1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19 
20 #include "cros_ec_trace.h"
21 
22 /* Precision of fixed point for the m values from the filter */
23 #define M_PRECISION BIT(23)
24 
25 /* Only activate the filter once we have at least this many elements. */
26 #define TS_HISTORY_THRESHOLD 8
27 
28 /*
29  * If we don't have any history entries for this long, empty the filter to
30  * make sure there are no big discontinuities.
31  */
32 #define TS_HISTORY_BORED_US 500000
33 
34 /* To measure by how much the filter is overshooting, if it happens. */
35 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
36 
37 static inline int
38 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
39 			   struct cros_ec_sensors_ring_sample *sample)
40 {
41 	cros_ec_sensorhub_push_data_cb_t cb;
42 	int id = sample->sensor_id;
43 	struct iio_dev *indio_dev;
44 
45 	if (id >= sensorhub->sensor_num)
46 		return -EINVAL;
47 
48 	cb = sensorhub->push_data[id].push_data_cb;
49 	if (!cb)
50 		return 0;
51 
52 	indio_dev = sensorhub->push_data[id].indio_dev;
53 
54 	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
55 		return 0;
56 
57 	return cb(indio_dev, sample->vector, sample->timestamp);
58 }
59 
60 /**
61  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
62  *
63  * @sensorhub : Sensor Hub object
64  * @sensor_num : The sensor the caller is interested in.
65  * @indio_dev : The iio device to use when a sample arrives.
66  * @cb : The callback to call when a sample arrives.
67  *
68  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
69  * from the EC.
70  *
71  * Return: 0 when callback is registered.
72  *         EINVAL is the sensor number is invalid or the slot already used.
73  */
74 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
75 					 u8 sensor_num,
76 					 struct iio_dev *indio_dev,
77 					 cros_ec_sensorhub_push_data_cb_t cb)
78 {
79 	if (sensor_num >= sensorhub->sensor_num)
80 		return -EINVAL;
81 	if (sensorhub->push_data[sensor_num].indio_dev)
82 		return -EINVAL;
83 
84 	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
85 	sensorhub->push_data[sensor_num].push_data_cb = cb;
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
90 
91 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
92 					    u8 sensor_num)
93 {
94 	sensorhub->push_data[sensor_num].indio_dev = NULL;
95 	sensorhub->push_data[sensor_num].push_data_cb = NULL;
96 }
97 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
98 
99 /**
100  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
101  *					  for FIFO events.
102  * @sensorhub: Sensor Hub object
103  * @on: true when events are requested.
104  *
105  * To be called before sleeping or when noone is listening.
106  * Return: 0 on success, or an error when we can not communicate with the EC.
107  *
108  */
109 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
110 				       bool on)
111 {
112 	int ret, i;
113 
114 	mutex_lock(&sensorhub->cmd_lock);
115 	if (sensorhub->tight_timestamps)
116 		for (i = 0; i < sensorhub->sensor_num; i++)
117 			sensorhub->batch_state[i].last_len = 0;
118 
119 	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
120 	sensorhub->params->fifo_int_enable.enable = on;
121 
122 	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
123 	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
124 
125 	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
126 	mutex_unlock(&sensorhub->cmd_lock);
127 
128 	/* We expect to receive a payload of 4 bytes, ignore. */
129 	if (ret > 0)
130 		ret = 0;
131 
132 	return ret;
133 }
134 
135 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
136 {
137 	s64 v1 = *(s64 *)pv1;
138 	s64 v2 = *(s64 *)pv2;
139 
140 	if (v1 > v2)
141 		return 1;
142 	else if (v1 < v2)
143 		return -1;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * cros_ec_sensor_ring_median: Gets median of an array of numbers
150  *
151  * For now it's implemented using an inefficient > O(n) sort then return
152  * the middle element. A more optimal method would be something like
153  * quickselect, but given that n = 64 we can probably live with it in the
154  * name of clarity.
155  *
156  * Warning: the input array gets modified (sorted)!
