1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013, Sony Mobile Communications AB.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/pinctrl/machine.h>
14 #include <linux/pinctrl/pinctrl.h>
15 #include <linux/pinctrl/pinmux.h>
16 #include <linux/pinctrl/pinconf.h>
17 #include <linux/pinctrl/pinconf-generic.h>
18 #include <linux/slab.h>
19 #include <linux/gpio/driver.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/reboot.h>
23 #include <linux/pm.h>
24 #include <linux/log2.h>
25 #include <linux/qcom_scm.h>
26 
27 #include <linux/soc/qcom/irq.h>
28 
29 #include "../core.h"
30 #include "../pinconf.h"
31 #include "pinctrl-msm.h"
32 #include "../pinctrl-utils.h"
33 
34 #define MAX_NR_GPIO 300
35 #define MAX_NR_TILES 4
36 #define PS_HOLD_OFFSET 0x820
37 
38 /**
39  * struct msm_pinctrl - state for a pinctrl-msm device
40  * @dev:            device handle.
41  * @pctrl:          pinctrl handle.
42  * @chip:           gpiochip handle.
43  * @desc:           pin controller descriptor
44  * @restart_nb:     restart notifier block.
45  * @irq_chip:       irq chip information
46  * @irq:            parent irq for the TLMM irq_chip.
47  * @intr_target_use_scm: route irq to application cpu using scm calls
48  * @lock:           Spinlock to protect register resources as well
49  *                  as msm_pinctrl data structures.
50  * @enabled_irqs:   Bitmap of currently enabled irqs.
51  * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
52  *                  detection.
53  * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
54  * @disabled_for_mux: These IRQs were disabled because we muxed away.
55  * @soc:            Reference to soc_data of platform specific data.
56  * @regs:           Base addresses for the TLMM tiles.
57  * @phys_base:      Physical base address
58  */
59 struct msm_pinctrl {
60 	struct device *dev;
61 	struct pinctrl_dev *pctrl;
62 	struct gpio_chip chip;
63 	struct pinctrl_desc desc;
64 	struct notifier_block restart_nb;
65 
66 	struct irq_chip irq_chip;
67 	int irq;
68 
69 	bool intr_target_use_scm;
70 
71 	raw_spinlock_t lock;
72 
73 	DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
74 	DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
75 	DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
76 	DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
77 
78 	const struct msm_pinctrl_soc_data *soc;
79 	void __iomem *regs[MAX_NR_TILES];
80 	u32 phys_base[MAX_NR_TILES];
81 };
82 
83 #define MSM_ACCESSOR(name) \
84 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
85 			    const struct msm_pingroup *g) \
86 { \
87 	return readl(pctrl->regs[g->tile] + g->name##_reg); \
88 } \
89 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
90 			      const struct msm_pingroup *g) \
91 { \
92 	writel(val, pctrl->regs[g->tile] + g->name##_reg); \
93 }
94 
95 MSM_ACCESSOR(ctl)
96 MSM_ACCESSOR(io)
97 MSM_ACCESSOR(intr_cfg)
98 MSM_ACCESSOR(intr_status)
99 MSM_ACCESSOR(intr_target)
100 
101 static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
102 				const struct msm_pingroup *g)
103 {
104 	u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
105 
106 	msm_writel_intr_status(val, pctrl, g);
107 }
108 
109 static int msm_get_groups_count(struct pinctrl_dev *pctldev)
110 {
111 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
112 
113 	return pctrl->soc->ngroups;
114 }
115 
116 static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
117 				      unsigned group)
118 {
119 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
120 
121 	return pctrl->soc->groups[group].name;
122 }
123 
124 static int msm_get_group_pins(struct pinctrl_dev *pctldev,
125 			      unsigned group,
126 			      const unsigned **pins,
127 			      unsigned *num_pins)
128 {
129 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
130 
131 	*pins = pctrl->soc->groups[group].pins;
132 	*num_pins = pctrl->soc->groups[group].npins;
133 	return 0;
134 }
135 
136 static const struct pinctrl_ops msm_pinctrl_ops = {
137 	.get_groups_count	= msm_get_groups_count,
138 	.get_group_name		= msm_get_group_name,
139 	.get_group_pins		= msm_get_group_pins,
140 	.dt_node_to_map		= pinconf_generic_dt_node_to_map_group,
141 	.dt_free_map		= pinctrl_utils_free_map,
142 };
143 
144 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
145 {
146 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
147 	struct gpio_chip *chip = &pctrl->chip;
148 
149 	return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
150 }
151 
152 static int msm_get_functions_count(struct pinctrl_dev *pctldev)
153 {
154 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
155 
156 	return pctrl->soc->nfunctions;
157 }
158 
159 static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
160 					 unsigned function)
161 {
162 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
163 
164 	return pctrl->soc->functions[function].name;
165 }
166 
167 static int msm_get_function_groups(struct pinctrl_dev *pctldev,
168 				   unsigned function,
169 				   const char * const **groups,
170 				   unsigned * const num_groups)
171 {
172 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
173 
174 	*groups = pctrl->soc->functions[function].groups;
175 	*num_groups = pctrl->soc->functions[function].ngroups;
176 	return 0;
177 }
178 
179 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
180 			      unsigned function,
181 			      unsigned group)
182 {
183 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
184 	struct gpio_chip *gc = &pctrl->chip;
185 	unsigned int irq = irq_find_mapping(gc->irq.domain, group);
186 	struct irq_data *d = irq_get_irq_data(irq);
187 	unsigned int gpio_func = pctrl->soc->gpio_func;
188 	unsigned int egpio_func = pctrl->soc->egpio_func;
189 	const struct msm_pingroup *g;
190 	unsigned long flags;
191 	u32 val, mask;
192 	int i;
193 
194 	g = &pctrl->soc->groups[group];
195 	mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
196 
197 	for (i = 0; i < g->nfuncs; i++) {
198 		if (g->funcs[i] == function)
199 			break;
200 	}
201 
202 	if (WARN_ON(i == g->nfuncs))
203 		return -EINVAL;
204 
205 	/*
206 	 * If an GPIO interrupt is setup on this pin then we need special
207 	 * handling.  Specifically interrupt detection logic will still see
208 	 * the pin twiddle even when we're muxed away.
