1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Chrome OS EC Sensor hub FIFO. 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/iio/iio.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/platform_data/cros_ec_commands.h> 14 #include <linux/platform_data/cros_ec_proto.h> 15 #include <linux/platform_data/cros_ec_sensorhub.h> 16 #include <linux/platform_device.h> 17 #include <linux/sort.h> 18 #include <linux/slab.h> 19 20 /* Precision of fixed point for the m values from the filter */ 21 #define M_PRECISION BIT(23) 22 23 /* Only activate the filter once we have at least this many elements. */ 24 #define TS_HISTORY_THRESHOLD 8 25 26 /* 27 * If we don't have any history entries for this long, empty the filter to 28 * make sure there are no big discontinuities. 29 */ 30 #define TS_HISTORY_BORED_US 500000 31 32 /* To measure by how much the filter is overshooting, if it happens. */ 33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100 34 35 static inline int 36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub, 37 struct cros_ec_sensors_ring_sample *sample) 38 { 39 cros_ec_sensorhub_push_data_cb_t cb; 40 int id = sample->sensor_id; 41 struct iio_dev *indio_dev; 42 43 if (id >= sensorhub->sensor_num) 44 return -EINVAL; 45 46 cb = sensorhub->push_data[id].push_data_cb; 47 if (!cb) 48 return 0; 49 50 indio_dev = sensorhub->push_data[id].indio_dev; 51 52 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 53 return 0; 54 55 return cb(indio_dev, sample->vector, sample->timestamp); 56 } 57 58 /** 59 * cros_ec_sensorhub_register_push_data() - register the callback to the hub. 60 * 61 * @sensorhub : Sensor Hub object 62 * @sensor_num : The sensor the caller is interested in. 63 * @indio_dev : The iio device to use when a sample arrives. 64 * @cb : The callback to call when a sample arrives. 65 * 66 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events 67 * from the EC. 68 * 69 * Return: 0 when callback is registered. 70 * EINVAL is the sensor number is invalid or the slot already used. 71 */ 72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub, 73 u8 sensor_num, 74 struct iio_dev *indio_dev, 75 cros_ec_sensorhub_push_data_cb_t cb) 76 { 77 if (sensor_num >= sensorhub->sensor_num) 78 return -EINVAL; 79 if (sensorhub->push_data[sensor_num].indio_dev) 80 return -EINVAL; 81 82 sensorhub->push_data[sensor_num].indio_dev = indio_dev; 83 sensorhub->push_data[sensor_num].push_data_cb = cb; 84 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data); 88 89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub, 90 u8 sensor_num) 91 { 92 sensorhub->push_data[sensor_num].indio_dev = NULL; 93 sensorhub->push_data[sensor_num].push_data_cb = NULL; 94 } 95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data); 96 97 /** 98 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation 99 * for FIFO events. 100 * @sensorhub: Sensor Hub object 101 * @on: true when events are requested. 102 * 103 * To be called before sleeping or when noone is listening. 104 * Return: 0 on success, or an error when we can not communicate with the EC. 105 * 106 */ 107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, 108 bool on) 109 { 110 int ret, i; 111 112 mutex_lock(&sensorhub->cmd_lock); 113 if (sensorhub->tight_timestamps) 114 for (i = 0; i < sensorhub->sensor_num; i++) 115 sensorhub->batch_state[i].last_len = 0; 116 117 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE; 118 sensorhub->params->fifo_int_enable.enable = on; 119 120 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense); 121 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense); 122 123 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg); 124 mutex_unlock(&sensorhub->cmd_lock); 125 126 /* We expect to receive a payload of 4 bytes, ignore. */ 127 if (ret > 0) 128 ret = 0; 129 130 return ret; 131 } 132 133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2) 134 { 135 s64 v1 = *(s64 *)pv1; 136 s64 v2 = *(s64 *)pv2; 137 138 if (v1 > v2) 139 return 1; 140 else if (v1 < v2) 141 return -1; 142 else 143 return 0; 144 } 145 146 /* 147 * cros_ec_sensor_ring_median: Gets median of an array of numbers 148 * 149 * For now it's implemented using an inefficient > O(n) sort then return 150 * the middle element. A more optimal method would be something like 151 * quickselect, but given that n = 64 we can probably live with it in the 152 * name of clarity. 