1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19 
20 /* Precision of fixed point for the m values from the filter */
21 #define M_PRECISION BIT(23)
22 
23 /* Only activate the filter once we have at least this many elements. */
24 #define TS_HISTORY_THRESHOLD 8
25 
26 /*
27  * If we don't have any history entries for this long, empty the filter to
28  * make sure there are no big discontinuities.
29  */
30 #define TS_HISTORY_BORED_US 500000
31 
32 /* To measure by how much the filter is overshooting, if it happens. */
33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
34 
35 static inline int
36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
37 			   struct cros_ec_sensors_ring_sample *sample)
38 {
39 	cros_ec_sensorhub_push_data_cb_t cb;
40 	int id = sample->sensor_id;
41 	struct iio_dev *indio_dev;
42 
43 	if (id >= sensorhub->sensor_num)
44 		return -EINVAL;
45 
46 	cb = sensorhub->push_data[id].push_data_cb;
47 	if (!cb)
48 		return 0;
49 
50 	indio_dev = sensorhub->push_data[id].indio_dev;
51 
52 	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
53 		return 0;
54 
55 	return cb(indio_dev, sample->vector, sample->timestamp);
56 }
57 
58 /**
59  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
60  *
61  * @sensorhub : Sensor Hub object
62  * @sensor_num : The sensor the caller is interested in.
63  * @indio_dev : The iio device to use when a sample arrives.
64  * @cb : The callback to call when a sample arrives.
65  *
66  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
67  * from the EC.
68  *
69  * Return: 0 when callback is registered.
70  *         EINVAL is the sensor number is invalid or the slot already used.
71  */
72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
73 					 u8 sensor_num,
74 					 struct iio_dev *indio_dev,
75 					 cros_ec_sensorhub_push_data_cb_t cb)
76 {
77 	if (sensor_num >= sensorhub->sensor_num)
78 		return -EINVAL;
79 	if (sensorhub->push_data[sensor_num].indio_dev)
80 		return -EINVAL;
81 
82 	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
83 	sensorhub->push_data[sensor_num].push_data_cb = cb;
84 
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
88 
89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
90 					    u8 sensor_num)
91 {
92 	sensorhub->push_data[sensor_num].indio_dev = NULL;
93 	sensorhub->push_data[sensor_num].push_data_cb = NULL;
94 }
95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
96 
97 /**
98  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
99  *					  for FIFO events.
100  * @sensorhub: Sensor Hub object
101  * @on: true when events are requested.
102  *
103  * To be called before sleeping or when noone is listening.
104  * Return: 0 on success, or an error when we can not communicate with the EC.
105  *
106  */
107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
108 				       bool on)
109 {
110 	int ret, i;
111 
112 	mutex_lock(&sensorhub->cmd_lock);
113 	if (sensorhub->tight_timestamps)
114 		for (i = 0; i < sensorhub->sensor_num; i++)
115 			sensorhub->batch_state[i].last_len = 0;
116 
117 	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
118 	sensorhub->params->fifo_int_enable.enable = on;
119 
120 	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
121 	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
122 
123 	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
124 	mutex_unlock(&sensorhub->cmd_lock);
125 
126 	/* We expect to receive a payload of 4 bytes, ignore. */
127 	if (ret > 0)
128 		ret = 0;
129 
130 	return ret;
131 }
132 
133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
134 {
135 	s64 v1 = *(s64 *)pv1;
136 	s64 v2 = *(s64 *)pv2;
137 
138 	if (v1 > v2)
139 		return 1;
140 	else if (v1 < v2)
141 		return -1;
142 	else
143 		return 0;
144 }
145 
146 /*
147  * cros_ec_sensor_ring_median: Gets median of an array of numbers
148  *
149  * For now it's implemented using an inefficient > O(n) sort then return
150  * the middle element. A more optimal method would be something like
151  * quickselect, but given that n = 64 we can probably live with it in the
152  * name of clarity.
153  *
154  * Warning: the input array gets modified (sorted)!