209 	 *
210 	 * When we see a pin with an interrupt setup on it then we'll disable
211 	 * (mask) interrupts on it when we mux away until we mux back.  Note
212 	 * that disable_irq() refcounts and interrupts are disabled as long as
213 	 * at least one disable_irq() has been called.
214 	 */
215 	if (d && i != gpio_func &&
216 	    !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
217 		disable_irq(irq);
218 
219 	raw_spin_lock_irqsave(&pctrl->lock, flags);
220 
221 	val = msm_readl_ctl(pctrl, g);
222 
223 	if (egpio_func && i == egpio_func) {
224 		if (val & BIT(g->egpio_present))
225 			val &= ~BIT(g->egpio_enable);
226 	} else {
227 		val &= ~mask;
228 		val |= i << g->mux_bit;
229 		/* Claim ownership of pin if egpio capable */
230 		if (egpio_func && val & BIT(g->egpio_present))
231 			val |= BIT(g->egpio_enable);
232 	}
233 
234 	msm_writel_ctl(val, pctrl, g);
235 
236 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
237 
238 	if (d && i == gpio_func &&
239 	    test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
240 		/*
241 		 * Clear interrupts detected while not GPIO since we only
242 		 * masked things.
243 		 */
244 		if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
245 			irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
246 		else
247 			msm_ack_intr_status(pctrl, g);
248 
249 		enable_irq(irq);
250 	}
251 
252 	return 0;
253 }
254 
255 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
256 				   struct pinctrl_gpio_range *range,
257 				   unsigned offset)
258 {
259 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
260 	const struct msm_pingroup *g = &pctrl->soc->groups[offset];
261 
262 	/* No funcs? Probably ACPI so can't do anything here */
263 	if (!g->nfuncs)
264 		return 0;
265 
266 	return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
267 }
268 
269 static const struct pinmux_ops msm_pinmux_ops = {
270 	.request		= msm_pinmux_request,
271 	.get_functions_count	= msm_get_functions_count,
272 	.get_function_name	= msm_get_function_name,
273 	.get_function_groups	= msm_get_function_groups,
274 	.gpio_request_enable	= msm_pinmux_request_gpio,
275 	.set_mux		= msm_pinmux_set_mux,
276 };
277 
278 static int msm_config_reg(struct msm_pinctrl *pctrl,
279 			  const struct msm_pingroup *g,
280 			  unsigned param,
281 			  unsigned *mask,
282 			  unsigned *bit)
283 {
284 	switch (param) {
285 	case PIN_CONFIG_BIAS_DISABLE:
286 	case PIN_CONFIG_BIAS_PULL_DOWN:
287 	case PIN_CONFIG_BIAS_BUS_HOLD:
288 	case PIN_CONFIG_BIAS_PULL_UP:
289 		*bit = g->pull_bit;
290 		*mask = 3;
291 		break;
292 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
293 		*bit = g->od_bit;
294 		*mask = 1;
295 		break;
296 	case PIN_CONFIG_DRIVE_STRENGTH:
297 		*bit = g->drv_bit;
298 		*mask = 7;
299 		break;
300 	case PIN_CONFIG_OUTPUT:
301 	case PIN_CONFIG_INPUT_ENABLE:
302 		*bit = g->oe_bit;
303 		*mask = 1;
304 		break;
305 	default:
306 		return -ENOTSUPP;
307 	}
308 
309 	return 0;
310 }
311 
312 #define MSM_NO_PULL		0
313 #define MSM_PULL_DOWN		1
314 #define MSM_KEEPER		2
315 #define MSM_PULL_UP_NO_KEEPER	2
316 #define MSM_PULL_UP		3
317 
318 static unsigned msm_regval_to_drive(u32 val)
319 {
320 	return (val + 1) * 2;
321 }
322 
323 static int msm_config_group_get(struct pinctrl_dev *pctldev,
324 				unsigned int group,
325 				unsigned long *config)
326 {
327 	const struct msm_pingroup *g;
328 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
329 	unsigned param = pinconf_to_config_param(*config);
330 	unsigned mask;
331 	unsigned arg;
332 	unsigned bit;
333 	int ret;
334 	u32 val;
335 
336 	g = &pctrl->soc->groups[group];
337 
338 	ret = msm_config_reg(pctrl, g, param, &mask, &bit);
339 	if (ret < 0)
340 		return ret;
341 
342 	val = msm_readl_ctl(pctrl, g);
343 	arg = (val >> bit) & mask;
344 
345 	/* Convert register value to pinconf value */
346 	switch (param) {
347 	case PIN_CONFIG_BIAS_DISABLE:
348 		if (arg != MSM_NO_PULL)
349 			return -EINVAL;
350 		arg = 1;
351 		break;
352 	case PIN_CONFIG_BIAS_PULL_DOWN:
353 		if (arg != MSM_PULL_DOWN)
354 			return -EINVAL;
355 		arg = 1;
356 		break;
357 	case PIN_CONFIG_BIAS_BUS_HOLD:
358 		if (pctrl->soc->pull_no_keeper)
359 			return -ENOTSUPP;
360 
361 		if (arg != MSM_KEEPER)
362 			return -EINVAL;
363 		arg = 1;
364 		break;
365 	case PIN_CONFIG_BIAS_PULL_UP:
366 		if (pctrl->soc->pull_no_keeper)
367 			arg = arg == MSM_PULL_UP_NO_KEEPER;
368 		else
369 			arg = arg == MSM_PULL_UP;
370 		if (!arg)
371 			return -EINVAL;
372 		break;
373 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
374 		/* Pin is not open-drain */
375 		if (!arg)
376 			return -EINVAL;
377 		arg = 1;
378 		break;
379 	case PIN_CONFIG_DRIVE_STRENGTH:
380 		arg = msm_regval_to_drive(arg);
381 		break;
382 	case PIN_CONFIG_OUTPUT:
383 		/* Pin is not output */
384 		if (!arg)
385 			return -EINVAL;
386 
387 		val = msm_readl_io(pctrl, g);
388 		arg = !!(val & BIT(g->in_bit));
389 		break;
390 	case PIN_CONFIG_INPUT_ENABLE:
391 		/* Pin is output */
392 		if (arg)
393 			return -EINVAL;
394 		arg = 1;
395 		break;
396 	default:
