1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc == NULL) 157 continue; 158 if (desc->name && !strcmp(name, desc->name)) 159 return pin; 160 } 161 162 return -EINVAL; 163 } 164 165 /** 166 * pin_get_name_from_id() - look up a pin name from a pin id 167 * @pctldev: the pin control device to lookup the pin on 168 * @name: the name of the pin to look up 169 */ 170 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 171 { 172 const struct pin_desc *desc; 173 174 desc = pin_desc_get(pctldev, pin); 175 if (desc == NULL) { 176 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 177 pin); 178 return NULL; 179 } 180 181 return desc->name; 182 } 183 184 /** 185 * pin_is_valid() - check if pin exists on controller 186 * @pctldev: the pin control device to check the pin on 187 * @pin: pin to check, use the local pin controller index number 188 * 189 * This tells us whether a certain pin exist on a certain pin controller or 190 * not. Pin lists may be sparse, so some pins may not exist. 191 */ 192 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 193 { 194 struct pin_desc *pindesc; 195 196 if (pin < 0) 197 return false; 198 199 mutex_lock(&pctldev->mutex); 200 pindesc = pin_desc_get(pctldev, pin); 201 mutex_unlock(&pctldev->mutex); 202 203 return pindesc != NULL; 204 } 205 EXPORT_SYMBOL_GPL(pin_is_valid); 206 207 /* Deletes a range of pin descriptors */ 208 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 209 const struct pinctrl_pin_desc *pins, 210 unsigned num_pins) 211 { 212 int i; 213 214 for (i = 0; i < num_pins; i++) { 215 struct pin_desc *pindesc; 216 217 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 218 pins[i].number); 219 if (pindesc != NULL) { 220 radix_tree_delete(&pctldev->pin_desc_tree, 221 pins[i].number); 222 if (pindesc->dynamic_name) 223 kfree(pindesc->name); 224 } 225 kfree(pindesc); 226 } 227 } 228 229 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 230 unsigned number, const char *name) 231 { 232 struct pin_desc *pindesc; 233 234 pindesc = pin_desc_get(pctldev, number); 235 if (pindesc != NULL) { 236 pr_err("pin %d already registered on %s\n", number, 237 pctldev->desc->name); 238 return -EINVAL; 239 } 240 241 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 242 if (pindesc == NULL) { 243 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 244 return -ENOMEM; 245 } 246 247 /* Set owner */ 248 pindesc->pctldev = pctldev; 249 250 /* Copy basic pin info */ 251 if (name) { 252 pindesc->name = name; 253 } else { 254 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 255 if (pindesc->name == NULL) { 256 kfree(pindesc); 257 return -ENOMEM; 258 } 259 pindesc->dynamic_name = true; 260 } 261 262 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 263 pr_debug("registered pin %d (%s) on %s\n", 264 number, pindesc->name, pctldev->desc->name); 265 return 0; 266 } 267 268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 269 struct pinctrl_pin_desc const *pins, 270 unsigned num_descs) 271 { 272 unsigned i; 273 int ret = 0; 274 275 for (i = 0; i < num_descs; i++) { 276 ret = pinctrl_register_one_pin(pctldev, 277 pins[i].number, pins[i].name); 278 if (ret) 279 return ret; 280 } 281 282 return 0; 283 } 284 285 /** 286 * gpio_to_pin() - GPIO range GPIO number to pin number translation 287 * @range: GPIO range used for the translation 288 * @gpio: gpio pin to translate to a pin number 289 * 290 * Finds the pin number for a given GPIO using the specified GPIO range 291 * as a base for translation. The distinction between linear GPIO ranges 292 * and pin list based GPIO ranges is managed correctly by this function. 293 * 294 * This function assumes the gpio is part of the specified GPIO range, use 295 * only after making sure this is the case (e.g. by calling it on the 296 * result of successful pinctrl_get_device_gpio_range calls)! 