155  */
156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
157 {
158 	sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
159 	return array[length / 2];
160 }
161 
162 /*
163  * IRQ Timestamp Filtering
164  *
165  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
166  * we have to calculate it's timestamp in the AP timebase. There are 3 time
167  * points:
168  *   a - EC timebase, sensor event
169  *   b - EC timebase, IRQ
170  *   c - AP timebase, IRQ
171  *   a' - what we want: sensor even in AP timebase
172  *
173  * While a and b are recorded at accurate times (due to the EC real time
174  * nature); c is pretty untrustworthy, even though it's recorded the
175  * first thing in ec_irq_handler(). There is a very good change we'll get
176  * added lantency due to:
177  *   other irqs
178  *   ddrfreq
179  *   cpuidle
180  *
181  * Normally a' = c - b + a, but if we do that naive math any jitter in c
182  * will get coupled in a', which we don't want. We want a function
183  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
184  *
185  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
186  * The slope of the line won't be exactly 1, there will be some clock drift
187  * between the 2 chips for various reasons (mechanical stress, temperature,
188  * voltage). We need to extrapolate values for a future x, without trusting
189  * recent y values too much.
190  *
191  * We use a median filter for the slope, then another median filter for the
192  * y-intercept to calculate this function:
193  *   dx[n] = x[n-1] - x[n]
194  *   dy[n] = x[n-1] - x[n]
195  *   m[n] = dy[n] / dx[n]
196  *   median_m = median(m[n-k:n])
197  *   error[i] = y[n-i] - median_m * x[n-i]
198  *   median_error = median(error[:k])
199  *   predicted_y = median_m * x + median_error
200  *
201  * Implementation differences from above:
202  * - Redefined y to be actually c - b, this gives us a lot more precision
203  * to do the math. (c-b)/b variations are more obvious than c/b variations.
204  * - Since we don't have floating point, any operations involving slope are
205  * done using fixed point math (*M_PRECISION)
206  * - Since x and y grow with time, we keep zeroing the graph (relative to
207  * the last sample), this way math involving *x[n-i] will not overflow
208  * - EC timestamps are kept in us, it improves the slope calculation precision
209  */
210 
211 /**
212  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
213  *
214  * @state: Filter information.
215  * @b: IRQ timestamp, EC timebase (us)
216  * @c: IRQ timestamp, AP timebase (ns)
217  *
218  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
219  * history.
220  */
221 static void
222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
223 				     *state,
224 				     s64 b, s64 c)
225 {
226 	s64 x, y;
227 	s64 dx, dy;
228 	s64 m; /* stored as *M_PRECISION */
229 	s64 *m_history_copy = state->temp_buf;
230 	s64 *error = state->temp_buf;
231 	int i;
232 
233 	/* we trust b the most, that'll be our independent variable */
234 	x = b;
235 	/* y is the offset between AP and EC times, in ns */
236 	y = c - b * 1000;
237 
238 	dx = (state->x_history[0] + state->x_offset) - x;
239 	if (dx == 0)
240 		return; /* we already have this irq in the history */
241 	dy = (state->y_history[0] + state->y_offset) - y;
242 	m = div64_s64(dy * M_PRECISION, dx);
243 
244 	/* Empty filter if we haven't seen any action in a while. */
245 	if (-dx > TS_HISTORY_BORED_US)
246 		state->history_len = 0;
247 
248 	/* Move everything over, also update offset to all absolute coords .*/
249 	for (i = state->history_len - 1; i >= 1; i--) {
250 		state->x_history[i] = state->x_history[i - 1] + dx;
251 		state->y_history[i] = state->y_history[i - 1] + dy;
252 
253 		state->m_history[i] = state->m_history[i - 1];
254 		/*
255 		 * Also use the same loop to copy m_history for future
256 		 * median extraction.
257 		 */
258 		m_history_copy[i] = state->m_history[i - 1];
259 	}
260 
261 	/* Store the x and y, but remember offset is actually last sample. */
262 	state->x_offset = x;
263 	state->y_offset = y;
264 	state->x_history[0] = 0;
265 	state->y_history[0] = 0;
266 
267 	state->m_history[0] = m;
268 	m_history_copy[0] = m;
269 
270 	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
271 		state->history_len++;
272 
273 	/* Precalculate things for the filter. */
274 	if (state->history_len > TS_HISTORY_THRESHOLD) {
275 		state->median_m =
276 		    cros_ec_sensor_ring_median(m_history_copy,
277 					       state->history_len - 1);
278 
279 		/*
280 		 * Calculate y-intercepts as if m_median is the slope and
281 		 * points in the history are on the line. median_error will
282 		 * still be in the offset coordinate system.