397 		return -ENOTSUPP;
398 	}
399 
400 	*config = pinconf_to_config_packed(param, arg);
401 
402 	return 0;
403 }
404 
405 static int msm_config_group_set(struct pinctrl_dev *pctldev,
406 				unsigned group,
407 				unsigned long *configs,
408 				unsigned num_configs)
409 {
410 	const struct msm_pingroup *g;
411 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
412 	unsigned long flags;
413 	unsigned param;
414 	unsigned mask;
415 	unsigned arg;
416 	unsigned bit;
417 	int ret;
418 	u32 val;
419 	int i;
420 
421 	g = &pctrl->soc->groups[group];
422 
423 	for (i = 0; i < num_configs; i++) {
424 		param = pinconf_to_config_param(configs[i]);
425 		arg = pinconf_to_config_argument(configs[i]);
426 
427 		ret = msm_config_reg(pctrl, g, param, &mask, &bit);
428 		if (ret < 0)
429 			return ret;
430 
431 		/* Convert pinconf values to register values */
432 		switch (param) {
433 		case PIN_CONFIG_BIAS_DISABLE:
434 			arg = MSM_NO_PULL;
435 			break;
436 		case PIN_CONFIG_BIAS_PULL_DOWN:
437 			arg = MSM_PULL_DOWN;
438 			break;
439 		case PIN_CONFIG_BIAS_BUS_HOLD:
440 			if (pctrl->soc->pull_no_keeper)
441 				return -ENOTSUPP;
442 
443 			arg = MSM_KEEPER;
444 			break;
445 		case PIN_CONFIG_BIAS_PULL_UP:
446 			if (pctrl->soc->pull_no_keeper)
447 				arg = MSM_PULL_UP_NO_KEEPER;
448 			else
449 				arg = MSM_PULL_UP;
450 			break;
451 		case PIN_CONFIG_DRIVE_OPEN_DRAIN:
452 			arg = 1;
453 			break;
454 		case PIN_CONFIG_DRIVE_STRENGTH:
455 			/* Check for invalid values */
456 			if (arg > 16 || arg < 2 || (arg % 2) != 0)
457 				arg = -1;
458 			else
459 				arg = (arg / 2) - 1;
460 			break;
461 		case PIN_CONFIG_OUTPUT:
462 			/* set output value */
463 			raw_spin_lock_irqsave(&pctrl->lock, flags);
464 			val = msm_readl_io(pctrl, g);
465 			if (arg)
466 				val |= BIT(g->out_bit);
467 			else
468 				val &= ~BIT(g->out_bit);
469 			msm_writel_io(val, pctrl, g);
470 			raw_spin_unlock_irqrestore(&pctrl->lock, flags);
471 
472 			/* enable output */
473 			arg = 1;
474 			break;
475 		case PIN_CONFIG_INPUT_ENABLE:
476 			/* disable output */
477 			arg = 0;
478 			break;
479 		default:
480 			dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
481 				param);
482 			return -EINVAL;
483 		}
484 
485 		/* Range-check user-supplied value */
486 		if (arg & ~mask) {
487 			dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
488 			return -EINVAL;
489 		}
490 
491 		raw_spin_lock_irqsave(&pctrl->lock, flags);
492 		val = msm_readl_ctl(pctrl, g);
493 		val &= ~(mask << bit);
494 		val |= arg << bit;
495 		msm_writel_ctl(val, pctrl, g);
496 		raw_spin_unlock_irqrestore(&pctrl->lock, flags);
497 	}
498 
499 	return 0;
500 }
501 
502 static const struct pinconf_ops msm_pinconf_ops = {
503 	.is_generic		= true,
504 	.pin_config_group_get	= msm_config_group_get,
505 	.pin_config_group_set	= msm_config_group_set,
506 };
507 
508 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
509 {
510 	const struct msm_pingroup *g;
511 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
512 	unsigned long flags;
513 	u32 val;
514 
515 	g = &pctrl->soc->groups[offset];
516 
517 	raw_spin_lock_irqsave(&pctrl->lock, flags);
518 
519 	val = msm_readl_ctl(pctrl, g);
520 	val &= ~BIT(g->oe_bit);
521 	msm_writel_ctl(val, pctrl, g);
522 
523 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
524 
525 	return 0;
526 }
527 
528 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
529 {
530 	const struct msm_pingroup *g;
531 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
532 	unsigned long flags;
533 	u32 val;
534 
535 	g = &pctrl->soc->groups[offset];
536 
537 	raw_spin_lock_irqsave(&pctrl->lock, flags);
538 
539 	val = msm_readl_io(pctrl, g);
540 	if (value)
541 		val |= BIT(g->out_bit);
542 	else
543 		val &= ~BIT(g->out_bit);
544 	msm_writel_io(val, pctrl, g);
545 
546 	val = msm_readl_ctl(pctrl, g);
547 	val |= BIT(g->oe_bit);
548 	msm_writel_ctl(val, pctrl, g);
549 
550 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
551 
552 	return 0;
553 }
554 
555 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
556 {
557 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
558 	const struct msm_pingroup *g;
559 	u32 val;
560 
561 	g = &pctrl->soc->groups[offset];
562 
563 	val = msm_readl_ctl(pctrl, g);
564 
565 	return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
566 				      GPIO_LINE_DIRECTION_IN;
567 }
568 
569 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
570 {
571 	const struct msm_pingroup *g;
572 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
573 	u32 val;
574 
575 	g = &pctrl->soc->groups[offset];
576 
577 	val = msm_readl_io(pctrl, g);
578 	return !!(val & BIT(g->in_bit));
579 }
580 
581 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
582 {
583 	const struct msm_pingroup *g;
584 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
585 	unsigned long flags;
586 	u32 val;
587 
588 	g = &pctrl->soc->groups[offset];
589 
590 	raw_spin_lock_irqsave(&pctrl->lock, flags);
591 
592 	val = msm_readl_io(pctrl, g);
593 	if (value)
594 		val |= BIT(g->out_bit);
595 	else
