1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Chrome OS EC Sensor hub FIFO. 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/iio/iio.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/platform_data/cros_ec_commands.h> 14 #include <linux/platform_data/cros_ec_proto.h> 15 #include <linux/platform_data/cros_ec_sensorhub.h> 16 #include <linux/platform_device.h> 17 #include <linux/sort.h> 18 #include <linux/slab.h> 19 20 #define CREATE_TRACE_POINTS 21 #include "cros_ec_sensorhub_trace.h" 22 23 /* Precision of fixed point for the m values from the filter */ 24 #define M_PRECISION BIT(23) 25 26 /* Only activate the filter once we have at least this many elements. */ 27 #define TS_HISTORY_THRESHOLD 8 28 29 /* 30 * If we don't have any history entries for this long, empty the filter to 31 * make sure there are no big discontinuities. 32 */ 33 #define TS_HISTORY_BORED_US 500000 34 35 /* To measure by how much the filter is overshooting, if it happens. */ 36 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100 37 38 static inline int 39 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub, 40 struct cros_ec_sensors_ring_sample *sample) 41 { 42 cros_ec_sensorhub_push_data_cb_t cb; 43 int id = sample->sensor_id; 44 struct iio_dev *indio_dev; 45 46 if (id >= sensorhub->sensor_num) 47 return -EINVAL; 48 49 cb = sensorhub->push_data[id].push_data_cb; 50 if (!cb) 51 return 0; 52 53 indio_dev = sensorhub->push_data[id].indio_dev; 54 55 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 56 return 0; 57 58 return cb(indio_dev, sample->vector, sample->timestamp); 59 } 60 61 /** 62 * cros_ec_sensorhub_register_push_data() - register the callback to the hub. 63 * 64 * @sensorhub : Sensor Hub object 65 * @sensor_num : The sensor the caller is interested in. 66 * @indio_dev : The iio device to use when a sample arrives. 67 * @cb : The callback to call when a sample arrives. 68 * 69 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events 70 * from the EC. 71 * 72 * Return: 0 when callback is registered. 73 * EINVAL is the sensor number is invalid or the slot already used. 74 */ 75 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub, 76 u8 sensor_num, 77 struct iio_dev *indio_dev, 78 cros_ec_sensorhub_push_data_cb_t cb) 79 { 80 if (sensor_num >= sensorhub->sensor_num) 81 return -EINVAL; 82 if (sensorhub->push_data[sensor_num].indio_dev) 83 return -EINVAL; 84 85 sensorhub->push_data[sensor_num].indio_dev = indio_dev; 86 sensorhub->push_data[sensor_num].push_data_cb = cb; 87 88 return 0; 89 } 90 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data); 91 92 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub, 93 u8 sensor_num) 94 { 95 sensorhub->push_data[sensor_num].indio_dev = NULL; 96 sensorhub->push_data[sensor_num].push_data_cb = NULL; 97 } 98 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data); 99 100 /** 101 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation 102 * for FIFO events. 103 * @sensorhub: Sensor Hub object 104 * @on: true when events are requested. 105 * 106 * To be called before sleeping or when noone is listening. 107 * Return: 0 on success, or an error when we can not communicate with the EC. 108 * 109 */ 110 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, 111 bool on) 112 { 113 int ret, i; 114 115 mutex_lock(&sensorhub->cmd_lock); 116 if (sensorhub->tight_timestamps) 117 for (i = 0; i < sensorhub->sensor_num; i++) 118 sensorhub->batch_state[i].last_len = 0; 119 120 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE; 121 sensorhub->params->fifo_int_enable.enable = on; 122 123 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense); 124 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense); 125 126 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg); 127 mutex_unlock(&sensorhub->cmd_lock); 128 129 /* We expect to receive a payload of 4 bytes, ignore. */ 130 if (ret > 0) 131 ret = 0; 132 133 return ret; 134 } 135 136 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2) 137 { 138 s64 v1 = *(s64 *)pv1; 139 s64 v2 = *(s64 *)pv2; 140 141 if (v1 > v2) 142 return 1; 143 else if (v1 < v2) 144 return -1; 145 else 146 return 0; 147 } 148 149 /* 150 * cros_ec_sensor_ring_median: Gets median of an array of numbers 151 * 152 * For now it's implemented using an inefficient > O(n) sort then return 153 * the middle element. A more optimal method would be something like 154 * quickselect, but given that n = 64 we can probably live with it in the 155 * name of clarity. 