1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013, Sony Mobile Communications AB. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/gpio/driver.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm.h> 17 #include <linux/firmware/qcom/qcom_scm.h> 18 #include <linux/reboot.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <linux/pinctrl/machine.h> 24 #include <linux/pinctrl/pinconf-generic.h> 25 #include <linux/pinctrl/pinconf.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/pinmux.h> 28 29 #include <linux/soc/qcom/irq.h> 30 31 #include "../core.h" 32 #include "../pinconf.h" 33 #include "../pinctrl-utils.h" 34 35 #include "pinctrl-msm.h" 36 37 #define MAX_NR_GPIO 300 38 #define MAX_NR_TILES 4 39 #define PS_HOLD_OFFSET 0x820 40 41 /** 42 * struct msm_pinctrl - state for a pinctrl-msm device 43 * @dev: device handle. 44 * @pctrl: pinctrl handle. 45 * @chip: gpiochip handle. 46 * @desc: pin controller descriptor 47 * @restart_nb: restart notifier block. 48 * @irq: parent irq for the TLMM irq_chip. 49 * @intr_target_use_scm: route irq to application cpu using scm calls 50 * @lock: Spinlock to protect register resources as well 51 * as msm_pinctrl data structures. 52 * @enabled_irqs: Bitmap of currently enabled irqs. 53 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge 54 * detection. 55 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller 56 * @disabled_for_mux: These IRQs were disabled because we muxed away. 57 * @ever_gpio: This bit is set the first time we mux a pin to gpio_func. 58 * @soc: Reference to soc_data of platform specific data. 59 * @regs: Base addresses for the TLMM tiles. 60 * @phys_base: Physical base address 61 */ 62 struct msm_pinctrl { 63 struct device *dev; 64 struct pinctrl_dev *pctrl; 65 struct gpio_chip chip; 66 struct pinctrl_desc desc; 67 struct notifier_block restart_nb; 68 69 int irq; 70 71 bool intr_target_use_scm; 72 73 raw_spinlock_t lock; 74 75 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); 76 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); 77 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO); 78 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO); 79 DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO); 80 81 const struct msm_pinctrl_soc_data *soc; 82 void __iomem *regs[MAX_NR_TILES]; 83 u32 phys_base[MAX_NR_TILES]; 84 }; 85 86 #define MSM_ACCESSOR(name) \ 87 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \ 88 const struct msm_pingroup *g) \ 89 { \ 90 return readl(pctrl->regs[g->tile] + g->name##_reg); \ 91 } \ 92 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \ 93 const struct msm_pingroup *g) \ 94 { \ 95 writel(val, pctrl->regs[g->tile] + g->name##_reg); \ 96 } 97 98 MSM_ACCESSOR(ctl) 99 MSM_ACCESSOR(io) 100 MSM_ACCESSOR(intr_cfg) 101 MSM_ACCESSOR(intr_status) 102 MSM_ACCESSOR(intr_target) 103 104 static void msm_ack_intr_status(struct msm_pinctrl *pctrl, 105 const struct msm_pingroup *g) 106 { 107 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0; 108 109 msm_writel_intr_status(val, pctrl, g); 110 } 111 112 static int msm_get_groups_count(struct pinctrl_dev *pctldev) 113 { 114 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 115 116 return pctrl->soc->ngroups; 117 } 118 119 static const char *msm_get_group_name(struct pinctrl_dev *pctldev, 120 unsigned group) 121 { 122 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 123 124 return pctrl->soc->groups[group].name; 125 } 126 127 static int msm_get_group_pins(struct pinctrl_dev *pctldev, 128 unsigned group, 129 const unsigned **pins, 130 unsigned *num_pins) 131 { 132 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 133 134 *pins = pctrl->soc->groups[group].pins; 135 *num_pins = pctrl->soc->groups[group].npins; 136 return 0; 137 } 138 139 static const struct pinctrl_ops msm_pinctrl_ops = { 140 .get_groups_count = msm_get_groups_count, 141 .get_group_name = msm_get_group_name, 142 .get_group_pins = msm_get_group_pins, 143 .dt_node_to_map = pinconf_generic_dt_node_to_map_group, 144 .dt_free_map = pinctrl_utils_free_map, 145 }; 146 147 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset) 148 { 149 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 150 struct gpio_chip *chip = &pctrl->chip; 151 152 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL; 153 } 154 155 static int msm_get_functions_count(struct pinctrl_dev *pctldev) 156 { 157 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 158 159 return pctrl->soc->nfunctions; 160 } 161 162 static const char *msm_get_function_name(struct pinctrl_dev *pctldev, 163 unsigned function) 164 { 165 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 166 167 return pctrl->soc->functions[function].name; 168 } 169 170 static int msm_get_function_groups(struct pinctrl_dev *pctldev, 171 unsigned function, 172 const char * const **groups, 173 unsigned * const num_groups) 174 { 175 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 176 177 *groups = pctrl->soc->functions[function].groups; 178 *num_groups = pctrl->soc->functions[function].ngroups; 179 return 0; 180 } 181 182 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, 183 unsigned function, 184 unsigned group) 185 { 186 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 187 struct gpio_chip *gc = &pctrl->chip; 188 unsigned int irq = irq_find_mapping(gc->irq.domain, group); 189 struct irq_data *d = irq_get_irq_data(irq); 190 unsigned int gpio_func = pctrl->soc->gpio_func; 191 unsigned int egpio_func = pctrl->soc->egpio_func; 192 const struct msm_pingroup *g; 193 unsigned long flags; 194 u32 val, mask; 195 int i; 196 197 g = &pctrl->soc->groups[group]; 198 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit); 199 200 for (i = 0; i < g->nfuncs; i++) { 201 if (g->funcs[i] == function) 202 break; 203 } 204 205 if (WARN_ON(i == g->nfuncs)) 206 return -EINVAL; 207 208 /* 209 * If an GPIO interrupt is setup on this pin then we need special 210 * handling. Specifically interrupt detection logic will still see 211 * the pin twiddle even when we're muxed away. 212 * 213 * When we see a pin with an interrupt setup on it then we'll disable 214 * (mask) interrupts on it when we mux away until we mux back. Note 215 * that disable_irq() refcounts and interrupts are disabled as long as 216 * at least one disable_irq() has been called. 