157  */
158 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
159 {
160 	sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
161 	return array[length / 2];
162 }
163 
164 /*
165  * IRQ Timestamp Filtering
166  *
167  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
168  * we have to calculate it's timestamp in the AP timebase. There are 3 time
169  * points:
170  *   a - EC timebase, sensor event
171  *   b - EC timebase, IRQ
172  *   c - AP timebase, IRQ
173  *   a' - what we want: sensor even in AP timebase
174  *
175  * While a and b are recorded at accurate times (due to the EC real time
176  * nature); c is pretty untrustworthy, even though it's recorded the
177  * first thing in ec_irq_handler(). There is a very good change we'll get
178  * added lantency due to:
179  *   other irqs
180  *   ddrfreq
181  *   cpuidle
182  *
183  * Normally a' = c - b + a, but if we do that naive math any jitter in c
184  * will get coupled in a', which we don't want. We want a function
185  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
186  *
187  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
188  * The slope of the line won't be exactly 1, there will be some clock drift
189  * between the 2 chips for various reasons (mechanical stress, temperature,
190  * voltage). We need to extrapolate values for a future x, without trusting
191  * recent y values too much.
192  *
193  * We use a median filter for the slope, then another median filter for the
194  * y-intercept to calculate this function:
195  *   dx[n] = x[n-1] - x[n]
196  *   dy[n] = x[n-1] - x[n]
197  *   m[n] = dy[n] / dx[n]
198  *   median_m = median(m[n-k:n])
199  *   error[i] = y[n-i] - median_m * x[n-i]
200  *   median_error = median(error[:k])
201  *   predicted_y = median_m * x + median_error
202  *
203  * Implementation differences from above:
204  * - Redefined y to be actually c - b, this gives us a lot more precision
205  * to do the math. (c-b)/b variations are more obvious than c/b variations.
206  * - Since we don't have floating point, any operations involving slope are
207  * done using fixed point math (*M_PRECISION)
208  * - Since x and y grow with time, we keep zeroing the graph (relative to
209  * the last sample), this way math involving *x[n-i] will not overflow
210  * - EC timestamps are kept in us, it improves the slope calculation precision
211  */
212 
213 /**
214  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
215  *
216  * @state: Filter information.
217  * @b: IRQ timestamp, EC timebase (us)
218  * @c: IRQ timestamp, AP timebase (ns)
219  *
220  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
221  * history.
222  */
223 static void
224 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
225 				     *state,
226 				     s64 b, s64 c)
227 {
228 	s64 x, y;
229 	s64 dx, dy;
230 	s64 m; /* stored as *M_PRECISION */
231 	s64 *m_history_copy = state->temp_buf;
232 	s64 *error = state->temp_buf;
233 	int i;
234 
235 	/* we trust b the most, that'll be our independent variable */
236 	x = b;
237 	/* y is the offset between AP and EC times, in ns */
238 	y = c - b * 1000;
239 
240 	dx = (state->x_history[0] + state->x_offset) - x;
241 	if (dx == 0)
242 		return; /* we already have this irq in the history */
243 	dy = (state->y_history[0] + state->y_offset) - y;
244 	m = div64_s64(dy * M_PRECISION, dx);
245 
246 	/* Empty filter if we haven't seen any action in a while. */
247 	if (-dx > TS_HISTORY_BORED_US)
248 		state->history_len = 0;
249 
250 	/* Move everything over, also update offset to all absolute coords .*/
251 	for (i = state->history_len - 1; i >= 1; i--) {
252 		state->x_history[i] = state->x_history[i - 1] + dx;
253 		state->y_history[i] = state->y_history[i - 1] + dy;
254 
255 		state->m_history[i] = state->m_history[i - 1];
256 		/*
257 		 * Also use the same loop to copy m_history for future
258 		 * median extraction.
259 		 */
260 		m_history_copy[i] = state->m_history[i - 1];
261 	}
262 
263 	/* Store the x and y, but remember offset is actually last sample. */
264 	state->x_offset = x;
265 	state->y_offset = y;
266 	state->x_history[0] = 0;
267 	state->y_history[0] = 0;
268 
269 	state->m_history[0] = m;
270 	m_history_copy[0] = m;
271 
272 	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
273 		state->history_len++;
274 
275 	/* Precalculate things for the filter. */
276 	if (state->history_len > TS_HISTORY_THRESHOLD) {
277 		state->median_m =
278 		    cros_ec_sensor_ring_median(m_history_copy,
279 					       state->history_len - 1);
280 
281 		/*
282 		 * Calculate y-intercepts as if m_median is the slope and
283 		 * points in the history are on the line. median_error will
284 		 * still be in the offset coordinate system.