156 * 157 * Warning: the input array gets modified (sorted)! 158 */ 159 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) 160 { 161 sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL); 162 return array[length / 2]; 163 } 164 165 /* 166 * IRQ Timestamp Filtering 167 * 168 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event 169 * we have to calculate it's timestamp in the AP timebase. There are 3 time 170 * points: 171 * a - EC timebase, sensor event 172 * b - EC timebase, IRQ 173 * c - AP timebase, IRQ 174 * a' - what we want: sensor even in AP timebase 175 * 176 * While a and b are recorded at accurate times (due to the EC real time 177 * nature); c is pretty untrustworthy, even though it's recorded the 178 * first thing in ec_irq_handler(). There is a very good change we'll get 179 * added lantency due to: 180 * other irqs 181 * ddrfreq 182 * cpuidle 183 * 184 * Normally a' = c - b + a, but if we do that naive math any jitter in c 185 * will get coupled in a', which we don't want. We want a function 186 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c. 187 * 188 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis. 189 * The slope of the line won't be exactly 1, there will be some clock drift 190 * between the 2 chips for various reasons (mechanical stress, temperature, 191 * voltage). We need to extrapolate values for a future x, without trusting 192 * recent y values too much. 193 * 194 * We use a median filter for the slope, then another median filter for the 195 * y-intercept to calculate this function: 196 * dx[n] = x[n-1] - x[n] 197 * dy[n] = x[n-1] - x[n] 198 * m[n] = dy[n] / dx[n] 199 * median_m = median(m[n-k:n]) 200 * error[i] = y[n-i] - median_m * x[n-i] 201 * median_error = median(error[:k]) 202 * predicted_y = median_m * x + median_error 203 * 204 * Implementation differences from above: 205 * - Redefined y to be actually c - b, this gives us a lot more precision 206 * to do the math. (c-b)/b variations are more obvious than c/b variations. 207 * - Since we don't have floating point, any operations involving slope are 208 * done using fixed point math (*M_PRECISION) 209 * - Since x and y grow with time, we keep zeroing the graph (relative to 210 * the last sample), this way math involving *x[n-i] will not overflow 211 * - EC timestamps are kept in us, it improves the slope calculation precision 212 */ 213 214 /** 215 * cros_ec_sensor_ring_ts_filter_update() - Update filter history. 216 * 217 * @state: Filter information. 218 * @b: IRQ timestamp, EC timebase (us) 219 * @c: IRQ timestamp, AP timebase (ns) 220 * 221 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter 222 * history. 223 */ 224 static void 225 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state 226 *state, 227 s64 b, s64 c) 228 { 229 s64 x, y; 230 s64 dx, dy; 231 s64 m; /* stored as *M_PRECISION */ 232 s64 *m_history_copy = state->temp_buf; 233 s64 *error = state->temp_buf; 234 int i; 235 236 /* we trust b the most, that'll be our independent variable */ 237 x = b; 238 /* y is the offset between AP and EC times, in ns */ 239 y = c - b * 1000; 240 241 dx = (state->x_history[0] + state->x_offset) - x; 242 if (dx == 0) 243 return; /* we already have this irq in the history */ 244 dy = (state->y_history[0] + state->y_offset) - y; 245 m = div64_s64(dy * M_PRECISION, dx); 246 247 /* Empty filter if we haven't seen any action in a while. */ 248 if (-dx > TS_HISTORY_BORED_US) 249 state->history_len = 0; 250 251 /* Move everything over, also update offset to all absolute coords .