596 		val &= ~BIT(g->out_bit);
597 	msm_writel_io(val, pctrl, g);
598 
599 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
600 }
601 
602 #ifdef CONFIG_DEBUG_FS
603 #include <linux/seq_file.h>
604 
605 static void msm_gpio_dbg_show_one(struct seq_file *s,
606 				  struct pinctrl_dev *pctldev,
607 				  struct gpio_chip *chip,
608 				  unsigned offset,
609 				  unsigned gpio)
610 {
611 	const struct msm_pingroup *g;
612 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
613 	unsigned func;
614 	int is_out;
615 	int drive;
616 	int pull;
617 	int val;
618 	int egpio_enable;
619 	u32 ctl_reg, io_reg;
620 
621 	static const char * const pulls_keeper[] = {
622 		"no pull",
623 		"pull down",
624 		"keeper",
625 		"pull up"
626 	};
627 
628 	static const char * const pulls_no_keeper[] = {
629 		"no pull",
630 		"pull down",
631 		"pull up",
632 	};
633 
634 	if (!gpiochip_line_is_valid(chip, offset))
635 		return;
636 
637 	g = &pctrl->soc->groups[offset];
638 	ctl_reg = msm_readl_ctl(pctrl, g);
639 	io_reg = msm_readl_io(pctrl, g);
640 
641 	is_out = !!(ctl_reg & BIT(g->oe_bit));
642 	func = (ctl_reg >> g->mux_bit) & 7;
643 	drive = (ctl_reg >> g->drv_bit) & 7;
644 	pull = (ctl_reg >> g->pull_bit) & 3;
645 	egpio_enable = 0;
646 	if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
647 		egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
648 
649 	if (is_out)
650 		val = !!(io_reg & BIT(g->out_bit));
651 	else
652 		val = !!(io_reg & BIT(g->in_bit));
653 
654 	if (egpio_enable) {
655 		seq_printf(s, " %-8s: egpio\n", g->name);
656 		return;
657 	}
658 
659 	seq_printf(s, " %-8s: %-3s", g->name, is_out ? "out" : "in");
660 	seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
661 	seq_printf(s, " %dmA", msm_regval_to_drive(drive));
662 	if (pctrl->soc->pull_no_keeper)
663 		seq_printf(s, " %s", pulls_no_keeper[pull]);
664 	else
665 		seq_printf(s, " %s", pulls_keeper[pull]);
666 	seq_puts(s, "\n");
667 }
668 
669 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
670 {
671 	unsigned gpio = chip->base;
672 	unsigned i;
673 
674 	for (i = 0; i < chip->ngpio; i++, gpio++)
675 		msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
676 }
677 
678 #else
679 #define msm_gpio_dbg_show NULL
680 #endif
681 
682 static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
683 				    unsigned long *valid_mask,
684 				    unsigned int ngpios)
685 {
686 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
687 	int ret;
688 	unsigned int len, i;
689 	const int *reserved = pctrl->soc->reserved_gpios;
690 	u16 *tmp;
691 
692 	/* Driver provided reserved list overrides DT and ACPI */
693 	if (reserved) {
694 		bitmap_fill(valid_mask, ngpios);
695 		for (i = 0; reserved[i] >= 0; i++) {
696 			if (i >= ngpios || reserved[i] >= ngpios) {
697 				dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
698 				return -EINVAL;
699 			}
700 			clear_bit(reserved[i], valid_mask);
701 		}
702 
703 		return 0;
704 	}
705 
706 	/* The number of GPIOs in the ACPI tables */
707 	len = ret = device_property_count_u16(pctrl->dev, "gpios");
708 	if (ret < 0)
709 		return 0;
710 
711 	if (ret > ngpios)
712 		return -EINVAL;
713 
714 	tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
715 	if (!tmp)
716 		return -ENOMEM;
717 
718 	ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
719 	if (ret < 0) {
720 		dev_err(pctrl->dev, "could not read list of GPIOs\n");
721 		goto out;
722 	}
723 
724 	bitmap_zero(valid_mask, ngpios);
725 	for (i = 0; i < len; i++)
726 		set_bit(tmp[i], valid_mask);
727 
728 out:
729 	kfree(tmp);
730 	return ret;
731 }
732 
733 static const struct gpio_chip msm_gpio_template = {
734 	.direction_input  = msm_gpio_direction_input,
735 	.direction_output = msm_gpio_direction_output,
736 	.get_direction    = msm_gpio_get_direction,
737 	.get              = msm_gpio_get,
738 	.set              = msm_gpio_set,
739 	.request          = gpiochip_generic_request,
740 	.free             = gpiochip_generic_free,
741 	.dbg_show         = msm_gpio_dbg_show,
742 };
743 
744 /* For dual-edge interrupts in software, since some hardware has no
745  * such support:
746  *
747  * At appropriate moments, this function may be called to flip the polarity
748  * settings of both-edge irq lines to try and catch the next edge.
749  *
750  * The attempt is considered successful if:
751  * - the status bit goes high, indicating that an edge was caught, or
752  * - the input value of the gpio doesn't change during the attempt.
753  * If the value changes twice during the process, that would cause the first
754  * test to fail but would force the second, as two opposite
755  * transitions would cause a detection no matter the polarity setting.
756  *
757  * The do-loop tries to sledge-hammer closed the timing hole between
758  * the initial value-read and the polarity-write - if the line value changes
759  * during that window, an interrupt is lost, the new polarity setting is
760  * incorrect, and the first success test will fail, causing a retry.
761  *
762  * Algorithm comes from Google's msmgpio driver.
