xref: /openbmc/linux/drivers/pinctrl/core.c (revision ee8a99bd)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc == NULL)
157 			continue;
158 		if (desc->name && !strcmp(name, desc->name))
159 			return pin;
160 	}
161 
162 	return -EINVAL;
163 }
164 
165 /**
166  * pin_get_name_from_id() - look up a pin name from a pin id
167  * @pctldev: the pin control device to lookup the pin on
168  * @name: the name of the pin to look up
169  */
170 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
171 {
172 	const struct pin_desc *desc;
173 
174 	desc = pin_desc_get(pctldev, pin);
175 	if (desc == NULL) {
176 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
177 			pin);
178 		return NULL;
179 	}
180 
181 	return desc->name;
182 }
183 
184 /**
185  * pin_is_valid() - check if pin exists on controller
186  * @pctldev: the pin control device to check the pin on
187  * @pin: pin to check, use the local pin controller index number
188  *
189  * This tells us whether a certain pin exist on a certain pin controller or
190  * not. Pin lists may be sparse, so some pins may not exist.
191  */
192 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
193 {
194 	struct pin_desc *pindesc;
195 
196 	if (pin < 0)
197 		return false;
198 
199 	mutex_lock(&pctldev->mutex);
200 	pindesc = pin_desc_get(pctldev, pin);
201 	mutex_unlock(&pctldev->mutex);
202 
203 	return pindesc != NULL;
204 }
205 EXPORT_SYMBOL_GPL(pin_is_valid);
206 
207 /* Deletes a range of pin descriptors */
208 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
209 				  const struct pinctrl_pin_desc *pins,
210 				  unsigned num_pins)
211 {
212 	int i;
213 
214 	for (i = 0; i < num_pins; i++) {
215 		struct pin_desc *pindesc;
216 
217 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
218 					    pins[i].number);
219 		if (pindesc != NULL) {
220 			radix_tree_delete(&pctldev->pin_desc_tree,
221 					  pins[i].number);
222 			if (pindesc->dynamic_name)
223 				kfree(pindesc->name);
224 		}
225 		kfree(pindesc);
226 	}
227 }
228 
229 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
230 				    unsigned number, const char *name)
231 {
232 	struct pin_desc *pindesc;
233 
234 	pindesc = pin_desc_get(pctldev, number);
235 	if (pindesc != NULL) {
236 		pr_err("pin %d already registered on %s\n", number,
237 		       pctldev->desc->name);
238 		return -EINVAL;
239 	}
240 
241 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
242 	if (pindesc == NULL) {
243 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
244 		return -ENOMEM;
245 	}
246 
247 	/* Set owner */
248 	pindesc->pctldev = pctldev;
249 
250 	/* Copy basic pin info */
251 	if (name) {
252 		pindesc->name = name;
253 	} else {
254 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
255 		if (pindesc->name == NULL) {
256 			kfree(pindesc);
257 			return -ENOMEM;
258 		}
259 		pindesc->dynamic_name = true;
260 	}
261 
262 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
263 	pr_debug("registered pin %d (%s) on %s\n",
264 		 number, pindesc->name, pctldev->desc->name);
265 	return 0;
266 }
267 
268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
269 				 struct pinctrl_pin_desc const *pins,
270 				 unsigned num_descs)
271 {
272 	unsigned i;
273 	int ret = 0;
274 
275 	for (i = 0; i < num_descs; i++) {
276 		ret = pinctrl_register_one_pin(pctldev,
277 					       pins[i].number, pins[i].name);
278 		if (ret)
279 			return ret;
280 	}
281 
282 	return 0;
283 }
284 
285 /**
286  * gpio_to_pin() - GPIO range GPIO number to pin number translation
287  * @range: GPIO range used for the translation
288  * @gpio: gpio pin to translate to a pin number
289  *
290  * Finds the pin number for a given GPIO using the specified GPIO range
291  * as a base for translation. The distinction between linear GPIO ranges
292  * and pin list based GPIO ranges is managed correctly by this function.
293  *
294  * This function assumes the gpio is part of the specified GPIO range, use
295  * only after making sure this is the case (e.g. by calling it on the
296  * result of successful pinctrl_get_device_gpio_range calls)!
297  */
298 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
299 				unsigned int gpio)
300 {
301 	unsigned int offset = gpio - range->base;
302 	if (range->pins)
303 		return range->pins[offset];
304 	else
305 		return range->pin_base + offset;
306 }
307 
308 /**
309  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
310  * @pctldev: pin controller device to check
311  * @gpio: gpio pin to check taken from the global GPIO pin space
312  *
313  * Tries to match a GPIO pin number to the ranges handled by a certain pin
314  * controller, return the range or NULL
315  */
316 static struct pinctrl_gpio_range *
317 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
318 {
319 	struct pinctrl_gpio_range *range = NULL;
320 
321 	mutex_lock(&pctldev->mutex);
322 	/* Loop over the ranges */
323 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
324 		/* Check if we're in the valid range */
325 		if (gpio >= range->base &&
326 		    gpio < range->base + range->npins) {
327 			mutex_unlock(&pctldev->mutex);
328 			return range;
329 		}
330 	}
331 	mutex_unlock(&pctldev->mutex);
332 	return NULL;
333 }
334 
335 /**
336  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
337  * the same GPIO chip are in range
338  * @gpio: gpio pin to check taken from the global GPIO pin space
339  *
340  * This function is complement of pinctrl_match_gpio_range(). If the return
341  * value of pinctrl_match_gpio_range() is NULL, this function could be used
342  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
343  * of the same GPIO chip don't have back-end pinctrl interface.
344  * If the return value is true, it means that pinctrl device is ready & the
345  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
346  * is false, it means that pinctrl device may not be ready.