*/ 252 for (i = state->history_len - 1; i >= 1; i--) { 253 state->x_history[i] = state->x_history[i - 1] + dx; 254 state->y_history[i] = state->y_history[i - 1] + dy; 255 256 state->m_history[i] = state->m_history[i - 1]; 257 /* 258 * Also use the same loop to copy m_history for future 259 * median extraction. 260 */ 261 m_history_copy[i] = state->m_history[i - 1]; 262 } 263 264 /* Store the x and y, but remember offset is actually last sample. */ 265 state->x_offset = x; 266 state->y_offset = y; 267 state->x_history[0] = 0; 268 state->y_history[0] = 0; 269 270 state->m_history[0] = m; 271 m_history_copy[0] = m; 272 273 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE) 274 state->history_len++; 275 276 /* Precalculate things for the filter. */ 277 if (state->history_len > TS_HISTORY_THRESHOLD) { 278 state->median_m = 279 cros_ec_sensor_ring_median(m_history_copy, 280 state->history_len - 1); 281 282 /* 283 * Calculate y-intercepts as if m_median is the slope and 284 * points in the history are on the line. median_error will 285 * still be in the offset coordinate system. 286 */ 287 for (i = 0; i < state->history_len; i++) 288 error[i] = state->y_history[i] - 289 div_s64(state->median_m * state->x_history[i], 290 M_PRECISION); 291 state->median_error = 292 cros_ec_sensor_ring_median(error, state->history_len); 293 } else { 294 state->median_m = 0; 295 state->median_error = 0; 296 } 297 trace_cros_ec_sensorhub_filter(state, dx, dy); 298 } 299 300 /** 301 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP 302 * timebase 303 * 304 * @state: filter information. 305 * @x: any ec timestamp (us): 306 * 307 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase 308 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ 309 * should have happened on the AP, with low jitter 310 * 311 * Note: The filter will only activate once state->history_len goes 312 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a 313 * transform. 314 * 315 * How to derive the formula, starting from: 316 * f(x) = median_m * x + median_error 317 * That's the calculated AP - EC offset (at the x point in time) 318 * Undo the coordinate system transform: 319 * f(x) = median_m * (x - x_offset) + median_error + y_offset 320 * Remember to undo the "y = c - b * 1000" modification: 321 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000 322 * 323 * Return: timestamp in AP timebase (ns) 324 */ 325 static s64 326 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state, 327 s64 x) 328 { 329 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION) 330 + state->median_error + state->y_offset + x * 1000; 331 } 332 333 /* 334 * Since a and b were originally 32 bit values from the EC, 335 * they overflow relatively often, casting is not enough, so we need to 336 * add an offset. 337 */ 338 static void 339 cros_ec_sensor_ring_fix_overflow(s64 *ts, 340 const s64 overflow_period, 341 struct cros_ec_sensors_ec_overflow_state 342 *state) 343 { 344 s64 adjust; 345 346 *ts += state->offset; 347 if (abs(state->last - *ts) > (overflow_period / 2)) { 348 adjust = state->last > *ts ? overflow_period : -overflow_period; 349 state->offset += adjust; 350 *ts += adjust; 351 } 352 state->last = *ts; 353 } 354 355 static void 356 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub 357 *sensorhub, 358 struct cros_ec_sensors_ring_sample 359 *sample) 360 { 361 const u8 sensor_id = sample->sensor_id; 362 363 /* If this event is earlier than one we saw before... */ 364 if (sensorhub->batch_state[sensor_id].newest_sensor_event > 365 sample->timestamp) 366 /* mark it for spreading. */ 367 sample->timestamp = 368 sensorhub->batch_state[sensor_id].last_ts; 369 else 370 sensorhub->batch_state[sensor_id].newest_sensor_event = 371 sample->timestamp; 372 } 373 374 /** 375 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event 376 * 377 * @sensorhub: Sensor Hub object. 378 * @fifo_info: FIFO information from the EC (includes b point, EC timebase). 