1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Chrome OS EC Sensor hub FIFO. 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/iio/iio.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/platform_data/cros_ec_commands.h> 14 #include <linux/platform_data/cros_ec_proto.h> 15 #include <linux/platform_data/cros_ec_sensorhub.h> 16 #include <linux/platform_device.h> 17 #include <linux/sort.h> 18 #include <linux/slab.h> 19 20 #include "cros_ec_trace.h" 21 22 /* Precision of fixed point for the m values from the filter */ 23 #define M_PRECISION BIT(23) 24 25 /* Only activate the filter once we have at least this many elements. */ 26 #define TS_HISTORY_THRESHOLD 8 27 28 /* 29 * If we don't have any history entries for this long, empty the filter to 30 * make sure there are no big discontinuities. 31 */ 32 #define TS_HISTORY_BORED_US 500000 33 34 /* To measure by how much the filter is overshooting, if it happens. */ 35 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100 36 37 static inline int 38 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub, 39 struct cros_ec_sensors_ring_sample *sample) 40 { 41 cros_ec_sensorhub_push_data_cb_t cb; 42 int id = sample->sensor_id; 43 struct iio_dev *indio_dev; 44 45 if (id >= sensorhub->sensor_num) 46 return -EINVAL; 47 48 cb = sensorhub->push_data[id].push_data_cb; 49 if (!cb) 50 return 0; 51 52 indio_dev = sensorhub->push_data[id].indio_dev; 53 54 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 55 return 0; 56 57 return cb(indio_dev, sample->vector, sample->timestamp); 58 } 59 60 /** 61 * cros_ec_sensorhub_register_push_data() - register the callback to the hub. 62 * 63 * @sensorhub : Sensor Hub object 64 * @sensor_num : The sensor the caller is interested in. 65 * @indio_dev : The iio device to use when a sample arrives. 66 * @cb : The callback to call when a sample arrives. 67 * 68 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events 69 * from the EC. 70 * 71 * Return: 0 when callback is registered. 72 * EINVAL is the sensor number is invalid or the slot already used. 73 */ 74 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub, 75 u8 sensor_num, 76 struct iio_dev *indio_dev, 77 cros_ec_sensorhub_push_data_cb_t cb) 78 { 79 if (sensor_num >= sensorhub->sensor_num) 80 return -EINVAL; 81 if (sensorhub->push_data[sensor_num].indio_dev) 82 return -EINVAL; 83 84 sensorhub->push_data[sensor_num].indio_dev = indio_dev; 85 sensorhub->push_data[sensor_num].push_data_cb = cb; 86 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data); 90 91 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub, 92 u8 sensor_num) 93 { 94 sensorhub->push_data[sensor_num].indio_dev = NULL; 95 sensorhub->push_data[sensor_num].push_data_cb = NULL; 96 } 97 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data); 98 99 /** 100 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation 101 * for FIFO events. 102 * @sensorhub: Sensor Hub object 103 * @on: true when events are requested. 104 * 105 * To be called before sleeping or when noone is listening. 106 * Return: 0 on success, or an error when we can not communicate with the EC. 107 * 108 */ 109 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, 110 bool on) 111 { 112 int ret, i; 113 114 mutex_lock(&sensorhub->cmd_lock); 115 if (sensorhub->tight_timestamps) 116 for (i = 0; i < sensorhub->sensor_num; i++) 117 sensorhub->batch_state[i].last_len = 0; 118 119 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE; 120 sensorhub->params->fifo_int_enable.enable = on; 121 122 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense); 123 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense); 124 125 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg); 126 mutex_unlock(&sensorhub->cmd_lock); 127 128 /* We expect to receive a payload of 4 bytes, ignore. */ 129 if (ret > 0) 130 ret = 0; 131 132 return ret; 133 } 134 135 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2) 136 { 137 s64 v1 = *(s64 *)pv1; 138 s64 v2 = *(s64 *)pv2; 139 140 if (v1 > v2) 141 return 1; 142 else if (v1 < v2) 143 return -1; 144 else 145 return 0; 146 } 147 148 /* 149 * cros_ec_sensor_ring_median: Gets median of an array of numbers 150 * 151 * For now it's implemented using an inefficient > O(n) sort then return 152 * the middle element. A more optimal method would be something like 153 * quickselect, but given that n = 64 we can probably live with it in the 154 * name of clarity. 