1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 bool found = false; 105 106 if (!devname) 107 return NULL; 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 found = true; 113 break; 114 } 115 } 116 117 return found ? pctldev : NULL; 118 } 119 120 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 121 { 122 struct pinctrl_dev *pctldev; 123 124 mutex_lock(&pinctrldev_list_mutex); 125 126 list_for_each_entry(pctldev, &pinctrldev_list, node) 127 if (pctldev->dev->of_node == np) { 128 mutex_unlock(&pinctrldev_list_mutex); 129 return pctldev; 130 } 131 132 mutex_unlock(&pinctrldev_list_mutex); 133 134 return NULL; 135 } 136 137 /** 138 * pin_get_from_name() - look up a pin number from a name 139 * @pctldev: the pin control device to lookup the pin on 140 * @name: the name of the pin to look up 141 */ 142 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 143 { 144 unsigned i, pin; 145 146 /* The pin number can be retrived from the pin controller descriptor */ 147 for (i = 0; i < pctldev->desc->npins; i++) { 148 struct pin_desc *desc; 149 150 pin = pctldev->desc->pins[i].number; 151 desc = pin_desc_get(pctldev, pin); 152 /* Pin space may be sparse */ 153 if (desc == NULL) 154 continue; 155 if (desc->name && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name_from_id() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @name: the name of the pin to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (desc == NULL) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 181 /** 182 * pin_is_valid() - check if pin exists on controller 183 * @pctldev: the pin control device to check the pin on 184 * @pin: pin to check, use the local pin controller index number 185 * 186 * This tells us whether a certain pin exist on a certain pin controller or 187 * not. Pin lists may be sparse, so some pins may not exist. 188 */ 189 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 190 { 191 struct pin_desc *pindesc; 192 193 if (pin < 0) 194 return false; 195 196 mutex_lock(&pctldev->mutex); 197 pindesc = pin_desc_get(pctldev, pin); 198 mutex_unlock(&pctldev->mutex); 199 200 return pindesc != NULL; 201 } 202 EXPORT_SYMBOL_GPL(pin_is_valid); 203 204 /* Deletes a range of pin descriptors */ 205 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 206 const struct pinctrl_pin_desc *pins, 207 unsigned num_pins) 208 { 209 int i; 210 211 for (i = 0; i < num_pins; i++) { 212 struct pin_desc *pindesc; 213 214 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 215 pins[i].number); 216 if (pindesc != NULL) { 217 radix_tree_delete(&pctldev->pin_desc_tree, 218 pins[i].number); 219 if (pindesc->dynamic_name) 220 kfree(pindesc->name); 221 } 222 kfree(pindesc); 223 } 224 } 225 226 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 227 unsigned number, const char *name) 228 { 229 struct pin_desc *pindesc; 230 231 pindesc = pin_desc_get(pctldev, number); 232 if (pindesc != NULL) { 233 pr_err("pin %d already registered on %s\n", number, 234 pctldev->desc->name); 235 return -EINVAL; 236 } 237 238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 239 if (pindesc == NULL) { 240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 241 return -ENOMEM; 242 } 243 244 /* Set owner */ 245 pindesc->pctldev = pctldev; 246 247 /* Copy basic pin info */ 248 if (name) { 249 pindesc->name = name; 250 } else { 251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 252 if (pindesc->name == NULL) { 253 kfree(pindesc); 254 return -ENOMEM; 255 } 256 pindesc->dynamic_name = true; 257 } 258 259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 260 pr_debug("registered pin %d (%s) on %s\n", 261 number, pindesc->name, pctldev->desc->name); 262 return 0; 263 } 264 265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 266 struct pinctrl_pin_desc const *pins, 267 unsigned num_descs) 268 { 269 unsigned i; 270 int ret = 0; 271 272 for (i = 0; i < num_descs; i++) { 273 ret = pinctrl_register_one_pin(pctldev, 274 pins[i].number, pins[i].name); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 284 * @pctldev: pin controller device to check 285 * @gpio: gpio pin to check taken from the global GPIO pin space 286 * 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin 288 * controller, return the range or NULL 289 */ 290 static struct pinctrl_gpio_range * 291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 292 { 293 struct pinctrl_gpio_range *range = NULL; 294 295 mutex_lock(&pctldev->mutex); 296 /* Loop over the ranges */ 297 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 298 /* Check if we're in the valid range */ 299 if (gpio >= range->base && 300 gpio < range->base + range->npins) { 301 mutex_unlock(&pctldev->mutex); 302 return range; 303 } 304 } 305 mutex_unlock(&pctldev->mutex); 306 return NULL; 307 } 308 309 /** 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 311 * the same GPIO chip are in range 312 * @gpio: gpio pin to check taken from the global GPIO pin space 313 * 314 * This function is complement of pinctrl_match_gpio_range(). If the return 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 317 * of the same GPIO chip don't have back-end pinctrl interface. 318 * If the return value is true, it means that pinctrl device is ready & the 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 320 * is false, it means that pinctrl device may not be ready. 