153 * 154 * Warning: the input array gets modified (sorted)! 155 */ 156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) 157 { 158 sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL); 159 return array[length / 2]; 160 } 161 162 /* 163 * IRQ Timestamp Filtering 164 * 165 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event 166 * we have to calculate it's timestamp in the AP timebase. There are 3 time 167 * points: 168 * a - EC timebase, sensor event 169 * b - EC timebase, IRQ 170 * c - AP timebase, IRQ 171 * a' - what we want: sensor even in AP timebase 172 * 173 * While a and b are recorded at accurate times (due to the EC real time 174 * nature); c is pretty untrustworthy, even though it's recorded the 175 * first thing in ec_irq_handler(). There is a very good change we'll get 176 * added lantency due to: 177 * other irqs 178 * ddrfreq 179 * cpuidle 180 * 181 * Normally a' = c - b + a, but if we do that naive math any jitter in c 182 * will get coupled in a', which we don't want. We want a function 183 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c. 184 * 185 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis. 186 * The slope of the line won't be exactly 1, there will be some clock drift 187 * between the 2 chips for various reasons (mechanical stress, temperature, 188 * voltage). We need to extrapolate values for a future x, without trusting 189 * recent y values too much. 190 * 191 * We use a median filter for the slope, then another median filter for the 192 * y-intercept to calculate this function: 193 * dx[n] = x[n-1] - x[n] 194 * dy[n] = x[n-1] - x[n] 195 * m[n] = dy[n] / dx[n] 196 * median_m = median(m[n-k:n]) 197 * error[i] = y[n-i] - median_m * x[n-i] 198 * median_error = median(error[:k]) 199 * predicted_y = median_m * x + median_error 200 * 201 * Implementation differences from above: 202 * - Redefined y to be actually c - b, this gives us a lot more precision 203 * to do the math. (c-b)/b variations are more obvious than c/b variations. 204 * - Since we don't have floating point, any operations involving slope are 205 * done using fixed point math (*M_PRECISION) 206 * - Since x and y grow with time, we keep zeroing the graph (relative to 207 * the last sample), this way math involving *x[n-i] will not overflow 208 * - EC timestamps are kept in us, it improves the slope calculation precision 209 */ 210 211 /** 212 * cros_ec_sensor_ring_ts_filter_update() - Update filter history. 213 * 214 * @state: Filter information. 215 * @b: IRQ timestamp, EC timebase (us) 216 * @c: IRQ timestamp, AP timebase (ns) 217 * 218 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter 219 * history. 220 */ 221 static void 222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state 223 *state, 224 s64 b, s64 c) 225 { 226 s64 x, y; 227 s64 dx, dy; 228 s64 m; /* stored as *M_PRECISION */ 229 s64 *m_history_copy = state->temp_buf; 230 s64 *error = state->temp_buf; 231 int i; 232 233 /* we trust b the most, that'll be our independent variable */ 234 x = b; 235 /* y is the offset between AP and EC times, in ns */ 236 y = c - b * 1000; 237 238 dx = (state->x_history[0] + state->x_offset) - x; 239 if (dx == 0) 240 return; /* we already have this irq in the history */ 241 dy = (state->y_history[0] + state->y_offset) - y; 242 m = div64_s64(dy * M_PRECISION, dx); 243 244 /* Empty filter if we haven't seen any action in a while. */ 245 if (-dx > TS_HISTORY_BORED_US) 246 state->history_len = 0; 247 248 /* Move everything over, also update offset to all absolute coords .