285 		 */
286 		for (i = 0; i < state->history_len; i++)
287 			error[i] = state->y_history[i] -
288 				div_s64(state->median_m * state->x_history[i],
289 					M_PRECISION);
290 		state->median_error =
291 			cros_ec_sensor_ring_median(error, state->history_len);
292 	} else {
293 		state->median_m = 0;
294 		state->median_error = 0;
295 	}
296 	trace_cros_ec_sensorhub_filter(state, dx, dy);
297 }
298 
299 /**
300  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
301  *                                   timebase
302  *
303  * @state: filter information.
304  * @x: any ec timestamp (us):
305  *
306  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
307  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
308  *                           should have happened on the AP, with low jitter
309  *
310  * Note: The filter will only activate once state->history_len goes
311  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
312  * transform.
313  *
314  * How to derive the formula, starting from:
315  *   f(x) = median_m * x + median_error
316  * That's the calculated AP - EC offset (at the x point in time)
317  * Undo the coordinate system transform:
318  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
319  * Remember to undo the "y = c - b * 1000" modification:
320  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
321  *
322  * Return: timestamp in AP timebase (ns)
323  */
324 static s64
325 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
326 			      s64 x)
327 {
328 	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
329 	       + state->median_error + state->y_offset + x * 1000;
330 }
331 
332 /*
333  * Since a and b were originally 32 bit values from the EC,
334  * they overflow relatively often, casting is not enough, so we need to
335  * add an offset.
336  */
337 static void
338 cros_ec_sensor_ring_fix_overflow(s64 *ts,
339 				 const s64 overflow_period,
340 				 struct cros_ec_sensors_ec_overflow_state
341 				 *state)
342 {
343 	s64 adjust;
344 
345 	*ts += state->offset;
346 	if (abs(state->last - *ts) > (overflow_period / 2)) {
347 		adjust = state->last > *ts ? overflow_period : -overflow_period;
348 		state->offset += adjust;
349 		*ts += adjust;
350 	}
351 	state->last = *ts;
352 }
353 
354 static void
355 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
356 					     *sensorhub,
357 					     struct cros_ec_sensors_ring_sample
358 					     *sample)
359 {
360 	const u8 sensor_id = sample->sensor_id;
361 
362 	/* If this event is earlier than one we saw before... */
363 	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
364 	    sample->timestamp)
365 		/* mark it for spreading. */
366 		sample->timestamp =
367 			sensorhub->batch_state[sensor_id].last_ts;
368 	else
369 		sensorhub->batch_state[sensor_id].newest_sensor_event =
370 			sample->timestamp;
371 }
372 
373 /**
374  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
375  *
376  * @sensorhub: Sensor Hub object.
377  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
378  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
379  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
380  * @in: incoming FIFO event from EC (includes a point, EC timebase).
381  * @out: outgoing event to user space (includes a').
382  *
383  * Process one EC event, add it in the ring if necessary.
384  *
385  * Return: true if out event has been populated.
386  */
387 static bool
388 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
389 				const struct ec_response_motion_sense_fifo_info
390 				*fifo_info,
391 				const ktime_t fifo_timestamp,
392 				ktime_t *current_timestamp,
393 				struct ec_response_motion_sensor_data *in,
394 				struct cros_ec_sensors_ring_sample *out)
395 {
396 	const s64 now = cros_ec_get_time_ns();
397 	int axis, async_flags;
398 
399 	/* Do not populate the filter based on asynchronous events. */
400 	async_flags = in->flags &
401 		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
402 
403 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
404 		s64 a = in->timestamp;
405 		s64 b = fifo_info->timestamp;
406 		s64 c = fifo_timestamp;
407 
408 		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
409 					  &sensorhub->overflow_a);
410 		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
411 					  &sensorhub->overflow_b);
412 
413 		if (sensorhub->tight_timestamps) {
414 			cros_ec_sensor_ring_ts_filter_update(
415 					&sensorhub->filter, b, c);
416 			*current_timestamp = cros_ec_sensor_ring_ts_filter(
417 					&sensorhub->filter, a);
418 		} else {
419 			s64 new_timestamp;
420 
421 			/*
422 			 * Disable filtering since we might add more jitter
423 			 * if b is in a random point in time.