283 		 */
284 		for (i = 0; i < state->history_len; i++)
285 			error[i] = state->y_history[i] -
286 				div_s64(state->median_m * state->x_history[i],
287 					M_PRECISION);
288 		state->median_error =
289 			cros_ec_sensor_ring_median(error, state->history_len);
290 	} else {
291 		state->median_m = 0;
292 		state->median_error = 0;
293 	}
294 }
295 
296 /**
297  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
298  *                                   timebase
299  *
300  * @state: filter information.
301  * @x: any ec timestamp (us):
302  *
303  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
304  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
305  *                           should have happened on the AP, with low jitter
306  *
307  * Note: The filter will only activate once state->history_len goes
308  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
309  * transform.
310  *
311  * How to derive the formula, starting from:
312  *   f(x) = median_m * x + median_error
313  * That's the calculated AP - EC offset (at the x point in time)
314  * Undo the coordinate system transform:
315  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
316  * Remember to undo the "y = c - b * 1000" modification:
317  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
318  *
319  * Return: timestamp in AP timebase (ns)
320  */
321 static s64
322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
323 			      s64 x)
324 {
325 	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
326 	       + state->median_error + state->y_offset + x * 1000;
327 }
328 
329 /*
330  * Since a and b were originally 32 bit values from the EC,
331  * they overflow relatively often, casting is not enough, so we need to
332  * add an offset.
333  */
334 static void
335 cros_ec_sensor_ring_fix_overflow(s64 *ts,
336 				 const s64 overflow_period,
337 				 struct cros_ec_sensors_ec_overflow_state
338 				 *state)
339 {
340 	s64 adjust;
341 
342 	*ts += state->offset;
343 	if (abs(state->last - *ts) > (overflow_period / 2)) {
344 		adjust = state->last > *ts ? overflow_period : -overflow_period;
345 		state->offset += adjust;
346 		*ts += adjust;
347 	}
348 	state->last = *ts;
349 }
350 
351 static void
352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
353 					     *sensorhub,
354 					     struct cros_ec_sensors_ring_sample
355 					     *sample)
356 {
357 	const u8 sensor_id = sample->sensor_id;
358 
359 	/* If this event is earlier than one we saw before... */
360 	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
361 	    sample->timestamp)
362 		/* mark it for spreading. */
363 		sample->timestamp =
364 			sensorhub->batch_state[sensor_id].last_ts;
365 	else
366 		sensorhub->batch_state[sensor_id].newest_sensor_event =
367 			sample->timestamp;
368 }
369 
370 /**
371  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
372  *
373  * @sensorhub: Sensor Hub object.
374  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
375  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
376  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
377  * @in: incoming FIFO event from EC (includes a point, EC timebase).
378  * @out: outgoing event to user space (includes a').
379  *
380  * Process one EC event, add it in the ring if necessary.
381  *
382  * Return: true if out event has been populated.
383  */
384 static bool
385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
386 				const struct ec_response_motion_sense_fifo_info
387 				*fifo_info,
388 				const ktime_t fifo_timestamp,
389 				ktime_t *current_timestamp,
390 				struct ec_response_motion_sensor_data *in,
391 				struct cros_ec_sensors_ring_sample *out)
392 {
393 	const s64 now = cros_ec_get_time_ns();
394 	int axis, async_flags;
395 
396 	/* Do not populate the filter based on asynchronous events. */
397 	async_flags = in->flags &
398 		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
399 
400 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
401 		s64 a = in->timestamp;
402 		s64 b = fifo_info->timestamp;
403 		s64 c = fifo_timestamp;
404 
405 		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
406 					  &sensorhub->overflow_a);
407 		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
408 					  &sensorhub->overflow_b);
409 
410 		if (sensorhub->tight_timestamps) {
411 			cros_ec_sensor_ring_ts_filter_update(
412 					&sensorhub->filter, b, c);
413 			*current_timestamp = cros_ec_sensor_ring_ts_filter(
414 					&sensorhub->filter, a);
415 		} else {
416 			s64 new_timestamp;
417 
418 			/*
419 			 * Disable filtering since we might add more jitter
420 			 * if b is in a random point in time.