*/ 249 for (i = state->history_len - 1; i >= 1; i--) { 250 state->x_history[i] = state->x_history[i - 1] + dx; 251 state->y_history[i] = state->y_history[i - 1] + dy; 252 253 state->m_history[i] = state->m_history[i - 1]; 254 /* 255 * Also use the same loop to copy m_history for future 256 * median extraction. 257 */ 258 m_history_copy[i] = state->m_history[i - 1]; 259 } 260 261 /* Store the x and y, but remember offset is actually last sample. */ 262 state->x_offset = x; 263 state->y_offset = y; 264 state->x_history[0] = 0; 265 state->y_history[0] = 0; 266 267 state->m_history[0] = m; 268 m_history_copy[0] = m; 269 270 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE) 271 state->history_len++; 272 273 /* Precalculate things for the filter. */ 274 if (state->history_len > TS_HISTORY_THRESHOLD) { 275 state->median_m = 276 cros_ec_sensor_ring_median(m_history_copy, 277 state->history_len - 1); 278 279 /* 280 * Calculate y-intercepts as if m_median is the slope and 281 * points in the history are on the line. median_error will 282 * still be in the offset coordinate system. 283 */ 284 for (i = 0; i < state->history_len; i++) 285 error[i] = state->y_history[i] - 286 div_s64(state->median_m * state->x_history[i], 287 M_PRECISION); 288 state->median_error = 289 cros_ec_sensor_ring_median(error, state->history_len); 290 } else { 291 state->median_m = 0; 292 state->median_error = 0; 293 } 294 } 295 296 /** 297 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP 298 * timebase 299 * 300 * @state: filter information. 301 * @x: any ec timestamp (us): 302 * 303 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase 304 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ 305 * should have happened on the AP, with low jitter 306 * 307 * Note: The filter will only activate once state->history_len goes 308 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a 309 * transform. 310 * 311 * How to derive the formula, starting from: 312 * f(x) = median_m * x + median_error 313 * That's the calculated AP - EC offset (at the x point in time) 314 * Undo the coordinate system transform: 315 * f(x) = median_m * (x - x_offset) + median_error + y_offset 316 * Remember to undo the "y = c - b * 1000" modification: 317 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000 318 * 319 * Return: timestamp in AP timebase (ns) 320 */ 321 static s64 322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state, 323 s64 x) 324 { 325 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION) 326 + state->median_error + state->y_offset + x * 1000; 327 } 328 329 /* 330 * Since a and b were originally 32 bit values from the EC, 331 * they overflow relatively often, casting is not enough, so we need to 332 * add an offset. 333 */ 334 static void 335 cros_ec_sensor_ring_fix_overflow(s64 *ts, 336 const s64 overflow_period, 337 struct cros_ec_sensors_ec_overflow_state 338 *state) 339 { 340 s64 adjust; 341 342 *ts += state->offset; 343 if (abs(state->last - *ts) > (overflow_period / 2)) { 344 adjust = state->last > *ts ? overflow_period : -overflow_period; 345 state->offset += adjust; 346 *ts += adjust; 347 } 348 state->last = *ts; 349 } 350 351 static void 352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub 353 *sensorhub, 354 struct cros_ec_sensors_ring_sample 355 *sample) 356 { 357 const u8 sensor_id = sample->sensor_id; 358 359 /* If this event is earlier than one we saw before... */ 360 if (sensorhub->batch_state[sensor_id].newest_sensor_event > 361 sample->timestamp) 362 /* mark it for spreading. */ 363 sample->timestamp = 364 sensorhub->batch_state[sensor_id].last_ts; 365 else 366 sensorhub->batch_state[sensor_id].newest_sensor_event = 367 sample->timestamp; 368 } 369 370 /** 371 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event 372 * 373 * @sensorhub: Sensor Hub object. 374 * @fifo_info: FIFO information from the EC (includes b point, EC timebase). 