424 			 */
425 			new_timestamp = c - b * 1000 + a * 1000;
426 			/*
427 			 * The timestamp can be stale if we had to use the fifo
428 			 * info timestamp.
429 			 */
430 			if (new_timestamp - *current_timestamp > 0)
431 				*current_timestamp = new_timestamp;
432 		}
433 		trace_cros_ec_sensorhub_timestamp(in->timestamp,
434 						  fifo_info->timestamp,
435 						  fifo_timestamp,
436 						  *current_timestamp,
437 						  now);
438 	}
439 
440 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
441 		if (sensorhub->tight_timestamps) {
442 			sensorhub->batch_state[in->sensor_num].last_len = 0;
443 			sensorhub->batch_state[in->sensor_num].penul_len = 0;
444 		}
445 		/*
446 		 * ODR change is only useful for the sensor_ring, it does not
447 		 * convey information to clients.
448 		 */
449 		return false;
450 	}
451 
452 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
453 		out->sensor_id = in->sensor_num;
454 		out->timestamp = *current_timestamp;
455 		out->flag = in->flags;
456 		if (sensorhub->tight_timestamps)
457 			sensorhub->batch_state[out->sensor_id].last_len = 0;
458 		/*
459 		 * No other payload information provided with
460 		 * flush ack.
461 		 */
462 		return true;
463 	}
464 
465 	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
466 		/* If we just have a timestamp, skip this entry. */
467 		return false;
468 
469 	/* Regular sample */
470 	out->sensor_id = in->sensor_num;
471 	trace_cros_ec_sensorhub_data(in->sensor_num,
472 				     fifo_info->timestamp,
473 				     fifo_timestamp,
474 				     *current_timestamp,
475 				     now);
476 
477 	if (*current_timestamp - now > 0) {
478 		/*
479 		 * This fix is needed to overcome the timestamp filter putting
480 		 * events in the future.
481 		 */
482 		sensorhub->future_timestamp_total_ns +=
483 			*current_timestamp - now;
484 		if (++sensorhub->future_timestamp_count ==
485 				FUTURE_TS_ANALYTICS_COUNT_MAX) {
486 			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
487 					sensorhub->future_timestamp_count);
488 			dev_warn_ratelimited(sensorhub->dev,
489 					     "100 timestamps in the future, %lldns shaved on average\n",
490 					     avg);
491 			sensorhub->future_timestamp_count = 0;
492 			sensorhub->future_timestamp_total_ns = 0;
493 		}
494 		out->timestamp = now;
495 	} else {
496 		out->timestamp = *current_timestamp;
497 	}
498 
499 	out->flag = in->flags;
500 	for (axis = 0; axis < 3; axis++)
501 		out->vector[axis] = in->data[axis];
502 
503 	if (sensorhub->tight_timestamps)
504 		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
505 	return true;
506 }
507 
508 /*
509  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
510  *                                 ringbuffer.
511  *
512  * This is the new spreading code, assumes every sample's timestamp
513  * preceeds the sample. Run if tight_timestamps == true.
514  *
515  * Sometimes the EC receives only one interrupt (hence timestamp) for
516  * a batch of samples. Only the first sample will have the correct
517  * timestamp. So we must interpolate the other samples.
518  * We use the previous batch timestamp and our current batch timestamp
519  * as a way to calculate period, then spread the samples evenly.
520  *
521  * s0 int, 0ms
522  * s1 int, 10ms
523  * s2 int, 20ms
524  * 30ms point goes by, no interrupt, previous one is still asserted
525  * downloading s2 and s3
526  * s3 sample, 20ms (incorrect timestamp)
527  * s4 int, 40ms
528  *
529  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
530  * has 2 samples in them, we adjust the timestamp of s3.