321 */ 322 #ifdef CONFIG_GPIOLIB 323 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 324 { 325 struct pinctrl_dev *pctldev; 326 struct pinctrl_gpio_range *range = NULL; 327 struct gpio_chip *chip = gpio_to_chip(gpio); 328 329 /* Loop over the pin controllers */ 330 list_for_each_entry(pctldev, &pinctrldev_list, node) { 331 /* Loop over the ranges */ 332 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 333 /* Check if any gpio range overlapped with gpio chip */ 334 if (range->base + range->npins - 1 < chip->base || 335 range->base > chip->base + chip->ngpio - 1) 336 continue; 337 return true; 338 } 339 } 340 return false; 341 } 342 #else 343 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 344 #endif 345 346 /** 347 * pinctrl_get_device_gpio_range() - find device for GPIO range 348 * @gpio: the pin to locate the pin controller for 349 * @outdev: the pin control device if found 350 * @outrange: the GPIO range if found 351 * 352 * Find the pin controller handling a certain GPIO pin from the pinspace of 353 * the GPIO subsystem, return the device and the matching GPIO range. Returns 354 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 355 * may still have not been registered. 356 */ 357 static int pinctrl_get_device_gpio_range(unsigned gpio, 358 struct pinctrl_dev **outdev, 359 struct pinctrl_gpio_range **outrange) 360 { 361 struct pinctrl_dev *pctldev = NULL; 362 363 /* Loop over the pin controllers */ 364 list_for_each_entry(pctldev, &pinctrldev_list, node) { 365 struct pinctrl_gpio_range *range; 366 367 range = pinctrl_match_gpio_range(pctldev, gpio); 368 if (range != NULL) { 369 *outdev = pctldev; 370 *outrange = range; 371 return 0; 372 } 373 } 374 375 return -EPROBE_DEFER; 376 } 377 378 /** 379 * pinctrl_add_gpio_range() - register a GPIO range for a controller 380 * @pctldev: pin controller device to add the range to 381 * @range: the GPIO range to add 382 * 383 * This adds a range of GPIOs to be handled by a certain pin controller. Call 384 * this to register handled ranges after registering your pin controller. 385 */ 386 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 387 struct pinctrl_gpio_range *range) 388 { 389 mutex_lock(&pctldev->mutex); 390 list_add_tail(&range->node, &pctldev->gpio_ranges); 391 mutex_unlock(&pctldev->mutex); 392 } 393 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 394 395 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 396 struct pinctrl_gpio_range *ranges, 397 unsigned nranges) 398 { 399 int i; 400 401 for (i = 0; i < nranges; i++) 402 pinctrl_add_gpio_range(pctldev, &ranges[i]); 403 } 404 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 405 406 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 407 struct pinctrl_gpio_range *range) 408 { 409 struct pinctrl_dev *pctldev; 410 411 mutex_lock(&pinctrldev_list_mutex); 412 413 pctldev = get_pinctrl_dev_from_devname(devname); 414 415 /* 416 * If we can't find this device, let's assume that is because 417 * it has not probed yet, so the driver trying to register this 418 * range need to defer probing. 419 */ 420 if (!pctldev) { 421 mutex_unlock(&pinctrldev_list_mutex); 422 return ERR_PTR(-EPROBE_DEFER); 423 } 424 pinctrl_add_gpio_range(pctldev, range); 425 426 mutex_unlock(&pinctrldev_list_mutex); 427 428 return pctldev; 429 } 430 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 431 432 /** 433 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 434 * @pctldev: the pin controller device to look in 435 * @pin: a controller-local number to find the range for 436 */ 437 struct pinctrl_gpio_range * 438 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 439 unsigned int pin) 440 { 441 struct pinctrl_gpio_range *range = NULL; 442 443 mutex_lock(&pctldev->mutex); 444 /* Loop over the ranges */ 445 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 446 /* Check if we're in the valid range */ 447 if (pin >= range->pin_base && 448 pin < range->pin_base + range->npins) { 449 mutex_unlock(&pctldev->mutex); 450 return range; 451 } 452 } 453 mutex_unlock(&pctldev->mutex); 454 455 return NULL; 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 458 459 /** 460 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 461 * @pctldev: pin controller device to remove the range from 462 * @range: the GPIO range to remove 463 */ 464 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 465 struct pinctrl_gpio_range *range) 466 { 467 mutex_lock(&pctldev->mutex); 468 list_del(&range->node); 469 mutex_unlock(&pctldev->mutex); 470 } 471 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 472 473 /** 474 * pinctrl_get_group_selector() - returns the group selector for a group 475 * @pctldev: the pin controller handling the group 476 * @pin_group: the pin group to look up 477 */ 478 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 479 const char *pin_group) 480 { 481 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 482 unsigned ngroups = pctlops->get_groups_count(pctldev); 483 unsigned group_selector = 0; 484 485 while (group_selector < ngroups) { 486 const char *gname = pctlops->get_group_name(pctldev, 487 group_selector); 488 if (!strcmp(gname, pin_group)) { 489 dev_dbg(pctldev->dev, 490 "found group selector %u for %s\n", 491 group_selector, 492 pin_group); 493 return group_selector; 494 } 495 496 group_selector++; 497 } 498 499 dev_err(pctldev->dev, "does not have pin group %s\n", 500 pin_group); 501 502 return -EINVAL; 503 } 504 505 /** 506 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 507 * @gpio: the GPIO pin number from the GPIO subsystem number space 508 * 509 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 510 * as part of their gpio_request() semantics, platforms