421 			 */
422 			new_timestamp = fifo_timestamp -
423 					fifo_info->timestamp  * 1000 +
424 					in->timestamp * 1000;
425 			/*
426 			 * The timestamp can be stale if we had to use the fifo
427 			 * info timestamp.
428 			 */
429 			if (new_timestamp - *current_timestamp > 0)
430 				*current_timestamp = new_timestamp;
431 		}
432 	}
433 
434 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
435 		if (sensorhub->tight_timestamps) {
436 			sensorhub->batch_state[in->sensor_num].last_len = 0;
437 			sensorhub->batch_state[in->sensor_num].penul_len = 0;
438 		}
439 		/*
440 		 * ODR change is only useful for the sensor_ring, it does not
441 		 * convey information to clients.
442 		 */
443 		return false;
444 	}
445 
446 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
447 		out->sensor_id = in->sensor_num;
448 		out->timestamp = *current_timestamp;
449 		out->flag = in->flags;
450 		if (sensorhub->tight_timestamps)
451 			sensorhub->batch_state[out->sensor_id].last_len = 0;
452 		/*
453 		 * No other payload information provided with
454 		 * flush ack.
455 		 */
456 		return true;
457 	}
458 
459 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
460 		/* If we just have a timestamp, skip this entry. */
461 		return false;
462 
463 	/* Regular sample */
464 	out->sensor_id = in->sensor_num;
465 	if (*current_timestamp - now > 0) {
466 		/*
467 		 * This fix is needed to overcome the timestamp filter putting
468 		 * events in the future.
469 		 */
470 		sensorhub->future_timestamp_total_ns +=
471 			*current_timestamp - now;
472 		if (++sensorhub->future_timestamp_count ==
473 				FUTURE_TS_ANALYTICS_COUNT_MAX) {
474 			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
475 					sensorhub->future_timestamp_count);
476 			dev_warn_ratelimited(sensorhub->dev,
477 					     "100 timestamps in the future, %lldns shaved on average\n",
478 					     avg);
479 			sensorhub->future_timestamp_count = 0;
480 			sensorhub->future_timestamp_total_ns = 0;
481 		}
482 		out->timestamp = now;
483 	} else {
484 		out->timestamp = *current_timestamp;
485 	}
486 
487 	out->flag = in->flags;
488 	for (axis = 0; axis < 3; axis++)
489 		out->vector[axis] = in->data[axis];
490 
491 	if (sensorhub->tight_timestamps)
492 		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
493 	return true;
494 }
495 
496 /*
497  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
498  *                                 ringbuffer.
499  *
500  * This is the new spreading code, assumes every sample's timestamp
501  * preceeds the sample. Run if tight_timestamps == true.
502  *
503  * Sometimes the EC receives only one interrupt (hence timestamp) for
504  * a batch of samples. Only the first sample will have the correct
505  * timestamp. So we must interpolate the other samples.
506  * We use the previous batch timestamp and our current batch timestamp
507  * as a way to calculate period, then spread the samples evenly.
508  *
509  * s0 int, 0ms
510  * s1 int, 10ms
511  * s2 int, 20ms
512  * 30ms point goes by, no interrupt, previous one is still asserted
513  * downloading s2 and s3
514  * s3 sample, 20ms (incorrect timestamp)
515  * s4 int, 40ms
516  *
517  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
518  * has 2 samples in them, we adjust the timestamp of s3.
519  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
520  * been part of a bigger batch things would have gotten a little
521  * more complicated.
522  *
523  * Note: we also assume another sensor sample doesn't break up a batch
524  * in 2 or more partitions. Example, there can't ever be a sync sensor
525  * in between S2 and S3. This simplifies the following code.
526  */
527 static void
528 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
529 			       unsigned long sensor_mask,
530 			       struct cros_ec_sensors_ring_sample *last_out)
531 {
532 	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
533 	int id;
534 
535 	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
536 		for (batch_start = sensorhub->ring; batch_start < last_out;
537 		     batch_start = next_batch_start) {
538 			/*
539 			 * For each batch (where all samples have the same
540 			 * timestamp).