379 * @fifo_timestamp: EC IRQ, kernel timebase (aka c). 380 * @current_timestamp: calculated event timestamp, kernel timebase (aka a'). 381 * @in: incoming FIFO event from EC (includes a point, EC timebase). 382 * @out: outgoing event to user space (includes a'). 383 * 384 * Process one EC event, add it in the ring if necessary. 385 * 386 * Return: true if out event has been populated. 387 */ 388 static bool 389 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub, 390 const struct ec_response_motion_sense_fifo_info 391 *fifo_info, 392 const ktime_t fifo_timestamp, 393 ktime_t *current_timestamp, 394 struct ec_response_motion_sensor_data *in, 395 struct cros_ec_sensors_ring_sample *out) 396 { 397 const s64 now = cros_ec_get_time_ns(); 398 int axis, async_flags; 399 400 /* Do not populate the filter based on asynchronous events. */ 401 async_flags = in->flags & 402 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH); 403 404 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) { 405 s64 a = in->timestamp; 406 s64 b = fifo_info->timestamp; 407 s64 c = fifo_timestamp; 408 409 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32, 410 &sensorhub->overflow_a); 411 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32, 412 &sensorhub->overflow_b); 413 414 if (sensorhub->tight_timestamps) { 415 cros_ec_sensor_ring_ts_filter_update( 416 &sensorhub->filter, b, c); 417 *current_timestamp = cros_ec_sensor_ring_ts_filter( 418 &sensorhub->filter, a); 419 } else { 420 s64 new_timestamp; 421 422 /* 423 * Disable filtering since we might add more jitter 424 * if b is in a random point in time. 425 */ 426 new_timestamp = c - b * 1000 + a * 1000; 427 /* 428 * The timestamp can be stale if we had to use the fifo 429 * info timestamp. 430 */ 431 if (new_timestamp - *current_timestamp > 0) 432 *current_timestamp = new_timestamp; 433 } 434 trace_cros_ec_sensorhub_timestamp(in->timestamp, 435 fifo_info->timestamp, 436 fifo_timestamp, 437 *current_timestamp, 438 now); 439 } 440 441 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) { 442 if (sensorhub->tight_timestamps) { 443 sensorhub->batch_state[in->sensor_num].last_len = 0; 444 sensorhub->batch_state[in->sensor_num].penul_len = 0; 445 } 446 /* 447 * ODR change is only useful for the sensor_ring, it does not 448 * convey information to clients. 449 */ 450 return false; 451 } 452 453 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 454 out->sensor_id = in->sensor_num; 455 out->timestamp = *current_timestamp; 456 out->flag = in->flags; 457 if (sensorhub->tight_timestamps) 458 sensorhub->batch_state[out->sensor_id].last_len = 0; 459 /* 460 * No other payload information provided with 461 * flush ack. 462 */ 463 return true; 464 } 465 466 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP) 467 /* If we just have a timestamp, skip this entry. */ 468 return false; 469 470 /* Regular sample */ 471 out->sensor_id = in->sensor_num; 472 trace_cros_ec_sensorhub_data(in->sensor_num, 473 fifo_info->timestamp, 474 fifo_timestamp, 475 *current_timestamp, 476 now); 477 478 if (*current_timestamp - now > 0) { 479 /* 480 * This fix is needed to overcome the timestamp filter putting 481 * events in the future. 482 */ 483 sensorhub->future_timestamp_total_ns += 484 *current_timestamp - now; 485 if (++sensorhub->future_timestamp_count == 486 FUTURE_TS_ANALYTICS_COUNT_MAX) { 487 s64 avg = div_s64(sensorhub->future_timestamp_total_ns, 488 sensorhub->future_timestamp_count); 489 dev_warn_ratelimited(sensorhub->dev, 490 "100 timestamps in the future, %lldns shaved on average\n", 491 avg); 492 sensorhub->future_timestamp_count = 0; 493 sensorhub->future_timestamp_total_ns = 0; 494 } 495 out->timestamp = now; 496 } else { 497 out->timestamp = *current_timestamp; 498 } 499 500 out->flag = in->flags; 501 for (axis = 0; axis < 3; axis++) 502 out->vector[axis] = in->data[axis]; 503 504 if (sensorhub->tight_timestamps) 505 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out); 506 return true; 507 } 508 509 /* 510 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to 511 * ringbuffer. 