531  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
532  * been part of a bigger batch things would have gotten a little
533  * more complicated.
534  *
535  * Note: we also assume another sensor sample doesn't break up a batch
536  * in 2 or more partitions. Example, there can't ever be a sync sensor
537  * in between S2 and S3. This simplifies the following code.
538  */
539 static void
540 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
541 			       unsigned long sensor_mask,
542 			       struct cros_ec_sensors_ring_sample *last_out)
543 {
544 	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
545 	int id;
546 
547 	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
548 		for (batch_start = sensorhub->ring; batch_start < last_out;
549 		     batch_start = next_batch_start) {
550 			/*
551 			 * For each batch (where all samples have the same
552 			 * timestamp).
553 			 */
554 			int batch_len, sample_idx;
555 			struct cros_ec_sensors_ring_sample *batch_end =
556 				batch_start;
557 			struct cros_ec_sensors_ring_sample *s;
558 			s64 batch_timestamp = batch_start->timestamp;
559 			s64 sample_period;
560 
561 			/*
562 			 * Skip over batches that start with the sensor types
563 			 * we're not looking at right now.
564 			 */
565 			if (batch_start->sensor_id != id) {
566 				next_batch_start = batch_start + 1;
567 				continue;
568 			}
569 
570 			/*
571 			 * Do not start a batch
572 			 * from a flush, as it happens asynchronously to the
573 			 * regular flow of events.
574 			 */
575 			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
576 				cros_sensorhub_send_sample(sensorhub,
577 							   batch_start);
578 				next_batch_start = batch_start + 1;
579 				continue;
580 			}
581 
582 			if (batch_start->timestamp <=
583 			    sensorhub->batch_state[id].last_ts) {
584 				batch_timestamp =
585 					sensorhub->batch_state[id].last_ts;
586 				batch_len = sensorhub->batch_state[id].last_len;
587 
588 				sample_idx = batch_len;
589 
590 				sensorhub->batch_state[id].last_ts =
591 				  sensorhub->batch_state[id].penul_ts;
592 				sensorhub->batch_state[id].last_len =
593 				  sensorhub->batch_state[id].penul_len;
594 			} else {
595 				/*
596 				 * Push first sample in the batch to the,
597 				 * kifo, it's guaranteed to be correct, the
598 				 * rest will follow later on.
599 				 */
600 				sample_idx = 1;
601 				batch_len = 1;
602 				cros_sensorhub_send_sample(sensorhub,
603 							   batch_start);
604 				batch_start++;
605 			}
606 
607 			/* Find all samples have the same timestamp. */
608 			for (s = batch_start; s < last_out; s++) {
609 				if (s->sensor_id != id)
610 					/*
611 					 * Skip over other sensor types that
612 					 * are interleaved, don't count them.
613 					 */
614 					continue;
615 				if (s->timestamp != batch_timestamp)
616 					/* we discovered the next batch */
617 					break;
618 				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
619 					/* break on flush packets */
620 					break;
621 				batch_end = s;
622 				batch_len++;
623 			}
624 
625 			if (batch_len == 1)
626 				goto done_with_this_batch;
627 
628 			/* Can we calculate period? */
629 			if (sensorhub->batch_state[id].last_len == 0) {
630 				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
631 					 id, batch_len - 1);
632 				goto done_with_this_batch;
633 				/*
634 				 * Note: we're dropping the rest of the samples
635 				 * in this batch since we have no idea where
636 				 * they're supposed to go without a period
637 				 * calculation.
638 				 */
639 			}
640 
641 			sample_period = div_s64(batch_timestamp -
642 				sensorhub->batch_state[id].last_ts,
643 				sensorhub->batch_state[id].last_len);
644 			dev_dbg(sensorhub->dev,
645 				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
646 				batch_len, id,
647 				sensorhub->batch_state[id].last_ts,
648 				sensorhub->batch_state[id].last_len,
649 				batch_timestamp,
650 				sample_period);
651 
652 			/*
653 			 * Adjust timestamps of the samples then push them to
654 			 * kfifo.
655 			 */
656 			for (s = batch_start; s <= batch_end; s++) {
657 				if (s->sensor_id != id)
658 					/*
659 					 * Skip over other sensor types that
660 					 * are interleaved, don't change them.