375 * @fifo_timestamp: EC IRQ, kernel timebase (aka c). 376 * @current_timestamp: calculated event timestamp, kernel timebase (aka a'). 377 * @in: incoming FIFO event from EC (includes a point, EC timebase). 378 * @out: outgoing event to user space (includes a'). 379 * 380 * Process one EC event, add it in the ring if necessary. 381 * 382 * Return: true if out event has been populated. 383 */ 384 static bool 385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub, 386 const struct ec_response_motion_sense_fifo_info 387 *fifo_info, 388 const ktime_t fifo_timestamp, 389 ktime_t *current_timestamp, 390 struct ec_response_motion_sensor_data *in, 391 struct cros_ec_sensors_ring_sample *out) 392 { 393 const s64 now = cros_ec_get_time_ns(); 394 int axis, async_flags; 395 396 /* Do not populate the filter based on asynchronous events. */ 397 async_flags = in->flags & 398 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH); 399 400 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) { 401 s64 a = in->timestamp; 402 s64 b = fifo_info->timestamp; 403 s64 c = fifo_timestamp; 404 405 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32, 406 &sensorhub->overflow_a); 407 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32, 408 &sensorhub->overflow_b); 409 410 if (sensorhub->tight_timestamps) { 411 cros_ec_sensor_ring_ts_filter_update( 412 &sensorhub->filter, b, c); 413 *current_timestamp = cros_ec_sensor_ring_ts_filter( 414 &sensorhub->filter, a); 415 } else { 416 s64 new_timestamp; 417 418 /* 419 * Disable filtering since we might add more jitter 420 * if b is in a random point in time. 421 */ 422 new_timestamp = c - b * 1000 + a * 1000; 423 /* 424 * The timestamp can be stale if we had to use the fifo 425 * info timestamp. 426 */ 427 if (new_timestamp - *current_timestamp > 0) 428 *current_timestamp = new_timestamp; 429 } 430 } 431 432 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) { 433 if (sensorhub->tight_timestamps) { 434 sensorhub->batch_state[in->sensor_num].last_len = 0; 435 sensorhub->batch_state[in->sensor_num].penul_len = 0; 436 } 437 /* 438 * ODR change is only useful for the sensor_ring, it does not 439 * convey information to clients. 440 */ 441 return false; 442 } 443 444 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 445 out->sensor_id = in->sensor_num; 446 out->timestamp = *current_timestamp; 447 out->flag = in->flags; 448 if (sensorhub->tight_timestamps) 449 sensorhub->batch_state[out->sensor_id].last_len = 0; 450 /* 451 * No other payload information provided with 452 * flush ack. 453 */ 454 return true; 455 } 456 457 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP) 458 /* If we just have a timestamp, skip this entry. */ 459 return false; 460 461 /* Regular sample */ 462 out->sensor_id = in->sensor_num; 463 if (*current_timestamp - now > 0) { 464 /* 465 * This fix is needed to overcome the timestamp filter putting 466 * events in the future. 467 */ 468 sensorhub->future_timestamp_total_ns += 469 *current_timestamp - now; 470 if (++sensorhub->future_timestamp_count == 471 FUTURE_TS_ANALYTICS_COUNT_MAX) { 472 s64 avg = div_s64(sensorhub->future_timestamp_total_ns, 473 sensorhub->future_timestamp_count); 474 dev_warn_ratelimited(sensorhub->dev, 475 "100 timestamps in the future, %lldns shaved on average\n", 476 avg); 477 sensorhub->future_timestamp_count = 0; 478 sensorhub->future_timestamp_total_ns = 0; 479 } 480 out->timestamp = now; 481 } else { 482 out->timestamp = *current_timestamp; 483 } 484 485 out->flag = in->flags; 486 for (axis = 0; axis < 3; axis++) 487 out->vector[axis] = in->data[axis]; 488 489 if (sensorhub->tight_timestamps) 490 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out); 491 return true; 492 } 493 494 /* 495 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to 496 * ringbuffer. 