and individual drivers 511 * shall *NOT* request GPIO pins to be muxed in. 512 */ 513 int pinctrl_request_gpio(unsigned gpio) 514 { 515 struct pinctrl_dev *pctldev; 516 struct pinctrl_gpio_range *range; 517 int ret; 518 int pin; 519 520 mutex_lock(&pinctrldev_list_mutex); 521 522 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 523 if (ret) { 524 if (pinctrl_ready_for_gpio_range(gpio)) 525 ret = 0; 526 mutex_unlock(&pinctrldev_list_mutex); 527 return ret; 528 } 529 530 /* Convert to the pin controllers number space */ 531 pin = gpio - range->base + range->pin_base; 532 533 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 534 535 mutex_unlock(&pinctrldev_list_mutex); 536 return ret; 537 } 538 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 539 540 /** 541 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 542 * @gpio: the GPIO pin number from the GPIO subsystem number space 543 * 544 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 545 * as part of their gpio_free() semantics, platforms and individual drivers 546 * shall *NOT* request GPIO pins to be muxed out. 547 */ 548 void pinctrl_free_gpio(unsigned gpio) 549 { 550 struct pinctrl_dev *pctldev; 551 struct pinctrl_gpio_range *range; 552 int ret; 553 int pin; 554 555 mutex_lock(&pinctrldev_list_mutex); 556 557 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 558 if (ret) { 559 mutex_unlock(&pinctrldev_list_mutex); 560 return; 561 } 562 mutex_lock(&pctldev->mutex); 563 564 /* Convert to the pin controllers number space */ 565 pin = gpio - range->base + range->pin_base; 566 567 pinmux_free_gpio(pctldev, pin, range); 568 569 mutex_unlock(&pctldev->mutex); 570 mutex_unlock(&pinctrldev_list_mutex); 571 } 572 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 573 574 static int pinctrl_gpio_direction(unsigned gpio, bool input) 575 { 576 struct pinctrl_dev *pctldev; 577 struct pinctrl_gpio_range *range; 578 int ret; 579 int pin; 580 581 mutex_lock(&pinctrldev_list_mutex); 582 583 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 584 if (ret) { 585 mutex_unlock(&pinctrldev_list_mutex); 586 return ret; 587 } 588 589 mutex_lock(&pctldev->mutex); 590 591 /* Convert to the pin controllers number space */ 592 pin = gpio - range->base + range->pin_base; 593 ret = pinmux_gpio_direction(pctldev, range, pin, input); 594 595 mutex_unlock(&pctldev->mutex); 596 mutex_unlock(&pinctrldev_list_mutex); 597 598 return ret; 599 } 600 601 /** 602 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 603 * @gpio: the GPIO pin number from the GPIO subsystem number space 604 * 605 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 606 * as part of their gpio_direction_input() semantics, platforms and individual 607 * drivers shall *NOT* touch pin control GPIO calls. 608 */ 609 int pinctrl_gpio_direction_input(unsigned gpio) 610 { 611 return pinctrl_gpio_direction(gpio, true); 612 } 613 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 614 615 /** 616 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 617 * @gpio: the GPIO pin number from the GPIO subsystem number space 618 * 619 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 620 * as part of their gpio_direction_output() semantics, platforms and individual 621 * drivers shall *NOT* touch pin control GPIO calls. 622 */ 623 int pinctrl_gpio_direction_output(unsigned gpio) 624 { 625 return pinctrl_gpio_direction(gpio, false); 626 } 627 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 628 629 static struct pinctrl_state *find_state(struct pinctrl *p, 630 const char *name) 631 { 632 struct pinctrl_state *state; 633 634 list_for_each_entry(state, &p->states, node) 635 if (!strcmp(state->name, name)) 636 return state; 637 638 return NULL; 639 } 640 641 static struct pinctrl_state *create_state(struct pinctrl *p, 642 const char *name) 643 { 644 struct pinctrl_state *state; 645 646 state = kzalloc(sizeof(*state), GFP_KERNEL); 647 if (state == NULL) { 648 dev_err(p->dev, 649 "failed to alloc struct pinctrl_state\n"); 650 return ERR_PTR(-ENOMEM); 651 } 652 653 state->name = name; 654 INIT_LIST_HEAD(&state->settings); 655 656 list_add_tail(&state->node, &p->states); 657 658 return state; 659 } 660 661 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 662 { 663 struct pinctrl_state *state; 664 struct pinctrl_setting *setting; 665 int ret; 666 667 state = find_state(p, map->name); 668 if (!state) 669 state = create_state(p, map->name); 670 if (IS_ERR(state)) 671 return PTR_ERR(state); 672 673 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 674 return 0; 675 676 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 677 if (setting == NULL) { 678 dev_err(p->dev, 679 "failed to alloc struct pinctrl_setting\n"); 680 return -ENOMEM; 681 } 682 683 setting->type = map->type; 684 685 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 686 if (setting->pctldev == NULL) { 687 kfree(setting); 688 /* Do not defer probing of hogs (circular loop) */ 689 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 690 return -ENODEV; 691 /* 692 * OK let us guess that the driver is not there yet, and 693 * let's defer obtaining this pinctrl handle to later... 