763  */
764 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
765 					  const struct msm_pingroup *g,
766 					  struct irq_data *d)
767 {
768 	int loop_limit = 100;
769 	unsigned val, val2, intstat;
770 	unsigned pol;
771 
772 	do {
773 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
774 
775 		pol = msm_readl_intr_cfg(pctrl, g);
776 		pol ^= BIT(g->intr_polarity_bit);
777 		msm_writel_intr_cfg(pol, pctrl, g);
778 
779 		val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
780 		intstat = msm_readl_intr_status(pctrl, g);
781 		if (intstat || (val == val2))
782 			return;
783 	} while (loop_limit-- > 0);
784 	dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
785 		val, val2);
786 }
787 
788 static void msm_gpio_irq_mask(struct irq_data *d)
789 {
790 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
791 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
792 	const struct msm_pingroup *g;
793 	unsigned long flags;
794 	u32 val;
795 
796 	if (d->parent_data)
797 		irq_chip_mask_parent(d);
798 
799 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
800 		return;
801 
802 	g = &pctrl->soc->groups[d->hwirq];
803 
804 	raw_spin_lock_irqsave(&pctrl->lock, flags);
805 
806 	val = msm_readl_intr_cfg(pctrl, g);
807 	/*
808 	 * There are two bits that control interrupt forwarding to the CPU. The
809 	 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be
810 	 * latched into the interrupt status register when the hardware detects
811 	 * an irq that it's configured for (either edge for edge type or level
812 	 * for level type irq). The 'non-raw' status enable bit causes the
813 	 * hardware to assert the summary interrupt to the CPU if the latched
814 	 * status bit is set. There's a bug though, the edge detection logic
815 	 * seems to have a problem where toggling the RAW_STATUS_EN bit may
816 	 * cause the status bit to latch spuriously when there isn't any edge
817 	 * so we can't touch that bit for edge type irqs and we have to keep
818 	 * the bit set anyway so that edges are latched while the line is masked.
819 	 *
820 	 * To make matters more complicated, leaving the RAW_STATUS_EN bit
821 	 * enabled all the time causes level interrupts to re-latch into the
822 	 * status register because the level is still present on the line after
823 	 * we ack it. We clear the raw status enable bit during mask here and
824 	 * set the bit on unmask so the interrupt can't latch into the hardware
825 	 * while it's masked.
826 	 */
827 	if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
828 		val &= ~BIT(g->intr_raw_status_bit);
829 
830 	val &= ~BIT(g->intr_enable_bit);
831 	msm_writel_intr_cfg(val, pctrl, g);
832 
833 	clear_bit(d->hwirq, pctrl->enabled_irqs);
834 
835 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
836 }
837 
838 static void msm_gpio_irq_unmask(struct irq_data *d)
839 {
840 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
841 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
842 	const struct msm_pingroup *g;
843 	unsigned long flags;
844 	u32 val;
845 
846 	if (d->parent_data)
847 		irq_chip_unmask_parent(d);
848 
849 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
850 		return;
851 
852 	g = &pctrl->soc->groups[d->hwirq];
853 
854 	raw_spin_lock_irqsave(&pctrl->lock, flags);
855 
856 	val = msm_readl_intr_cfg(pctrl, g);
857 	val |= BIT(g->intr_raw_status_bit);
858 	val |= BIT(g->intr_enable_bit);
859 	msm_writel_intr_cfg(val, pctrl, g);
860 
861 	set_bit(d->hwirq, pctrl->enabled_irqs);
862 
863 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
864 }
865 
866 static void msm_gpio_irq_enable(struct irq_data *d)
867 {
868 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
869 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
870 
871 	if (d->parent_data)
872 		irq_chip_enable_parent(d);
873 
874 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
875 		msm_gpio_irq_unmask(d);
876 }
877 
878 static void msm_gpio_irq_disable(struct irq_data *d)
879 {
880 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
881 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
882 
883 	if (d->parent_data)
884 		irq_chip_disable_parent(d);
885 
886 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
887 		msm_gpio_irq_mask(d);
888 }
889 
890 /**
891  * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
892  * @d: The irq dta.
893  *
894  * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
895  * normally handled by the parent irqchip.  The logic here is slightly
896  * different due to what's easy to do with our parent, but in principle it's
897  * the same.
898  */
899 static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
900 {
901 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
902 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
903 	const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
904 	int loop_limit = 100;
905 	unsigned int val;
906 	unsigned int type;
907 
908 	/* Read the value and make a guess about what edge we need to catch */
909 	val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
910 	type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
911 
912 	do {
913 		/* Set the parent to catch the next edge */
914 		irq_chip_set_type_parent(d, type);
915 
916 		/*
917 		 * Possibly the line changed between when we last read "val"
918 		 * (and decided what edge we needed) and when set the edge.
919 		 * If the value didn't change (or changed and then changed
920 		 * back) then we're done.
921 		 */
922 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
923 		if (type == IRQ_TYPE_EDGE_RISING) {
924 			if (!val)
925 				return;
926 			type = IRQ_TYPE_EDGE_FALLING;
927 		} else if (type == IRQ_TYPE_EDGE_FALLING) {
928 			if (val)
929 				return;
930 			type = IRQ_TYPE_EDGE_RISING;
931 		}
932 	} while (loop_limit-- > 0);
933 	dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
934 }
935 
936 static void msm_gpio_irq_ack(struct irq_data *d)
937 {
938 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
939 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
940 	const struct msm_pingroup *g;
941 	unsigned long flags;
942 
943 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
944 		if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
945 			msm_gpio_update_dual_edge_parent(d);
946 		return;
947 	}
948 
949 	g = &pctrl->soc->groups[d->hwirq];
950 
951 	raw_spin_lock_irqsave(&pctrl->lock, flags);
952 
953 	msm_ack_intr_status(pctrl, g);
954 
955 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
956 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
957 
958 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
959 }
960 
961 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
962 						       unsigned int type)
963 {
964 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
965 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
966 
967 	return type == IRQ_TYPE_EDGE_BOTH &&
968 	       pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
969 	       test_bit(d->hwirq, pctrl->skip_wake_irqs);
970 }
971 
972 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
973 {
974 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
975 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
976 	const struct msm_pingroup *g;
977 	unsigned long flags;
978 	bool was_enabled;
979 	u32 val;
980 
981 	if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
982 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
983 		irq_set_handler_locked(d, handle_fasteoi_ack_irq);
984 		msm_gpio_update_dual_edge_parent(d);
985 		return 0;
986 	}
987 
988 	if (d->parent_data)
989 		irq_chip_set_type_parent(d, type);
990 
991 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
992 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
993 		irq_set_handler_locked(d, handle_fasteoi_irq);
994 		return 0;
995 	}
996 
997 	g = &pctrl->soc->groups[d->hwirq];
998 
999 	raw_spin_lock_irqsave(&pctrl->lock, flags);
1000 
1001 	/*
1002 	 * For hw without possibility of detecting both edges
1003 	 */
1004 	if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
1005 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
1006 	else
1007 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1008 
1009 	/* Route interrupts to application cpu.