217 */ 218 if (d && i != gpio_func && 219 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux)) 220 disable_irq(irq); 221 222 raw_spin_lock_irqsave(&pctrl->lock, flags); 223 224 val = msm_readl_ctl(pctrl, g); 225 226 /* 227 * If this is the first time muxing to GPIO and the direction is 228 * output, make sure that we're not going to be glitching the pin 229 * by reading the current state of the pin and setting it as the 230 * output. 231 */ 232 if (i == gpio_func && (val & BIT(g->oe_bit)) && 233 !test_and_set_bit(group, pctrl->ever_gpio)) { 234 u32 io_val = msm_readl_io(pctrl, g); 235 236 if (io_val & BIT(g->in_bit)) { 237 if (!(io_val & BIT(g->out_bit))) 238 msm_writel_io(io_val | BIT(g->out_bit), pctrl, g); 239 } else { 240 if (io_val & BIT(g->out_bit)) 241 msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g); 242 } 243 } 244 245 if (egpio_func && i == egpio_func) { 246 if (val & BIT(g->egpio_present)) 247 val &= ~BIT(g->egpio_enable); 248 } else { 249 val &= ~mask; 250 val |= i << g->mux_bit; 251 /* Claim ownership of pin if egpio capable */ 252 if (egpio_func && val & BIT(g->egpio_present)) 253 val |= BIT(g->egpio_enable); 254 } 255 256 msm_writel_ctl(val, pctrl, g); 257 258 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 259 260 if (d && i == gpio_func && 261 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) { 262 /* 263 * Clear interrupts detected while not GPIO since we only 264 * masked things. 265 */ 266 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 267 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false); 268 else 269 msm_ack_intr_status(pctrl, g); 270 271 enable_irq(irq); 272 } 273 274 return 0; 275 } 276 277 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev, 278 struct pinctrl_gpio_range *range, 279 unsigned offset) 280 { 281 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 282 const struct msm_pingroup *g = &pctrl->soc->groups[offset]; 283 284 /* No funcs? Probably ACPI so can't do anything here */ 285 if (!g->nfuncs) 286 return 0; 287 288 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset); 289 } 290 291 static const struct pinmux_ops msm_pinmux_ops = { 292 .request = msm_pinmux_request, 293 .get_functions_count = msm_get_functions_count, 294 .get_function_name = msm_get_function_name, 295 .get_function_groups = msm_get_function_groups, 296 .gpio_request_enable = msm_pinmux_request_gpio, 297 .set_mux = msm_pinmux_set_mux, 298 }; 299 300 static int msm_config_reg(struct msm_pinctrl *pctrl, 301 const struct msm_pingroup *g, 302 unsigned param, 303 unsigned *mask, 304 unsigned *bit) 305 { 306 switch (param) { 307 case PIN_CONFIG_BIAS_DISABLE: 308 case PIN_CONFIG_BIAS_PULL_DOWN: 309 case PIN_CONFIG_BIAS_BUS_HOLD: 310 case PIN_CONFIG_BIAS_PULL_UP: 311 *bit = g->pull_bit; 312 *mask = 3; 313 if (g->i2c_pull_bit) 314 *mask |= BIT(g->i2c_pull_bit) >> *bit; 315 break; 316 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 317 *bit = g->od_bit; 318 *mask = 1; 319 break; 320 case PIN_CONFIG_DRIVE_STRENGTH: 321 *bit = g->drv_bit; 322 *mask = 7; 323 break; 324 case PIN_CONFIG_OUTPUT: 325 case PIN_CONFIG_INPUT_ENABLE: 326 *bit = g->oe_bit; 327 *mask = 1; 328 break; 329 default: 330 return -ENOTSUPP; 331 } 332 333 return 0; 334 } 335 336 #define MSM_NO_PULL 0 337 #define MSM_PULL_DOWN 1 338 #define MSM_KEEPER 2 339 #define MSM_PULL_UP_NO_KEEPER 2 340 #define MSM_PULL_UP 3 341 #define MSM_I2C_STRONG_PULL_UP 2200 342 343 static unsigned msm_regval_to_drive(u32 val) 344 { 345 return (val + 1) * 2; 346 } 347 348 static int msm_config_group_get(struct pinctrl_dev *pctldev, 349 unsigned int group, 350 unsigned long *config) 351 { 352 const struct msm_pingroup *g; 353 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 354 unsigned param = pinconf_to_config_param(*config); 355 unsigned mask; 356 unsigned arg; 357 unsigned bit; 358 int ret; 359 u32 val; 360 361 g = &pctrl->soc->groups[group]; 362 363 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 364 if (ret < 0) 365 return ret; 366 367 val = msm_readl_ctl(pctrl, g); 368 arg = (val >> bit) & mask; 369 370 /* Convert register value to pinconf value */ 371 switch (param) { 372 case PIN_CONFIG_BIAS_DISABLE: 373 if (arg != MSM_NO_PULL) 374 return -EINVAL; 375 arg = 1; 376 break; 377 case PIN_CONFIG_BIAS_PULL_DOWN: 378 if (arg != MSM_PULL_DOWN) 379 return -EINVAL; 380 arg = 1; 381 break; 382 case PIN_CONFIG_BIAS_BUS_HOLD: 383 if (pctrl->soc->pull_no_keeper) 384 return -ENOTSUPP; 385 386 if (arg != MSM_KEEPER) 387 return -EINVAL; 388 arg = 1; 389 break; 390 case PIN_CONFIG_BIAS_PULL_UP: 391 if (pctrl->soc->pull_no_keeper) 392 arg = arg == MSM_PULL_UP_NO_KEEPER; 393 else if (arg & BIT(g->i2c_pull_bit)) 394 arg = MSM_I2C_STRONG_PULL_UP; 395 else 396 arg = arg == MSM_PULL_UP; 397 if (!arg) 398 return -EINVAL; 399 break; 400 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 401 /* Pin is not open-drain */ 402 if (!arg) 403 return -EINVAL; 404 arg = 1; 405 break; 406 case PIN_CONFIG_DRIVE_STRENGTH: 407 arg = msm_regval_to_drive(arg); 408 break; 409 case PIN_CONFIG_OUTPUT: 410 /* Pin is not output */ 411 if (!arg) 412 return -EINVAL; 413 414 val = msm_readl_io(pctrl, g); 415 arg = !!