694 */ 695 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 696 map->ctrl_dev_name); 697 return -EPROBE_DEFER; 698 } 699 700 setting->dev_name = map->dev_name; 701 702 switch (map->type) { 703 case PIN_MAP_TYPE_MUX_GROUP: 704 ret = pinmux_map_to_setting(map, setting); 705 break; 706 case PIN_MAP_TYPE_CONFIGS_PIN: 707 case PIN_MAP_TYPE_CONFIGS_GROUP: 708 ret = pinconf_map_to_setting(map, setting); 709 break; 710 default: 711 ret = -EINVAL; 712 break; 713 } 714 if (ret < 0) { 715 kfree(setting); 716 return ret; 717 } 718 719 list_add_tail(&setting->node, &state->settings); 720 721 return 0; 722 } 723 724 static struct pinctrl *find_pinctrl(struct device *dev) 725 { 726 struct pinctrl *p; 727 728 mutex_lock(&pinctrl_list_mutex); 729 list_for_each_entry(p, &pinctrl_list, node) 730 if (p->dev == dev) { 731 mutex_unlock(&pinctrl_list_mutex); 732 return p; 733 } 734 735 mutex_unlock(&pinctrl_list_mutex); 736 return NULL; 737 } 738 739 static void pinctrl_free(struct pinctrl *p, bool inlist); 740 741 static struct pinctrl *create_pinctrl(struct device *dev) 742 { 743 struct pinctrl *p; 744 const char *devname; 745 struct pinctrl_maps *maps_node; 746 int i; 747 struct pinctrl_map const *map; 748 int ret; 749 750 /* 751 * create the state cookie holder struct pinctrl for each 752 * mapping, this is what consumers will get when requesting 753 * a pin control handle with pinctrl_get() 754 */ 755 p = kzalloc(sizeof(*p), GFP_KERNEL); 756 if (p == NULL) { 757 dev_err(dev, "failed to alloc struct pinctrl\n"); 758 return ERR_PTR(-ENOMEM); 759 } 760 p->dev = dev; 761 INIT_LIST_HEAD(&p->states); 762 INIT_LIST_HEAD(&p->dt_maps); 763 764 ret = pinctrl_dt_to_map(p); 765 if (ret < 0) { 766 kfree(p); 767 return ERR_PTR(ret); 768 } 769 770 devname = dev_name(dev); 771 772 mutex_lock(&pinctrl_maps_mutex); 773 /* Iterate over the pin control maps to locate the right ones */ 774 for_each_maps(maps_node, i, map) { 775 /* Map must be for this device */ 776 if (strcmp(map->dev_name, devname)) 777 continue; 778 779 ret = add_setting(p, map); 780 /* 781 * At this point the adding of a setting may: 782 * 783 * - Defer, if the pinctrl device is not yet available 784 * - Fail, if the pinctrl device is not yet available, 785 * AND the setting is a hog. We cannot defer that, since 786 * the hog will kick in immediately after the device 787 * is registered. 788 * 789 * If the error returned was not -EPROBE_DEFER then we 790 * accumulate the errors to see if we end up with 791 * an -EPROBE_DEFER later, as that is the worst case. 792 */ 793 if (ret == -EPROBE_DEFER) { 794 pinctrl_free(p, false); 795 mutex_unlock(&pinctrl_maps_mutex); 796 return ERR_PTR(ret); 797 } 798 } 799 mutex_unlock(&pinctrl_maps_mutex); 800 801 if (ret < 0) { 802 /* If some other error than deferral occured, return here */ 803 pinctrl_free(p, false); 804 return ERR_PTR(ret); 805 } 806 807 kref_init(&p->users); 808 809 /* Add the pinctrl handle to the global list */ 810 list_add_tail(&p->node, &pinctrl_list); 811 812 return p; 813 } 814 815 /** 816 * pinctrl_get() - retrieves the pinctrl handle for a device 817 * @dev: the device to obtain the handle for 818 */ 819 struct pinctrl *pinctrl_get(struct device *dev) 820 { 821 struct pinctrl *p; 822 823 if (WARN_ON(!dev)) 824 return ERR_PTR(-EINVAL); 825 826 /* 827 * See if somebody else (such as the device core) has already 828 * obtained a handle to the pinctrl for this device. In that case, 829 * return another pointer to it. 830 */ 831 p = find_pinctrl(dev); 832 if (p != NULL) { 833 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 834 kref_get(&p->users); 835 return p; 836 } 837 838 return create_pinctrl(dev); 839 } 840 EXPORT_SYMBOL_GPL(pinctrl_get); 841 842 static void pinctrl_free_setting(bool disable_setting, 843 struct pinctrl_setting *setting) 844 { 845 switch (setting->type) { 846 case PIN_MAP_TYPE_MUX_GROUP: 847 if (disable_setting) 848 pinmux_disable_setting(setting); 849 pinmux_free_setting(setting); 850 break; 851 case PIN_MAP_TYPE_CONFIGS_PIN: 852 case PIN_MAP_TYPE_CONFIGS_GROUP: 853 pinconf_free_setting(setting); 854 break; 855 default: 856 break; 857 } 858 } 859 860 static void pinctrl_free(struct pinctrl *p, bool inlist) 861 { 862 struct pinctrl_state *state, *n1; 863 struct pinctrl_setting *setting, *n2; 864 865 mutex_lock(&pinctrl_list_mutex); 866 list_for_each_entry_safe(state, n1, &p->states, node) { 867 list_for_each_entry_safe(setting, n2, &state->settings, node) { 868 pinctrl_free_setting(state == p->state, setting); 869 list_del(&setting->node); 870 kfree(setting); 871 } 872 list_del(&state->node); 873 kfree(state); 874 } 875 876 pinctrl_dt_free_maps(p); 877 878 if (inlist) 879 list_del(&p->node); 880 kfree(p); 881 mutex_unlock(&pinctrl_list_mutex); 882 } 883 884 /** 885 * pinctrl_release() - release the pinctrl handle 886 * @kref: the kref in the pinctrl being released 887 */ 888 static void pinctrl_release(struct kref *kref) 889 { 890 struct pinctrl *p = container_of(kref, struct pinctrl, users); 891 892 pinctrl_free(p, true); 893 } 894 895 /** 896 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 897 * @p: the pinctrl handle to release 898 */ 899 void pinctrl_put(struct pinctrl *p) 900 { 901 kref_put(&p->users, pinctrl_release); 902 } 903 EXPORT_SYMBOL_GPL(pinctrl_put); 904 905 /** 906 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 907 * @p: the pinctrl handle to retrieve the state from 908 * @name: the state name to retrieve 909 */ 910 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 911 const char *name) 912 { 913 struct pinctrl_state *state; 914 915 state = find_state(p, name); 916 if (!state) { 917 if (pinctrl_dummy_state) { 918 /* create dummy state */ 919 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 920 name); 921 state = create_state(p, name); 922 } else 923 state = ERR_PTR(-ENODEV); 924 } 925 926 return state; 927 } 928 