1010 	 * With intr_target_use_scm interrupts are routed to
1011 	 * application cpu using scm calls.
1012 	 */
1013 	if (pctrl->intr_target_use_scm) {
1014 		u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
1015 		int ret;
1016 
1017 		qcom_scm_io_readl(addr, &val);
1018 
1019 		val &= ~(7 << g->intr_target_bit);
1020 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1021 
1022 		ret = qcom_scm_io_writel(addr, val);
1023 		if (ret)
1024 			dev_err(pctrl->dev,
1025 				"Failed routing %lu interrupt to Apps proc",
1026 				d->hwirq);
1027 	} else {
1028 		val = msm_readl_intr_target(pctrl, g);
1029 		val &= ~(7 << g->intr_target_bit);
1030 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1031 		msm_writel_intr_target(val, pctrl, g);
1032 	}
1033 
1034 	/* Update configuration for gpio.
1035 	 * RAW_STATUS_EN is left on for all gpio irqs. Due to the
1036 	 * internal circuitry of TLMM, toggling the RAW_STATUS
1037 	 * could cause the INTR_STATUS to be set for EDGE interrupts.
1038 	 */
1039 	val = msm_readl_intr_cfg(pctrl, g);
1040 	was_enabled = val & BIT(g->intr_raw_status_bit);
1041 	val |= BIT(g->intr_raw_status_bit);
1042 	if (g->intr_detection_width == 2) {
1043 		val &= ~(3 << g->intr_detection_bit);
1044 		val &= ~(1 << g->intr_polarity_bit);
1045 		switch (type) {
1046 		case IRQ_TYPE_EDGE_RISING:
1047 			val |= 1 << g->intr_detection_bit;
1048 			val |= BIT(g->intr_polarity_bit);
1049 			break;
1050 		case IRQ_TYPE_EDGE_FALLING:
1051 			val |= 2 << g->intr_detection_bit;
1052 			val |= BIT(g->intr_polarity_bit);
1053 			break;
1054 		case IRQ_TYPE_EDGE_BOTH:
1055 			val |= 3 << g->intr_detection_bit;
1056 			val |= BIT(g->intr_polarity_bit);
1057 			break;
1058 		case IRQ_TYPE_LEVEL_LOW:
1059 			break;
1060 		case IRQ_TYPE_LEVEL_HIGH:
1061 			val |= BIT(g->intr_polarity_bit);
1062 			break;
1063 		}
1064 	} else if (g->intr_detection_width == 1) {
1065 		val &= ~(1 << g->intr_detection_bit);
1066 		val &= ~(1 << g->intr_polarity_bit);
1067 		switch (type) {
1068 		case IRQ_TYPE_EDGE_RISING:
1069 			val |= BIT(g->intr_detection_bit);
1070 			val |= BIT(g->intr_polarity_bit);
1071 			break;
1072 		case IRQ_TYPE_EDGE_FALLING:
1073 			val |= BIT(g->intr_detection_bit);
1074 			break;
1075 		case IRQ_TYPE_EDGE_BOTH:
1076 			val |= BIT(g->intr_detection_bit);
1077 			val |= BIT(g->intr_polarity_bit);
1078 			break;
1079 		case IRQ_TYPE_LEVEL_LOW:
1080 			break;
1081 		case IRQ_TYPE_LEVEL_HIGH:
1082 			val |= BIT(g->intr_polarity_bit);
1083 			break;
1084 		}
1085 	} else {
1086 		BUG();
1087 	}
1088 	msm_writel_intr_cfg(val, pctrl, g);
1089 
1090 	/*
1091 	 * The first time we set RAW_STATUS_EN it could trigger an interrupt.
1092 	 * Clear the interrupt.  This is safe because we have
1093 	 * IRQCHIP_SET_TYPE_MASKED.
1094 	 */
1095 	if (!was_enabled)
1096 		msm_ack_intr_status(pctrl, g);
1097 
1098 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1099 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
1100 
1101 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1102 
1103 	if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
1104 		irq_set_handler_locked(d, handle_level_irq);
1105 	else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
1106 		irq_set_handler_locked(d, handle_edge_irq);
1107 
1108 	return 0;
1109 }
1110 
1111 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
1112 {
1113 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1114 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1115 
1116 	/*
1117 	 * While they may not wake up when the TLMM is powered off,
1118 	 * some GPIOs would like to wakeup the system from suspend
1119 	 * when TLMM is powered on. To allow that, enable the GPIO
1120 	 * summary line to be wakeup capable at GIC.