347  */
348 #ifdef CONFIG_GPIOLIB
349 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
350 {
351 	struct pinctrl_dev *pctldev;
352 	struct pinctrl_gpio_range *range = NULL;
353 	struct gpio_chip *chip = gpio_to_chip(gpio);
354 
355 	mutex_lock(&pinctrldev_list_mutex);
356 
357 	/* Loop over the pin controllers */
358 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 		/* Loop over the ranges */
360 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
361 			/* Check if any gpio range overlapped with gpio chip */
362 			if (range->base + range->npins - 1 < chip->base ||
363 			    range->base > chip->base + chip->ngpio - 1)
364 				continue;
365 			mutex_unlock(&pinctrldev_list_mutex);
366 			return true;
367 		}
368 	}
369 
370 	mutex_unlock(&pinctrldev_list_mutex);
371 
372 	return false;
373 }
374 #else
375 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
376 #endif
377 
378 /**
379  * pinctrl_get_device_gpio_range() - find device for GPIO range
380  * @gpio: the pin to locate the pin controller for
381  * @outdev: the pin control device if found
382  * @outrange: the GPIO range if found
383  *
384  * Find the pin controller handling a certain GPIO pin from the pinspace of
385  * the GPIO subsystem, return the device and the matching GPIO range. Returns
386  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
387  * may still have not been registered.
388  */
389 static int pinctrl_get_device_gpio_range(unsigned gpio,
390 					 struct pinctrl_dev **outdev,
391 					 struct pinctrl_gpio_range **outrange)
392 {
393 	struct pinctrl_dev *pctldev = NULL;
394 
395 	/* Loop over the pin controllers */
396 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
397 		struct pinctrl_gpio_range *range;
398 
399 		range = pinctrl_match_gpio_range(pctldev, gpio);
400 		if (range != NULL) {
401 			*outdev = pctldev;
402 			*outrange = range;
403 			return 0;
404 		}
405 	}
406 
407 	return -EPROBE_DEFER;
408 }
409 
410 /**
411  * pinctrl_add_gpio_range() - register a GPIO range for a controller
412  * @pctldev: pin controller device to add the range to
413  * @range: the GPIO range to add
414  *
415  * This adds a range of GPIOs to be handled by a certain pin controller. Call
416  * this to register handled ranges after registering your pin controller.
417  */
418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 			    struct pinctrl_gpio_range *range)
420 {
421 	mutex_lock(&pctldev->mutex);
422 	list_add_tail(&range->node, &pctldev->gpio_ranges);
423 	mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426 
427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 			     struct pinctrl_gpio_range *ranges,
429 			     unsigned nranges)
430 {
431 	int i;
432 
433 	for (i = 0; i < nranges; i++)
434 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437 
438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 		struct pinctrl_gpio_range *range)
440 {
441 	struct pinctrl_dev *pctldev;
442 
443 	pctldev = get_pinctrl_dev_from_devname(devname);
444 
445 	/*
446 	 * If we can't find this device, let's assume that is because
447 	 * it has not probed yet, so the driver trying to register this
448 	 * range need to defer probing.
449 	 */
450 	if (!pctldev) {
451 		return ERR_PTR(-EPROBE_DEFER);
452 	}
453 	pinctrl_add_gpio_range(pctldev, range);
454 
455 	return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458 
459 /**
460  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
461  * @pctldev: the pin controller device to look in
462  * @pin: a controller-local number to find the range for
463  */
464 struct pinctrl_gpio_range *
465 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
466 				 unsigned int pin)
467 {
468 	struct pinctrl_gpio_range *range;
469 
470 	mutex_lock(&pctldev->mutex);
471 	/* Loop over the ranges */
472 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
473 		/* Check if we're in the valid range */
474 		if (range->pins) {
475 			int a;
476 			for (a = 0; a < range->npins; a++) {
477 				if (range->pins[a] == pin)
478 					goto out;
479 			}
480 		} else if (pin >= range->pin_base &&
481 			   pin < range->pin_base + range->npins)
482 			goto out;
483 	}
484 	range = NULL;
485 out:
486 	mutex_unlock(&pctldev->mutex);
487 	return range;
488 }
489 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
490 
491 /**
492  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
493  * @pctldev: pin controller device to remove the range from
494  * @range: the GPIO range to remove
495  */
496 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
497 			       struct pinctrl_gpio_range *range)
498 {
499 	mutex_lock(&pctldev->mutex);
500 	list_del(&range->node);
501 	mutex_unlock(&pctldev->mutex);
502 }
503 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
504 
505 /**
506  * pinctrl_get_group_selector() - returns the group selector for a group
507  * @pctldev: the pin controller handling the group
508  * @pin_group: the pin group to look up
509  */
510 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
511 			       const char *pin_group)
512 {
513 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
514 	unsigned ngroups = pctlops->get_groups_count(pctldev);
515 	unsigned group_selector = 0;
516 
517 	while (group_selector < ngroups) {
518 		const char *gname = pctlops->get_group_name(pctldev,
519 							    group_selector);
520 		if (!strcmp(gname, pin_group)) {
521 			dev_dbg(pctldev->dev,
522 				"found group selector %u for %s\n",
523 				group_selector,
524 				pin_group);
525 			return group_selector;
526 		}
527 
528 		group_selector++;
529 	}
530 
531 	dev_err(pctldev->dev, "does not have pin group %s\n",
532 		pin_group);
533 
534 	return -EINVAL;
535 }
536 
537 /**
538  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
539  * @gpio: the GPIO pin number from the GPIO subsystem number space
540  *
541  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
542  * as part of their gpio_request() semantics, platforms and individual drivers
543  * shall *NOT* request GPIO pins to be muxed in.
544  */
545 int pinctrl_request_gpio(unsigned gpio)
546 {
547 	struct pinctrl_dev *pctldev;
548 	struct pinctrl_gpio_range *range;
549 	int ret;
550 	int pin;
551 
552 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
553 	if (ret) {
554 		if (pinctrl_ready_for_gpio_range(gpio))
555 			ret = 0;
556 		return ret;
557 	}
558 
559 	/* Convert to the pin controllers number space */
560 	pin = gpio_to_pin(range, gpio);
561 
562 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
563 
564 	return ret;
565 }
566 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
567 
568 /**
569  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
570  * @gpio: the GPIO pin number from the GPIO subsystem number space
571  *
572  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
573  * as part of their gpio_free() semantics, platforms and individual drivers
574  * shall *NOT* request GPIO pins to be muxed out.