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 929 930 /** 931 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 932 * @p: the pinctrl handle for the device that requests configuration 933 * @state: the state handle to select/activate/program 934 */ 935 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 936 { 937 struct pinctrl_setting *setting, *setting2; 938 struct pinctrl_state *old_state = p->state; 939 int ret; 940 941 if (p->state == state) 942 return 0; 943 944 if (p->state) { 945 /* 946 * The set of groups with a mux configuration in the old state 947 * may not be identical to the set of groups with a mux setting 948 * in the new state. While this might be unusual, it's entirely 949 * possible for the "user"-supplied mapping table to be written 950 * that way. For each group that was configured in the old state 951 * but not in the new state, this code puts that group into a 952 * safe/disabled state. 953 */ 954 list_for_each_entry(setting, &p->state->settings, node) { 955 bool found = false; 956 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 957 continue; 958 list_for_each_entry(setting2, &state->settings, node) { 959 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 960 continue; 961 if (setting2->data.mux.group == 962 setting->data.mux.group) { 963 found = true; 964 break; 965 } 966 } 967 if (!found) 968 pinmux_disable_setting(setting); 969 } 970 } 971 972 p->state = NULL; 973 974 /* Apply all the settings for the new state */ 975 list_for_each_entry(setting, &state->settings, node) { 976 switch (setting->type) { 977 case PIN_MAP_TYPE_MUX_GROUP: 978 ret = pinmux_enable_setting(setting); 979 break; 980 case PIN_MAP_TYPE_CONFIGS_PIN: 981 case PIN_MAP_TYPE_CONFIGS_GROUP: 982 ret = pinconf_apply_setting(setting); 983 break; 984 default: 985 ret = -EINVAL; 986 break; 987 } 988 989 if (ret < 0) { 990 goto unapply_new_state; 991 } 992 } 993 994 p->state = state; 995 996 return 0; 997 998 unapply_new_state: 999 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1000 1001 list_for_each_entry(setting2, &state->settings, node) { 1002 if (&setting2->node == &setting->node) 1003 break; 1004 /* 1005 * All we can do here is pinmux_disable_setting. 1006 * That means that some pins are muxed differently now 1007 * than they were before applying the setting (We can't 1008 * "unmux a pin"!), but it's not a big deal since the pins 1009 * are free to be muxed by another apply_setting. 1010 */ 1011 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1012 pinmux_disable_setting(setting2); 1013 } 1014 1015 /* There's no infinite recursive loop here because p->state is NULL */ 1016 if (old_state) 1017 pinctrl_select_state(p, old_state); 1018 1019 return ret; 1020 } 1021 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1022 1023 static void devm_pinctrl_release(struct device *dev, void *res) 1024 { 1025 pinctrl_put(*(struct pinctrl **)res); 1026 } 1027 1028 /** 1029 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1030 * @dev: the device to obtain the handle for 1031 * 1032 * If there is a need to explicitly destroy the returned struct pinctrl, 1033 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1034 */ 1035 struct pinctrl *devm_pinctrl_get(struct device *dev) 1036 { 1037 struct pinctrl **ptr, *p; 1038 1039 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1040 if (!ptr) 1041 return ERR_PTR(-ENOMEM); 1042 1043 p = pinctrl_get(dev); 1044 if (!IS_ERR(p)) { 1045 *ptr = p; 1046 devres_add(dev, ptr); 1047 } else { 1048 devres_free(ptr); 1049 } 1050 1051 return p; 1052 } 1053 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1054 1055 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1056 { 1057 struct pinctrl **p = res; 1058 1059 return *p == data; 1060 } 1061 1062 /** 1063 * devm_pinctrl_put() - Resource managed pinctrl_put() 1064 * @p: the pinctrl handle to release 1065 * 1066 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1067 * this function will not need to be called and the resource management 1068 * code will ensure that the resource is freed. 1069 */ 1070 void devm_pinctrl_put(struct pinctrl *p) 1071 { 1072 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1073 devm_pinctrl_match, p)); 1074 } 1075 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1076 1077 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1078 bool dup, bool locked) 1079 { 1080 int i, ret; 1081 struct pinctrl_maps *maps_node; 1082 1083 pr_debug("add %d pinmux maps\n", num_maps); 1084 1085 /* First sanity check the new mapping */ 1086 for (i = 0; i < num_maps; i++) { 1087 if (!maps[i].dev_name) { 1088 pr_err("failed to register map %s (%d): no device given\n", 1089 maps[i].name, i); 1090 return -EINVAL; 1091 } 1092 1093 if (!maps[i].name) { 1094 pr_err("failed to register map %d: no map name given\n", 1095 i); 1096 return -EINVAL; 1097 } 1098 1099 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1100 !maps[i].ctrl_dev_name) { 1101 pr_err("failed to register map %s (%d): no pin control device given\n", 1102 maps[i].name, i); 1103 return -EINVAL; 1104 } 1105 1106 switch (maps[i].type) { 1107 case PIN_MAP_TYPE_DUMMY_STATE: 1108 break; 1109 case PIN_MAP_TYPE_MUX_GROUP: 1110 ret = pinmux_validate_map(&maps[i], i); 1111 if (ret < 0) 1112 return ret; 1113 break; 1114 case PIN_MAP_TYPE_CONFIGS_PIN: 1115 case PIN_MAP_TYPE_CONFIGS_GROUP: 1116 ret = pinconf_validate_map(&maps[i], i); 1117 if (ret < 0) 1118 return ret; 1119 break; 1120 default: 1121 pr_err("failed to register map %s (%d): invalid type given\n", 1122 maps[i].name, i); 