(val & BIT(g->in_bit)); 416 break; 417 case PIN_CONFIG_INPUT_ENABLE: 418 /* Pin is output */ 419 if (arg) 420 return -EINVAL; 421 arg = 1; 422 break; 423 default: 424 return -ENOTSUPP; 425 } 426 427 *config = pinconf_to_config_packed(param, arg); 428 429 return 0; 430 } 431 432 static int msm_config_group_set(struct pinctrl_dev *pctldev, 433 unsigned group, 434 unsigned long *configs, 435 unsigned num_configs) 436 { 437 const struct msm_pingroup *g; 438 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 439 unsigned long flags; 440 unsigned param; 441 unsigned mask; 442 unsigned arg; 443 unsigned bit; 444 int ret; 445 u32 val; 446 int i; 447 448 g = &pctrl->soc->groups[group]; 449 450 for (i = 0; i < num_configs; i++) { 451 param = pinconf_to_config_param(configs[i]); 452 arg = pinconf_to_config_argument(configs[i]); 453 454 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 455 if (ret < 0) 456 return ret; 457 458 /* Convert pinconf values to register values */ 459 switch (param) { 460 case PIN_CONFIG_BIAS_DISABLE: 461 arg = MSM_NO_PULL; 462 break; 463 case PIN_CONFIG_BIAS_PULL_DOWN: 464 arg = MSM_PULL_DOWN; 465 break; 466 case PIN_CONFIG_BIAS_BUS_HOLD: 467 if (pctrl->soc->pull_no_keeper) 468 return -ENOTSUPP; 469 470 arg = MSM_KEEPER; 471 break; 472 case PIN_CONFIG_BIAS_PULL_UP: 473 if (pctrl->soc->pull_no_keeper) 474 arg = MSM_PULL_UP_NO_KEEPER; 475 else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP) 476 arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP; 477 else 478 arg = MSM_PULL_UP; 479 break; 480 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 481 arg = 1; 482 break; 483 case PIN_CONFIG_DRIVE_STRENGTH: 484 /* Check for invalid values */ 485 if (arg > 16 || arg < 2 || (arg % 2) != 0) 486 arg = -1; 487 else 488 arg = (arg / 2) - 1; 489 break; 490 case PIN_CONFIG_OUTPUT: 491 /* set output value */ 492 raw_spin_lock_irqsave(&pctrl->lock, flags); 493 val = msm_readl_io(pctrl, g); 494 if (arg) 495 val |= BIT(g->out_bit); 496 else 497 val &= ~BIT(g->out_bit); 498 msm_writel_io(val, pctrl, g); 499 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 500 501 /* enable output */ 502 arg = 1; 503 break; 504 case PIN_CONFIG_INPUT_ENABLE: 505 /* disable output */ 506 arg = 0; 507 break; 508 default: 509 dev_err(pctrl->dev, "Unsupported config parameter: %x\n", 510 param); 511 return -EINVAL; 512 } 513 514 /* Range-check user-supplied value */ 515 if (arg & ~mask) { 516 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); 517 return -EINVAL; 518 } 519 520 raw_spin_lock_irqsave(&pctrl->lock, flags); 521 val = msm_readl_ctl(pctrl, g); 522 val &= ~(mask << bit); 523 val |= arg << bit; 524 msm_writel_ctl(val, pctrl, g); 525 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 526 } 527 528 return 0; 529 } 530 531 static const struct pinconf_ops msm_pinconf_ops = { 532 .is_generic = true, 533 .pin_config_group_get = msm_config_group_get, 534 .pin_config_group_set = msm_config_group_set, 535 }; 536 537 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) 538 { 539 const struct msm_pingroup *g; 540 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 541 unsigned long flags; 542 u32 val; 543 544 g = &pctrl->soc->groups[offset]; 545 546 raw_spin_lock_irqsave(&pctrl->lock, flags); 547 548 val = msm_readl_ctl(pctrl, g); 549 val &= ~BIT(g->oe_bit); 550 msm_writel_ctl(val, pctrl, g); 551 552 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 553 554 return 0; 555 } 556 557 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) 558 { 559 const struct msm_pingroup *g; 560 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 561 unsigned long flags; 562 u32 val; 563 564 g = &pctrl->soc->groups[offset]; 565 566 raw_spin_lock_irqsave(&pctrl->lock, flags); 567 568 val = msm_readl_io(pctrl, g); 569 if (value) 570 val |= BIT(g->out_bit); 571 else 572 val &= ~BIT(g->out_bit); 573 msm_writel_io(val, pctrl, g); 574 575 val = msm_readl_ctl(pctrl, g); 576 val |= BIT(g->oe_bit); 577 msm_writel_ctl(val, pctrl, g); 578 579 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 580 581 return 0; 582 } 583 584 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) 585 { 586 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 587 const struct msm_pingroup *g; 588 u32 val; 589 590 g = &pctrl->soc->groups[offset]; 591 592 val = msm_readl_ctl(pctrl, g); 593 594 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT : 595 GPIO_LINE_DIRECTION_IN; 596 } 597 598 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) 599 { 600 const struct msm_pingroup *g; 601 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 602 u32 val; 603 604 g = &pctrl->soc->groups[offset]; 605 606 val = msm_readl_io(pctrl, g); 607 return !!