155 * 156 * Warning: the input array gets modified (sorted)! 157 */ 158 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) 159 { 160 sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL); 161 return array[length / 2]; 162 } 163 164 /* 165 * IRQ Timestamp Filtering 166 * 167 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event 168 * we have to calculate it's timestamp in the AP timebase. There are 3 time 169 * points: 170 * a - EC timebase, sensor event 171 * b - EC timebase, IRQ 172 * c - AP timebase, IRQ 173 * a' - what we want: sensor even in AP timebase 174 * 175 * While a and b are recorded at accurate times (due to the EC real time 176 * nature); c is pretty untrustworthy, even though it's recorded the 177 * first thing in ec_irq_handler(). There is a very good change we'll get 178 * added lantency due to: 179 * other irqs 180 * ddrfreq 181 * cpuidle 182 * 183 * Normally a' = c - b + a, but if we do that naive math any jitter in c 184 * will get coupled in a', which we don't want. We want a function 185 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c. 186 * 187 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis. 188 * The slope of the line won't be exactly 1, there will be some clock drift 189 * between the 2 chips for various reasons (mechanical stress, temperature, 190 * voltage). We need to extrapolate values for a future x, without trusting 191 * recent y values too much. 192 * 193 * We use a median filter for the slope, then another median filter for the 194 * y-intercept to calculate this function: 195 * dx[n] = x[n-1] - x[n] 196 * dy[n] = x[n-1] - x[n] 197 * m[n] = dy[n] / dx[n] 198 * median_m = median(m[n-k:n]) 199 * error[i] = y[n-i] - median_m * x[n-i] 200 * median_error = median(error[:k]) 201 * predicted_y = median_m * x + median_error 202 * 203 * Implementation differences from above: 204 * - Redefined y to be actually c - b, this gives us a lot more precision 205 * to do the math. (c-b)/b variations are more obvious than c/b variations. 206 * - Since we don't have floating point, any operations involving slope are 207 * done using fixed point math (*M_PRECISION) 208 * - Since x and y grow with time, we keep zeroing the graph (relative to 209 * the last sample), this way math involving *x[n-i] will not overflow 210 * - EC timestamps are kept in us, it improves the slope calculation precision 211 */ 212 213 /** 214 * cros_ec_sensor_ring_ts_filter_update() - Update filter history. 215 * 216 * @state: Filter information. 217 * @b: IRQ timestamp, EC timebase (us) 218 * @c: IRQ timestamp, AP timebase (ns) 219 * 220 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter 221 * history. 222 */ 223 static void 224 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state 225 *state, 226 s64 b, s64 c) 227 { 228 s64 x, y; 229 s64 dx, dy; 230 s64 m; /* stored as *M_PRECISION */ 231 s64 *m_history_copy = state->temp_buf; 232 s64 *error = state->temp_buf; 233 int i; 234 235 /* we trust b the most, that'll be our independent variable */ 236 x = b; 237 /* y is the offset between AP and EC times, in ns */ 238 y = c - b * 1000; 239 240 dx = (state->x_history[0] + state->x_offset) - x; 241 if (dx == 0) 242 return; /* we already have this irq in the history */ 243 dy = (state->y_history[0] + state->y_offset) - y; 244 m = div64_s64(dy * M_PRECISION, dx); 245 246 /* Empty filter if we haven't seen any action in a while. */ 247 if (-dx > TS_HISTORY_BORED_US) 248 state->history_len = 0; 249 250 /* Move everything over, also update offset to all absolute coords .