575  */
576 void pinctrl_free_gpio(unsigned gpio)
577 {
578 	struct pinctrl_dev *pctldev;
579 	struct pinctrl_gpio_range *range;
580 	int ret;
581 	int pin;
582 
583 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
584 	if (ret) {
585 		return;
586 	}
587 	mutex_lock(&pctldev->mutex);
588 
589 	/* Convert to the pin controllers number space */
590 	pin = gpio_to_pin(range, gpio);
591 
592 	pinmux_free_gpio(pctldev, pin, range);
593 
594 	mutex_unlock(&pctldev->mutex);
595 }
596 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
597 
598 static int pinctrl_gpio_direction(unsigned gpio, bool input)
599 {
600 	struct pinctrl_dev *pctldev;
601 	struct pinctrl_gpio_range *range;
602 	int ret;
603 	int pin;
604 
605 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
606 	if (ret) {
607 		return ret;
608 	}
609 
610 	mutex_lock(&pctldev->mutex);
611 
612 	/* Convert to the pin controllers number space */
613 	pin = gpio_to_pin(range, gpio);
614 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
615 
616 	mutex_unlock(&pctldev->mutex);
617 
618 	return ret;
619 }
620 
621 /**
622  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
623  * @gpio: the GPIO pin number from the GPIO subsystem number space
624  *
625  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
626  * as part of their gpio_direction_input() semantics, platforms and individual
627  * drivers shall *NOT* touch pin control GPIO calls.
628  */
629 int pinctrl_gpio_direction_input(unsigned gpio)
630 {
631 	return pinctrl_gpio_direction(gpio, true);
632 }
633 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
634 
635 /**
636  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
637  * @gpio: the GPIO pin number from the GPIO subsystem number space
638  *
639  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
640  * as part of their gpio_direction_output() semantics, platforms and individual
641  * drivers shall *NOT* touch pin control GPIO calls.
642  */
643 int pinctrl_gpio_direction_output(unsigned gpio)
644 {
645 	return pinctrl_gpio_direction(gpio, false);
646 }
647 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
648 
649 static struct pinctrl_state *find_state(struct pinctrl *p,
650 					const char *name)
651 {
652 	struct pinctrl_state *state;
653 
654 	list_for_each_entry(state, &p->states, node)
655 		if (!strcmp(state->name, name))
656 			return state;
657 
658 	return NULL;
659 }
660 
661 static struct pinctrl_state *create_state(struct pinctrl *p,
662 					  const char *name)
663 {
664 	struct pinctrl_state *state;
665 
666 	state = kzalloc(sizeof(*state), GFP_KERNEL);
667 	if (state == NULL) {
668 		dev_err(p->dev,
669 			"failed to alloc struct pinctrl_state\n");
670 		return ERR_PTR(-ENOMEM);
671 	}
672 
673 	state->name = name;
674 	INIT_LIST_HEAD(&state->settings);
675 
676 	list_add_tail(&state->node, &p->states);
677 
678 	return state;
679 }
680 
681 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
682 {
683 	struct pinctrl_state *state;
684 	struct pinctrl_setting *setting;
685 	int ret;
686 
687 	state = find_state(p, map->name);
688 	if (!state)
689 		state = create_state(p, map->name);
690 	if (IS_ERR(state))
691 		return PTR_ERR(state);
692 
693 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
694 		return 0;
695 
696 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
697 	if (setting == NULL) {
698 		dev_err(p->dev,
699 			"failed to alloc struct pinctrl_setting\n");
700 		return -ENOMEM;
701 	}
702 
703 	setting->type = map->type;
704 
705 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
706 	if (setting->pctldev == NULL) {
707 		kfree(setting);
708 		/* Do not defer probing of hogs (circular loop) */
709 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
710 			return -ENODEV;
711 		/*
712 		 * OK let us guess that the driver is not there yet, and
713 		 * let's defer obtaining this pinctrl handle to later...
714 		 */
715 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
716 			map->ctrl_dev_name);
717 		return -EPROBE_DEFER;
718 	}
719 
720 	setting->dev_name = map->dev_name;
721 
722 	switch (map->type) {
723 	case PIN_MAP_TYPE_MUX_GROUP:
724 		ret = pinmux_map_to_setting(map, setting);
725 		break;
726 	case PIN_MAP_TYPE_CONFIGS_PIN:
727 	case PIN_MAP_TYPE_CONFIGS_GROUP:
728 		ret = pinconf_map_to_setting(map, setting);
729 		break;
730 	default:
731 		ret = -EINVAL;
732 		break;
733 	}
734 	if (ret < 0) {
735 		kfree(setting);
736 		return ret;
737 	}
738 
739 	list_add_tail(&setting->node, &state->settings);
740 
741 	return 0;
742 }
743 
744 static struct pinctrl *find_pinctrl(struct device *dev)
745 {
746 	struct pinctrl *p;
747 
748 	mutex_lock(&pinctrl_list_mutex);
749 	list_for_each_entry(p, &pinctrl_list, node)
750 		if (p->dev == dev) {
751 			mutex_unlock(&pinctrl_list_mutex);
752 			return p;
753 		}
754 
755 	mutex_unlock(&pinctrl_list_mutex);
756 	return NULL;
757 }
758 
759 static void pinctrl_free(struct pinctrl *p, bool inlist);
760 
761 static struct pinctrl *create_pinctrl(struct device *dev)
762 {
763 	struct pinctrl *p;
764 	const char *devname;
765 	struct pinctrl_maps *maps_node;
766 	int i;
767 	struct pinctrl_map const *map;
768 	int ret;
769 
770 	/*
771 	 * create the state cookie holder struct pinctrl for each
772 	 * mapping, this is what consumers will get when requesting
773 	 * a pin control handle with pinctrl_get()
774 	 */
775 	p = kzalloc(sizeof(*p), GFP_KERNEL);
776 	if (p == NULL) {
777 		dev_err(dev, "failed to alloc struct pinctrl\n");
778 		return ERR_PTR(-ENOMEM);
779 	}
780 	p->dev = dev;
781 	INIT_LIST_HEAD(&p->states);
782 	INIT_LIST_HEAD(&p->dt_maps);
783 
784 	ret = pinctrl_dt_to_map(p);
785 	if (ret < 0) {
786 		kfree(p);
787 		return ERR_PTR(ret);
788 	}
789 
790 	devname = dev_name(dev);
791 
792 	mutex_lock(&pinctrl_maps_mutex);
793 	/* Iterate over the pin control maps to locate the right ones */
794 	for_each_maps(maps_node, i, map) {
795 		/* Map must be for this device */
796 		if (strcmp(map->dev_name, devname))
797 			continue;
798 
799 		ret = add_setting(p, map);
800 		/*
801 		 * At this point the adding of a setting may:
802 		 *
803 		 * - Defer, if the pinctrl device is not yet available
804 		 * - Fail, if the pinctrl device is not yet available,
805 		 *   AND the setting is a hog. We cannot defer that, since
806 		 *   the hog will kick in immediately after the device
807 		 *   is registered.