(val & BIT(g->in_bit)); 608 } 609 610 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value) 611 { 612 const struct msm_pingroup *g; 613 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 614 unsigned long flags; 615 u32 val; 616 617 g = &pctrl->soc->groups[offset]; 618 619 raw_spin_lock_irqsave(&pctrl->lock, flags); 620 621 val = msm_readl_io(pctrl, g); 622 if (value) 623 val |= BIT(g->out_bit); 624 else 625 val &= ~BIT(g->out_bit); 626 msm_writel_io(val, pctrl, g); 627 628 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 629 } 630 631 #ifdef CONFIG_DEBUG_FS 632 633 static void msm_gpio_dbg_show_one(struct seq_file *s, 634 struct pinctrl_dev *pctldev, 635 struct gpio_chip *chip, 636 unsigned offset, 637 unsigned gpio) 638 { 639 const struct msm_pingroup *g; 640 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 641 unsigned func; 642 int is_out; 643 int drive; 644 int pull; 645 int val; 646 int egpio_enable; 647 u32 ctl_reg, io_reg; 648 649 static const char * const pulls_keeper[] = { 650 "no pull", 651 "pull down", 652 "keeper", 653 "pull up" 654 }; 655 656 static const char * const pulls_no_keeper[] = { 657 "no pull", 658 "pull down", 659 "pull up", 660 }; 661 662 if (!gpiochip_line_is_valid(chip, offset)) 663 return; 664 665 g = &pctrl->soc->groups[offset]; 666 ctl_reg = msm_readl_ctl(pctrl, g); 667 io_reg = msm_readl_io(pctrl, g); 668 669 is_out = !!(ctl_reg & BIT(g->oe_bit)); 670 func = (ctl_reg >> g->mux_bit) & 7; 671 drive = (ctl_reg >> g->drv_bit) & 7; 672 pull = (ctl_reg >> g->pull_bit) & 3; 673 egpio_enable = 0; 674 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present)) 675 egpio_enable = !(ctl_reg & BIT(g->egpio_enable)); 676 677 if (is_out) 678 val = !!(io_reg & BIT(g->out_bit)); 679 else 680 val = !!(io_reg & BIT(g->in_bit)); 681 682 if (egpio_enable) { 683 seq_printf(s, " %-8s: egpio\n", g->name); 684 return; 685 } 686 687 seq_printf(s, " %-8s: %-3s", g->name, is_out ? "out" : "in"); 688 seq_printf(s, " %-4s func%d", val ? "high" : "low", func); 689 seq_printf(s, " %dmA", msm_regval_to_drive(drive)); 690 if (pctrl->soc->pull_no_keeper) 691 seq_printf(s, " %s", pulls_no_keeper[pull]); 692 else 693 seq_printf(s, " %s", pulls_keeper[pull]); 694 seq_puts(s, "\n"); 695 } 696 697 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) 698 { 699 unsigned gpio = chip->base; 700 unsigned i; 701 702 for (i = 0; i < chip->ngpio; i++, gpio++) 703 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); 704 } 705 706 #else 707 #define msm_gpio_dbg_show NULL 708 #endif 709 710 static int msm_gpio_init_valid_mask(struct gpio_chip *gc, 711 unsigned long *valid_mask, 712 unsigned int ngpios) 713 { 714 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 715 int ret; 716 unsigned int len, i; 717 const int *reserved = pctrl->soc->reserved_gpios; 718 u16 *tmp; 719 720 /* Remove driver-provided reserved GPIOs from valid_mask */ 721 if (reserved) { 722 for (i = 0; reserved[i] >= 0; i++) { 723 if (i >= ngpios || reserved[i] >= ngpios) { 724 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n"); 725 return -EINVAL; 726 } 727 clear_bit(reserved[i], valid_mask); 728 } 729 730 return 0; 731 } 732 733 /* The number of GPIOs in the ACPI tables */ 734 len = ret = device_property_count_u16(pctrl->dev, "gpios"); 735 if (ret < 0) 736 return 0; 737 738 if (ret > ngpios) 739 return -EINVAL; 740 741 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL); 742 if (!tmp) 743 return -ENOMEM; 744 745 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len); 746 if (ret < 0) { 747 dev_err(pctrl->dev, "could not read list of GPIOs\n"); 748 goto out; 749 } 750 751 bitmap_zero(valid_mask, ngpios); 752 for (i = 0; i < len; i++) 753 set_bit(tmp[i], valid_mask); 754 755 out: 756 kfree(tmp); 757 return ret; 758 } 759 760 static const struct gpio_chip msm_gpio_template = { 761 .direction_input = msm_gpio_direction_input, 762 .direction_output = msm_gpio_direction_output, 763 .get_direction = msm_gpio_get_direction, 764 .get = msm_gpio_get, 765 .set = msm_gpio_set, 766 .request = gpiochip_generic_request, 767 .free = gpiochip_generic_free, 768 .dbg_show = msm_gpio_dbg_show, 769 }; 770 771 /* For dual-edge interrupts in software, since some hardware has no 772 * such support: 773 * 774 * At appropriate moments, this function may be called to flip the polarity 775 * settings of both-edge irq lines to try and catch the next edge. 776 * 777 * The attempt is considered successful if: 778 * - the status bit goes high, indicating that an edge was caught, or 779 * - the input value of the gpio doesn't change during the attempt. 780 * If the value changes twice during the process, that would cause the first 781 * test to fail but would force the second, as two opposite 782 * transitions would cause a detection no matter the polarity setting. 783 * 784 * The do-loop tries to sledge-hammer closed the timing hole between 785 * the initial value-read and the polarity-write - if the line value changes 786 * during that window, an interrupt is lost, the new polarity setting is 787 * incorrect, and the first success test will fail, causing a retry. 788 * 789 * Algorithm comes from Google's msmgpio driver. 