541 			 */
542 			int batch_len, sample_idx;
543 			struct cros_ec_sensors_ring_sample *batch_end =
544 				batch_start;
545 			struct cros_ec_sensors_ring_sample *s;
546 			s64 batch_timestamp = batch_start->timestamp;
547 			s64 sample_period;
548 
549 			/*
550 			 * Skip over batches that start with the sensor types
551 			 * we're not looking at right now.
552 			 */
553 			if (batch_start->sensor_id != id) {
554 				next_batch_start = batch_start + 1;
555 				continue;
556 			}
557 
558 			/*
559 			 * Do not start a batch
560 			 * from a flush, as it happens asynchronously to the
561 			 * regular flow of events.
562 			 */
563 			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
564 				cros_sensorhub_send_sample(sensorhub,
565 							   batch_start);
566 				next_batch_start = batch_start + 1;
567 				continue;
568 			}
569 
570 			if (batch_start->timestamp <=
571 			    sensorhub->batch_state[id].last_ts) {
572 				batch_timestamp =
573 					sensorhub->batch_state[id].last_ts;
574 				batch_len = sensorhub->batch_state[id].last_len;
575 
576 				sample_idx = batch_len;
577 
578 				sensorhub->batch_state[id].last_ts =
579 				  sensorhub->batch_state[id].penul_ts;
580 				sensorhub->batch_state[id].last_len =
581 				  sensorhub->batch_state[id].penul_len;
582 			} else {
583 				/*
584 				 * Push first sample in the batch to the,
585 				 * kifo, it's guaranteed to be correct, the
586 				 * rest will follow later on.
587 				 */
588 				sample_idx = 1;
589 				batch_len = 1;
590 				cros_sensorhub_send_sample(sensorhub,
591 							   batch_start);
592 				batch_start++;
593 			}
594 
595 			/* Find all samples have the same timestamp. */
596 			for (s = batch_start; s < last_out; s++) {
597 				if (s->sensor_id != id)
598 					/*
599 					 * Skip over other sensor types that
600 					 * are interleaved, don't count them.
601 					 */
602 					continue;
603 				if (s->timestamp != batch_timestamp)
604 					/* we discovered the next batch */
605 					break;
606 				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
607 					/* break on flush packets */
608 					break;
609 				batch_end = s;
610 				batch_len++;
611 			}
612 
613 			if (batch_len == 1)
614 				goto done_with_this_batch;
615 
616 			/* Can we calculate period? */
617 			if (sensorhub->batch_state[id].last_len == 0) {
618 				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
619 					 id, batch_len - 1);
620 				goto done_with_this_batch;
621 				/*
622 				 * Note: we're dropping the rest of the samples
623 				 * in this batch since we have no idea where
624 				 * they're supposed to go without a period
625 				 * calculation.
626 				 */
627 			}
628 
629 			sample_period = div_s64(batch_timestamp -
630 				sensorhub->batch_state[id].last_ts,
631 				sensorhub->batch_state[id].last_len);
632 			dev_dbg(sensorhub->dev,
633 				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
634 				batch_len, id,
635 				sensorhub->batch_state[id].last_ts,
636 				sensorhub->batch_state[id].last_len,
637 				batch_timestamp,
638 				sample_period);
639 
640 			/*
641 			 * Adjust timestamps of the samples then push them to
642 			 * kfifo.
643 			 */
644 			for (s = batch_start; s <= batch_end; s++) {
645 				if (s->sensor_id != id)
646 					/*
647 					 * Skip over other sensor types that
648 					 * are interleaved, don't change them.
649 					 */
650 					continue;
651 
652 				s->timestamp = batch_timestamp +
653 					sample_period * sample_idx;
654 				sample_idx++;
655 
656 				cros_sensorhub_send_sample(sensorhub, s);
657 			}
658 
659 done_with_this_batch:
660 			sensorhub->batch_state[id].penul_ts =
661 				sensorhub->batch_state[id].last_ts;
662 			sensorhub->batch_state[id].penul_len =
663 				sensorhub->batch_state[id].last_len;
664 
665 			sensorhub->batch_state[id].last_ts =
666 				batch_timestamp;
667 			sensorhub->batch_state[id].last_len = batch_len;
668 
669 			next_batch_start = batch_end + 1;
670 		}
671 	}
672 }
673 
674 /*
675  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
676  * add to ringbuffer (legacy).