*/ 251 for (i = state->history_len - 1; i >= 1; i--) { 252 state->x_history[i] = state->x_history[i - 1] + dx; 253 state->y_history[i] = state->y_history[i - 1] + dy; 254 255 state->m_history[i] = state->m_history[i - 1]; 256 /* 257 * Also use the same loop to copy m_history for future 258 * median extraction. 259 */ 260 m_history_copy[i] = state->m_history[i - 1]; 261 } 262 263 /* Store the x and y, but remember offset is actually last sample. */ 264 state->x_offset = x; 265 state->y_offset = y; 266 state->x_history[0] = 0; 267 state->y_history[0] = 0; 268 269 state->m_history[0] = m; 270 m_history_copy[0] = m; 271 272 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE) 273 state->history_len++; 274 275 /* Precalculate things for the filter. */ 276 if (state->history_len > TS_HISTORY_THRESHOLD) { 277 state->median_m = 278 cros_ec_sensor_ring_median(m_history_copy, 279 state->history_len - 1); 280 281 /* 282 * Calculate y-intercepts as if m_median is the slope and 283 * points in the history are on the line. median_error will 284 * still be in the offset coordinate system. 285 */ 286 for (i = 0; i < state->history_len; i++) 287 error[i] = state->y_history[i] - 288 div_s64(state->median_m * state->x_history[i], 289 M_PRECISION); 290 state->median_error = 291 cros_ec_sensor_ring_median(error, state->history_len); 292 } else { 293 state->median_m = 0; 294 state->median_error = 0; 295 } 296 trace_cros_ec_sensorhub_filter(state, dx, dy); 297 } 298 299 /** 300 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP 301 * timebase 302 * 303 * @state: filter information. 304 * @x: any ec timestamp (us): 305 * 306 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase 307 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ 308 * should have happened on the AP, with low jitter 309 * 310 * Note: The filter will only activate once state->history_len goes 311 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a 312 * transform. 313 * 314 * How to derive the formula, starting from: 315 * f(x) = median_m * x + median_error 316 * That's the calculated AP - EC offset (at the x point in time) 317 * Undo the coordinate system transform: 318 * f(x) = median_m * (x - x_offset) + median_error + y_offset 319 * Remember to undo the "y = c - b * 1000" modification: 320 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000 321 * 322 * Return: timestamp in AP timebase (ns) 323 */ 324 static s64 325 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state, 326 s64 x) 327 { 328 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION) 329 + state->median_error + state->y_offset + x * 1000; 330 } 331 332 /* 333 * Since a and b were originally 32 bit values from the EC, 334 * they overflow relatively often, casting is not enough, so we need to 335 * add an offset. 336 */ 337 static void 338 cros_ec_sensor_ring_fix_overflow(s64 *ts, 339 const s64 overflow_period, 340 struct cros_ec_sensors_ec_overflow_state 341 *state) 342 { 343 s64 adjust; 344 345 *ts += state->offset; 346 if (abs(state->last - *ts) > (overflow_period / 2)) { 347 adjust = state->last > *ts ? overflow_period : -overflow_period; 348 state->offset += adjust; 349 *ts += adjust; 350 } 351 state->last = *ts; 352 } 353 354 static void 355 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub 356 *sensorhub, 357 struct cros_ec_sensors_ring_sample 358 *sample) 359 { 360 const u8 sensor_id = sample->sensor_id; 361 362 /* If this event is earlier than one we saw before... */ 363 if (sensorhub->batch_state[sensor_id].newest_sensor_event > 364 sample->timestamp) 365 /* mark it for spreading. */ 366 sample->timestamp = 367 sensorhub->batch_state[sensor_id].last_ts; 368 else 369 sensorhub->batch_state[sensor_id].newest_sensor_event = 370 sample->timestamp; 371 } 372 373 /** 374 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event 375 * 376 * @sensorhub: Sensor Hub object. 377 * @fifo_info: FIFO information from the EC (includes b point, EC timebase). 378 * @fifo_timestamp: EC IRQ, kernel timebase (aka c). 