790 */ 791 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, 792 const struct msm_pingroup *g, 793 struct irq_data *d) 794 { 795 int loop_limit = 100; 796 unsigned val, val2, intstat; 797 unsigned pol; 798 799 do { 800 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 801 802 pol = msm_readl_intr_cfg(pctrl, g); 803 pol ^= BIT(g->intr_polarity_bit); 804 msm_writel_intr_cfg(pol, pctrl, g); 805 806 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit); 807 intstat = msm_readl_intr_status(pctrl, g); 808 if (intstat || (val == val2)) 809 return; 810 } while (loop_limit-- > 0); 811 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", 812 val, val2); 813 } 814 815 static void msm_gpio_irq_mask(struct irq_data *d) 816 { 817 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 818 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 819 const struct msm_pingroup *g; 820 unsigned long flags; 821 u32 val; 822 823 if (d->parent_data) 824 irq_chip_mask_parent(d); 825 826 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 827 return; 828 829 g = &pctrl->soc->groups[d->hwirq]; 830 831 raw_spin_lock_irqsave(&pctrl->lock, flags); 832 833 val = msm_readl_intr_cfg(pctrl, g); 834 /* 835 * There are two bits that control interrupt forwarding to the CPU. The 836 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be 837 * latched into the interrupt status register when the hardware detects 838 * an irq that it's configured for (either edge for edge type or level 839 * for level type irq). The 'non-raw' status enable bit causes the 840 * hardware to assert the summary interrupt to the CPU if the latched 841 * status bit is set. There's a bug though, the edge detection logic 842 * seems to have a problem where toggling the RAW_STATUS_EN bit may 843 * cause the status bit to latch spuriously when there isn't any edge 844 * so we can't touch that bit for edge type irqs and we have to keep 845 * the bit set anyway so that edges are latched while the line is masked. 846 * 847 * To make matters more complicated, leaving the RAW_STATUS_EN bit 848 * enabled all the time causes level interrupts to re-latch into the 849 * status register because the level is still present on the line after 850 * we ack it. We clear the raw status enable bit during mask here and 851 * set the bit on unmask so the interrupt can't latch into the hardware 852 * while it's masked. 853 */ 854 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK) 855 val &= ~BIT(g->intr_raw_status_bit); 856 857 val &= ~BIT(g->intr_enable_bit); 858 msm_writel_intr_cfg(val, pctrl, g); 859 860 clear_bit(d->hwirq, pctrl->enabled_irqs); 861 862 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 863 } 864 865 static void msm_gpio_irq_unmask(struct irq_data *d) 866 { 867 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 868 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 869 const struct msm_pingroup *g; 870 unsigned long flags; 871 u32 val; 872 873 if (d->parent_data) 874 irq_chip_unmask_parent(d); 875 876 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 877 return; 878 879 g = &pctrl->soc->groups[d->hwirq]; 880 881 raw_spin_lock_irqsave(&pctrl->lock, flags); 882 883 val = msm_readl_intr_cfg(pctrl, g); 884 val |= BIT(g->intr_raw_status_bit); 885 val |= BIT(g->intr_enable_bit); 886 msm_writel_intr_cfg(val, pctrl, g); 887 888 set_bit(d->hwirq, pctrl->enabled_irqs); 889 890 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 891 } 892 893 static void msm_gpio_irq_enable(struct irq_data *d) 894 { 895 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 896 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 897 898 gpiochip_enable_irq(gc, d->hwirq); 899 900 if (d->parent_data) 901 irq_chip_enable_parent(d); 902 903 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 904 msm_gpio_irq_unmask(d); 905 } 906 907 static void msm_gpio_irq_disable(struct irq_data *d) 908 { 909 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 910 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 911 912 if (d->parent_data) 913 irq_chip_disable_parent(d); 914 915 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 916 msm_gpio_irq_mask(d); 917 918 gpiochip_disable_irq(gc, d->hwirq); 919 } 920 921 /** 922 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent. 923 * @d: The irq dta. 924 * 925 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are 926 * normally handled by the parent irqchip. The logic here is slightly 927 * different due to what's easy to do with our parent, but in principle it's 928 * the same. 929 */ 930 static void msm_gpio_update_dual_edge_parent(struct irq_data *d) 931 { 932 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 933 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 934 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 935 int loop_limit = 100; 936 unsigned int val; 937 unsigned int type; 938 939 /* Read the value and make a guess about what edge we need to catch */ 940 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 941 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING; 942 943 do { 944 /* Set the parent to catch the next edge */ 945 irq_chip_set_type_parent(d, type); 946 947 /* 948 * Possibly the line changed between when we last read "val" 949 * (and decided what edge we needed) and when set the edge. 950 * If the value didn't change (or changed and then changed 951 * back) then we're done. 952 */ 953 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 954 if (type == IRQ_TYPE_EDGE_RISING) { 955 if (!val) 956 return; 957 type = IRQ_TYPE_EDGE_FALLING; 958 } else if (type == IRQ_TYPE_EDGE_FALLING) { 959 if (val) 960 return; 961 type = IRQ_TYPE_EDGE_RISING; 962 } 963 } while (loop_limit-- > 0); 964 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n"); 965 } 966 967 static void msm_gpio_irq_ack(struct irq_data *d) 968 { 969 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 970 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 971 const struct msm_pingroup *g; 972 unsigned long flags; 973 974 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 975 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 976 msm_gpio_update_dual_edge_parent(d); 977 return; 978 } 979 980 g = &pctrl->soc->groups[d->hwirq]; 981 982 raw_spin_lock_irqsave(&pctrl->lock, flags); 983 984 msm_ack_intr_status(pctrl, g); 985 986 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 