 876 } 877 } 878 } 879 mutex_unlock(&sensorhub->cmd_lock); 880 last_out = out; 881 882 if (out == sensorhub->ring) 883 /* Unexpected empty FIFO. */ 884 goto ring_handler_end; 885 886 /* 887 * Check if current_timestamp is ahead of the last sample. Normally, 888 * the EC appends a timestamp after the last sample, but if the AP 889 * is slow to respond to the IRQ, the EC may have added new samples. 890 * Use the FIFO info timestamp as last timestamp then. 891 */ 892 if (!sensorhub->tight_timestamps && 893 (last_out - 1)->timestamp == current_timestamp) 894 current_timestamp = fifo_timestamp; 895 896 /* Warn on lost samples. */ 897 if (fifo_info->total_lost) 898 for (i = 0; i < sensorhub->sensor_num; i++) { 899 if (fifo_info->lost[i]) { 900 dev_warn_ratelimited(sensorhub->dev, 901 "Sensor %d: lost: %d out of %d\n", 902 i, fifo_info->lost[i], 903 fifo_info->total_lost); 904 if (sensorhub->tight_timestamps) 905 sensorhub->batch_state[i].last_len = 0; 906 } 907 } 908 909 /* 910 * Spread samples in case of batching, then add them to the 911 * ringbuffer. 912 */ 913 if (sensorhub->tight_timestamps) 914 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask, 915 last_out); 916 else 917 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask, 918 current_timestamp, 919 last_out); 920 921 ring_handler_end: 922 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp; 923 return; 924 925 error: 926 mutex_unlock(&sensorhub->cmd_lock); 927 } 928 929 static int cros_ec_sensorhub_event(struct notifier_block *nb, 930 unsigned long queued_during_suspend, 931 void *_notify) 932 { 933 struct cros_ec_sensorhub *sensorhub; 934 struct cros_ec_device *ec_dev; 935 936 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier); 937 ec_dev = sensorhub->ec->ec_dev; 938 939 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO) 940 return NOTIFY_DONE; 941 942 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) { 943 dev_warn(ec_dev->dev, "Invalid fifo info size\n"); 944 return NOTIFY_DONE; 945 } 946 947 if (queued_during_suspend) 948 return NOTIFY_OK; 949 950 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info, 951 sizeof(*sensorhub->fifo_info)); 952 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] = 953 ec_dev->last_event_time; 954 cros_ec_sensorhub_ring_handler(sensorhub); 955 956 return NOTIFY_OK; 957 } 958 959 /** 960 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC 961 * supports it. 962 * 963 * @sensorhub : Sensor Hub object. 964 * 965 * Return: 0 on success. 966 */ 967 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub) 968 { 969 int fifo_info_length = 970 sizeof(struct ec_response_motion_sense_fifo_info) + 971 sizeof(u16) * sensorhub->sensor_num; 972 973 /* Allocate the array for lost events. */ 974 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length, 975 GFP_KERNEL); 976 if (!sensorhub->fifo_info) 977 return -ENOMEM; 978 979 /* 980 * Allocate the callback area based on the number of sensors. 981 * Add one for the sensor ring. 982 */ 983 sensorhub->push_data = devm_kcalloc(sensorhub->dev, 984 sensorhub->sensor_num, 985 sizeof(*sensorhub->push_data), 986 GFP_KERNEL); 987 if (!sensorhub->push_data) 988 return -ENOMEM; 989 990 sensorhub->tight_timestamps = cros_ec_check_features( 991 sensorhub->ec, 992 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS); 993 994 if (sensorhub->tight_timestamps) { 995 sensorhub->batch_state = devm_kcalloc(sensorhub->dev, 996 sensorhub->sensor_num, 997 sizeof(*sensorhub->batch_state), 998 GFP_KERNEL); 999 if (!sensorhub->batch_state) 1000 return -ENOMEM; 1001 } 1002 1003 return 0; 1004 } 1005 1006 /** 1007 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC 1008 * supports it. 1009 * 1010 * @sensorhub : Sensor Hub object. 1011 * 1012 * Return: 0 on success. 1013 */ 1014 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub) 1015 { 1016 struct cros_ec_dev *ec = sensorhub->ec; 1017 int ret; 1018 int fifo_info_length = 1019 sizeof(struct ec_response_motion_sense_fifo_info) + 1020 sizeof(u16) * sensorhub->sensor_num; 1021 1022 /* Retrieve FIFO information */ 1023 sensorhub->msg->version = 2; 1024 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 1025 sensorhub->msg->outsize = 1; 1026 sensorhub->msg->insize = fifo_info_length; 1027 1028 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 1029 if (ret < 0) 1030 return ret; 1031 1032 /* 1033 * Allocate the full fifo. We need to copy the whole FIFO to set 1034 * timestamps properly. 1035 */ 1036 sensorhub->fifo_size = sensorhub->resp->fifo_info.size; 1037 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size, 1038 sizeof(*sensorhub->ring), GFP_KERNEL); 1039 if (!sensorhub->ring) 1040 return -ENOMEM; 1041 1042 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = 1043 cros_ec_get_time_ns(); 1044 1045 /* Register the notifier that will act as a top half interrupt. */ 1046 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event; 1047 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier, 1048 &sensorhub->notifier); 1049 if (ret < 0) 1050 return ret; 1051 1052 /* Start collection samples. */ 1053 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true); 1054 } 1055 1056 void cros_ec_sensorhub_ring_remove(void *arg) 1057 { 1058 struct cros_ec_sensorhub *sensorhub = arg; 1059 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev; 1060 1061 /* Disable the ring, prevent EC interrupt to the AP for nothing. */ 1062 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false); 1063 blocking_notifier_chain_unregister(&ec_dev->event_notifier, 1064 &sensorhub->notifier); 1065 } 1066