379 * @current_timestamp: calculated event timestamp, kernel timebase (aka a'). 380 * @in: incoming FIFO event from EC (includes a point, EC timebase). 381 * @out: outgoing event to user space (includes a'). 382 * 383 * Process one EC event, add it in the ring if necessary. 384 * 385 * Return: true if out event has been populated. 386 */ 387 static bool 388 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub, 389 const struct ec_response_motion_sense_fifo_info 390 *fifo_info, 391 const ktime_t fifo_timestamp, 392 ktime_t *current_timestamp, 393 struct ec_response_motion_sensor_data *in, 394 struct cros_ec_sensors_ring_sample *out) 395 { 396 const s64 now = cros_ec_get_time_ns(); 397 int axis, async_flags; 398 399 /* Do not populate the filter based on asynchronous events. */ 400 async_flags = in->flags & 401 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH); 402 403 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) { 404 s64 a = in->timestamp; 405 s64 b = fifo_info->timestamp; 406 s64 c = fifo_timestamp; 407 408 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32, 409 &sensorhub->overflow_a); 410 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32, 411 &sensorhub->overflow_b); 412 413 if (sensorhub->tight_timestamps) { 414 cros_ec_sensor_ring_ts_filter_update( 415 &sensorhub->filter, b, c); 416 *current_timestamp = cros_ec_sensor_ring_ts_filter( 417 &sensorhub->filter, a); 418 } else { 419 s64 new_timestamp; 420 421 /* 422 * Disable filtering since we might add more jitter 423 * if b is in a random point in time. 424 */ 425 new_timestamp = c - b * 1000 + a * 1000; 426 /* 427 * The timestamp can be stale if we had to use the fifo 428 * info timestamp. 429 */ 430 if (new_timestamp - *current_timestamp > 0) 431 *current_timestamp = new_timestamp; 432 } 433 trace_cros_ec_sensorhub_timestamp(in->timestamp, 434 fifo_info->timestamp, 435 fifo_timestamp, 436 *current_timestamp, 437 now); 438 } 439 440 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) { 441 if (sensorhub->tight_timestamps) { 442 sensorhub->batch_state[in->sensor_num].last_len = 0; 443 sensorhub->batch_state[in->sensor_num].penul_len = 0; 444 } 445 /* 446 * ODR change is only useful for the sensor_ring, it does not 447 * convey information to clients. 448 */ 449 return false; 450 } 451 452 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 453 out->sensor_id = in->sensor_num; 454 out->timestamp = *current_timestamp; 455 out->flag = in->flags; 456 if (sensorhub->tight_timestamps) 457 sensorhub->batch_state[out->sensor_id].last_len = 0; 458 /* 459 * No other payload information provided with 460 * flush ack. 461 */ 462 return true; 463 } 464 465 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP) 466 /* If we just have a timestamp, skip this entry. */ 467 return false; 468 469 /* Regular sample */ 470 out->sensor_id = in->sensor_num; 471 trace_cros_ec_sensorhub_data(in->sensor_num, 472 fifo_info->timestamp, 473 fifo_timestamp, 474 *current_timestamp, 475 now); 476 477 if (*current_timestamp - now > 0) { 478 /* 479 * This fix is needed to overcome the timestamp filter putting 480 * events in the future. 481 */ 482 sensorhub->future_timestamp_total_ns += 483 *current_timestamp - now; 484 if (++sensorhub->future_timestamp_count == 485 FUTURE_TS_ANALYTICS_COUNT_MAX) { 486 s64 avg = div_s64(sensorhub->future_timestamp_total_ns, 487 sensorhub->future_timestamp_count); 488 dev_warn_ratelimited(sensorhub->dev, 489 "100 timestamps in the future, %lldns shaved on average\n", 490 avg); 491 sensorhub->future_timestamp_count = 0; 492 sensorhub->future_timestamp_total_ns = 0; 493 } 494 out->timestamp = now; 495 } else { 496 out->timestamp = *current_timestamp; 497 } 498 499 out->flag = in->flags; 500 for (axis = 0; axis < 3; axis++) 501 out->vector[axis] = in->data[axis]; 502 503 if (sensorhub->tight_timestamps) 504 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out); 505 return true; 506 } 507 508 /* 509 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to 510 * ringbuffer. 