987 msm_gpio_update_dual_edge_pos(pctrl, g, d); 988 989 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 990 } 991 992 static void msm_gpio_irq_eoi(struct irq_data *d) 993 { 994 d = d->parent_data; 995 996 if (d) 997 d->chip->irq_eoi(d); 998 } 999 1000 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d, 1001 unsigned int type) 1002 { 1003 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1004 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1005 1006 return type == IRQ_TYPE_EDGE_BOTH && 1007 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data && 1008 test_bit(d->hwirq, pctrl->skip_wake_irqs); 1009 } 1010 1011 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) 1012 { 1013 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1014 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1015 const struct msm_pingroup *g; 1016 unsigned long flags; 1017 bool was_enabled; 1018 u32 val; 1019 1020 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) { 1021 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1022 irq_set_handler_locked(d, handle_fasteoi_ack_irq); 1023 msm_gpio_update_dual_edge_parent(d); 1024 return 0; 1025 } 1026 1027 if (d->parent_data) 1028 irq_chip_set_type_parent(d, type); 1029 1030 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 1031 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1032 irq_set_handler_locked(d, handle_fasteoi_irq); 1033 return 0; 1034 } 1035 1036 g = &pctrl->soc->groups[d->hwirq]; 1037 1038 raw_spin_lock_irqsave(&pctrl->lock, flags); 1039 1040 /* 1041 * For hw without possibility of detecting both edges 1042 */ 1043 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) 1044 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1045 else 1046 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1047 1048 /* Route interrupts to application cpu. 1049 * With intr_target_use_scm interrupts are routed to 1050 * application cpu using scm calls. 1051 */ 1052 if (pctrl->intr_target_use_scm) { 1053 u32 addr = pctrl->phys_base[0] + g->intr_target_reg; 1054 int ret; 1055 1056 qcom_scm_io_readl(addr, &val); 1057 1058 val &= ~(7 << g->intr_target_bit); 1059 val |= g->intr_target_kpss_val << g->intr_target_bit; 1060 1061 ret = qcom_scm_io_writel(addr, val); 1062 if (ret) 1063 dev_err(pctrl->dev, 1064 "Failed routing %lu interrupt to Apps proc", 1065 d->hwirq); 1066 } else { 1067 val = msm_readl_intr_target(pctrl, g); 1068 val &= ~(7 << g->intr_target_bit); 1069 val |= g->intr_target_kpss_val << g->intr_target_bit; 1070 msm_writel_intr_target(val, pctrl, g); 1071 } 1072 1073 /* Update configuration for gpio. 1074 * RAW_STATUS_EN is left on for all gpio irqs. Due to the 1075 * internal circuitry of TLMM, toggling the RAW_STATUS 1076 * could cause the INTR_STATUS to be set for EDGE interrupts. 1077 */ 1078 val = msm_readl_intr_cfg(pctrl, g); 1079 was_enabled = val & BIT(g->intr_raw_status_bit); 1080 val |= BIT(g->intr_raw_status_bit); 1081 if (g->intr_detection_width == 2) { 1082 val &= ~(3 << g->intr_detection_bit); 1083 val &= ~(1 << g->intr_polarity_bit); 1084 switch (type) { 1085 case IRQ_TYPE_EDGE_RISING: 1086 val |= 1 << g->intr_detection_bit; 1087 val |= BIT(g->intr_polarity_bit); 1088 break; 1089 case IRQ_TYPE_EDGE_FALLING: 1090 val |= 2 << g->intr_detection_bit; 1091 val |= BIT(g->intr_polarity_bit); 1092 break; 1093 case IRQ_TYPE_EDGE_BOTH: 1094 val |= 3 << g->intr_detection_bit; 1095 val |= BIT(g->intr_polarity_bit); 1096 break; 1097 case IRQ_TYPE_LEVEL_LOW: 1098 break; 1099 case IRQ_TYPE_LEVEL_HIGH: 1100 val |= BIT(g->intr_polarity_bit); 1101 break; 1102 } 1103 } else if (g->intr_detection_width == 1) { 1104 val &= ~(1 << g->intr_detection_bit); 1105 val &= ~(1 << g->intr_polarity_bit); 1106 switch (type) { 1107 case IRQ_TYPE_EDGE_RISING: 1108 val |= BIT(g->intr_detection_bit); 1109 val |= BIT(g->intr_polarity_bit); 1110 break; 1111 case IRQ_TYPE_EDGE_FALLING: 1112 val |= BIT(g->intr_detection_bit); 1113 break; 1114 case IRQ_TYPE_EDGE_BOTH: 1115 val |= BIT(g->intr_detection_bit); 1116 val |= BIT(g->intr_polarity_bit); 1117 break; 1118 case IRQ_TYPE_LEVEL_LOW: 1119 break; 1120 case IRQ_TYPE_LEVEL_HIGH: 1121 val |= BIT(g->intr_polarity_bit); 1122 break; 1123 } 1124 } else { 1125 BUG(); 1126 } 1127 msm_writel_intr_cfg(val, pctrl, g); 1128 1129 /* 1130 * The first time we set RAW_STATUS_EN it could trigger an interrupt. 1131 * Clear the interrupt. This is safe because we have 1132 * IRQCHIP_SET_TYPE_MASKED. 1133 */ 1134 if (!was_enabled) 1135 msm_ack_intr_status(pctrl, g); 1136 1137 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1138 msm_gpio_update_dual_edge_pos(pctrl, g, d); 1139 1140 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1141 1142 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) 1143 irq_set_handler_locked(d, handle_level_irq); 1144 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) 1145 irq_set_handler_locked(d, handle_edge_irq); 1146 1147 return 0; 1148 } 1149 1150 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) 1151 { 1152 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1153 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1154 1155 /* 1156 * While they may not wake up when the TLMM is powered off, 1157 * some GPIOs would like to wakeup the system from suspend 1158 * when TLMM is powered on. To allow that, enable the GPIO 1159 * summary line to be wakeup capable at GIC. 1160 */ 1161 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1162 return irq_chip_set_wake_parent(d, on); 1163 1164 return irq_set_irq_wake(pctrl->irq, on); 