1123 return -EINVAL; 1124 } 1125 } 1126 1127 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1128 if (!maps_node) { 1129 pr_err("failed to alloc struct pinctrl_maps\n"); 1130 return -ENOMEM; 1131 } 1132 1133 maps_node->num_maps = num_maps; 1134 if (dup) { 1135 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1136 GFP_KERNEL); 1137 if (!maps_node->maps) { 1138 pr_err("failed to duplicate mapping table\n"); 1139 kfree(maps_node); 1140 return -ENOMEM; 1141 } 1142 } else { 1143 maps_node->maps = maps; 1144 } 1145 1146 if (!locked) 1147 mutex_lock(&pinctrl_maps_mutex); 1148 list_add_tail(&maps_node->node, &pinctrl_maps); 1149 if (!locked) 1150 mutex_unlock(&pinctrl_maps_mutex); 1151 1152 return 0; 1153 } 1154 1155 /** 1156 * pinctrl_register_mappings() - register a set of pin controller mappings 1157 * @maps: the pincontrol mappings table to register. This should probably be 1158 * marked with __initdata so it can be discarded after boot. This 1159 * function will perform a shallow copy for the mapping entries. 1160 * @num_maps: the number of maps in the mapping table 1161 */ 1162 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1163 unsigned num_maps) 1164 { 1165 return pinctrl_register_map(maps, num_maps, true, false); 1166 } 1167 1168 void pinctrl_unregister_map(struct pinctrl_map const *map) 1169 { 1170 struct pinctrl_maps *maps_node; 1171 1172 mutex_lock(&pinctrl_maps_mutex); 1173 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1174 if (maps_node->maps == map) { 1175 list_del(&maps_node->node); 1176 mutex_unlock(&pinctrl_maps_mutex); 1177 return; 1178 } 1179 } 1180 mutex_unlock(&pinctrl_maps_mutex); 1181 } 1182 1183 /** 1184 * pinctrl_force_sleep() - turn a given controller device into sleep state 1185 * @pctldev: pin controller device 1186 */ 1187 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1188 { 1189 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1190 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1191 return 0; 1192 } 1193 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1194 1195 /** 1196 * pinctrl_force_default() - turn a given controller device into default state 1197 * @pctldev: pin controller device 1198 */ 1199 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1200 { 1201 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1202 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1203 return 0; 1204 } 1205 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1206 1207 #ifdef CONFIG_DEBUG_FS 1208 1209 static int pinctrl_pins_show(struct seq_file *s, void *what) 1210 { 1211 struct pinctrl_dev *pctldev = s->private; 1212 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1213 unsigned i, pin; 1214 1215 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1216 1217 mutex_lock(&pctldev->mutex); 1218 1219 /* The pin number can be retrived from the pin controller descriptor */ 1220 for (i = 0; i < pctldev->desc->npins; i++) { 1221 struct pin_desc *desc; 1222 1223 pin = pctldev->desc->pins[i].number; 1224 desc = pin_desc_get(pctldev, pin); 1225 /* Pin space may be sparse */ 1226 if (desc == NULL) 1227 continue; 1228 1229 seq_printf(s, "pin %d (%s) ", pin, 1230 desc->name ? desc->name : "unnamed"); 1231 1232 /* Driver-specific info per pin */ 1233 if (ops->pin_dbg_show) 1234 ops->pin_dbg_show(pctldev, s, pin); 1235 1236 seq_puts(s, "\n"); 1237 } 1238 1239 mutex_unlock(&pctldev->mutex); 1240 1241 return 0; 1242 } 1243 1244 static int pinctrl_groups_show(struct seq_file *s, void *what) 1245 { 1246 struct pinctrl_dev *pctldev = s->private; 1247 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1248 unsigned ngroups, selector = 0; 1249 1250 mutex_lock(&pctldev->mutex); 1251 1252 ngroups = ops->get_groups_count(pctldev); 1253 1254 seq_puts(s, "registered pin groups:\n"); 1255 while (selector < ngroups) { 1256 const unsigned *pins; 1257 unsigned num_pins; 1258 const char *gname = ops->get_group_name(pctldev, selector); 1259 const char *pname; 1260 int ret; 1261 int i; 1262 1263 ret = ops->get_group_pins(pctldev, selector, 1264 &pins, &num_pins); 1265 if (ret) 1266 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1267 gname); 1268 else { 1269 seq_printf(s, "group: %s\n", gname); 1270 for (i = 0; i < num_pins; i++) { 1271 pname = pin_get_name(pctldev, pins[i]); 1272 if (WARN_ON(!pname)) { 1273 mutex_unlock(&pctldev->mutex); 1274 return -EINVAL; 1275 } 1276 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1277 } 1278 seq_puts(s, "\n"); 1279 } 1280 selector++; 1281 } 1282 1283 mutex_unlock(&pctldev->mutex); 1284 1285 return 0; 1286 } 1287 1288 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1289 { 1290 struct pinctrl_dev *pctldev = s->private; 1291 struct pinctrl_gpio_range *range = NULL; 1292 1293 seq_puts(s, "GPIO ranges handled:\n"); 1294 1295 mutex_lock(&pctldev->mutex); 1296 1297 /* Loop over the ranges */ 1298 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1299 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1300 range->id, range->name, 1301 range->base, (range->base + range->npins - 1), 1302 range->pin_base, 1303 (range->pin_base + range->npins - 1)); 1304 } 1305 1306 mutex_unlock(&pctldev->mutex); 1307 1308 return 0; 1309 } 1310 1311 static int pinctrl_devices_show(struct seq_file *s, void *what) 1312 { 1313 struct pinctrl_dev *pctldev; 1314 1315 seq_puts(s, "name [pinmux] [pinconf]\n"); 1316 1317 mutex_lock(&pinctrldev_list_mutex); 1318 1319 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1320 seq_printf(s, "%s ", pctldev->desc->name); 1321 