511 * 512 * This is the new spreading code, assumes every sample's timestamp 513 * preceeds the sample. Run if tight_timestamps == true. 514 * 515 * Sometimes the EC receives only one interrupt (hence timestamp) for 516 * a batch of samples. Only the first sample will have the correct 517 * timestamp. So we must interpolate the other samples. 518 * We use the previous batch timestamp and our current batch timestamp 519 * as a way to calculate period, then spread the samples evenly. 520 * 521 * s0 int, 0ms 522 * s1 int, 10ms 523 * s2 int, 20ms 524 * 30ms point goes by, no interrupt, previous one is still asserted 525 * downloading s2 and s3 526 * s3 sample, 20ms (incorrect timestamp) 527 * s4 int, 40ms 528 * 529 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch 530 * has 2 samples in them, we adjust the timestamp of s3. 531 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have 532 * been part of a bigger batch things would have gotten a little 533 * more complicated. 534 * 535 * Note: we also assume another sensor sample doesn't break up a batch 536 * in 2 or more partitions. Example, there can't ever be a sync sensor 537 * in between S2 and S3. This simplifies the following code. 538 */ 539 static void 540 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub, 541 unsigned long sensor_mask, 542 struct cros_ec_sensors_ring_sample *last_out) 543 { 544 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start; 545 int id; 546 547 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) { 548 for (batch_start = sensorhub->ring; batch_start < last_out; 549 batch_start = next_batch_start) { 550 /* 551 * For each batch (where all samples have the same 552 * timestamp). 553 */ 554 int batch_len, sample_idx; 555 struct cros_ec_sensors_ring_sample *batch_end = 556 batch_start; 557 struct cros_ec_sensors_ring_sample *s; 558 s64 batch_timestamp = batch_start->timestamp; 559 s64 sample_period; 560 561 /* 562 * Skip over batches that start with the sensor types 563 * we're not looking at right now. 564 */ 565 if (batch_start->sensor_id != id) { 566 next_batch_start = batch_start + 1; 567 continue; 568 } 569 570 /* 571 * Do not start a batch 572 * from a flush, as it happens asynchronously to the 573 * regular flow of events. 574 */ 575 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 576 cros_sensorhub_send_sample(sensorhub, 577 batch_start); 578 next_batch_start = batch_start + 1; 579 continue; 580 } 581 582 if (batch_start->timestamp <= 583 sensorhub->batch_state[id].last_ts) { 584 batch_timestamp = 585 sensorhub->batch_state[id].last_ts; 586 batch_len = sensorhub->batch_state[id].last_len; 587 588 sample_idx = batch_len; 589 590 sensorhub->batch_state[id].last_ts = 591 sensorhub->batch_state[id].penul_ts; 592 sensorhub->batch_state[id].last_len = 593 sensorhub->batch_state[id].penul_len; 594 } else { 595 /* 596 * Push first sample in the batch to the, 597 * kifo, it's guaranteed to be correct, the 598 * rest will follow later on. 599 */ 600 sample_idx = 1; 601 batch_len = 1; 602 cros_sensorhub_send_sample(sensorhub, 603 batch_start); 604 batch_start++; 605 } 606 607 /* Find all samples have the same timestamp. */ 608 for (s = batch_start; s < last_out; s++) { 609 if (s->sensor_id != id) 610 /* 611 * Skip over other sensor types that 612 * are interleaved, don't count them. 613 */ 614 continue; 615 if (s->timestamp != batch_timestamp) 616 /* we discovered the next batch */ 617 break; 618 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 619 /* break on flush packets */ 620 break; 621 batch_end = s; 622 batch_len++; 623 } 624 625 if (batch_len == 1) 626 goto done_with_this_batch; 627 628 /* Can we calculate period? */ 629 if (sensorhub->batch_state[id].last_len == 0) { 630 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n", 631 id, batch_len - 1); 632 goto done_with_this_batch; 633 /* 634 * Note: we're dropping the rest of the samples 635 * in this batch since we have no idea where 636 * they're supposed to go without a period 637 * calculation. 