808 		 *
809 		 * If the error returned was not -EPROBE_DEFER then we
810 		 * accumulate the errors to see if we end up with
811 		 * an -EPROBE_DEFER later, as that is the worst case.
812 		 */
813 		if (ret == -EPROBE_DEFER) {
814 			pinctrl_free(p, false);
815 			mutex_unlock(&pinctrl_maps_mutex);
816 			return ERR_PTR(ret);
817 		}
818 	}
819 	mutex_unlock(&pinctrl_maps_mutex);
820 
821 	if (ret < 0) {
822 		/* If some other error than deferral occured, return here */
823 		pinctrl_free(p, false);
824 		return ERR_PTR(ret);
825 	}
826 
827 	kref_init(&p->users);
828 
829 	/* Add the pinctrl handle to the global list */
830 	list_add_tail(&p->node, &pinctrl_list);
831 
832 	return p;
833 }
834 
835 /**
836  * pinctrl_get() - retrieves the pinctrl handle for a device
837  * @dev: the device to obtain the handle for
838  */
839 struct pinctrl *pinctrl_get(struct device *dev)
840 {
841 	struct pinctrl *p;
842 
843 	if (WARN_ON(!dev))
844 		return ERR_PTR(-EINVAL);
845 
846 	/*
847 	 * See if somebody else (such as the device core) has already
848 	 * obtained a handle to the pinctrl for this device. In that case,
849 	 * return another pointer to it.
850 	 */
851 	p = find_pinctrl(dev);
852 	if (p != NULL) {
853 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
854 		kref_get(&p->users);
855 		return p;
856 	}
857 
858 	return create_pinctrl(dev);
859 }
860 EXPORT_SYMBOL_GPL(pinctrl_get);
861 
862 static void pinctrl_free_setting(bool disable_setting,
863 				 struct pinctrl_setting *setting)
864 {
865 	switch (setting->type) {
866 	case PIN_MAP_TYPE_MUX_GROUP:
867 		if (disable_setting)
868 			pinmux_disable_setting(setting);
869 		pinmux_free_setting(setting);
870 		break;
871 	case PIN_MAP_TYPE_CONFIGS_PIN:
872 	case PIN_MAP_TYPE_CONFIGS_GROUP:
873 		pinconf_free_setting(setting);
874 		break;
875 	default:
876 		break;
877 	}
878 }
879 
880 static void pinctrl_free(struct pinctrl *p, bool inlist)
881 {
882 	struct pinctrl_state *state, *n1;
883 	struct pinctrl_setting *setting, *n2;
884 
885 	mutex_lock(&pinctrl_list_mutex);
886 	list_for_each_entry_safe(state, n1, &p->states, node) {
887 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
888 			pinctrl_free_setting(state == p->state, setting);
889 			list_del(&setting->node);
890 			kfree(setting);
891 		}
892 		list_del(&state->node);
893 		kfree(state);
894 	}
895 
896 	pinctrl_dt_free_maps(p);
897 
898 	if (inlist)
899 		list_del(&p->node);
900 	kfree(p);
901 	mutex_unlock(&pinctrl_list_mutex);
902 }
903 
904 /**
905  * pinctrl_release() - release the pinctrl handle
906  * @kref: the kref in the pinctrl being released
907  */
908 static void pinctrl_release(struct kref *kref)
909 {
910 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
911 
912 	pinctrl_free(p, true);
913 }
914 
915 /**
916  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
917  * @p: the pinctrl handle to release
918  */
919 void pinctrl_put(struct pinctrl *p)
920 {
921 	kref_put(&p->users, pinctrl_release);
922 }
923 EXPORT_SYMBOL_GPL(pinctrl_put);
924 
925 /**
926  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
927  * @p: the pinctrl handle to retrieve the state from
928  * @name: the state name to retrieve
929  */
930 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
931 						 const char *name)
932 {
933 	struct pinctrl_state *state;
934 
935 	state = find_state(p, name);
936 	if (!state) {
937 		if (pinctrl_dummy_state) {
938 			/* create dummy state */
939 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
940 				name);
941 			state = create_state(p, name);
942 		} else
943 			state = ERR_PTR(-ENODEV);
944 	}
945 
946 	return state;
947 }
948 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
949 
950 /**
951  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
952  * @p: the pinctrl handle for the device that requests configuration
953  * @state: the state handle to select/activate/program
954  */
955 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
956 {
957 	struct pinctrl_setting *setting, *setting2;
958 	struct pinctrl_state *old_state = p->state;
959 	int ret;
960 
961 	if (p->state == state)
962 		return 0;
963 
964 	if (p->state) {
965 		/*
966 		 * The set of groups with a mux configuration in the old state
967 		 * may not be identical to the set of groups with a mux setting
968 		 * in the new state. While this might be unusual, it's entirely
969 		 * possible for the "user"-supplied mapping table to be written
970 		 * that way. For each group that was configured in the old state
971 		 * but not in the new state, this code puts that group into a
972 		 * safe/disabled state.
973 		 */
974 		list_for_each_entry(setting, &p->state->settings, node) {
975 			bool found = false;
976 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
977 				continue;
978 			list_for_each_entry(setting2, &state->settings, node) {
979 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
980 					continue;
981 				if (setting2->data.mux.group ==
982 						setting->data.mux.group) {
983 					found = true;
984 					break;
985 				}
986 			}
987 			if (!found)
988 				pinmux_disable_setting(setting);
989 		}
990 	}
991 
992 	p->state = NULL;
993 
994 	/* Apply all the settings for the new state */
995 	list_for_each_entry(setting, &state->settings, node) {
996 		switch (setting->type) {
997 		case PIN_MAP_TYPE_MUX_GROUP:
998 			ret = pinmux_enable_setting(setting);
999 			break;
1000 		case PIN_MAP_TYPE_CONFIGS_PIN:
1001 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1002 			ret = pinconf_apply_setting(setting);
1003 			break;
1004 		default:
1005 			ret = -EINVAL;
1006 			break;
1007 		}
1008 
1009 		if (ret < 0) {
1010 			goto unapply_new_state;
1011 		}
1012 	}
1013 
1014 	p->state = state;
1015 
1016 	return 0;
1017 
1018 unapply_new_state:
1019 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1020 
1021 	list_for_each_entry(setting2, &state->settings, node) {
1022 		if (&setting2->node == &setting->node)
1023 			break;
1024 		/*
1025 		 * All we can do here is pinmux_disable_setting.