if (pctldev->desc->pmxops) 1322 seq_puts(s, "yes "); 1323 else 1324 seq_puts(s, "no "); 1325 if (pctldev->desc->confops) 1326 seq_puts(s, "yes"); 1327 else 1328 seq_puts(s, "no"); 1329 seq_puts(s, "\n"); 1330 } 1331 1332 mutex_unlock(&pinctrldev_list_mutex); 1333 1334 return 0; 1335 } 1336 1337 static inline const char *map_type(enum pinctrl_map_type type) 1338 { 1339 static const char * const names[] = { 1340 "INVALID", 1341 "DUMMY_STATE", 1342 "MUX_GROUP", 1343 "CONFIGS_PIN", 1344 "CONFIGS_GROUP", 1345 }; 1346 1347 if (type >= ARRAY_SIZE(names)) 1348 return "UNKNOWN"; 1349 1350 return names[type]; 1351 } 1352 1353 static int pinctrl_maps_show(struct seq_file *s, void *what) 1354 { 1355 struct pinctrl_maps *maps_node; 1356 int i; 1357 struct pinctrl_map const *map; 1358 1359 seq_puts(s, "Pinctrl maps:\n"); 1360 1361 mutex_lock(&pinctrl_maps_mutex); 1362 for_each_maps(maps_node, i, map) { 1363 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1364 map->dev_name, map->name, map_type(map->type), 1365 map->type); 1366 1367 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1368 seq_printf(s, "controlling device %s\n", 1369 map->ctrl_dev_name); 1370 1371 switch (map->type) { 1372 case PIN_MAP_TYPE_MUX_GROUP: 1373 pinmux_show_map(s, map); 1374 break; 1375 case PIN_MAP_TYPE_CONFIGS_PIN: 1376 case PIN_MAP_TYPE_CONFIGS_GROUP: 1377 pinconf_show_map(s, map); 1378 break; 1379 default: 1380 break; 1381 } 1382 1383 seq_printf(s, "\n"); 1384 } 1385 mutex_unlock(&pinctrl_maps_mutex); 1386 1387 return 0; 1388 } 1389 1390 static int pinctrl_show(struct seq_file *s, void *what) 1391 { 1392 struct pinctrl *p; 1393 struct pinctrl_state *state; 1394 struct pinctrl_setting *setting; 1395 1396 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1397 1398 mutex_lock(&pinctrl_list_mutex); 1399 1400 list_for_each_entry(p, &pinctrl_list, node) { 1401 seq_printf(s, "device: %s current state: %s\n", 1402 dev_name(p->dev), 1403 p->state ? p->state->name : "none"); 1404 1405 list_for_each_entry(state, &p->states, node) { 1406 seq_printf(s, " state: %s\n", state->name); 1407 1408 list_for_each_entry(setting, &state->settings, node) { 1409 struct pinctrl_dev *pctldev = setting->pctldev; 1410 1411 seq_printf(s, " type: %s controller %s ", 1412 map_type(setting->type), 1413 pinctrl_dev_get_name(pctldev)); 1414 1415 switch (setting->type) { 1416 case PIN_MAP_TYPE_MUX_GROUP: 1417 pinmux_show_setting(s, setting); 1418 break; 1419 case PIN_MAP_TYPE_CONFIGS_PIN: 1420 case PIN_MAP_TYPE_CONFIGS_GROUP: 1421 pinconf_show_setting(s, setting); 1422 break; 1423 default: 1424 break; 1425 } 1426 } 1427 } 1428 } 1429 1430 mutex_unlock(&pinctrl_list_mutex); 1431 1432 return 0; 1433 } 1434 1435 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1436 { 1437 return single_open(file, pinctrl_pins_show, inode->i_private); 1438 } 1439 1440 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1441 { 1442 return single_open(file, pinctrl_groups_show, inode->i_private); 1443 } 1444 1445 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1446 { 1447 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1448 } 1449 1450 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1451 { 1452 return single_open(file, pinctrl_devices_show, NULL); 1453 } 1454 1455 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1456 { 1457 return single_open(file, pinctrl_maps_show, NULL); 1458 } 1459 1460 static int pinctrl_open(struct inode *inode, struct file *file) 1461 { 1462 return single_open(file, pinctrl_show, NULL); 1463 } 1464 1465 static const struct file_operations pinctrl_pins_ops = { 1466 .open = pinctrl_pins_open, 1467 .read = seq_read, 1468 .llseek = seq_lseek, 1469 .release = single_release, 1470 }; 1471 1472 static const struct file_operations pinctrl_groups_ops = { 1473 .open = pinctrl_groups_open, 1474 .read = seq_read, 1475 .llseek = seq_lseek, 1476 .release = single_release, 1477 }; 1478 1479 static const struct file_operations pinctrl_gpioranges_ops = { 1480 .open = pinctrl_gpioranges_open, 1481 .read = seq_read, 1482 .llseek = seq_lseek, 1483 .release = single_release, 1484 }; 1485 1486 static const struct file_operations pinctrl_devices_ops = { 1487 .open = pinctrl_devices_open, 1488 .read = seq_read, 1489 .llseek = seq_lseek, 1490 .release = single_release, 1491 }; 1492 1493 static const struct file_operations pinctrl_maps_ops = { 1494 .open = pinctrl_maps_open, 1495 .read = seq_read, 1496 .llseek = seq_lseek, 1497 .release = single_release, 1498 }; 1499 1500 static const struct file_operations pinctrl_ops = { 1501 .open = pinctrl_open, 1502 .read = seq_read, 1503 .llseek = seq_lseek, 1504 .release = single_release, 1505 }; 1506 1507 static struct dentry *debugfs_root; 1508 1509 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1510 { 1511 struct dentry *device_root; 1512 1513 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1514 debugfs_root); 1515 pctldev->device_root = device_root; 1516 1517 if (IS_ERR(device_root) || !device_root) { 1518 pr_warn("failed to create debugfs directory for %s\n", 1519 dev_name(pctldev->dev)); 1520 return; 1521 } 1522 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1523 device_root, pctldev, &pinctrl_pins_ops); 1524 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1525 device_root, pctldev, &pinctrl_groups_ops); 1526 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1527 device_root, pctldev, &pinctrl_gpioranges_ops); 1528 pinmux_init_device_debugfs(device_root, pctldev); 1529 pinconf_init_device_debugfs(device_root, pctldev); 