512 * 513 * This is the new spreading code, assumes every sample's timestamp 514 * preceeds the sample. Run if tight_timestamps == true. 515 * 516 * Sometimes the EC receives only one interrupt (hence timestamp) for 517 * a batch of samples. Only the first sample will have the correct 518 * timestamp. So we must interpolate the other samples. 519 * We use the previous batch timestamp and our current batch timestamp 520 * as a way to calculate period, then spread the samples evenly. 521 * 522 * s0 int, 0ms 523 * s1 int, 10ms 524 * s2 int, 20ms 525 * 30ms point goes by, no interrupt, previous one is still asserted 526 * downloading s2 and s3 527 * s3 sample, 20ms (incorrect timestamp) 528 * s4 int, 40ms 529 * 530 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch 531 * has 2 samples in them, we adjust the timestamp of s3. 532 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have 533 * been part of a bigger batch things would have gotten a little 534 * more complicated. 535 * 536 * Note: we also assume another sensor sample doesn't break up a batch 537 * in 2 or more partitions. Example, there can't ever be a sync sensor 538 * in between S2 and S3. This simplifies the following code. 539 */ 540 static void 541 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub, 542 unsigned long sensor_mask, 543 struct cros_ec_sensors_ring_sample *last_out) 544 { 545 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start; 546 int id; 547 548 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) { 549 for (batch_start = sensorhub->ring; batch_start < last_out; 550 batch_start = next_batch_start) { 551 /* 552 * For each batch (where all samples have the same 553 * timestamp). 554 */ 555 int batch_len, sample_idx; 556 struct cros_ec_sensors_ring_sample *batch_end = 557 batch_start; 558 struct cros_ec_sensors_ring_sample *s; 559 s64 batch_timestamp = batch_start->timestamp; 560 s64 sample_period; 561 562 /* 563 * Skip over batches that start with the sensor types 564 * we're not looking at right now. 565 */ 566 if (batch_start->sensor_id != id) { 567 next_batch_start = batch_start + 1; 568 continue; 569 } 570 571 /* 572 * Do not start a batch 573 * from a flush, as it happens asynchronously to the 574 * regular flow of events. 575 */ 576 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 577 cros_sensorhub_send_sample(sensorhub, 578 batch_start); 579 next_batch_start = batch_start + 1; 580 continue; 581 } 582 583 if (batch_start->timestamp <= 584 sensorhub->batch_state[id].last_ts) { 585 batch_timestamp = 586 sensorhub->batch_state[id].last_ts; 587 batch_len = sensorhub->batch_state[id].last_len; 588 589 sample_idx = batch_len; 590 591 sensorhub->batch_state[id].last_ts = 592 sensorhub->batch_state[id].penul_ts; 593 sensorhub->batch_state[id].last_len = 594 sensorhub->batch_state[id].penul_len; 595 } else { 596 /* 597 * Push first sample in the batch to the, 598 * kifo, it's guaranteed to be correct, the 599 * rest will follow later on. 600 */ 601 sample_idx = 1; 602 batch_len = 1; 603 cros_sensorhub_send_sample(sensorhub, 604 batch_start); 605 batch_start++; 606 } 607 608 /* Find all samples have the same timestamp. */ 609 for (s = batch_start; s < last_out; s++) { 610 if (s->sensor_id != id) 611 /* 612 * Skip over other sensor types that 613 * are interleaved, don't count them. 614 */ 615 continue; 616 if (s->timestamp != batch_timestamp) 617 /* we discovered the next batch */ 618 break; 619 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 620 /* break on flush packets */ 621 break; 622 batch_end = s; 623 batch_len++; 624 } 625 626 if (batch_len == 1) 627 goto done_with_this_batch; 628 629 /* Can we calculate period? */ 630 if (sensorhub->batch_state[id].last_len == 0) { 631 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n", 632 id, batch_len - 1); 633 goto done_with_this_batch; 634 /* 635 * Note: we're dropping the rest of the samples 636 * in this batch since we have no idea where 637 * they're supposed to go without a period 638 * calculation. 