661 					 */
662 					continue;
663 
664 				s->timestamp = batch_timestamp +
665 					sample_period * sample_idx;
666 				sample_idx++;
667 
668 				cros_sensorhub_send_sample(sensorhub, s);
669 			}
670 
671 done_with_this_batch:
672 			sensorhub->batch_state[id].penul_ts =
673 				sensorhub->batch_state[id].last_ts;
674 			sensorhub->batch_state[id].penul_len =
675 				sensorhub->batch_state[id].last_len;
676 
677 			sensorhub->batch_state[id].last_ts =
678 				batch_timestamp;
679 			sensorhub->batch_state[id].last_len = batch_len;
680 
681 			next_batch_start = batch_end + 1;
682 		}
683 	}
684 }
685 
686 /*
687  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
688  * add to ringbuffer (legacy).
689  *
690  * Note: This assumes we're running old firmware, where timestamp
691  * is inserted after its sample(s)e. There can be several samples between
692  * timestamps, so several samples can have the same timestamp.
693  *
694  *                        timestamp | count
695  *                        -----------------
696  *          1st sample --> TS1      | 1
697  *                         TS2      | 2
698  *                         TS2      | 3
699  *                         TS3      | 4
700  *           last_out -->
701  *
702  *
703  * We spread time for the samples using perod p = (current - TS1)/4.
704  * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
705  *
706  */
707 static void
708 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
709 				      unsigned long sensor_mask,
710 				      s64 current_timestamp,
711 				      struct cros_ec_sensors_ring_sample
712 				      *last_out)
713 {
714 	struct cros_ec_sensors_ring_sample *out;
715 	int i;
716 
717 	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
718 		s64 timestamp;
719 		int count = 0;
720 		s64 time_period;
721 
722 		for (out = sensorhub->ring; out < last_out; out++) {
723 			if (out->sensor_id != i)
724 				continue;
725 
726 			/* Timestamp to start with */
727 			timestamp = out->timestamp;
728 			out++;
729 			count = 1;
730 			break;
731 		}
732 		for (; out < last_out; out++) {
733 			/* Find last sample. */
734 			if (out->sensor_id != i)
735 				continue;
736 			count++;
737 		}
738 		if (count == 0)
739 			continue;
740 
741 		/* Spread uniformly between the first and last samples. */
742 		time_period = div_s64(current_timestamp - timestamp, count);
743 
744 		for (out = sensorhub->ring; out < last_out; out++) {
745 			if (out->sensor_id != i)
746 				continue;
747 			timestamp += time_period;
748 			out->timestamp = timestamp;
749 		}
750 	}
751 
752 	/* Push the event into the kfifo */
753 	for (out = sensorhub->ring; out < last_out; out++)
754 		cros_sensorhub_send_sample(sensorhub, out);
755 }
756 
757 /**
758  * cros_ec_sensorhub_ring_handler() - The trigger handler function
759  *
760  * @sensorhub: Sensor Hub object.
761  *
762  * Called by the notifier, process the EC sensor FIFO queue.
763  */
764 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
765 {
766 	struct ec_response_motion_sense_fifo_info *fifo_info =
767 		sensorhub->fifo_info;
768 	struct cros_ec_dev *ec = sensorhub->ec;
769 	ktime_t fifo_timestamp, current_timestamp;
770 	int i, j, number_data, ret;
771 	unsigned long sensor_mask = 0;
772 	struct ec_response_motion_sensor_data *in;
773 	struct cros_ec_sensors_ring_sample *out, *last_out;
774 
775 	mutex_lock(&sensorhub->cmd_lock);
776 
777 	/* Get FIFO information if there are lost vectors. */
778 	if (fifo_info->total_lost) {
779 		int fifo_info_length =
780 			sizeof(struct ec_response_motion_sense_fifo_info) +
781 			sizeof(u16) * sensorhub->sensor_num;
782 
783 		/* Need to retrieve the number of lost vectors per sensor */
784 		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
785 		sensorhub->msg->outsize = 1;
786 		sensorhub->msg->insize = fifo_info_length;
787 
788 		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
789 			goto error;
790 
791 		memcpy(fifo_info, &sensorhub->resp->fifo_info,
792 		       fifo_info_length);
793 
794 		/*
795 		 * Update collection time, will not be as precise as the
796 		 * non-error case.