497 * 498 * This is the new spreading code, assumes every sample's timestamp 499 * preceeds the sample. Run if tight_timestamps == true. 500 * 501 * Sometimes the EC receives only one interrupt (hence timestamp) for 502 * a batch of samples. Only the first sample will have the correct 503 * timestamp. So we must interpolate the other samples. 504 * We use the previous batch timestamp and our current batch timestamp 505 * as a way to calculate period, then spread the samples evenly. 506 * 507 * s0 int, 0ms 508 * s1 int, 10ms 509 * s2 int, 20ms 510 * 30ms point goes by, no interrupt, previous one is still asserted 511 * downloading s2 and s3 512 * s3 sample, 20ms (incorrect timestamp) 513 * s4 int, 40ms 514 * 515 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch 516 * has 2 samples in them, we adjust the timestamp of s3. 517 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have 518 * been part of a bigger batch things would have gotten a little 519 * more complicated. 520 * 521 * Note: we also assume another sensor sample doesn't break up a batch 522 * in 2 or more partitions. Example, there can't ever be a sync sensor 523 * in between S2 and S3. This simplifies the following code. 524 */ 525 static void 526 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub, 527 unsigned long sensor_mask, 528 struct cros_ec_sensors_ring_sample *last_out) 529 { 530 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start; 531 int id; 532 533 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) { 534 for (batch_start = sensorhub->ring; batch_start < last_out; 535 batch_start = next_batch_start) { 536 /* 537 * For each batch (where all samples have the same 538 * timestamp). 539 */ 540 int batch_len, sample_idx; 541 struct cros_ec_sensors_ring_sample *batch_end = 542 batch_start; 543 struct cros_ec_sensors_ring_sample *s; 544 s64 batch_timestamp = batch_start->timestamp; 545 s64 sample_period; 546 547 /* 548 * Skip over batches that start with the sensor types 549 * we're not looking at right now. 550 */ 551 if (batch_start->sensor_id != id) { 552 next_batch_start = batch_start + 1; 553 continue; 554 } 555 556 /* 557 * Do not start a batch 558 * from a flush, as it happens asynchronously to the 559 * regular flow of events. 560 */ 561 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 562 cros_sensorhub_send_sample(sensorhub, 563 batch_start); 564 next_batch_start = batch_start + 1; 565 continue; 566 } 567 568 if (batch_start->timestamp <= 569 sensorhub->batch_state[id].last_ts) { 570 batch_timestamp = 571 sensorhub->batch_state[id].last_ts; 572 batch_len = sensorhub->batch_state[id].last_len; 573 574 sample_idx = batch_len; 575 576 sensorhub->batch_state[id].last_ts = 577 sensorhub->batch_state[id].penul_ts; 578 sensorhub->batch_state[id].last_len = 579 sensorhub->batch_state[id].penul_len; 580 } else { 581 /* 582 * Push first sample in the batch to the, 583 * kifo, it's guaranteed to be correct, the 584 * rest will follow later on. 585 */ 586 sample_idx = 1; 587 batch_len = 1; 588 cros_sensorhub_send_sample(sensorhub, 589 batch_start); 590 batch_start++; 591 } 592 593 /* Find all samples have the same timestamp. */ 594 for (s = batch_start; s < last_out; s++) { 595 if (s->sensor_id != id) 596 /* 597 * Skip over other sensor types that 598 * are interleaved, don't count them. 599 */ 600 continue; 601 if (s->timestamp != batch_timestamp) 602 /* we discovered the next batch */ 603 break; 604 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 605 /* break on flush packets */ 606 break; 607 batch_end = s; 608 batch_len++; 609 } 610 611 if (batch_len == 1) 612 goto done_with_this_batch; 613 614 /* Can we calculate period? */ 615 if (sensorhub->batch_state[id].last_len == 0) { 616 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n", 617 id, batch_len - 1); 618 goto done_with_this_batch; 619 /* 620 * Note: we're dropping the rest of the samples 621 * in this batch since we have no idea where 622 * they're supposed to go without a period 623 * calculation. 