677  *
678  * Note: This assumes we're running old firmware, where every sample's timestamp
679  * is after the sample. Run if tight_timestamps == false.
680  *
681  * If there is a sample with a proper timestamp
682  *
683  *                        timestamp | count
684  *                        -----------------
685  * older_unprocess_out --> TS1      | 1
686  *                         TS1      | 2
687  *                out -->  TS1      | 3
688  *           next_out -->  TS2      |
689  *
690  * We spread time for the samples [older_unprocess_out .. out]
691  * between TS1 and TS2: [TS1+1/4, TS1+2/4, TS1+3/4, TS2].
692  *
693  * If we reach the end of the samples, we compare with the
694  * current timestamp:
695  *
696  * older_unprocess_out --> TS1      | 1
697  *                         TS1      | 2
698  *                 out --> TS1      | 3
699  *
700  * We know have [TS1+1/3, TS1+2/3, current timestamp]
701  */
702 static void
703 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
704 				      unsigned long sensor_mask,
705 				      s64 current_timestamp,
706 				      struct cros_ec_sensors_ring_sample
707 				      *last_out)
708 {
709 	struct cros_ec_sensors_ring_sample *out;
710 	int i;
711 
712 	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
713 		s64 older_timestamp;
714 		s64 timestamp;
715 		struct cros_ec_sensors_ring_sample *older_unprocess_out =
716 			sensorhub->ring;
717 		struct cros_ec_sensors_ring_sample *next_out;
718 		int count = 1;
719 
720 		for (out = sensorhub->ring; out < last_out; out = next_out) {
721 			s64 time_period;
722 
723 			next_out = out + 1;
724 			if (out->sensor_id != i)
725 				continue;
726 
727 			/* Timestamp to start with */
728 			older_timestamp = out->timestamp;
729 
730 			/* Find next sample. */
731 			while (next_out < last_out && next_out->sensor_id != i)
732 				next_out++;
733 
734 			if (next_out >= last_out) {
735 				timestamp = current_timestamp;
736 			} else {
737 				timestamp = next_out->timestamp;
738 				if (timestamp == older_timestamp) {
739 					count++;
740 					continue;
741 				}
742 			}
743 
744 			/*
745 			 * The next sample has a new timestamp, spread the
746 			 * unprocessed samples.
747 			 */
748 			if (next_out < last_out)
749 				count++;
750 			time_period = div_s64(timestamp - older_timestamp,
751 					      count);
752 
753 			for (; older_unprocess_out <= out;
754 					older_unprocess_out++) {
755 				if (older_unprocess_out->sensor_id != i)
756 					continue;
757 				older_timestamp += time_period;
758 				older_unprocess_out->timestamp =
759 					older_timestamp;
760 			}
761 			count = 1;
762 			/* The next_out sample has a valid timestamp, skip. */
763 			next_out++;
764 			older_unprocess_out = next_out;
765 		}
766 	}
767 
768 	/* Push the event into the kfifo */
769 	for (out = sensorhub->ring; out < last_out; out++)
770 		cros_sensorhub_send_sample(sensorhub, out);
771 }
772 
773 /**
774  * cros_ec_sensorhub_ring_handler() - The trigger handler function
775  *
776  * @sensorhub: Sensor Hub object.
777  *
778  * Called by the notifier, process the EC sensor FIFO queue.
779  */
780 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
781 {
782 	struct ec_response_motion_sense_fifo_info *fifo_info =
783 		sensorhub->fifo_info;
784 	struct cros_ec_dev *ec = sensorhub->ec;
785 	ktime_t fifo_timestamp, current_timestamp;
786 	int i, j, number_data, ret;
787 	unsigned long sensor_mask = 0;
788 	struct ec_response_motion_sensor_data *in;
789 	struct cros_ec_sensors_ring_sample *out, *last_out;
790 
791 	mutex_lock(&sensorhub->cmd_lock);
792 
793 	/* Get FIFO information if there are lost vectors. */
794 	if (fifo_info->total_lost) {
795 		int fifo_info_length =
796 			sizeof(struct ec_response_motion_sense_fifo_info) +
797 			sizeof(u16) * sensorhub->sensor_num;
798 
799 		/* Need to retrieve the number of lost vectors per sensor */
800 		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
801 		sensorhub->msg->outsize = 1;
802 		sensorhub->msg->insize = fifo_info_length;
803 
804 		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
805 			goto error;
806 
807 		memcpy(fifo_info, &sensorhub->resp->fifo_info,
808 		       fifo_info_length);
809 
810 		/*
811 		 * Update collection time, will not be as precise as the
812 		 * non-error case.