797 		 */
798 		fifo_timestamp = cros_ec_get_time_ns();
799 	} else {
800 		fifo_timestamp = sensorhub->fifo_timestamp[
801 			CROS_EC_SENSOR_NEW_TS];
802 	}
803 
804 	if (fifo_info->count > sensorhub->fifo_size ||
805 	    fifo_info->size != sensorhub->fifo_size) {
806 		dev_warn(sensorhub->dev,
807 			 "Mismatch EC data: count %d, size %d - expected %d\n",
808 			 fifo_info->count, fifo_info->size,
809 			 sensorhub->fifo_size);
810 		goto error;
811 	}
812 
813 	/* Copy elements in the main fifo */
814 	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
815 	out = sensorhub->ring;
816 	for (i = 0; i < fifo_info->count; i += number_data) {
817 		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
818 		sensorhub->params->fifo_read.max_data_vector =
819 			fifo_info->count - i;
820 		sensorhub->msg->outsize =
821 			sizeof(struct ec_params_motion_sense);
822 		sensorhub->msg->insize =
823 			sizeof(sensorhub->resp->fifo_read) +
824 			sensorhub->params->fifo_read.max_data_vector *
825 			  sizeof(struct ec_response_motion_sensor_data);
826 		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
827 		if (ret < 0) {
828 			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
829 			break;
830 		}
831 		number_data = sensorhub->resp->fifo_read.number_data;
832 		if (number_data == 0) {
833 			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
834 			break;
835 		}
836 		if (number_data > fifo_info->count - i) {
837 			dev_warn(sensorhub->dev,
838 				 "Invalid EC data: too many entry received: %d, expected %d\n",
839 				 number_data, fifo_info->count - i);
840 			break;
841 		}
842 		if (out + number_data >
843 		    sensorhub->ring + fifo_info->count) {
844 			dev_warn(sensorhub->dev,
845 				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
846 				 i, out - sensorhub->ring, i + number_data,
847 				 fifo_info->count);
848 			break;
849 		}
850 
851 		for (in = sensorhub->resp->fifo_read.data, j = 0;
852 		     j < number_data; j++, in++) {
853 			if (cros_ec_sensor_ring_process_event(
854 						sensorhub, fifo_info,
855 						fifo_timestamp,
856 						&current_timestamp,
857 						in, out)) {
858 				sensor_mask |= BIT(in->sensor_num);
859 				out++;
860 			}
861 		}
862 	}
863 	mutex_unlock(&sensorhub->cmd_lock);
864 	last_out = out;
865 
866 	if (out == sensorhub->ring)
867 		/* Unexpected empty FIFO. */
868 		goto ring_handler_end;
869 
870 	/*
871 	 * Check if current_timestamp is ahead of the last sample. Normally,
872 	 * the EC appends a timestamp after the last sample, but if the AP
873 	 * is slow to respond to the IRQ, the EC may have added new samples.
874 	 * Use the FIFO info timestamp as last timestamp then.
875 	 */
876 	if (!sensorhub->tight_timestamps &&
877 	    (last_out - 1)->timestamp == current_timestamp)
878 		current_timestamp = fifo_timestamp;
879 
880 	/* Warn on lost samples. */
881 	if (fifo_info->total_lost)
882 		for (i = 0; i < sensorhub->sensor_num; i++) {
883 			if (fifo_info->lost[i]) {
884 				dev_warn_ratelimited(sensorhub->dev,
885 						     "Sensor %d: lost: %d out of %d\n",
886 						     i, fifo_info->lost[i],
887 						     fifo_info->total_lost);
888 				if (sensorhub->tight_timestamps)
889 					sensorhub->batch_state[i].last_len = 0;
890 			}
891 		}
892 
893 	/*
894 	 * Spread samples in case of batching, then add them to the
895 	 * ringbuffer.