297 */ 298 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 299 unsigned int gpio) 300 { 301 unsigned int offset = gpio - range->base; 302 if (range->pins) 303 return range->pins[offset]; 304 else 305 return range->pin_base + offset; 306 } 307 308 /** 309 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 310 * @pctldev: pin controller device to check 311 * @gpio: gpio pin to check taken from the global GPIO pin space 312 * 313 * Tries to match a GPIO pin number to the ranges handled by a certain pin 314 * controller, return the range or NULL 315 */ 316 static struct pinctrl_gpio_range * 317 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 318 { 319 struct pinctrl_gpio_range *range = NULL; 320 321 mutex_lock(&pctldev->mutex); 322 /* Loop over the ranges */ 323 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 324 /* Check if we're in the valid range */ 325 if (gpio >= range->base && 326 gpio < range->base + range->npins) { 327 mutex_unlock(&pctldev->mutex); 328 return range; 329 } 330 } 331 mutex_unlock(&pctldev->mutex); 332 return NULL; 333 } 334 335 /** 336 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 337 * the same GPIO chip are in range 338 * @gpio: gpio pin to check taken from the global GPIO pin space 339 * 340 * This function is complement of pinctrl_match_gpio_range(). If the return 341 * value of pinctrl_match_gpio_range() is NULL, this function could be used 342 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 343 * of the same GPIO chip don't have back-end pinctrl interface. 344 * If the return value is true, it means that pinctrl device is ready & the 345 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 346 * is false, it means that pinctrl device may not be ready. 347 */ 348 #ifdef CONFIG_GPIOLIB 349 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 350 { 351 struct pinctrl_dev *pctldev; 352 struct pinctrl_gpio_range *range = NULL; 353 struct gpio_chip *chip = gpio_to_chip(gpio); 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 361 /* Check if any gpio range overlapped with gpio chip */ 362 if (range->base + range->npins - 1 < chip->base || 363 range->base > chip->base + chip->ngpio - 1) 364 continue; 365 mutex_unlock(&pinctrldev_list_mutex); 366 return true; 367 } 368 } 369 370 mutex_unlock(&pinctrldev_list_mutex); 371 372 return false; 373 } 374 #else 375 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 376 #endif 377 378 /** 379 * pinctrl_get_device_gpio_range() - find device for GPIO range 380 * @gpio: the pin to locate the pin controller for 381 * @outdev: the pin control device if found 382 * @outrange: the GPIO range if found 383 * 384 * Find the pin controller handling a certain GPIO pin from the pinspace of 385 * the GPIO subsystem, return the device and the matching GPIO range. Returns 386 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 387 * may still have not been registered. 388 */ 389 static int pinctrl_get_device_gpio_range(unsigned gpio, 390 struct pinctrl_dev **outdev, 391 struct pinctrl_gpio_range **outrange) 392 { 393 struct pinctrl_dev *pctldev = NULL; 394 395 /* Loop over the pin controllers */ 396 list_for_each_entry(pctldev, &pinctrldev_list, node) { 397 struct pinctrl_gpio_range *range; 398 399 range = pinctrl_match_gpio_range(pctldev, gpio); 400 if (range != NULL) { 401 *outdev = pctldev; 402 *outrange = range; 403 return 0; 404 } 405 } 406 407 return -EPROBE_DEFER; 408 } 409 410 /** 411 * pinctrl_add_gpio_range() - register a GPIO range for a controller 412 * @pctldev: pin controller device to add the range to 413 * @range: the GPIO range to add 414 * 415 * This adds a range of GPIOs to be handled by a certain pin controller. Call 416 * this to register handled ranges after registering your pin controller. 417 */ 418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 419 struct pinctrl_gpio_range *range) 420 { 421 mutex_lock(&pctldev->mutex); 422 list_add_tail(&range->node, &pctldev->gpio_ranges); 423 mutex_unlock(&pctldev->mutex); 424 } 425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 426 427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 428 struct pinctrl_gpio_range *ranges, 429 unsigned nranges) 430 { 431 int i; 432 433 for (i = 0; i < nranges; i++) 434 pinctrl_add_gpio_range(pctldev, &ranges[i]); 435 } 436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 437 438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 439 struct pinctrl_gpio_range *range) 440 { 441 struct pinctrl_dev *pctldev; 442 443 pctldev = get_pinctrl_dev_from_devname(devname); 444 445 /* 446 * If we can't find this device, let's assume that is because 447 * it has not probed yet, so the driver trying to register this 448 * range need to defer probing. 