638 */ 639 } 640 641 sample_period = div_s64(batch_timestamp - 642 sensorhub->batch_state[id].last_ts, 643 sensorhub->batch_state[id].last_len); 644 dev_dbg(sensorhub->dev, 645 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n", 646 batch_len, id, 647 sensorhub->batch_state[id].last_ts, 648 sensorhub->batch_state[id].last_len, 649 batch_timestamp, 650 sample_period); 651 652 /* 653 * Adjust timestamps of the samples then push them to 654 * kfifo. 655 */ 656 for (s = batch_start; s <= batch_end; s++) { 657 if (s->sensor_id != id) 658 /* 659 * Skip over other sensor types that 660 * are interleaved, don't change them. 661 */ 662 continue; 663 664 s->timestamp = batch_timestamp + 665 sample_period * sample_idx; 666 sample_idx++; 667 668 cros_sensorhub_send_sample(sensorhub, s); 669 } 670 671 done_with_this_batch: 672 sensorhub->batch_state[id].penul_ts = 673 sensorhub->batch_state[id].last_ts; 674 sensorhub->batch_state[id].penul_len = 675 sensorhub->batch_state[id].last_len; 676 677 sensorhub->batch_state[id].last_ts = 678 batch_timestamp; 679 sensorhub->batch_state[id].last_len = batch_len; 680 681 next_batch_start = batch_end + 1; 682 } 683 } 684 } 685 686 /* 687 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then 688 * add to ringbuffer (legacy). 689 * 690 * Note: This assumes we're running old firmware, where timestamp 691 * is inserted after its sample(s)e. There can be several samples between 692 * timestamps, so several samples can have the same timestamp. 693 * 694 * timestamp | count 695 * ----------------- 696 * 1st sample --> TS1 | 1 697 * TS2 | 2 698 * TS2 | 3 699 * TS3 | 4 700 * last_out --> 701 * 702 * 703 * We spread time for the samples using perod p = (current - TS1)/4. 704 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp]. 705 * 706 */ 707 static void 708 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub, 709 unsigned long sensor_mask, 710 s64 current_timestamp, 711 struct cros_ec_sensors_ring_sample 712 *last_out) 713 { 714 struct cros_ec_sensors_ring_sample *out; 715 int i; 716 717 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) { 718 s64 timestamp; 719 int count = 0; 720 s64 time_period; 721 722 for (out = sensorhub->ring; out < last_out; out++) { 723 if (out->sensor_id != i) 724 continue; 725 726 /* Timestamp to start with */ 727 timestamp = out->timestamp; 728 out++; 729 count = 1; 730 break; 731 } 732 for (; out < last_out; out++) { 733 /* Find last sample. */ 734 if (out->sensor_id != i) 735 continue; 736 count++; 737 } 738 if (count == 0) 739 continue; 740 741 /* Spread uniformly between the first and last samples. */ 742 time_period = div_s64(current_timestamp - timestamp, count); 743 744 for (out = sensorhub->ring; out < last_out; out++) { 745 if (out->sensor_id != i) 746 continue; 747 timestamp += time_period; 748 out->timestamp = timestamp; 749 } 750 } 751 752 /* Push the event into the kfifo */ 753 for (out = sensorhub->ring; out < last_out; out++) 754 cros_sensorhub_send_sample(sensorhub, out); 755 } 756 757 /** 758 * cros_ec_sensorhub_ring_handler() - The trigger handler function 759 * 760 * @sensorhub: Sensor Hub object. 761 * 762 * Called by the notifier, process the EC sensor FIFO queue. 763 */ 764 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub) 765 { 766 struct ec_response_motion_sense_fifo_info *fifo_info = 767 sensorhub->fifo_info; 768 struct cros_ec_dev *ec = sensorhub->ec; 769 ktime_t fifo_timestamp, current_timestamp; 770 int i, j, number_data, ret; 771 unsigned long sensor_mask = 0; 772 struct ec_response_motion_sensor_data *in; 773 struct cros_ec_sensors_ring_sample *out, *last_out; 774 775 mutex_lock(&sensorhub->cmd_lock); 776 777 /* Get FIFO information if there are lost vectors. */ 778 if (fifo_info->total_lost) { 779 int fifo_info_length = 780 sizeof(struct ec_response_motion_sense_fifo_info) + 781 sizeof(u16) * sensorhub->sensor_num; 782 783 /* Need to retrieve the number of lost