813 		 */
814 		fifo_timestamp = cros_ec_get_time_ns();
815 	} else {
816 		fifo_timestamp = sensorhub->fifo_timestamp[
817 			CROS_EC_SENSOR_NEW_TS];
818 	}
819 
820 	if (fifo_info->count > sensorhub->fifo_size ||
821 	    fifo_info->size != sensorhub->fifo_size) {
822 		dev_warn(sensorhub->dev,
823 			 "Mismatch EC data: count %d, size %d - expected %d\n",
824 			 fifo_info->count, fifo_info->size,
825 			 sensorhub->fifo_size);
826 		goto error;
827 	}
828 
829 	/* Copy elements in the main fifo */
830 	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
831 	out = sensorhub->ring;
832 	for (i = 0; i < fifo_info->count; i += number_data) {
833 		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
834 		sensorhub->params->fifo_read.max_data_vector =
835 			fifo_info->count - i;
836 		sensorhub->msg->outsize =
837 			sizeof(struct ec_params_motion_sense);
838 		sensorhub->msg->insize =
839 			sizeof(sensorhub->resp->fifo_read) +
840 			sensorhub->params->fifo_read.max_data_vector *
841 			  sizeof(struct ec_response_motion_sensor_data);
842 		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
843 		if (ret < 0) {
844 			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
845 			break;
846 		}
847 		number_data = sensorhub->resp->fifo_read.number_data;
848 		if (number_data == 0) {
849 			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
850 			break;
851 		}
852 		if (number_data > fifo_info->count - i) {
853 			dev_warn(sensorhub->dev,
854 				 "Invalid EC data: too many entry received: %d, expected %d\n",
855 				 number_data, fifo_info->count - i);
856 			break;
857 		}
858 		if (out + number_data >
859 		    sensorhub->ring + fifo_info->count) {
860 			dev_warn(sensorhub->dev,
861 				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
862 				 i, out - sensorhub->ring, i + number_data,
863 				 fifo_info->count);
864 			break;
865 		}
866 
867 		for (in = sensorhub->resp->fifo_read.data, j = 0;
868 		     j < number_data; j++, in++) {
869 			if (cros_ec_sensor_ring_process_event(
870 						sensorhub, fifo_info,
871 						fifo_timestamp,
872 						&current_timestamp,
873 						in, out)) {
874 				sensor_mask |= BIT(in->sensor_num);
875 				out++;
876 			}
877 		}
878 	}
879 	mutex_unlock(&sensorhub->cmd_lock);
880 	last_out = out;
881 
882 	if (out == sensorhub->ring)
883 		/* Unexpected empty FIFO. */
884 		goto ring_handler_end;
885 
886 	/*
887 	 * Check if current_timestamp is ahead of the last sample. Normally,
888 	 * the EC appends a timestamp after the last sample, but if the AP
889 	 * is slow to respond to the IRQ, the EC may have added new samples.
890 	 * Use the FIFO info timestamp as last timestamp then.
891 	 */
892 	if (!sensorhub->tight_timestamps &&
893 	    (last_out - 1)->timestamp == current_timestamp)
894 		current_timestamp = fifo_timestamp;
895 
896 	/* Warn on lost samples. */
897 	if (fifo_info->total_lost)
898 		for (i = 0; i < sensorhub->sensor_num; i++) {
899 			if (fifo_info->lost[i]) {
900 				dev_warn_ratelimited(sensorhub->dev,
901 						     "Sensor %d: lost: %d out of %d\n",
902 						     i, fifo_info->lost[i],
903 						     fifo_info->total_lost);
904 				if (sensorhub->tight_timestamps)
905 					sensorhub->batch_state[i].last_len = 0;
906 			}
907 		}
908 
909 	/*
910 	 * Spread samples in case of batching, then add them to the
911 	 * ringbuffer.