896 	 */
897 	if (sensorhub->tight_timestamps)
898 		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
899 					       last_out);
900 	else
901 		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
902 						      current_timestamp,
903 						      last_out);
904 
905 ring_handler_end:
906 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
907 	return;
908 
909 error:
910 	mutex_unlock(&sensorhub->cmd_lock);
911 }
912 
913 static int cros_ec_sensorhub_event(struct notifier_block *nb,
914 				   unsigned long queued_during_suspend,
915 				   void *_notify)
916 {
917 	struct cros_ec_sensorhub *sensorhub;
918 	struct cros_ec_device *ec_dev;
919 
920 	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
921 	ec_dev = sensorhub->ec->ec_dev;
922 
923 	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
924 		return NOTIFY_DONE;
925 
926 	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
927 		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
928 		return NOTIFY_DONE;
929 	}
930 
931 	if (queued_during_suspend)
932 		return NOTIFY_OK;
933 
934 	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
935 	       sizeof(*sensorhub->fifo_info));
936 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
937 		ec_dev->last_event_time;
938 	cros_ec_sensorhub_ring_handler(sensorhub);
939 
940 	return NOTIFY_OK;
941 }
942 
943 /**
944  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
945  *				       supports it.
946  *
947  * @sensorhub : Sensor Hub object.
948  *
949  * Return: 0 on success.
950  */
951 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
952 {
953 	int fifo_info_length =
954 		sizeof(struct ec_response_motion_sense_fifo_info) +
955 		sizeof(u16) * sensorhub->sensor_num;
956 
957 	/* Allocate the array for lost events. */
958 	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
959 					    GFP_KERNEL);
960 	if (!sensorhub->fifo_info)
961 		return -ENOMEM;
962 
963 	/*
964 	 * Allocate the callback area based on the number of sensors.
965 	 * Add one for the sensor ring.
966 	 */
967 	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
968 			sensorhub->sensor_num,
969 			sizeof(*sensorhub->push_data),
970 			GFP_KERNEL);
971 	if (!sensorhub->push_data)
972 		return -ENOMEM;
973 
974 	sensorhub->tight_timestamps = cros_ec_check_features(
975 			sensorhub->ec,
976 			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
977 
978 	if (sensorhub->tight_timestamps) {
979 		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
980 				sensorhub->sensor_num,
981 				sizeof(*sensorhub->batch_state),
982 				GFP_KERNEL);
983 		if (!sensorhub->batch_state)
984 			return -ENOMEM;
985 	}
986 
987 	return 0;
988 }
989 
990 /**
991  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
992  *				  supports it.
993  *
994  * @sensorhub : Sensor Hub object.
995  *
996  * Return: 0 on success.
997  */
998 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
999 {
1000 	struct cros_ec_dev *ec = sensorhub->ec;
1001 	int ret;
1002 	int fifo_info_length =
1003 		sizeof(struct ec_response_motion_sense_fifo_info) +
1004 		sizeof(u16) * sensorhub->sensor_num;
1005 
1006 	/* Retrieve FIFO information */
1007 	sensorhub->msg->version = 2;
1008 	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1009 	sensorhub->msg->outsize = 1;
1010 	sensorhub->msg->insize = fifo_info_length;
1011 
1012 	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1013 	if (ret < 0)
1014 		return ret;
1015 
1016 	/*
1017 	 * Allocate the full fifo. We need to copy the whole FIFO to set
1018 	 * timestamps properly.
1019 	 */
1020 	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1021 	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1022 				       sizeof(*sensorhub->ring), GFP_KERNEL);
1023 	if (!sensorhub->ring)
1024 		return -ENOMEM;
1025 
1026 	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1027 		cros_ec_get_time_ns();
1028 
1029 	/* Register the notifier that will act as a top half interrupt. */
1030 	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1031 	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1032 					       &sensorhub->notifier);
1033 	if (ret < 0)
1034 		return ret;
1035 
1036 	/* Start collection samples. */
1037 	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1038 }
1039 
1040 void cros_ec_sensorhub_ring_remove(void *arg)
1041 {
1042 	struct cros_ec_sensorhub *sensorhub = arg;
1043 	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1044 
1045 	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
1046 	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1047 	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1048 					   &sensorhub->notifier);
1049 }
1050