1530 } 1531 1532 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1533 { 1534 debugfs_remove_recursive(pctldev->device_root); 1535 } 1536 1537 static void pinctrl_init_debugfs(void) 1538 { 1539 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1540 if (IS_ERR(debugfs_root) || !debugfs_root) { 1541 pr_warn("failed to create debugfs directory\n"); 1542 debugfs_root = NULL; 1543 return; 1544 } 1545 1546 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1547 debugfs_root, NULL, &pinctrl_devices_ops); 1548 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1549 debugfs_root, NULL, &pinctrl_maps_ops); 1550 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1551 debugfs_root, NULL, &pinctrl_ops); 1552 } 1553 1554 #else /* CONFIG_DEBUG_FS */ 1555 1556 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1557 { 1558 } 1559 1560 static void pinctrl_init_debugfs(void) 1561 { 1562 } 1563 1564 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1565 { 1566 } 1567 1568 #endif 1569 1570 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1571 { 1572 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1573 1574 if (!ops || 1575 !ops->get_groups_count || 1576 !ops->get_group_name || 1577 !ops->get_group_pins) 1578 return -EINVAL; 1579 1580 if (ops->dt_node_to_map && !ops->dt_free_map) 1581 return -EINVAL; 1582 1583 return 0; 1584 } 1585 1586 /** 1587 * pinctrl_register() - register a pin controller device 1588 * @pctldesc: descriptor for this pin controller 1589 * @dev: parent device for this pin controller 1590 * @driver_data: private pin controller data for this pin controller 1591 */ 1592 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1593 struct device *dev, void *driver_data) 1594 { 1595 struct pinctrl_dev *pctldev; 1596 int ret; 1597 1598 if (!pctldesc) 1599 return NULL; 1600 if (!pctldesc->name) 1601 return NULL; 1602 1603 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1604 if (pctldev == NULL) { 1605 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1606 return NULL; 1607 } 1608 1609 /* Initialize pin control device struct */ 1610 pctldev->owner = pctldesc->owner; 1611 pctldev->desc = pctldesc; 1612 pctldev->driver_data = driver_data; 1613 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1614 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1615 pctldev->dev = dev; 1616 mutex_init(&pctldev->mutex); 1617 1618 /* check core ops for sanity */ 1619 if (pinctrl_check_ops(pctldev)) { 1620 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1621 goto out_err; 1622 } 1623 1624 /* If we're implementing pinmuxing, check the ops for sanity */ 1625 if (pctldesc->pmxops) { 1626 if (pinmux_check_ops(pctldev)) 1627 goto out_err; 1628 } 1629 1630 /* If we're implementing pinconfig, check the ops for sanity */ 1631 if (pctldesc->confops) { 1632 if (pinconf_check_ops(pctldev)) 1633 goto out_err; 1634 } 1635 1636 /* Register all the pins */ 1637 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1638 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1639 if (ret) { 1640 dev_err(dev, "error during pin registration\n"); 1641 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1642 pctldesc->npins); 1643 goto out_err; 1644 } 1645 1646 mutex_lock(&pinctrldev_list_mutex); 1647 list_add_tail(&pctldev->node, &pinctrldev_list); 1648 mutex_unlock(&pinctrldev_list_mutex); 1649 1650 pctldev->p = pinctrl_get(pctldev->dev); 1651 1652 if (!IS_ERR(pctldev->p)) { 1653 pctldev->hog_default = 1654 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1655 if (IS_ERR(pctldev->hog_default)) { 1656 dev_dbg(dev, "failed to lookup the default state\n"); 1657 } else { 1658 if (pinctrl_select_state(pctldev->p, 1659 pctldev->hog_default)) 1660 dev_err(dev, 1661 "failed to select default state\n"); 1662 } 1663 1664 pctldev->hog_sleep = 1665 pinctrl_lookup_state(pctldev->p, 1666 PINCTRL_STATE_SLEEP); 1667 if (IS_ERR(pctldev->hog_sleep)) 1668 dev_dbg(dev, "failed to lookup the sleep state\n"); 1669 } 1670 1671 pinctrl_init_device_debugfs(pctldev); 1672 1673 return pctldev; 1674 1675 out_err: 1676 mutex_destroy(&pctldev->mutex); 1677 kfree(pctldev); 1678 return NULL; 1679 } 1680 EXPORT_SYMBOL_GPL(pinctrl_register); 1681 1682 /** 1683 * pinctrl_unregister() - unregister pinmux 1684 * @pctldev: pin controller to unregister 1685 * 1686 * Called by pinmux drivers to unregister a pinmux. 1687 */ 1688 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1689 { 1690 struct pinctrl_gpio_range *range, *n; 1691 if (pctldev == NULL) 1692 return; 1693 1694 mutex_lock(&pinctrldev_list_mutex); 1695 mutex_lock(&pctldev->mutex); 1696 1697 pinctrl_remove_device_debugfs(pctldev); 1698 1699 if (!IS_ERR(pctldev->p)) 1700 pinctrl_put(pctldev->p); 1701 1702 /* TODO: check that no pinmuxes are still active? */ 1703 list_del(&pctldev->node); 1704 /* Destroy descriptor tree */ 1705 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1706 pctldev->desc->npins); 1707 /* remove gpio ranges map */ 1708 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1709 list_del(&range->node); 1710 1711 mutex_unlock(&pctldev->mutex); 1712 mutex_destroy(&pctldev->mutex); 1713 kfree(pctldev); 1714 mutex_unlock(&pinctrldev_list_mutex); 1715 } 1716 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1717 1718 static int __init pinctrl_init(void) 1719 { 1720 pr_info("initialized pinctrl subsystem\n"); 1721 pinctrl_init_debugfs(); 1722 return 0; 1723 } 1724 1725 /* init early since many drivers really need to initialized pinmux early */ 1726 core_initcall(pinctrl_init); 1727