912 	 */
913 	if (sensorhub->tight_timestamps)
914 		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
915 					       last_out);
916 	else
917 		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
918 						      current_timestamp,
919 						      last_out);
920 
921 ring_handler_end:
922 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
923 	return;
924 
925 error:
926 	mutex_unlock(&sensorhub->cmd_lock);
927 }
928 
929 static int cros_ec_sensorhub_event(struct notifier_block *nb,
930 				   unsigned long queued_during_suspend,
931 				   void *_notify)
932 {
933 	struct cros_ec_sensorhub *sensorhub;
934 	struct cros_ec_device *ec_dev;
935 
936 	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
937 	ec_dev = sensorhub->ec->ec_dev;
938 
939 	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
940 		return NOTIFY_DONE;
941 
942 	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
943 		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
944 		return NOTIFY_DONE;
945 	}
946 
947 	if (queued_during_suspend)
948 		return NOTIFY_OK;
949 
950 	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
951 	       sizeof(*sensorhub->fifo_info));
952 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
953 		ec_dev->last_event_time;
954 	cros_ec_sensorhub_ring_handler(sensorhub);
955 
956 	return NOTIFY_OK;
957 }
958 
959 /**
960  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
961  *				       supports it.
962  *
963  * @sensorhub : Sensor Hub object.
964  *
965  * Return: 0 on success.
966  */
967 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
968 {
969 	int fifo_info_length =
970 		sizeof(struct ec_response_motion_sense_fifo_info) +
971 		sizeof(u16) * sensorhub->sensor_num;
972 
973 	/* Allocate the array for lost events. */
974 	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
975 					    GFP_KERNEL);
976 	if (!sensorhub->fifo_info)
977 		return -ENOMEM;
978 
979 	/*
980 	 * Allocate the callback area based on the number of sensors.
981 	 * Add one for the sensor ring.
982 	 */
983 	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
984 			sensorhub->sensor_num,
985 			sizeof(*sensorhub->push_data),
986 			GFP_KERNEL);
987 	if (!sensorhub->push_data)
988 		return -ENOMEM;
989 
990 	sensorhub->tight_timestamps = cros_ec_check_features(
991 			sensorhub->ec,
992 			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
993 
994 	if (sensorhub->tight_timestamps) {
995 		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
996 				sensorhub->sensor_num,
997 				sizeof(*sensorhub->batch_state),
998 				GFP_KERNEL);
999 		if (!sensorhub->batch_state)
1000 			return -ENOMEM;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /**
1007  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1008  *				  supports it.
1009  *
1010  * @sensorhub : Sensor Hub object.
1011  *
1012  * Return: 0 on success.
1013  */
1014 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1015 {
1016 	struct cros_ec_dev *ec = sensorhub->ec;
1017 	int ret;
1018 	int fifo_info_length =
1019 		sizeof(struct ec_response_motion_sense_fifo_info) +
1020 		sizeof(u16) * sensorhub->sensor_num;
1021 
1022 	/* Retrieve FIFO information */
1023 	sensorhub->msg->version = 2;
1024 	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1025 	sensorhub->msg->outsize = 1;
1026 	sensorhub->msg->insize = fifo_info_length;
1027 
1028 	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1029 	if (ret < 0)
1030 		return ret;
1031 
1032 	/*
1033 	 * Allocate the full fifo. We need to copy the whole FIFO to set
1034 	 * timestamps properly.
1035 	 */
1036 	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1037 	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1038 				       sizeof(*sensorhub->ring), GFP_KERNEL);
1039 	if (!sensorhub->ring)
1040 		return -ENOMEM;
1041 
1042 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1043 		cros_ec_get_time_ns();
1044 
1045 	/* Register the notifier that will act as a top half interrupt. */
1046 	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1047 	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1048 					       &sensorhub->notifier);
1049 	if (ret < 0)
1050 		return ret;
1051 
1052 	/* Start collection samples. */
1053 	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1054 }
1055 
1056 void cros_ec_sensorhub_ring_remove(void *arg)
1057 {
1058 	struct cros_ec_sensorhub *sensorhub = arg;
1059 	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1060 
1061 	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
1062 	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1063 	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1064 					   &sensorhub->notifier);
1065 }
1066