1121 	 */
1122 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1123 		return irq_chip_set_wake_parent(d, on);
1124 
1125 	return irq_set_irq_wake(pctrl->irq, on);
1126 }
1127 
1128 static int msm_gpio_irq_reqres(struct irq_data *d)
1129 {
1130 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1131 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1132 	int ret;
1133 
1134 	if (!try_module_get(gc->owner))
1135 		return -ENODEV;
1136 
1137 	ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
1138 	if (ret)
1139 		goto out;
1140 	msm_gpio_direction_input(gc, d->hwirq);
1141 
1142 	if (gpiochip_lock_as_irq(gc, d->hwirq)) {
1143 		dev_err(gc->parent,
1144 			"unable to lock HW IRQ %lu for IRQ\n",
1145 			d->hwirq);
1146 		ret = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	/*
1151 	 * The disable / clear-enable workaround we do in msm_pinmux_set_mux()
1152 	 * only works if disable is not lazy since we only clear any bogus
1153 	 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
1154 	 */
1155 	irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
1156 
1157 	return 0;
1158 out:
1159 	module_put(gc->owner);
1160 	return ret;
1161 }
1162 
1163 static void msm_gpio_irq_relres(struct irq_data *d)
1164 {
1165 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1166 
1167 	gpiochip_unlock_as_irq(gc, d->hwirq);
1168 	module_put(gc->owner);
1169 }
1170 
1171 static int msm_gpio_irq_set_affinity(struct irq_data *d,
1172 				const struct cpumask *dest, bool force)
1173 {
1174 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1175 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1176 
1177 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1178 		return irq_chip_set_affinity_parent(d, dest, force);
1179 
1180 	return -EINVAL;
1181 }
1182 
1183 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1184 {
1185 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1186 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1187 
1188 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1189 		return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
1190 
1191 	return -EINVAL;
1192 }
1193 
1194 static void msm_gpio_irq_handler(struct irq_desc *desc)
1195 {
1196 	struct gpio_chip *gc = irq_desc_get_handler_data(desc);
1197 	const struct msm_pingroup *g;
1198 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1199 	struct irq_chip *chip = irq_desc_get_chip(desc);
1200 	int handled = 0;
1201 	u32 val;
1202 	int i;
1203 
1204 	chained_irq_enter(chip, desc);
1205 
1206 	/*
1207 	 * Each pin has it's own IRQ status register, so use
1208 	 * enabled_irq bitmap to limit the number of reads.
1209 	 */
1210 	for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
1211 		g = &pctrl->soc->groups[i];
1212 		val = msm_readl_intr_status(pctrl, g);
1213 		if (val & BIT(g->intr_status_bit)) {
1214 			generic_handle_domain_irq(gc->irq.domain, i);
1215 			handled++;
1216 		}
1217 	}
1218 
1219 	/* No interrupts were flagged */
1220 	if (handled == 0)
1221 		handle_bad_irq(desc);
1222 
1223 	chained_irq_exit(chip, desc);
1224 }
1225 
1226 static int msm_gpio_wakeirq(struct gpio_chip *gc,
1227 			    unsigned int child,
1228 			    unsigned int child_type,
1229 			    unsigned int *parent,
1230 			    unsigned int *parent_type)
1231 {
1232 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1233 	const struct msm_gpio_wakeirq_map *map;
1234 	int i;
1235 
1236 	*parent = GPIO_NO_WAKE_IRQ;
1237 	*parent_type = IRQ_TYPE_EDGE_RISING;
1238 
1239 	for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
1240 		map = &pctrl->soc->wakeirq_map[i];
1241 		if (map->gpio == child) {
1242 			*parent = map->wakeirq;
1243 			break;
1244 		}
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
1251 {
1252 	if (pctrl->soc->reserved_gpios)
1253 		return true;
1254 
1255 	return device_property_count_u16(pctrl->dev, "gpios") > 0;
1256 }
1257 
1258 static int msm_gpio_init(struct msm_pinctrl *pctrl)
1259 {
1260 	struct gpio_chip *chip;
1261 	struct gpio_irq_chip *girq;
1262 	int i, ret;
1263 	unsigned gpio, ngpio = pctrl->soc->ngpios;
1264 	struct device_node *np;
1265 	bool skip;
1266 
1267 	if (WARN_ON(ngpio > MAX_NR_GPIO))
1268 		return -EINVAL;
1269 
1270 	chip = &pctrl->chip;
1271 	chip->base = -1;
1272 	chip->ngpio = ngpio;
1273 	chip->label = dev_name(pctrl->dev);
1274 	chip->parent = pctrl->dev;
1275 	chip->owner = THIS_MODULE;
1276 	if (msm_gpio_needs_valid_mask(pctrl))
1277 		chip->init_valid_mask = msm_gpio_init_valid_mask;
1278 
1279 	pctrl->irq_chip.name = "msmgpio";
1280 	pctrl->irq_chip.irq_enable = msm_gpio_irq_enable;
1281 	pctrl->irq_chip.irq_disable = msm_gpio_irq_disable;
1282 	pctrl->irq_chip.irq_mask = msm_gpio_irq_mask;
1283 	pctrl->irq_chip.irq_unmask = msm_gpio_irq_unmask;
1284 	pctrl->irq_chip.irq_ack = msm_gpio_irq_ack;
1285 	pctrl->irq_chip.irq_set_type = msm_gpio_irq_set_type;
1286 	pctrl->irq_chip.irq_set_wake = msm_gpio_irq_set_wake;
1287 	pctrl->irq_chip.irq_request_resources = msm_gpio_irq_reqres;
1288 	pctrl->irq_chip.irq_release_resources = msm_gpio_irq_relres;
1289 	pctrl->irq_chip.irq_set_affinity = msm_gpio_irq_set_affinity;
1290 	pctrl->irq_chip.irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity;
1291 	pctrl->irq_chip.flags = IRQCHIP_MASK_ON_SUSPEND |
1292 				IRQCHIP_SET_TYPE_MASKED |
1293 				IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND;
1294 
1295 	np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
1296 	if (np) {
1297 		chip->irq.parent_domain = irq_find_matching_host(np,
1298 						 DOMAIN_BUS_WAKEUP);
1299 		of_node_put(np);
1300 		if (!chip->irq.parent_domain)
1301 			return -EPROBE_DEFER;
1302 		chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
1303 		pctrl->irq_chip.irq_eoi = irq_chip_eoi_parent;
1304 		/*
1305 		 * Let's skip handling the GPIOs, if the parent irqchip
1306 		 * is handling the direct connect IRQ of the GPIO.