624 */ 625 } 626 627 sample_period = div_s64(batch_timestamp - 628 sensorhub->batch_state[id].last_ts, 629 sensorhub->batch_state[id].last_len); 630 dev_dbg(sensorhub->dev, 631 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n", 632 batch_len, id, 633 sensorhub->batch_state[id].last_ts, 634 sensorhub->batch_state[id].last_len, 635 batch_timestamp, 636 sample_period); 637 638 /* 639 * Adjust timestamps of the samples then push them to 640 * kfifo. 641 */ 642 for (s = batch_start; s <= batch_end; s++) { 643 if (s->sensor_id != id) 644 /* 645 * Skip over other sensor types that 646 * are interleaved, don't change them. 647 */ 648 continue; 649 650 s->timestamp = batch_timestamp + 651 sample_period * sample_idx; 652 sample_idx++; 653 654 cros_sensorhub_send_sample(sensorhub, s); 655 } 656 657 done_with_this_batch: 658 sensorhub->batch_state[id].penul_ts = 659 sensorhub->batch_state[id].last_ts; 660 sensorhub->batch_state[id].penul_len = 661 sensorhub->batch_state[id].last_len; 662 663 sensorhub->batch_state[id].last_ts = 664 batch_timestamp; 665 sensorhub->batch_state[id].last_len = batch_len; 666 667 next_batch_start = batch_end + 1; 668 } 669 } 670 } 671 672 /* 673 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then 674 * add to ringbuffer (legacy). 675 * 676 * Note: This assumes we're running old firmware, where timestamp 677 * is inserted after its sample(s)e. There can be several samples between 678 * timestamps, so several samples can have the same timestamp. 679 * 680 * timestamp | count 681 * ----------------- 682 * 1st sample --> TS1 | 1 683 * TS2 | 2 684 * TS2 | 3 685 * TS3 | 4 686 * last_out --> 687 * 688 * 689 * We spread time for the samples using perod p = (current - TS1)/4. 690 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp]. 691 * 692 */ 693 static void 694 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub, 695 unsigned long sensor_mask, 696 s64 current_timestamp, 697 struct cros_ec_sensors_ring_sample 698 *last_out) 699 { 700 struct cros_ec_sensors_ring_sample *out; 701 int i; 702 703 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) { 704 s64 timestamp; 705 int count = 0; 706 s64 time_period; 707 708 for (out = sensorhub->ring; out < last_out; out++) { 709 if (out->sensor_id != i) 710 continue; 711 712 /* Timestamp to start with */ 713 timestamp = out->timestamp; 714 out++; 715 count = 1; 716 break; 717 } 718 for (; out < last_out; out++) { 719 /* Find last sample. */ 720 if (out->sensor_id != i) 721 continue; 722 count++; 723 } 724 if (count == 0) 725 continue; 726 727 /* Spread uniformly between the first and last samples. */ 728 time_period = div_s64(current_timestamp - timestamp, count); 729 730 for (out = sensorhub->ring; out < last_out; out++) { 731 if (out->sensor_id != i) 732 continue; 733 timestamp += time_period; 734 out->timestamp = timestamp; 735 } 736 } 737 738 /* Push the event into the kfifo */ 739 for (out = sensorhub->ring; out < last_out; out++) 740 cros_sensorhub_send_sample(sensorhub, out); 741 } 742 743 /** 744 * cros_ec_sensorhub_ring_handler() - The trigger handler function 745 * 746 * @sensorhub: Sensor Hub object. 747 * 748 * Called by the notifier, process the EC sensor FIFO queue. 749 */ 750 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub) 751 { 752 struct ec_response_motion_sense_fifo_info *fifo_info = 753 sensorhub->fifo_info; 754 struct cros_ec_dev *ec = sensorhub->ec; 755 ktime_t fifo_timestamp, current_timestamp; 756 int i, j, number_data, ret; 757 unsigned long sensor_mask = 0; 758 struct ec_response_motion_sensor_data *in; 759 struct cros_ec_sensors_ring_sample *out, *last_out; 760 761 mutex_lock(&sensorhub->cmd_lock); 762 763 /* Get FIFO information if there are lost vectors. */ 764 if (fifo_info->total_lost) { 765 int fifo_info_length = 766 sizeof(struct ec_response_motion_sense_fifo_info) + 767 sizeof(u16) * sensorhub->sensor_num; 768 769 /* Need to retrieve the number of lost vectors per sensor */ 770 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 771 