vectors per sensor */ 784 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 785 sensorhub->msg->outsize = 1; 786 sensorhub->msg->insize = fifo_info_length; 787 788 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0) 789 goto error; 790 791 memcpy(fifo_info, &sensorhub->resp->fifo_info, 792 fifo_info_length); 793 794 /* 795 * Update collection time, will not be as precise as the 796 * non-error case. 797 */ 798 fifo_timestamp = cros_ec_get_time_ns(); 799 } else { 800 fifo_timestamp = sensorhub->fifo_timestamp[ 801 CROS_EC_SENSOR_NEW_TS]; 802 } 803 804 if (fifo_info->count > sensorhub->fifo_size || 805 fifo_info->size != sensorhub->fifo_size) { 806 dev_warn(sensorhub->dev, 807 "Mismatch EC data: count %d, size %d - expected %d\n", 808 fifo_info->count, fifo_info->size, 809 sensorhub->fifo_size); 810 goto error; 811 } 812 813 /* Copy elements in the main fifo */ 814 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS]; 815 out = sensorhub->ring; 816 for (i = 0; i < fifo_info->count; i += number_data) { 817 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ; 818 sensorhub->params->fifo_read.max_data_vector = 819 fifo_info->count - i; 820 sensorhub->msg->outsize = 821 sizeof(struct ec_params_motion_sense); 822 sensorhub->msg->insize = 823 sizeof(sensorhub->resp->fifo_read) + 824 sensorhub->params->fifo_read.max_data_vector * 825 sizeof(struct ec_response_motion_sensor_data); 826 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 827 if (ret < 0) { 828 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret); 829 break; 830 } 831 number_data = sensorhub->resp->fifo_read.number_data; 832 if (number_data == 0) { 833 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n"); 834 break; 835 } 836 if (number_data > fifo_info->count - i) { 837 dev_warn(sensorhub->dev, 838 "Invalid EC data: too many entry received: %d, expected %d\n", 839 number_data, fifo_info->count - i); 840 break; 841 } 842 if (out + number_data > 843 sensorhub->ring + fifo_info->count) { 844 dev_warn(sensorhub->dev, 845 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n", 846 i, out - sensorhub->ring, i + number_data, 847 fifo_info->count); 848 break; 849 } 850 851 for (in = sensorhub->resp->fifo_read.data, j = 0; 852 j < number_data; j++, in++) { 853 if (cros_ec_sensor_ring_process_event( 854 sensorhub, fifo_info, 855 fifo_timestamp, 856 ¤t_timestamp, 857 in, out)) { 858 sensor_mask |= BIT(in->sensor_num); 859 out++; 860 } 861 } 862 } 863 mutex_unlock(&sensorhub->cmd_lock); 864 last_out = out; 865 866 if (out == sensorhub->ring) 867 /* Unexpected empty FIFO. */ 868 goto ring_handler_end; 869 870 /* 871 * Check if current_timestamp is ahead of the last sample. Normally, 872 * the EC appends a timestamp after the last sample, but if the AP 873 * is slow to respond to the IRQ, the EC may have added new samples. 874 * Use the FIFO info timestamp as last timestamp then. 875 */ 876 if (!sensorhub->tight_timestamps && 877 (last_out - 1)->timestamp == current_timestamp) 878 current_timestamp = fifo_timestamp; 879 880 /* Warn on lost samples. */ 881 if (fifo_info->total_lost) 882 for (i = 0; i < sensorhub->sensor_num; i++) { 883 if (fifo_info->lost[i]) { 884 dev_warn_ratelimited(sensorhub->dev, 885 "Sensor %d: lost: %d out of %d\n", 886 i, fifo_info->lost[i], 887 fifo_info->total_lost); 888 if (sensorhub->tight_timestamps) 889 sensorhub->batch_state[i].last_len = 0; 890 } 891 } 892 893 /* 894 * Spread samples in case of batching, then add them to the 895 * ringbuffer. 