449 */ 450 if (!pctldev) { 451 return ERR_PTR(-EPROBE_DEFER); 452 } 453 pinctrl_add_gpio_range(pctldev, range); 454 455 return pctldev; 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 458 459 /** 460 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 461 * @pctldev: the pin controller device to look in 462 * @pin: a controller-local number to find the range for 463 */ 464 struct pinctrl_gpio_range * 465 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 466 unsigned int pin) 467 { 468 struct pinctrl_gpio_range *range; 469 470 mutex_lock(&pctldev->mutex); 471 /* Loop over the ranges */ 472 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 473 /* Check if we're in the valid range */ 474 if (range->pins) { 475 int a; 476 for (a = 0; a < range->npins; a++) { 477 if (range->pins[a] == pin) 478 goto out; 479 } 480 } else if (pin >= range->pin_base && 481 pin < range->pin_base + range->npins) 482 goto out; 483 } 484 range = NULL; 485 out: 486 mutex_unlock(&pctldev->mutex); 487 return range; 488 } 489 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 490 491 /** 492 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 493 * @pctldev: pin controller device to remove the range from 494 * @range: the GPIO range to remove 495 */ 496 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 497 struct pinctrl_gpio_range *range) 498 { 499 mutex_lock(&pctldev->mutex); 500 list_del(&range->node); 501 mutex_unlock(&pctldev->mutex); 502 } 503 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 504 505 /** 506 * pinctrl_get_group_selector() - returns the group selector for a group 507 * @pctldev: the pin controller handling the group 508 * @pin_group: the pin group to look up 509 */ 510 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 511 const char *pin_group) 512 { 513 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 514 unsigned ngroups = pctlops->get_groups_count(pctldev); 515 unsigned group_selector = 0; 516 517 while (group_selector < ngroups) { 518 const char *gname = pctlops->get_group_name(pctldev, 519 group_selector); 520 if (!strcmp(gname, pin_group)) { 521 dev_dbg(pctldev->dev, 522 "found group selector %u for %s\n", 523 group_selector, 524 pin_group); 525 return group_selector; 526 } 527 528 group_selector++; 529 } 530 531 dev_err(pctldev->dev, "does not have pin group %s\n", 532 pin_group); 533 534 return -EINVAL; 535 } 536 537 /** 538 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 539 * @gpio: the GPIO pin number from the GPIO subsystem number space 540 * 541 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 542 * as part of their gpio_request() semantics, platforms and individual drivers 543 * shall *NOT* request GPIO pins to be muxed in. 544 */ 545 int pinctrl_request_gpio(unsigned gpio) 546 { 547 struct pinctrl_dev *pctldev; 548 struct pinctrl_gpio_range *range; 549 int ret; 550 int pin; 551 552 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 553 if (ret) { 554 if (pinctrl_ready_for_gpio_range(gpio)) 555 ret = 0; 556 return ret; 557 } 558 559 /* Convert to the pin controllers number space */ 560 pin = gpio_to_pin(range, gpio); 561 562 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 563 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 567 568 /** 569 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 570 * @gpio: the GPIO pin number from the GPIO subsystem number space 571 * 572 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 573 * as part of their gpio_free() semantics, platforms and individual drivers 574 * shall *NOT* request GPIO pins to be muxed out. 575 */ 576 void pinctrl_free_gpio(unsigned gpio) 577 { 578 struct pinctrl_dev *pctldev; 579 struct pinctrl_gpio_range *range; 580 int ret; 581 int pin; 582 583 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 584 if (ret) { 585 return; 586 } 587 mutex_lock(&pctldev->mutex); 588 589 /* Convert to the pin controllers number space */ 590 pin = gpio_to_pin(range, gpio); 591 592 pinmux_free_gpio(pctldev, pin, range); 593 594 mutex_unlock(&pctldev->mutex); 595 } 596 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 597 598 static int pinctrl_gpio_direction(unsigned gpio, bool input) 599 { 600 struct pinctrl_dev *pctldev; 601 struct pinctrl_gpio_range *range; 602 int ret; 603 int pin; 604 605 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 606 if (ret) { 607 return ret; 608 } 609 610 mutex_lock(&pctldev->mutex); 611 612 /* Convert to the pin controllers number space */ 613 pin = gpio_to_pin(range, gpio); 614 ret = pinmux_gpio_direction(pctldev, range, pin, input); 615 616 mutex_unlock(&pctldev->mutex); 617 618 return ret; 619 } 620 621 /** 622 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 623 * @gpio: the GPIO pin number from the GPIO subsystem number space 624 * 625 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 626 * as part of their gpio_direction_input() semantics, platforms and individual 627 * drivers shall *NOT* touch pin control GPIO calls. 628 */ 629 int pinctrl_gpio_direction_input(unsigned gpio) 630 { 631 return pinctrl_gpio_direction(gpio, true); 632 } 633 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 634 635 /** 636 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 637 * @gpio: the GPIO pin number from the GPIO subsystem number space 638 * 639 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 640 * as part of their gpio_direction_output() semantics, platforms and individual 641 * drivers shall *NOT* touch pin control GPIO calls. 642 */ 643 int pinctrl_gpio_direction_output(unsigned gpio) 644 { 645 return pinctrl_gpio_direction(gpio, false); 646 } 647 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 648 649 static struct pinctrl_state *find_state(struct pinctrl *p, 650 const char *name) 651 { 652 struct pinctrl_state *state; 653 654 list_for_each_entry(state, &p->states, node) 655 if (!strcmp(state->name, name)) 656 return state; 657 658 return NULL; 659 } 660 661 static struct pinctrl_state *create_state(struct pinctrl *p, 662 const char *name) 663 { 664 struct pinctrl_state *state; 665 666 state = kzalloc(sizeof(*state), GFP_KERNEL); 667 if (state == NULL) { 668 dev_err(p->dev, 669 "failed to alloc struct pinctrl_state\n"); 670 return ERR_PTR(-ENOMEM); 671 } 672 673 state->name = name; 674 INIT_LIST_HEAD(&state->settings); 675 676 list_add_tail(&state->node, &p->states); 677 678 return state; 679 } 680 681 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 682 { 683 struct pinctrl_state *state; 684 struct pinctrl_setting *setting; 685 int ret; 686 687 state = find_state(p, map->name); 688 if (!state) 689 state = create_state(p, map->name); 690 if (IS_ERR(state)) 691 return PTR_ERR(state); 692 693 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 694 return 0; 695 696 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 697 if (setting == NULL) { 698 dev_err(p->dev, 699 "failed to alloc struct pinctrl_setting\n"); 700 return -ENOMEM; 701 } 702 703 setting->type = map->type; 704 705 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 706 if (setting->pctldev == NULL) { 707 kfree(setting); 708 /* Do not defer probing of hogs (circular loop) */ 709 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 710 return -ENODEV; 711 /* 712 * OK let us guess that the driver is not there yet, and 713 * let's defer obtaining this pinctrl handle to later... 714 */ 715 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 716 map->ctrl_dev_name); 717 return -EPROBE_DEFER; 718 } 719 720 setting->dev_name = map->dev_name; 721 722 switch (map->type) { 723 case PIN_MAP_TYPE_MUX_GROUP: 724 ret = pinmux_map_to_setting(map, setting); 725 break; 726 case PIN_MAP_TYPE_CONFIGS_PIN: 727 case PIN_MAP_TYPE_CONFIGS_GROUP: 728 ret = pinconf_map_to_setting(map, setting); 729 break; 730 default: 731 ret = -EINVAL; 732 break; 733 } 734 if (ret < 0) { 735 kfree(setting); 736 return ret; 737 } 738 739 list_add_tail(&setting->node, &state->settings); 740 741 return 0; 742 } 743 744 static struct pinctrl *find_pinctrl(struct device *dev) 745 { 746 struct pinctrl *p; 747 748 mutex_lock(&pinctrl_list_mutex); 