639 */ 640 } 641 642 sample_period = div_s64(batch_timestamp - 643 sensorhub->batch_state[id].last_ts, 644 sensorhub->batch_state[id].last_len); 645 dev_dbg(sensorhub->dev, 646 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n", 647 batch_len, id, 648 sensorhub->batch_state[id].last_ts, 649 sensorhub->batch_state[id].last_len, 650 batch_timestamp, 651 sample_period); 652 653 /* 654 * Adjust timestamps of the samples then push them to 655 * kfifo. 656 */ 657 for (s = batch_start; s <= batch_end; s++) { 658 if (s->sensor_id != id) 659 /* 660 * Skip over other sensor types that 661 * are interleaved, don't change them. 662 */ 663 continue; 664 665 s->timestamp = batch_timestamp + 666 sample_period * sample_idx; 667 sample_idx++; 668 669 cros_sensorhub_send_sample(sensorhub, s); 670 } 671 672 done_with_this_batch: 673 sensorhub->batch_state[id].penul_ts = 674 sensorhub->batch_state[id].last_ts; 675 sensorhub->batch_state[id].penul_len = 676 sensorhub->batch_state[id].last_len; 677 678 sensorhub->batch_state[id].last_ts = 679 batch_timestamp; 680 sensorhub->batch_state[id].last_len = batch_len; 681 682 next_batch_start = batch_end + 1; 683 } 684 } 685 } 686 687 /* 688 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then 689 * add to ringbuffer (legacy). 690 * 691 * Note: This assumes we're running old firmware, where timestamp 692 * is inserted after its sample(s)e. There can be several samples between 693 * timestamps, so several samples can have the same timestamp. 694 * 695 * timestamp | count 696 * ----------------- 697 * 1st sample --> TS1 | 1 698 * TS2 | 2 699 * TS2 | 3 700 * TS3 | 4 701 * last_out --> 702 * 703 * 704 * We spread time for the samples using perod p = (current - TS1)/4. 705 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp]. 706 * 707 */ 708 static void 709 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub, 710 unsigned long sensor_mask, 711 s64 current_timestamp, 712 struct cros_ec_sensors_ring_sample 713 *last_out) 714 { 715 struct cros_ec_sensors_ring_sample *out; 716 int i; 717 718 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) { 719 s64 timestamp; 720 int count = 0; 721 s64 time_period; 722 723 for (out = sensorhub->ring; out < last_out; out++) { 724 if (out->sensor_id != i) 725 continue; 726 727 /* Timestamp to start with */ 728 timestamp = out->timestamp; 729 out++; 730 count = 1; 731 break; 732 } 733 for (; out < last_out; out++) { 734 /* Find last sample. */ 735 if (out->sensor_id != i) 736 continue; 737 count++; 738 } 739 if (count == 0) 740 continue; 741 742 /* Spread uniformly between the first and last samples. */ 743 time_period = div_s64(current_timestamp - timestamp, count); 744 745 for (out = sensorhub->ring; out < last_out; out++) { 746 if (out->sensor_id != i) 747 continue; 748 timestamp += time_period; 749 out->timestamp = timestamp; 750 } 751 } 752 753 /* Push the event into the kfifo */ 754 for (out = sensorhub->ring; out < last_out; out++) 755 cros_sensorhub_send_sample(sensorhub, out); 756 } 757 758 /** 759 * cros_ec_sensorhub_ring_handler() - The trigger handler function 760 * 761 * @sensorhub: Sensor Hub object. 762 * 763 * Called by the notifier, process the EC sensor FIFO queue. 764 */ 765 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub) 766 { 767 struct ec_response_motion_sense_fifo_info *fifo_info = 768 sensorhub->fifo_info; 769 struct cros_ec_dev *ec = sensorhub->ec; 770 ktime_t fifo_timestamp, current_timestamp; 771 int i, j, number_data, ret; 772 unsigned long sensor_mask = 0; 773 struct ec_response_motion_sensor_data *in; 774 struct cros_ec_sensors_ring_sample *out, *last_out; 775 776 mutex_lock(&sensorhub->cmd_lock); 777 778 /* Get FIFO information if there are lost vectors. */ 779 if (fifo_info->total_lost) { 780 int fifo_info_length = 781 sizeof(struct ec_response_motion_sense_fifo_info) + 782 sizeof(u16) * sensorhub->sensor_num; 783 784 /* Need to retrieve the