896 */ 897 if (sensorhub->tight_timestamps) 898 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask, 899 last_out); 900 else 901 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask, 902 current_timestamp, 903 last_out); 904 905 ring_handler_end: 906 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp; 907 return; 908 909 error: 910 mutex_unlock(&sensorhub->cmd_lock); 911 } 912 913 static int cros_ec_sensorhub_event(struct notifier_block *nb, 914 unsigned long queued_during_suspend, 915 void *_notify) 916 { 917 struct cros_ec_sensorhub *sensorhub; 918 struct cros_ec_device *ec_dev; 919 920 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier); 921 ec_dev = sensorhub->ec->ec_dev; 922 923 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO) 924 return NOTIFY_DONE; 925 926 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) { 927 dev_warn(ec_dev->dev, "Invalid fifo info size\n"); 928 return NOTIFY_DONE; 929 } 930 931 if (queued_during_suspend) 932 return NOTIFY_OK; 933 934 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info, 935 sizeof(*sensorhub->fifo_info)); 936 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] = 937 ec_dev->last_event_time; 938 cros_ec_sensorhub_ring_handler(sensorhub); 939 940 return NOTIFY_OK; 941 } 942 943 /** 944 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC 945 * supports it. 946 * 947 * @sensorhub : Sensor Hub object. 948 * 949 * Return: 0 on success. 950 */ 951 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub) 952 { 953 int fifo_info_length = 954 sizeof(struct ec_response_motion_sense_fifo_info) + 955 sizeof(u16) * sensorhub->sensor_num; 956 957 /* Allocate the array for lost events. */ 958 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length, 959 GFP_KERNEL); 960 if (!sensorhub->fifo_info) 961 return -ENOMEM; 962 963 /* 964 * Allocate the callback area based on the number of sensors. 965 * Add one for the sensor ring. 966 */ 967 sensorhub->push_data = devm_kcalloc(sensorhub->dev, 968 sensorhub->sensor_num, 969 sizeof(*sensorhub->push_data), 970 GFP_KERNEL); 971 if (!sensorhub->push_data) 972 return -ENOMEM; 973 974 sensorhub->tight_timestamps = cros_ec_check_features( 975 sensorhub->ec, 976 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS); 977 978 if (sensorhub->tight_timestamps) { 979 sensorhub->batch_state = devm_kcalloc(sensorhub->dev, 980 sensorhub->sensor_num, 981 sizeof(*sensorhub->batch_state), 982 GFP_KERNEL); 983 if (!sensorhub->batch_state) 984 return -ENOMEM; 985 } 986 987 return 0; 988 } 989 990 /** 991 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC 992 * supports it. 993 * 994 * @sensorhub : Sensor Hub object. 995 * 996 * Return: 0 on success. 997 */ 998 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub) 999 { 1000 struct cros_ec_dev *ec = sensorhub->ec; 1001 int ret; 1002 int fifo_info_length = 1003 sizeof(struct ec_response_motion_sense_fifo_info) + 1004 sizeof(u16) * sensorhub->sensor_num; 1005 1006 /* Retrieve FIFO information */ 1007 sensorhub->msg->version = 2; 1008 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 1009 sensorhub->msg->outsize = 1; 1010 sensorhub->msg->insize = fifo_info_length; 1011 1012 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 1013 if (ret < 0) 1014 return ret; 1015 1016 /* 1017 * Allocate the full fifo. We need to copy the whole FIFO to set 1018 * timestamps properly. 1019 */ 1020 sensorhub->fifo_size = sensorhub->resp->fifo_info.size; 1021 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size, 1022 sizeof(*sensorhub->ring), GFP_KERNEL); 1023 if (!sensorhub->ring) 1024 return -ENOMEM; 1025 1026 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = 1027 cros_ec_get_time_ns(); 1028 1029 /* Register the notifier that will act as a top half interrupt. */ 1030 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event; 1031 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier, 1032 &sensorhub->notifier); 1033 if (ret < 0) 1034 return ret; 1035 1036 /* Start collection samples. */ 1037 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true); 1038 } 1039 1040 void cros_ec_sensorhub_ring_remove(void *arg) 1041 { 1042 struct cros_ec_sensorhub *sensorhub = arg; 1043 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev; 1044 1045 /* Disable the ring, prevent EC interrupt to the AP for nothing. */ 1046 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false); 1047 blocking_notifier_chain_unregister(&ec_dev->event_notifier, 1048 &sensorhub->notifier); 1049 } 1050