1165 } 1166 1167 static int msm_gpio_irq_reqres(struct irq_data *d) 1168 { 1169 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1170 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1171 int ret; 1172 1173 if (!try_module_get(gc->owner)) 1174 return -ENODEV; 1175 1176 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq); 1177 if (ret) 1178 goto out; 1179 msm_gpio_direction_input(gc, d->hwirq); 1180 1181 if (gpiochip_lock_as_irq(gc, d->hwirq)) { 1182 dev_err(gc->parent, 1183 "unable to lock HW IRQ %lu for IRQ\n", 1184 d->hwirq); 1185 ret = -EINVAL; 1186 goto out; 1187 } 1188 1189 /* 1190 * The disable / clear-enable workaround we do in msm_pinmux_set_mux() 1191 * only works if disable is not lazy since we only clear any bogus 1192 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY. 1193 */ 1194 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY); 1195 1196 return 0; 1197 out: 1198 module_put(gc->owner); 1199 return ret; 1200 } 1201 1202 static void msm_gpio_irq_relres(struct irq_data *d) 1203 { 1204 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1205 1206 gpiochip_unlock_as_irq(gc, d->hwirq); 1207 module_put(gc->owner); 1208 } 1209 1210 static int msm_gpio_irq_set_affinity(struct irq_data *d, 1211 const struct cpumask *dest, bool force) 1212 { 1213 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1214 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1215 1216 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1217 return irq_chip_set_affinity_parent(d, dest, force); 1218 1219 return -EINVAL; 1220 } 1221 1222 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1223 { 1224 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1225 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1226 1227 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1228 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info); 1229 1230 return -EINVAL; 1231 } 1232 1233 static void msm_gpio_irq_handler(struct irq_desc *desc) 1234 { 1235 struct gpio_chip *gc = irq_desc_get_handler_data(desc); 1236 const struct msm_pingroup *g; 1237 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1238 struct irq_chip *chip = irq_desc_get_chip(desc); 1239 int handled = 0; 1240 u32 val; 1241 int i; 1242 1243 chained_irq_enter(chip, desc); 1244 1245 /* 1246 * Each pin has it's own IRQ status register, so use 1247 * enabled_irq bitmap to limit the number of reads. 1248 */ 1249 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { 1250 g = &pctrl->soc->groups[i]; 1251 val = msm_readl_intr_status(pctrl, g); 1252 if (val & BIT(g->intr_status_bit)) { 1253 generic_handle_domain_irq(gc->irq.domain, i); 1254 handled++; 1255 } 1256 } 1257 1258 /* No interrupts were flagged */ 1259 if (handled == 0) 1260 handle_bad_irq(desc); 1261 1262 chained_irq_exit(chip, desc); 1263 } 1264 1265 static int msm_gpio_wakeirq(struct gpio_chip *gc, 1266 unsigned int child, 1267 unsigned int child_type, 1268 unsigned int *parent, 1269 unsigned int *parent_type) 1270 { 1271 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1272 const struct msm_gpio_wakeirq_map *map; 1273 int i; 1274 1275 *parent = GPIO_NO_WAKE_IRQ; 1276 *parent_type = IRQ_TYPE_EDGE_RISING; 1277 1278 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) { 1279 map = &pctrl->soc->wakeirq_map[i]; 1280 if (map->gpio == child) { 1281 *parent = map->wakeirq; 1282 break; 1283 } 1284 } 1285 1286 return 0; 1287 } 1288 1289 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl) 1290 { 1291 if (pctrl->soc->reserved_gpios) 1292 return true; 1293 1294 return device_property_count_u16(pctrl->dev, "gpios") > 0; 1295 } 1296 1297 static const struct irq_chip msm_gpio_irq_chip = { 1298 .name = "msmgpio", 1299 .irq_enable = msm_gpio_irq_enable, 1300 .irq_disable = msm_gpio_irq_disable, 1301 .irq_mask = msm_gpio_irq_mask, 1302 .irq_unmask = msm_gpio_irq_unmask, 1303 .irq_ack = msm_gpio_irq_ack, 1304 .irq_eoi = msm_gpio_irq_eoi, 1305 .irq_set_type = msm_gpio_irq_set_type, 1306 .irq_set_wake = msm_gpio_irq_set_wake, 1307 .irq_request_resources = msm_gpio_irq_reqres, 1308 .irq_release_resources = msm_gpio_irq_relres, 1309 .irq_set_affinity = msm_gpio_irq_set_affinity, 1310 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity, 1311 .flags = (IRQCHIP_MASK_ON_SUSPEND | 1312 IRQCHIP_SET_TYPE_MASKED | 1313 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND | 1314 IRQCHIP_IMMUTABLE), 1315 }; 1316 1317 static int msm_gpio_init(struct msm_pinctrl *pctrl) 1318 { 1319 struct gpio_chip *chip; 1320 struct gpio_irq_chip *girq; 1321 int i, ret; 1322 unsigned gpio, ngpio = pctrl->soc->ngpios; 1323 struct device_node *np; 1324 bool skip; 1325 1326 if (WARN_ON(ngpio > MAX_NR_GPIO)) 1327 return -EINVAL; 1328 1329 chip = &pctrl->chip; 1330 chip->base = -1; 1331 chip->ngpio = ngpio; 1332 chip->label = dev_name(pctrl->dev); 1333 chip->parent = pctrl->dev; 1334 chip->owner = THIS_MODULE; 1335 if (msm_gpio_needs_valid_mask(pctrl)) 1336 chip->init_valid_mask = msm_gpio_init_valid_mask; 1337 1338 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0); 1339 if (np) { 1340 chip->irq.parent_domain = irq_find_matching_host(np, 1341 DOMAIN_BUS_WAKEUP); 1342 of_node_put(np); 1343 if (!chip->irq.parent_domain) 1344 return -EPROBE_DEFER; 1345 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq; 1346 /* 1347 * Let's skip handling the GPIOs, if the parent irqchip 1348 * is handling the direct connect IRQ of the GPIO. 1349 */ 1350 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain); 1351 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) { 