number of lost vectors per sensor */ 785 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 786 sensorhub->msg->outsize = 1; 787 sensorhub->msg->insize = fifo_info_length; 788 789 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0) 790 goto error; 791 792 memcpy(fifo_info, &sensorhub->resp->fifo_info, 793 fifo_info_length); 794 795 /* 796 * Update collection time, will not be as precise as the 797 * non-error case. 798 */ 799 fifo_timestamp = cros_ec_get_time_ns(); 800 } else { 801 fifo_timestamp = sensorhub->fifo_timestamp[ 802 CROS_EC_SENSOR_NEW_TS]; 803 } 804 805 if (fifo_info->count > sensorhub->fifo_size || 806 fifo_info->size != sensorhub->fifo_size) { 807 dev_warn(sensorhub->dev, 808 "Mismatch EC data: count %d, size %d - expected %d\n", 809 fifo_info->count, fifo_info->size, 810 sensorhub->fifo_size); 811 goto error; 812 } 813 814 /* Copy elements in the main fifo */ 815 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS]; 816 out = sensorhub->ring; 817 for (i = 0; i < fifo_info->count; i += number_data) { 818 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ; 819 sensorhub->params->fifo_read.max_data_vector = 820 fifo_info->count - i; 821 sensorhub->msg->outsize = 822 sizeof(struct ec_params_motion_sense); 823 sensorhub->msg->insize = 824 sizeof(sensorhub->resp->fifo_read) + 825 sensorhub->params->fifo_read.max_data_vector * 826 sizeof(struct ec_response_motion_sensor_data); 827 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 828 if (ret < 0) { 829 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret); 830 break; 831 } 832 number_data = sensorhub->resp->fifo_read.number_data; 833 if (number_data == 0) { 834 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n"); 835 break; 836 } 837 if (number_data > fifo_info->count - i) { 838 dev_warn(sensorhub->dev, 839 "Invalid EC data: too many entry received: %d, expected %d\n", 840 number_data, fifo_info->count - i); 841 break; 842 } 843 if (out + number_data > 844 sensorhub->ring + fifo_info->count) { 845 dev_warn(sensorhub->dev, 846 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n", 847 i, out - sensorhub->ring, i + number_data, 848 fifo_info->count); 849 break; 850 } 851 852 for (in = sensorhub->resp->fifo_read.data, j = 0; 853 j < number_data; j++, in++) { 854 if (cros_ec_sensor_ring_process_event( 855 sensorhub, fifo_info, 856 fifo_timestamp, 857 ¤t_timestamp, 858 in, out)) { 859 sensor_mask |= BIT(in->sensor_num); 860 out++; 861 } 862 } 863 } 864 mutex_unlock(&sensorhub->cmd_lock); 865 last_out = out; 866 867 if (out == sensorhub->ring) 868 /* Unexpected empty FIFO. */ 869 goto ring_handler_end; 870 871 /* 872 * Check if current_timestamp is ahead of the last sample. Normally, 873 * the EC appends a timestamp after the last sample, but if the AP 874 * is slow to respond to the IRQ, the EC may have added new samples. 875 * Use the FIFO info timestamp as last timestamp then. 876 */ 877 if (!sensorhub->tight_timestamps && 878 (last_out - 1)->timestamp == current_timestamp) 879 current_timestamp = fifo_timestamp; 880 881 /* Warn on lost samples. */ 882 if (fifo_info->total_lost) 883 for (i = 0; i < sensorhub->sensor_num; i++) { 884 if (fifo_info->lost[i]) { 885 dev_warn_ratelimited(sensorhub->dev, 886 "Sensor %d: lost: %d out of %d\n", 887 i, fifo_info->lost[i], 888 fifo_info->total_lost); 889 if (sensorhub->tight_timestamps) 890 sensorhub->batch_state[i].last_len = 0; 891 } 892 } 893 894 /* 895 * Spread samples in case of batching, then add them to the 896 * ringbuffer. 