749 list_for_each_entry(p, &pinctrl_list, node) 750 if (p->dev == dev) { 751 mutex_unlock(&pinctrl_list_mutex); 752 return p; 753 } 754 755 mutex_unlock(&pinctrl_list_mutex); 756 return NULL; 757 } 758 759 static void pinctrl_free(struct pinctrl *p, bool inlist); 760 761 static struct pinctrl *create_pinctrl(struct device *dev) 762 { 763 struct pinctrl *p; 764 const char *devname; 765 struct pinctrl_maps *maps_node; 766 int i; 767 struct pinctrl_map const *map; 768 int ret; 769 770 /* 771 * create the state cookie holder struct pinctrl for each 772 * mapping, this is what consumers will get when requesting 773 * a pin control handle with pinctrl_get() 774 */ 775 p = kzalloc(sizeof(*p), GFP_KERNEL); 776 if (p == NULL) { 777 dev_err(dev, "failed to alloc struct pinctrl\n"); 778 return ERR_PTR(-ENOMEM); 779 } 780 p->dev = dev; 781 INIT_LIST_HEAD(&p->states); 782 INIT_LIST_HEAD(&p->dt_maps); 783 784 ret = pinctrl_dt_to_map(p); 785 if (ret < 0) { 786 kfree(p); 787 return ERR_PTR(ret); 788 } 789 790 devname = dev_name(dev); 791 792 mutex_lock(&pinctrl_maps_mutex); 793 /* Iterate over the pin control maps to locate the right ones */ 794 for_each_maps(maps_node, i, map) { 795 /* Map must be for this device */ 796 if (strcmp(map->dev_name, devname)) 797 continue; 798 799 ret = add_setting(p, map); 800 /* 801 * At this point the adding of a setting may: 802 * 803 * - Defer, if the pinctrl device is not yet available 804 * - Fail, if the pinctrl device is not yet available, 805 * AND the setting is a hog. We cannot defer that, since 806 * the hog will kick in immediately after the device 807 * is registered. 808 * 809 * If the error returned was not -EPROBE_DEFER then we 810 * accumulate the errors to see if we end up with 811 * an -EPROBE_DEFER later, as that is the worst case. 812 */ 813 if (ret == -EPROBE_DEFER) { 814 pinctrl_free(p, false); 815 mutex_unlock(&pinctrl_maps_mutex); 816 return ERR_PTR(ret); 817 } 818 } 819 mutex_unlock(&pinctrl_maps_mutex); 820 821 if (ret < 0) { 822 /* If some other error than deferral occured, return here */ 823 pinctrl_free(p, false); 824 return ERR_PTR(ret); 825 } 826 827 kref_init(&p->users); 828 829 /* Add the pinctrl handle to the global list */ 830 list_add_tail(&p->node, &pinctrl_list); 831 832 return p; 833 } 834 835 /** 836 * pinctrl_get() - retrieves the pinctrl handle for a device 837 * @dev: the device to obtain the handle for 838 */ 839 struct pinctrl *pinctrl_get(struct device *dev) 840 { 841 struct pinctrl *p; 842 843 if (WARN_ON(!dev)) 844 return ERR_PTR(-EINVAL); 845 846 /* 847 * See if somebody else (such as the device core) has already 848 * obtained a handle to the pinctrl for this device. In that case, 849 * return another pointer to it. 850 */ 851 p = find_pinctrl(dev); 852 if (p != NULL) { 853 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 854 kref_get(&p->users); 855 return p; 856 } 857 858 return create_pinctrl(dev); 859 } 860 EXPORT_SYMBOL_GPL(pinctrl_get); 861 862 static void pinctrl_free_setting(bool disable_setting, 863 struct pinctrl_setting *setting) 864 { 865 switch (setting->type) { 866 case PIN_MAP_TYPE_MUX_GROUP: 867 if (disable_setting) 868 pinmux_disable_setting(setting); 869 pinmux_free_setting(setting); 870 break; 871 case PIN_MAP_TYPE_CONFIGS_PIN: 872 case PIN_MAP_TYPE_CONFIGS_GROUP: 873 pinconf_free_setting(setting); 874 break; 875 default: 876 break; 877 } 878 } 879 880 static void pinctrl_free(struct pinctrl *p, bool inlist) 881 { 882 struct pinctrl_state *state, *n1; 883 struct pinctrl_setting *setting, *n2; 884 885 mutex_lock(&pinctrl_list_mutex); 886 list_for_each_entry_safe(state, n1, &p->states, node) { 887 list_for_each_entry_safe(setting, n2, &state->settings, node) { 888 pinctrl_free_setting(state == p->state, setting); 889 list_del(&setting->node); 890 kfree(setting); 891 } 892 list_del(&state->node); 893 kfree(state); 894 } 895 896 pinctrl_dt_free_maps(p); 897 898 if (inlist) 899 list_del(&p->node); 900 kfree(p); 901 mutex_unlock(&pinctrl_list_mutex); 902 } 903 904 /** 905 * pinctrl_release() - release the pinctrl handle 906 * @kref: the kref in the pinctrl being released 907 */ 908 static void