1307 		 */
1308 		skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
1309 		for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
1310 			gpio = pctrl->soc->wakeirq_map[i].gpio;
1311 			set_bit(gpio, pctrl->skip_wake_irqs);
1312 		}
1313 	}
1314 
1315 	girq = &chip->irq;
1316 	girq->chip = &pctrl->irq_chip;
1317 	girq->parent_handler = msm_gpio_irq_handler;
1318 	girq->fwnode = pctrl->dev->fwnode;
1319 	girq->num_parents = 1;
1320 	girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
1321 				     GFP_KERNEL);
1322 	if (!girq->parents)
1323 		return -ENOMEM;
1324 	girq->default_type = IRQ_TYPE_NONE;
1325 	girq->handler = handle_bad_irq;
1326 	girq->parents[0] = pctrl->irq;
1327 
1328 	ret = gpiochip_add_data(&pctrl->chip, pctrl);
1329 	if (ret) {
1330 		dev_err(pctrl->dev, "Failed register gpiochip\n");
1331 		return ret;
1332 	}
1333 
1334 	/*
1335 	 * For DeviceTree-supported systems, the gpio core checks the
1336 	 * pinctrl's device node for the "gpio-ranges" property.
1337 	 * If it is present, it takes care of adding the pin ranges
1338 	 * for the driver. In this case the driver can skip ahead.
1339 	 *
1340 	 * In order to remain compatible with older, existing DeviceTree
1341 	 * files which don't set the "gpio-ranges" property or systems that
1342 	 * utilize ACPI the driver has to call gpiochip_add_pin_range().
1343 	 */
1344 	if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) {
1345 		ret = gpiochip_add_pin_range(&pctrl->chip,
1346 			dev_name(pctrl->dev), 0, 0, chip->ngpio);
1347 		if (ret) {
1348 			dev_err(pctrl->dev, "Failed to add pin range\n");
1349 			gpiochip_remove(&pctrl->chip);
1350 			return ret;
1351 		}
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
1358 			       void *data)
1359 {
1360 	struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
1361 
1362 	writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
1363 	mdelay(1000);
1364 	return NOTIFY_DONE;
1365 }
1366 
1367 static struct msm_pinctrl *poweroff_pctrl;
1368 
1369 static void msm_ps_hold_poweroff(void)
1370 {
1371 	msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
1372 }
1373 
1374 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
1375 {
1376 	int i;
1377 	const struct msm_function *func = pctrl->soc->functions;
1378 
1379 	for (i = 0; i < pctrl->soc->nfunctions; i++)
1380 		if (!strcmp(func[i].name, "ps_hold")) {
1381 			pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
1382 			pctrl->restart_nb.priority = 128;
1383 			if (register_restart_handler(&pctrl->restart_nb))
1384 				dev_err(pctrl->dev,
1385 					"failed to setup restart handler.\n");
1386 			poweroff_pctrl = pctrl;
1387 			pm_power_off = msm_ps_hold_poweroff;
1388 			break;
1389 		}
1390 }
1391 
1392 static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
1393 {
1394 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1395 
1396 	return pinctrl_force_sleep(pctrl->pctrl);
1397 }
1398 
1399 static __maybe_unused int msm_pinctrl_resume(struct device *dev)
1400 {
1401 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1402 
1403 	return pinctrl_force_default(pctrl->pctrl);
1404 }
1405 
1406 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
1407 		  msm_pinctrl_resume);
1408 
1409 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
1410 
1411 int msm_pinctrl_probe(struct platform_device *pdev,
1412 		      const struct msm_pinctrl_soc_data *soc_data)
1413 {
1414 	struct msm_pinctrl *pctrl;
1415 	struct resource *res;
1416 	int ret;
1417 	int i;
1418 
1419 	pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
1420 	if (!pctrl)
1421 		return -ENOMEM;
1422 
1423 	pctrl->dev = &pdev->dev;
1424 	pctrl->soc = soc_data;
1425 	pctrl->chip = msm_gpio_template;
1426 	pctrl->intr_target_use_scm = of_device_is_compatible(
1427 					pctrl->dev->of_node,
1428 					"qcom,ipq8064-pinctrl");
1429 
1430 	raw_spin_lock_init(&pctrl->lock);
1431 
1432 	if (soc_data->tiles) {
1433 		for (i = 0; i < soc_data->ntiles; i++) {
1434 			res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1435 							   soc_data->tiles[i]);
1436 			pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
1437 			if (IS_ERR(pctrl->regs[i]))
1438 				return PTR_ERR(pctrl->regs[i]);
1439 		}
1440 	} else {
1441 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1442 		pctrl->regs[0] = devm_ioremap_resource(&pdev->dev, res);
1443 		if (IS_ERR(pctrl->regs[0]))
1444 			return PTR_ERR(pctrl->regs[0]);
1445 
1446 		pctrl->phys_base[0] = res->start;
1447 	}
1448 
1449 	msm_pinctrl_setup_pm_reset(pctrl);
1450 
1451 	pctrl->irq = platform_get_irq(pdev, 0);
1452 	if (pctrl->irq < 0)
1453 		return pctrl->irq;
1454 
1455 	pctrl->desc.owner = THIS_MODULE;
1456 	pctrl->desc.pctlops = &msm_pinctrl_ops;
1457 	pctrl->desc.pmxops = &msm_pinmux_ops;
1458 	pctrl->desc.confops = &msm_pinconf_ops;
1459 	pctrl->desc.name = dev_name(&pdev->dev);
1460 	pctrl->desc.pins = pctrl->soc->pins;
1461 	pctrl->desc.npins = pctrl->soc->npins;
1462 
1463 	pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
1464 	if (IS_ERR(pctrl->pctrl)) {
1465 		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
1466 		return PTR_ERR(pctrl->pctrl);
1467 	}
1468 
1469 	ret = msm_gpio_init(pctrl);
1470 	if (ret)
1471 		return ret;
1472 
1473 	platform_set_drvdata(pdev, pctrl);
1474 
1475 	dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
1476 
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(msm_pinctrl_probe);
1480 
1481 int msm_pinctrl_remove(struct platform_device *pdev)
1482 {
1483 	struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
1484 
1485 	gpiochip_remove(&pctrl->chip);
1486 
1487 	unregister_restart_handler(&pctrl->restart_nb);
1488 
1489 	return 0;
1490 }
1491 EXPORT_SYMBOL(msm_pinctrl_remove);
1492 
1493 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
1494 MODULE_LICENSE("GPL v2");
1495