897 */ 898 if (sensorhub->tight_timestamps) 899 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask, 900 last_out); 901 else 902 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask, 903 current_timestamp, 904 last_out); 905 906 ring_handler_end: 907 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp; 908 return; 909 910 error: 911 mutex_unlock(&sensorhub->cmd_lock); 912 } 913 914 static int cros_ec_sensorhub_event(struct notifier_block *nb, 915 unsigned long queued_during_suspend, 916 void *_notify) 917 { 918 struct cros_ec_sensorhub *sensorhub; 919 struct cros_ec_device *ec_dev; 920 921 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier); 922 ec_dev = sensorhub->ec->ec_dev; 923 924 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO) 925 return NOTIFY_DONE; 926 927 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) { 928 dev_warn(ec_dev->dev, "Invalid fifo info size\n"); 929 return NOTIFY_DONE; 930 } 931 932 if (queued_during_suspend) 933 return NOTIFY_OK; 934 935 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info, 936 sizeof(*sensorhub->fifo_info)); 937 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] = 938 ec_dev->last_event_time; 939 cros_ec_sensorhub_ring_handler(sensorhub); 940 941 return NOTIFY_OK; 942 } 943 944 /** 945 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC 946 * supports it. 947 * 948 * @sensorhub : Sensor Hub object. 949 * 950 * Return: 0 on success. 951 */ 952 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub) 953 { 954 int fifo_info_length = 955 sizeof(struct ec_response_motion_sense_fifo_info) + 956 sizeof(u16) * sensorhub->sensor_num; 957 958 /* Allocate the array for lost events. */ 959 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length, 960 GFP_KERNEL); 961 if (!sensorhub->fifo_info) 962 return -ENOMEM; 963 964 /* 965 * Allocate the callback area based on the number of sensors. 966 * Add one for the sensor ring. 967 */ 968 sensorhub->push_data = devm_kcalloc(sensorhub->dev, 969 sensorhub->sensor_num, 970 sizeof(*sensorhub->push_data), 971 GFP_KERNEL); 972 if (!sensorhub->push_data) 973 return -ENOMEM; 974 975 sensorhub->tight_timestamps = cros_ec_check_features( 976 sensorhub->ec, 977 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS); 978 979 if (sensorhub->tight_timestamps) { 980 sensorhub->batch_state = devm_kcalloc(sensorhub->dev, 981 sensorhub->sensor_num, 982 sizeof(*sensorhub->batch_state), 983 GFP_KERNEL); 984 if (!sensorhub->batch_state) 985 return -ENOMEM; 986 } 987 988 return 0; 989 } 990 991 /** 992 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC 993 * supports it. 994 * 995 * @sensorhub : Sensor Hub object. 996 * 997 * Return: 0 on success. 998 */ 999 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub) 1000 { 1001 struct cros_ec_dev *ec = sensorhub->ec; 1002 int ret; 1003 int fifo_info_length = 1004 sizeof(struct ec_response_motion_sense_fifo_info) + 1005 sizeof(u16) * sensorhub->sensor_num; 1006 1007 /* Retrieve FIFO information */ 1008 sensorhub->msg->version = 2; 1009 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 1010 sensorhub->msg->outsize = 1; 1011 sensorhub->msg->insize = fifo_info_length; 1012 1013 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 1014 if (ret < 0) 1015 return ret; 1016 1017 /* 1018 * Allocate the full fifo. We need to copy the whole FIFO to set 1019 * timestamps properly. 1020 */ 1021 sensorhub->fifo_size = sensorhub->resp->fifo_info.size; 1022 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size, 1023 sizeof(*sensorhub->ring), GFP_KERNEL); 1024 if (!sensorhub->ring) 1025 return -ENOMEM; 1026 1027 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = 1028 cros_ec_get_time_ns(); 1029 1030 /* Register the notifier that will act as a top half interrupt. */ 1031 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event; 1032 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier, 1033 &sensorhub->notifier); 1034 if (ret < 0) 1035 return ret; 1036 1037 /* Start collection samples. */ 1038 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true); 1039 } 1040 1041 void cros_ec_sensorhub_ring_remove(void *arg) 1042 { 1043 struct cros_ec_sensorhub *sensorhub = arg; 1044 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev; 1045 1046 /* Disable the ring, prevent EC interrupt to the AP for nothing. */ 1047 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false); 1048 blocking_notifier_chain_unregister(&ec_dev->event_notifier, 1049 &sensorhub->notifier); 1050 } 1051