sensorhub->msg->outsize = 1; 772 sensorhub->msg->insize = fifo_info_length; 773 774 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0) 775 goto error; 776 777 memcpy(fifo_info, &sensorhub->resp->fifo_info, 778 fifo_info_length); 779 780 /* 781 * Update collection time, will not be as precise as the 782 * non-error case. 783 */ 784 fifo_timestamp = cros_ec_get_time_ns(); 785 } else { 786 fifo_timestamp = sensorhub->fifo_timestamp[ 787 CROS_EC_SENSOR_NEW_TS]; 788 } 789 790 if (fifo_info->count > sensorhub->fifo_size || 791 fifo_info->size != sensorhub->fifo_size) { 792 dev_warn(sensorhub->dev, 793 "Mismatch EC data: count %d, size %d - expected %d\n", 794 fifo_info->count, fifo_info->size, 795 sensorhub->fifo_size); 796 goto error; 797 } 798 799 /* Copy elements in the main fifo */ 800 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS]; 801 out = sensorhub->ring; 802 for (i = 0; i < fifo_info->count; i += number_data) { 803 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ; 804 sensorhub->params->fifo_read.max_data_vector = 805 fifo_info->count - i; 806 sensorhub->msg->outsize = 807 sizeof(struct ec_params_motion_sense); 808 sensorhub->msg->insize = 809 sizeof(sensorhub->resp->fifo_read) + 810 sensorhub->params->fifo_read.max_data_vector * 811 sizeof(struct ec_response_motion_sensor_data); 812 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 813 if (ret < 0) { 814 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret); 815 break; 816 } 817 number_data = sensorhub->resp->fifo_read.number_data; 818 if (number_data == 0) { 819 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n"); 820 break; 821 } 822 if (number_data > fifo_info->count - i) { 823 dev_warn(sensorhub->dev, 824 "Invalid EC data: too many entry received: %d, expected %d\n", 825 number_data, fifo_info->count - i); 826 break; 827 } 828 if (out + number_data > 829 sensorhub->ring + fifo_info->count) { 830 dev_warn(sensorhub->dev, 831 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n", 832 i, out - sensorhub->ring, i + number_data, 833 fifo_info->count); 834 break; 835 } 836 837 for (in = sensorhub->resp->fifo_read.data, j = 0; 838 j < number_data; j++, in++) { 839 if (cros_ec_sensor_ring_process_event( 840 sensorhub, fifo_info, 841 fifo_timestamp, 842 ¤t_timestamp, 843 in, out)) { 844 sensor_mask |= BIT(in->sensor_num); 845 out++; 846 } 847 } 848 } 849 mutex_unlock(&sensorhub->cmd_lock); 850 last_out = out; 851 852 if (out == sensorhub->ring) 853 /* Unexpected empty FIFO. */ 854 goto ring_handler_end; 855 856 /* 857 * Check if current_timestamp is ahead of the last sample. Normally, 858 * the EC appends a timestamp after the last sample, but if the AP 859 * is slow to respond to the IRQ, the EC may have added new samples. 860 * Use the FIFO info timestamp as last timestamp then. 861 */ 862 if (!sensorhub->tight_timestamps && 863 (last_out - 1)->timestamp == current_timestamp) 864 current_timestamp = fifo_timestamp; 865 866 /* Warn on lost samples. */ 867 if (fifo_info->total_lost) 868 for (i = 0; i < sensorhub->sensor_num; i++) { 869 if (fifo_info->lost[i]) { 870 dev_warn_ratelimited(sensorhub->dev, 871 "Sensor %d: lost: %d out of %d\n", 872 i, fifo_info->lost[i], 873 fifo_info->total_lost); 874 if (sensorhub->tight_timestamps) 875 sensorhub->batch_state[i].last_len = 0; 876 } 877 } 878 879 /* 880 * Spread samples in case of batching, then add them to the 881 * ringbuffer. 