1026 		 * That means that some pins are muxed differently now
1027 		 * than they were before applying the setting (We can't
1028 		 * "unmux a pin"!), but it's not a big deal since the pins
1029 		 * are free to be muxed by another apply_setting.
1030 		 */
1031 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1032 			pinmux_disable_setting(setting2);
1033 	}
1034 
1035 	/* There's no infinite recursive loop here because p->state is NULL */
1036 	if (old_state)
1037 		pinctrl_select_state(p, old_state);
1038 
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1042 
1043 static void devm_pinctrl_release(struct device *dev, void *res)
1044 {
1045 	pinctrl_put(*(struct pinctrl **)res);
1046 }
1047 
1048 /**
1049  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1050  * @dev: the device to obtain the handle for
1051  *
1052  * If there is a need to explicitly destroy the returned struct pinctrl,
1053  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1054  */
1055 struct pinctrl *devm_pinctrl_get(struct device *dev)
1056 {
1057 	struct pinctrl **ptr, *p;
1058 
1059 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1060 	if (!ptr)
1061 		return ERR_PTR(-ENOMEM);
1062 
1063 	p = pinctrl_get(dev);
1064 	if (!IS_ERR(p)) {
1065 		*ptr = p;
1066 		devres_add(dev, ptr);
1067 	} else {
1068 		devres_free(ptr);
1069 	}
1070 
1071 	return p;
1072 }
1073 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1074 
1075 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1076 {
1077 	struct pinctrl **p = res;
1078 
1079 	return *p == data;
1080 }
1081 
1082 /**
1083  * devm_pinctrl_put() - Resource managed pinctrl_put()
1084  * @p: the pinctrl handle to release
1085  *
1086  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1087  * this function will not need to be called and the resource management
1088  * code will ensure that the resource is freed.
1089  */
1090 void devm_pinctrl_put(struct pinctrl *p)
1091 {
1092 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1093 			       devm_pinctrl_match, p));
1094 }
1095 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1096 
1097 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1098 			 bool dup, bool locked)
1099 {
1100 	int i, ret;
1101 	struct pinctrl_maps *maps_node;
1102 
1103 	pr_debug("add %d pinmux maps\n", num_maps);
1104 
1105 	/* First sanity check the new mapping */
1106 	for (i = 0; i < num_maps; i++) {
1107 		if (!maps[i].dev_name) {
1108 			pr_err("failed to register map %s (%d): no device given\n",
1109 			       maps[i].name, i);
1110 			return -EINVAL;
1111 		}
1112 
1113 		if (!maps[i].name) {
1114 			pr_err("failed to register map %d: no map name given\n",
1115 			       i);
1116 			return -EINVAL;
1117 		}
1118 
1119 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1120 				!maps[i].ctrl_dev_name) {
1121 			pr_err("failed to register map %s (%d): no pin control device given\n",
1122 			       maps[i].name, i);
1123 			return -EINVAL;
1124 		}
1125 
1126 		switch (maps[i].type) {
1127 		case PIN_MAP_TYPE_DUMMY_STATE:
1128 			break;
1129 		case PIN_MAP_TYPE_MUX_GROUP:
1130 			ret = pinmux_validate_map(&maps[i], i);
1131 			if (ret < 0)
1132 				return ret;
1133 			break;
1134 		case PIN_MAP_TYPE_CONFIGS_PIN:
1135 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1136 			ret = pinconf_validate_map(&maps[i], i);
1137 			if (ret < 0)
1138 				return ret;
1139 			break;
1140 		default:
1141 			pr_err("failed to register map %s (%d): invalid type given\n",
1142 			       maps[i].name, i);
1143 			return -EINVAL;
1144 		}
1145 	}
1146 
1147 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1148 	if (!maps_node) {
1149 		pr_err("failed to alloc struct pinctrl_maps\n");
1150 		return -ENOMEM;
1151 	}
1152 
1153 	maps_node->num_maps = num_maps;
1154 	if (dup) {
1155 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1156 					  GFP_KERNEL);
1157 		if (!maps_node->maps) {
1158 			pr_err("failed to duplicate mapping table\n");
1159 			kfree(maps_node);
1160 			return -ENOMEM;
1161 		}
1162 	} else {
1163 		maps_node->maps = maps;
1164 	}
1165 
1166 	if (!locked)
1167 		mutex_lock(&pinctrl_maps_mutex);
1168 	list_add_tail(&maps_node->node, &pinctrl_maps);
1169 	if (!locked)
1170 		mutex_unlock(&pinctrl_maps_mutex);
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * pinctrl_register_mappings() - register a set of pin controller mappings
1177  * @maps: the pincontrol mappings table to register. This should probably be
1178  *	marked with __initdata so it can be discarded after boot. This
1179  *	function will perform a shallow copy for the mapping entries.