1352 gpio = pctrl->soc->wakeirq_map[i].gpio; 1353 set_bit(gpio, pctrl->skip_wake_irqs); 1354 } 1355 } 1356 1357 girq = &chip->irq; 1358 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip); 1359 girq->parent_handler = msm_gpio_irq_handler; 1360 girq->fwnode = dev_fwnode(pctrl->dev); 1361 girq->num_parents = 1; 1362 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents), 1363 GFP_KERNEL); 1364 if (!girq->parents) 1365 return -ENOMEM; 1366 girq->default_type = IRQ_TYPE_NONE; 1367 girq->handler = handle_bad_irq; 1368 girq->parents[0] = pctrl->irq; 1369 1370 ret = gpiochip_add_data(&pctrl->chip, pctrl); 1371 if (ret) { 1372 dev_err(pctrl->dev, "Failed register gpiochip\n"); 1373 return ret; 1374 } 1375 1376 /* 1377 * For DeviceTree-supported systems, the gpio core checks the 1378 * pinctrl's device node for the "gpio-ranges" property. 1379 * If it is present, it takes care of adding the pin ranges 1380 * for the driver. In this case the driver can skip ahead. 1381 * 1382 * In order to remain compatible with older, existing DeviceTree 1383 * files which don't set the "gpio-ranges" property or systems that 1384 * utilize ACPI the driver has to call gpiochip_add_pin_range(). 1385 */ 1386 if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) { 1387 ret = gpiochip_add_pin_range(&pctrl->chip, 1388 dev_name(pctrl->dev), 0, 0, chip->ngpio); 1389 if (ret) { 1390 dev_err(pctrl->dev, "Failed to add pin range\n"); 1391 gpiochip_remove(&pctrl->chip); 1392 return ret; 1393 } 1394 } 1395 1396 return 0; 1397 } 1398 1399 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action, 1400 void *data) 1401 { 1402 struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb); 1403 1404 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET); 1405 mdelay(1000); 1406 return NOTIFY_DONE; 1407 } 1408 1409 static struct msm_pinctrl *poweroff_pctrl; 1410 1411 static void msm_ps_hold_poweroff(void) 1412 { 1413 msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL); 1414 } 1415 1416 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) 1417 { 1418 int i; 1419 const struct msm_function *func = pctrl->soc->functions; 1420 1421 for (i = 0; i < pctrl->soc->nfunctions; i++) 1422 if (!strcmp(func[i].name, "ps_hold")) { 1423 pctrl->restart_nb.notifier_call = msm_ps_hold_restart; 1424 pctrl->restart_nb.priority = 128; 1425 if (register_restart_handler(&pctrl->restart_nb)) 1426 dev_err(pctrl->dev, 1427 "failed to setup restart handler.\n"); 1428 poweroff_pctrl = pctrl; 1429 pm_power_off = msm_ps_hold_poweroff; 1430 break; 1431 } 1432 } 1433 1434 static __maybe_unused int msm_pinctrl_suspend(struct device *dev) 1435 { 1436 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1437 1438 return pinctrl_force_sleep(pctrl->pctrl); 1439 } 1440 1441 static __maybe_unused int msm_pinctrl_resume(struct device *dev) 1442 { 1443 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1444 1445 return pinctrl_force_default(pctrl->pctrl); 1446 } 1447 1448 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend, 1449 msm_pinctrl_resume); 1450 1451 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops); 1452 1453 int msm_pinctrl_probe(struct platform_device *pdev, 1454 const struct msm_pinctrl_soc_data *soc_data) 1455 { 1456 struct msm_pinctrl *pctrl; 1457 struct resource *res; 1458 int ret; 1459 int i; 1460 1461 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); 1462 if (!pctrl) 1463 return -ENOMEM; 1464 1465 pctrl->dev = &pdev->dev; 1466 pctrl->soc = soc_data; 1467 pctrl->chip = msm_gpio_template; 1468 pctrl->intr_target_use_scm = of_device_is_compatible( 1469 pctrl->dev->of_node, 1470 "qcom,ipq8064-pinctrl"); 1471 1472 raw_spin_lock_init(&pctrl->lock); 1473 1474 if (soc_data->tiles) { 1475 for (i = 0; i < soc_data->ntiles; i++) { 1476 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1477 soc_data->tiles[i]); 1478 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res); 1479 if (IS_ERR(pctrl->regs[i])) 1480 return PTR_ERR(pctrl->regs[i]); 1481 } 1482 } else { 1483 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1484 pctrl->regs[0] = devm_ioremap_resource(&pdev->dev, res); 1485 if (IS_ERR(pctrl->regs[0])) 1486 return PTR_ERR(pctrl->regs[0]); 1487 1488 pctrl->phys_base[0] = res->start; 1489 } 1490 1491 msm_pinctrl_setup_pm_reset(pctrl); 1492 1493 pctrl->irq = platform_get_irq(pdev, 0); 1494 if (pctrl->irq < 0) 1495 return pctrl->irq; 1496 1497 pctrl->desc.owner = THIS_MODULE; 1498 pctrl->desc.pctlops = &msm_pinctrl_ops; 1499 pctrl->desc.pmxops = &msm_pinmux_ops; 1500 pctrl->desc.confops = &msm_pinconf_ops; 1501 pctrl->desc.name = dev_name(&pdev->dev); 1502 pctrl->desc.pins = pctrl->soc->pins; 1503 pctrl->desc.npins = pctrl->soc->npins; 1504 1505 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl); 1506 if (IS_ERR(pctrl->pctrl)) { 1507 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 1508 return PTR_ERR(pctrl->pctrl); 1509 } 1510 1511 ret = msm_gpio_init(pctrl); 1512 if (ret) 1513 return ret; 1514 1515 platform_set_drvdata(pdev, pctrl); 1516 1517 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); 1518 1519 return 0; 1520 } 1521 EXPORT_SYMBOL(msm_pinctrl_probe); 1522 1523 int msm_pinctrl_remove(struct platform_device *pdev) 1524 { 1525 struct msm_pinctrl *pctrl = platform_get_drvdata(pdev); 1526 1527 gpiochip_remove(&pctrl->chip); 1528 1529 unregister_restart_handler(&pctrl->restart_nb); 1530 1531 return 0; 1532 } 1533 EXPORT_SYMBOL(msm_pinctrl_remove); 1534 1535 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver"); 1536 MODULE_LICENSE("GPL v2"); 1537