882 */ 883 if (sensorhub->tight_timestamps) 884 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask, 885 last_out); 886 else 887 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask, 888 current_timestamp, 889 last_out); 890 891 ring_handler_end: 892 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp; 893 return; 894 895 error: 896 mutex_unlock(&sensorhub->cmd_lock); 897 } 898 899 static int cros_ec_sensorhub_event(struct notifier_block *nb, 900 unsigned long queued_during_suspend, 901 void *_notify) 902 { 903 struct cros_ec_sensorhub *sensorhub; 904 struct cros_ec_device *ec_dev; 905 906 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier); 907 ec_dev = sensorhub->ec->ec_dev; 908 909 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO) 910 return NOTIFY_DONE; 911 912 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) { 913 dev_warn(ec_dev->dev, "Invalid fifo info size\n"); 914 return NOTIFY_DONE; 915 } 916 917 if (queued_during_suspend) 918 return NOTIFY_OK; 919 920 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info, 921 sizeof(*sensorhub->fifo_info)); 922 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] = 923 ec_dev->last_event_time; 924 cros_ec_sensorhub_ring_handler(sensorhub); 925 926 return NOTIFY_OK; 927 } 928 929 /** 930 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC 931 * supports it. 932 * 933 * @sensorhub : Sensor Hub object. 934 * 935 * Return: 0 on success. 936 */ 937 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub) 938 { 939 int fifo_info_length = 940 sizeof(struct ec_response_motion_sense_fifo_info) + 941 sizeof(u16) * sensorhub->sensor_num; 942 943 /* Allocate the array for lost events. */ 944 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length, 945 GFP_KERNEL); 946 if (!sensorhub->fifo_info) 947 return -ENOMEM; 948 949 /* 950 * Allocate the callback area based on the number of sensors. 951 * Add one for the sensor ring. 952 */ 953 sensorhub->push_data = devm_kcalloc(sensorhub->dev, 954 sensorhub->sensor_num, 955 sizeof(*sensorhub->push_data), 956 GFP_KERNEL); 957 if (!sensorhub->push_data) 958 return -ENOMEM; 959 960 sensorhub->tight_timestamps = cros_ec_check_features( 961 sensorhub->ec, 962 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS); 963 964 if (sensorhub->tight_timestamps) { 965 sensorhub->batch_state = devm_kcalloc(sensorhub->dev, 966 sensorhub->sensor_num, 967 sizeof(*sensorhub->batch_state), 968 GFP_KERNEL); 969 if (!sensorhub->batch_state) 970 return -ENOMEM; 971 } 972 973 return 0; 974 } 975 976 /** 977 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC 978 * supports it. 979 * 980 * @sensorhub : Sensor Hub object. 981 * 982 * Return: 0 on success. 983 */ 984 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub) 985 { 986 struct cros_ec_dev *ec = sensorhub->ec; 987 int ret; 988 int fifo_info_length = 989 sizeof(struct ec_response_motion_sense_fifo_info) + 990 sizeof(u16) * sensorhub->sensor_num; 991 992 /* Retrieve FIFO information */ 993 sensorhub->msg->version = 2; 994 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 995 sensorhub->msg->outsize = 1; 996 sensorhub->msg->insize = fifo_info_length; 997 998 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 999 if (ret < 0) 1000 return ret; 1001 1002 /* 1003 * Allocate the full fifo. We need to copy the whole FIFO to set 1004 * timestamps properly. 1005 */ 1006 sensorhub->fifo_size = sensorhub->resp->fifo_info.size; 1007 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size, 1008 sizeof(*sensorhub->ring), GFP_KERNEL); 1009 if (!sensorhub->ring) 1010 return -ENOMEM; 1011 1012 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = 1013 cros_ec_get_time_ns(); 1014 1015 /* Register the notifier that will act as a top half interrupt. */ 1016 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event; 1017 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier, 1018 &sensorhub->notifier); 1019 if (ret < 0) 1020 return ret; 1021 1022 /* Start collection samples. */ 1023 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true); 1024 } 1025 1026 void cros_ec_sensorhub_ring_remove(void *arg) 1027 { 1028 struct cros_ec_sensorhub *sensorhub = arg; 1029 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev; 1030 1031 /* Disable the ring, prevent EC interrupt to the AP for nothing. */ 1032 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false); 1033 blocking_notifier_chain_unregister(&ec_dev->event_notifier, 1034 &sensorhub->notifier); 1035 } 1036