1180  * @num_maps: the number of maps in the mapping table
1181  */
1182 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1183 			      unsigned num_maps)
1184 {
1185 	return pinctrl_register_map(maps, num_maps, true, false);
1186 }
1187 
1188 void pinctrl_unregister_map(struct pinctrl_map const *map)
1189 {
1190 	struct pinctrl_maps *maps_node;
1191 
1192 	mutex_lock(&pinctrl_maps_mutex);
1193 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1194 		if (maps_node->maps == map) {
1195 			list_del(&maps_node->node);
1196 			kfree(maps_node);
1197 			mutex_unlock(&pinctrl_maps_mutex);
1198 			return;
1199 		}
1200 	}
1201 	mutex_unlock(&pinctrl_maps_mutex);
1202 }
1203 
1204 /**
1205  * pinctrl_force_sleep() - turn a given controller device into sleep state
1206  * @pctldev: pin controller device
1207  */
1208 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1209 {
1210 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1211 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1215 
1216 /**
1217  * pinctrl_force_default() - turn a given controller device into default state
1218  * @pctldev: pin controller device
1219  */
1220 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1221 {
1222 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1223 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1227 
1228 #ifdef CONFIG_PM
1229 
1230 /**
1231  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1232  * @dev: device to select default state for
1233  */
1234 int pinctrl_pm_select_default_state(struct device *dev)
1235 {
1236 	struct dev_pin_info *pins = dev->pins;
1237 	int ret;
1238 
1239 	if (!pins)
1240 		return 0;
1241 	if (IS_ERR(pins->default_state))
1242 		return 0; /* No default state */
1243 	ret = pinctrl_select_state(pins->p, pins->default_state);
1244 	if (ret)
1245 		dev_err(dev, "failed to activate default pinctrl state\n");
1246 	return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1249 
1250 /**
1251  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1252  * @dev: device to select sleep state for
1253  */
1254 int pinctrl_pm_select_sleep_state(struct device *dev)
1255 {
1256 	struct dev_pin_info *pins = dev->pins;
1257 	int ret;
1258 
1259 	if (!pins)
1260 		return 0;
1261 	if (IS_ERR(pins->sleep_state))
1262 		return 0; /* No sleep state */
1263 	ret = pinctrl_select_state(pins->p, pins->sleep_state);
1264 	if (ret)
1265 		dev_err(dev, "failed to activate pinctrl sleep state\n");
1266 	return ret;
1267 }
1268 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1269 
1270 /**
1271  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1272  * @dev: device to select idle state for
1273  */
1274 int pinctrl_pm_select_idle_state(struct device *dev)
1275 {
1276 	struct dev_pin_info *pins = dev->pins;
1277 	int ret;
1278 
1279 	if (!pins)
1280 		return 0;
1281 	if (IS_ERR(pins->idle_state))
1282 		return 0; /* No idle state */
1283 	ret = pinctrl_select_state(pins->p, pins->idle_state);
1284 	if (ret)
1285 		dev_err(dev, "failed to activate pinctrl idle state\n");
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1289 #endif
1290 
1291 #ifdef CONFIG_DEBUG_FS
1292 
1293 static int pinctrl_pins_show(struct seq_file *s, void *what)
1294 {
1295 	struct pinctrl_dev *pctldev = s->private;
1296 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1297 	unsigned i, pin;
1298 
1299 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1300 
1301 	mutex_lock(&pctldev->mutex);
1302 
1303 	/* The pin number can be retrived from the pin controller descriptor */
1304 	for (i = 0; i < pctldev->desc->npins; i++) {
1305 		struct pin_desc *desc;
1306 
1307 		pin = pctldev->desc->pins[i].number;
1308 		desc = pin_desc_get(pctldev, pin);
1309 		/* Pin space may be sparse */
1310 		if (desc == NULL)
1311 			continue;
1312 
1313 		seq_printf(s, "pin %d (%s) ", pin,
1314 			   desc->name ? desc->name : "unnamed");
1315 
1316 		/* Driver-specific info per pin */
1317 		if (ops->pin_dbg_show)
1318 			ops->pin_dbg_show(pctldev, s, pin);
1319 
1320 		seq_puts(s, "\n");
1321 	}
1322 
1323 	mutex_unlock(&pctldev->mutex);
1324 
1325 	return 0;
1326 }
1327 
1328 static int pinctrl_groups_show(struct seq_file *s, void *what)
1329 {
1330 	struct pinctrl_dev *pctldev = s->private;
1331 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1332 	unsigned ngroups, selector = 0;
1333 
1334 	mutex_lock(&pctldev->mutex);
1335 
1336 	ngroups = ops->get_groups_count(pctldev);
1337 
1338 	seq_puts(s, "registered pin groups:\n");
1339 	while (selector < ngroups) {
1340 		const unsigned *pins;
1341 		unsigned num_pins;
1342 		const char *gname = ops->get_group_name(pctldev, selector);
1343 		const char *pname;
1344 		int ret;
1345 		int i;
1346 
1347 		ret = ops->get_group_pins(pctldev, selector,
1348 					  &pins, &num_pins);
1349 		if (ret)
1350 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1351 				   gname);
1352 		else {
1353 			seq_printf(s, "group: %s\n", gname);
1354 			for (i = 0; i < num_pins; i++) {
1355 				pname = pin_get_name(pctldev, pins[i]);
1356 				if (WARN_ON(!pname)) {
1357 					mutex_unlock(&pctldev->mutex);
1358 					return -EINVAL;
1359 				}
1360 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1361 			}
1362 			seq_puts(s, "\n");
1363 		}
1364 		selector++;
1365 	}
1366 
1367 	mutex_unlock(&pctldev->mutex);
1368 
1369 	return 0;
1370 }
1371 
1372 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1373 {
1374 	struct pinctrl_dev *pctldev = s->private;
1375 	struct pinctrl_gpio_range *range = NULL;
1376 
1377 	seq_puts(s, "GPIO ranges handled:\n");
1378 
1379 	mutex_lock(&pctldev->mutex);
1380 
1381 	/* Loop over the ranges */
1382 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1383 		if (range->pins) {
1384 			int a;
1385 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1386 				range->id, range->name,
1387 				range->base, (range->base + range->npins - 1));
1388 			for (a = 0; a < range->npins - 1; a++)
1389 				seq_printf(s, "%u, ", range->pins[a]);
1390 			seq_printf(s, "%u}\n", range->pins[a]);
1391 		}
1392 		else
1393 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1394 				range->id, range->name,
1395 				range->base, (range->base + range->npins - 1),
1396 				range->pin_base,
1397 				(range->pin_base + range->npins - 1));
1398 	}
1399 
1400 	mutex_unlock(&pctldev->mutex);
1401 
1402 	return 0;
1403 }
1404 
1405 static int pinctrl_devices_show(struct seq_file *s, void *what)
1406 {
1407 	struct pinctrl_dev *pctldev;
1408 
1409 	seq_puts(s, "name [pinmux] [pinconf]\n");
1410 
1411 	mutex_lock(&pinctrldev_list_mutex);
1412 
1413 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1414 		seq_printf(s, "%s ", pctldev->desc->name);
1415 		if (pctldev->desc->pmxops)
1416 			seq_puts(s, "yes ");
1417 		else
1418 			seq_puts(s, "no ");
1419 		if (pctldev->desc->confops)
1420 			seq_puts(s, "yes");
1421 		else
1422 			seq_puts(s, "no");
1423 		seq_puts(s, "\n");
1424 	}
1425 
1426 	mutex_unlock(&pinctrldev_list_mutex);
1427 
1428 	return 0;
1429 }
1430 
1431 static inline const char *map_type(enum pinctrl_map_type type)
1432 {
1433 	static const char * const names[] = {
1434 		"INVALID",
1435 		"DUMMY_STATE",
1436 		"MUX_GROUP",
1437 		"CONFIGS_PIN",
1438 		"CONFIGS_GROUP",
1439 	};
1440 
1441 	if (type >= ARRAY_SIZE(names))
1442 		return "UNKNOWN";
1443 
1444 	return names[type];
1445 }
1446 
1447 static int pinctrl_maps_show(struct seq_file *s, void *what)
1448 {
1449 	struct pinctrl_maps *maps_node;
1450 	int i;
1451 	struct pinctrl_map const *map;
1452 
1453 	seq_puts(s, "Pinctrl maps:\n");
1454 
1455 	mutex_lock(&pinctrl_maps_mutex);
1456 	for_each_maps(maps_node, i, map) {
1457 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1458 			   map->dev_name, map->name, map_type(map->type),
1459 			   map->type);
1460 
1461 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1462 			seq_printf(s, "controlling device %s\n",
1463 				   map->ctrl_dev_name);
1464 
1465 		switch (map->type) {
1466 		case PIN_MAP_TYPE_MUX_GROUP:
1467 			pinmux_show_map(s, map);
1468 			break;
1469 		case PIN_MAP_TYPE_CONFIGS_PIN:
1470 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1471 			pinconf_show_map(s, map);
1472 			break;
1473 		default:
1474 			break;
1475 		}
1476 
1477 		seq_printf(s, "\n");
1478 	}
1479 	mutex_unlock(&pinctrl_maps_mutex);
1480 
1481 	return 0;
1482 }
1483 
1484 static int pinctrl_show(struct seq_file *s, void *what)
1485 {
1486 	struct pinctrl *p;
1487 	struct pinctrl_state *state;
1488 	struct pinctrl_setting *setting;
1489 
1490 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1491 
1492 	mutex_lock(&pinctrl_list_mutex);
1493 
1494 	list_for_each_entry(p, &pinctrl_list, node) {
1495 		seq_printf(s, "device: %s current state: %s\n",
1496 			   dev_name(p->dev),
1497 			   p->state ? p->state->name : "none");
1498 
1499 		list_for_each_entry(state, &p->states, node) {
1500 			seq_printf(s, "  state: %s\n", state->name);
1501 
1502 			list_for_each_entry(setting, &state->settings, node) {
1503 				struct pinctrl_dev *pctldev = setting->pctldev;
1504 
1505 				seq_printf(s, "    type: %s controller %s ",
1506 					   map_type(setting->type),
1507 					   pinctrl_dev_get_name(pctldev));
1508 
1509 				switch (setting->type) {
1510 				case PIN_MAP_TYPE_MUX_GROUP:
1511 					pinmux_show_setting(s, setting);
1512 					break;
1513 				case PIN_MAP_TYPE_CONFIGS_PIN:
1514 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1515 					pinconf_show_setting(s, setting);
1516 					break;
1517 				default:
1518 					break;
1519 				}
1520 			}
1521 		}
1522 	}
1523 
1524 	mutex_unlock(&pinctrl_list_mutex);
1525 
1526 	return 0;
1527 }
1528 
1529 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1530 {
1531 	return single_open(file, pinctrl_pins_show, inode->i_private);
1532 }
1533 
1534 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1535 {
1536 	return single_open(file, pinctrl_groups_show, inode->i_private);
1537 }
1538 
1539 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1540 {
1541 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1542 }
1543 
1544 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1545 {
1546 	return single_open(file, pinctrl_devices_show, NULL);
1547 }
1548 
1549 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1550 {
1551 	return single_open(file, pinctrl_maps_show, NULL);
1552 }
1553 
1554 static int pinctrl_open(struct inode *inode, struct file *file)
1555 {
1556 	return single_open(file, pinctrl_show, NULL);
1557 }
1558 
1559 static const struct file_operations pinctrl_pins_ops = {
1560 	.open		= pinctrl_pins_open,
1561 	.read		= seq_read,
1562 	.llseek		= seq_lseek,
1563 	.release	= single_release,
1564 };
1565 
1566 static const struct file_operations pinctrl_groups_ops = {
1567 	.open		= pinctrl_groups_open,
1568 	.read		= seq_read,
1569 	.llseek		= seq_lseek,
1570 	.release	= single_release,
1571 };
1572 
1573 static const struct file_operations pinctrl_gpioranges_ops = {
1574 	.open		= pinctrl_gpioranges_open,
1575 	.read		= seq_read,
1576 	.llseek		= seq_lseek,
1577 	.release	= single_release,
1578 };
1579 
1580 static const struct file_operations pinctrl_devices_ops = {
1581 	.open		= pinctrl_devices_open,
1582 	.read		= seq_read,
1583 	.llseek		= seq_lseek,
1584 	.release	= single_release,
1585 };
1586 
1587 static const struct file_operations pinctrl_maps_ops = {
1588 	.open		= pinctrl_maps_open,
1589 	.read		= seq_read,
1590 	.llseek		= seq_lseek,
1591 	.release	= single_release,
1592 };
1593 
1594 static const struct file_operations pinctrl_ops = {
1595 	.open		= pinctrl_open,
1596 	.read		= seq_read,
1597 	.llseek		= seq_lseek,
1598 	.release	= single_release,
1599 };
1600 
1601 static struct dentry *debugfs_root;
1602 
1603 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1604 {
1605 	struct dentry *device_root;
1606 
1607 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1608 					 debugfs_root);
1609 	pctldev->device_root = device_root;
1610 
1611 	if (IS_ERR(device_root) || !device_root) {
1612 		pr_warn("failed to create debugfs directory for %s\n",
1613 			dev_name(pctldev->dev));
1614 		return;
1615 	}
1616 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1617 			    device_root, pctldev, &pinctrl_pins_ops);
1618 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1619 			    device_root, pctldev, &pinctrl_groups_ops);
1620 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1621 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1622 	pinmux_init_device_debugfs(device_root, pctldev);
1623 	pinconf_init_device_debugfs(device_root, pctldev);
1624 }
1625 
1626 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1627 {
1628 	debugfs_remove_recursive(pctldev->device_root);
1629 }
1630 
1631 static void pinctrl_init_debugfs(void)
1632 {
1633 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1634 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1635 		pr_warn("failed to create debugfs directory\n");
1636 		debugfs_root = NULL;
1637 		return;
1638 	}
1639 
1640 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1641 			    debugfs_root, NULL, &pinctrl_devices_ops);
1642 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1643 			    debugfs_root, NULL, &pinctrl_maps_ops);
1644 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1645 			    debugfs_root, NULL, &pinctrl_ops);
1646 }
1647 
1648 #else /* CONFIG_DEBUG_FS */
1649 
1650 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1651 {
1652 }
1653 
1654 static void pinctrl_init_debugfs(void)
1655 {
1656 }
1657 
1658 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1659 {
1660 }
1661 
1662 #endif
1663 
1664 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1665 {
1666 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1667 
1668 	if (!ops ||
1669 	    !ops->get_groups_count ||
1670 	    !ops->get_group_name ||
1671 	    !ops->get_group_pins)
1672 		return -EINVAL;
1673 
1674 	if (ops->dt_node_to_map && !ops->dt_free_map)
1675 		return -EINVAL;
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * pinctrl_register() - register a pin controller device
1682  * @pctldesc: descriptor for this pin controller
1683  * @dev: parent device for this pin controller
1684  * @driver_data: private pin controller data for this pin controller
1685  */
1686 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1687 				    struct device *dev, void *driver_data)
1688 {
1689 	struct pinctrl_dev *pctldev;
1690 	int ret;
1691 
1692 	if (!pctldesc)
1693 		return NULL;
1694 	if (!pctldesc->name)
1695 		return NULL;
1696 
1697 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1698 	if (pctldev == NULL) {
1699 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1700 		return NULL;
1701 	}
1702 
1703 	/* Initialize pin control device struct */
1704 	pctldev->owner = pctldesc->owner;
1705 	pctldev->desc = pctldesc;
1706 	pctldev->driver_data = driver_data;
1707 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1708 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1709 	pctldev->dev = dev;
1710 	mutex_init(&pctldev->mutex);
1711 
1712 	/* check core ops for sanity */
1713 	if (pinctrl_check_ops(pctldev)) {
1714 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1715 		goto out_err;
1716 	}
1717 
1718 	/* If we're implementing pinmuxing, check the ops for sanity */
1719 	if (pctldesc->pmxops) {
1720 		if (pinmux_check_ops(pctldev))
1721 			goto out_err;
1722 	}
1723 
1724 	/* If we're implementing pinconfig, check the ops for sanity */
1725 	if (pctldesc->confops) {
1726 		if (pinconf_check_ops(pctldev))
1727 			goto out_err;
1728 	}
1729 
1730 	/* Register all the pins */
1731 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1732 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1733 	if (ret) {
1734 		dev_err(dev, "error during pin registration\n");
1735 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1736 				      pctldesc->npins);
1737 		goto out_err;
1738 	}
1739 
1740 	mutex_lock(&pinctrldev_list_mutex);
1741 	list_add_tail(&pctldev->node, &pinctrldev_list);
1742 	mutex_unlock(&pinctrldev_list_mutex);
1743 
1744 	pctldev->p = pinctrl_get(pctldev->dev);
1745 
1746 	if (!IS_ERR(pctldev->p)) {
1747 		pctldev->hog_default =
1748 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1749 		if (IS_ERR(pctldev->hog_default)) {
1750 			dev_dbg(dev, "failed to lookup the default state\n");
1751 		} else {
1752 			if (pinctrl_select_state(pctldev->p,
1753 						pctldev->hog_default))
1754 				dev_err(dev,
1755 					"failed to select default state\n");
1756 		}
1757 
1758 		pctldev->hog_sleep =
1759 			pinctrl_lookup_state(pctldev->p,
1760 						    PINCTRL_STATE_SLEEP);
1761 		if (IS_ERR(pctldev->hog_sleep))
1762 			dev_dbg(dev, "failed to lookup the sleep state\n");
1763 	}
1764 
1765 	pinctrl_init_device_debugfs(pctldev);
1766 
1767 	return pctldev;
1768 
1769 out_err:
1770 	mutex_destroy(&pctldev->mutex);
1771 	kfree(pctldev);
1772 	return NULL;
1773 }
1774 EXPORT_SYMBOL_GPL(pinctrl_register);
1775 
1776 /**
1777  * pinctrl_unregister() - unregister pinmux
1778  * @pctldev: pin controller to unregister
1779  *
1780  * Called by pinmux drivers to unregister a pinmux.
1781  */
1782 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1783 {
1784 	struct pinctrl_gpio_range *range, *n;
1785 	if (pctldev == NULL)
1786 		return;
1787 
1788 	mutex_lock(&pinctrldev_list_mutex);
1789 	mutex_lock(&pctldev->mutex);
1790 
1791 	pinctrl_remove_device_debugfs(pctldev);
1792 
1793 	if (!IS_ERR(pctldev->p))
1794 		pinctrl_put(pctldev->p);
1795 
1796 	/* TODO: check that no pinmuxes are still active? */
1797 	list_del(&pctldev->node);
1798 	/* Destroy descriptor tree */
1799 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1800 			      pctldev->desc->npins);
1801 	/* remove gpio ranges map */
1802 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1803 		list_del(&range->node);
1804 
1805 	mutex_unlock(&pctldev->mutex);
1806 	mutex_destroy(&pctldev->mutex);
1807 	kfree(pctldev);
1808 	mutex_unlock(&pinctrldev_list_mutex);
1809 }
1810 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1811 
1812 static int __init pinctrl_init(void)
1813 {
1814 	pr_info("initialized pinctrl subsystem\n");
1815 	pinctrl_init_debugfs();
1816 	return 0;
1817 }
1818 
1819 /* init early since many drivers really need to initialized pinmux early */
1820 core_initcall(pinctrl_init);
1821