pinctrl_release(struct kref *kref) 909 { 910 struct pinctrl *p = container_of(kref, struct pinctrl, users); 911 912 pinctrl_free(p, true); 913 } 914 915 /** 916 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 917 * @p: the pinctrl handle to release 918 */ 919 void pinctrl_put(struct pinctrl *p) 920 { 921 kref_put(&p->users, pinctrl_release); 922 } 923 EXPORT_SYMBOL_GPL(pinctrl_put); 924 925 /** 926 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 927 * @p: the pinctrl handle to retrieve the state from 928 * @name: the state name to retrieve 929 */ 930 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 931 const char *name) 932 { 933 struct pinctrl_state *state; 934 935 state = find_state(p, name); 936 if (!state) { 937 if (pinctrl_dummy_state) { 938 /* create dummy state */ 939 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 940 name); 941 state = create_state(p, name); 942 } else 943 state = ERR_PTR(-ENODEV); 944 } 945 946 return state; 947 } 948 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 949 950 /** 951 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 952 * @p: the pinctrl handle for the device that requests configuration 953 * @state: the state handle to select/activate/program 954 */ 955 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 956 { 957 struct pinctrl_setting *setting, *setting2; 958 struct pinctrl_state *old_state = p->state; 959 int ret; 960 961 if (p->state == state) 962 return 0; 963 964 if (p->state) { 965 /* 966 * The set of groups with a mux configuration in the old state 967 * may not be identical to the set of groups with a mux setting 968 * in the new state. While this might be unusual, it's entirely 969 * possible for the "user"-supplied mapping table to be written 970 * that way. For each group that was configured in the old state 971 * but not in the new state, this code puts that group into a 972 * safe/disabled state. 973 */ 974 list_for_each_entry(setting, &p->state->settings, node) { 975 bool found = false; 976 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 977 continue; 978 list_for_each_entry(setting2, &state->settings, node) { 979 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 980 continue; 981 if (setting2->data.mux.group == 982 setting->data.mux.group) { 983 found = true; 984 break; 985 } 986 } 987 if (!found) 988 pinmux_disable_setting(setting); 989 } 990 } 991 992 p->state = NULL; 993 994 /* Apply all the settings for the new state */ 995 list_for_each_entry(setting, &state->settings, node) { 996 switch (setting->type) { 997 case PIN_MAP_TYPE_MUX_GROUP: 998 ret = pinmux_enable_setting(setting); 999 break; 1000 case PIN_MAP_TYPE_CONFIGS_PIN: 1001 case PIN_MAP_TYPE_CONFIGS_GROUP: 1002 ret = pinconf_apply_setting(setting); 1003 break; 1004 default: 1005 ret = -EINVAL; 1006 break; 1007 } 1008 1009 if (ret < 0) { 1010 goto unapply_new_state; 1011 } 1012 } 1013 1014 p->state = state; 1015 1016 return 0; 1017 1018 unapply_new_state: 1019 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1020 1021 list_for_each_entry(setting2, &state->settings, node) { 1022 if (&setting2->node == &setting->node) 1023 break; 1024 /* 1025 * All we can do here is pinmux_disable_setting. 1026 * That means that some pins are muxed differently now 1027 * than they were before applying the setting (We can't 1028 * "unmux a pin"!), but it's not a big deal since the pins 1029 * are free to be muxed by another apply_setting. 1030 */ 1031 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1032 pinmux_disable_setting(setting2); 1033 } 1034 1035 /* There's no infinite recursive loop here because p->state is NULL */ 1036 if (old_state) 1037 pinctrl_select_state(p, old_state); 1038 1039 return ret; 1040 } 1041 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1042 1043 static void devm_pinctrl_release(struct device *dev, void *res) 1044 { 1045 pinctrl_put(*(struct pinctrl **)res); 1046 } 1047 1048 /** 1049 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1050 * @dev: the device to obtain the handle for 1051 * 1052 * If there is a need to explicitly destroy the returned struct pinctrl, 1053 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1054 */ 1055 struct pinctrl *devm_pinctrl_get(struct device *dev) 1056 { 1057 struct pinctrl **ptr, *p; 1058 1059 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1060 if (!ptr) 1061 return ERR_PTR(-ENOMEM); 1062 1063 p = pinctrl_get(dev); 1064 if (!IS_ERR(p)) { 1065 *ptr = p; 1066 devres_add(dev, ptr); 1067 } else { 1068 devres_free(ptr); 1069 } 1070 1071 return p; 1072 } 1073 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1074 1075 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1076 { 1077 struct pinctrl **p = res; 1078 1079 return *p == data; 1080 } 1081 1082 /** 1083 * devm_pinctrl_put() - Resource managed pinctrl_put() 1084 * @p: the pinctrl handle to release 1085 * 1086 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1087 * this function will not need to be called and the resource management 1088 * code will ensure that the resource is freed. 1089 */ 1090 void devm_pinctrl_put(struct pinctrl *p) 1091 { 1092 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1093 devm_pinctrl_match, p)); 1094 } 1095 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1096 1097 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1098 bool dup, bool locked) 1099 { 1100 int i, ret; 1101 struct pinctrl_maps *maps_node; 1102 1103 pr_debug("add %d pinmux maps\n", num_maps); 1104 1105 /* First sanity check the new mapping */ 1106 for (i = 0; i < num_maps; i++) { 1107 if (!maps[i].dev_name) { 1108 pr_err("failed to register map %s (%d): no device given\n", 1109 maps[i].name, i); 1110 return -EINVAL; 1111 } 1112 1113 if (!maps[i].name) { 1114 pr_err("failed to register map %d: no map name given\n", 1115 i); 1116 return -EINVAL; 1117 } 1118 1119 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1120 !maps[i].ctrl_dev_name) { 1121 pr_err("failed to register map %s (%d): no pin control device given\n", 1122 maps[i].name, i); 1123 return -EINVAL; 1124 } 1125 1126 switch (maps[i].type) { 1127 case PIN_MAP_TYPE_DUMMY_STATE: 1128 break; 1129 case PIN_MAP_TYPE_MUX_GROUP: 1130 ret = pinmux_validate_map(&maps[i], i); 1131 if (ret < 0) 1132 return ret; 1133 break; 1134 case PIN_MAP_TYPE_CONFIGS_PIN: 1135 case PIN_MAP_TYPE_CONFIGS_GROUP: 1136 ret = pinconf_validate_map(&maps[i], i); 1137 if (ret < 0) 1138 return ret; 1139 break; 1140 default: 1141 pr_err("failed to register map %s (%d): invalid type given\n", 1142 maps[i].name, i); 1143 return -EINVAL; 1144 } 1145 } 1146 1147 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1148 if (!maps_node) { 1149 pr_err("failed to alloc struct pinctrl_maps\n"); 1150 return -ENOMEM; 1151 } 1152 1153 maps_node->num_maps = num_maps; 1154 if (dup) { 1155 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1156 GFP_KERNEL); 1157 if (!maps_node->maps) { 1158 pr_err("failed to duplicate mapping table\n"); 1159 kfree(maps_node); 1160 return -ENOMEM; 1161 } 1162 } else { 1163 maps_node->maps = maps; 1164 } 1165 1166 if (!locked) 1167 mutex_lock(&pinctrl_maps_mutex); 1168 list_add_tail(&maps_node->node, &pinctrl_maps); 1169 if (!locked) 1170 mutex_unlock(&pinctrl_maps_mutex); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * pinctrl_register_mappings() - register a set of pin controller mappings 1177 * @maps: the pincontrol mappings table to register. This should probably be 1178 * marked with __initdata so it can be discarded after boot. This 1179 * function will perform a shallow copy for the mapping entries. 1180 * @num_maps: the number of maps in the mapping table 1181 */ 1182 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1183 unsigned num_maps) 1184 { 1185 return pinctrl_register_map(maps, num_maps, true, false); 1186 } 1187 1188 void pinctrl_unregister_map(struct pinctrl_map const *map) 1189 { 1190 struct pinctrl_maps *maps_node; 1191 1192 mutex_lock(&pinctrl_maps_mutex); 1193 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1194 if (maps_node->maps == map) { 1195 list_del(&maps_node->node); 1196 kfree(maps_node); 1197 mutex_unlock(&pinctrl_maps_mutex); 1198 return; 1199 } 1200 } 1201 mutex_unlock(&pinctrl_maps_mutex); 1202 } 1203 1204 /** 1205 * pinctrl_force_sleep() - turn a given controller device into sleep state 1206 * @pctldev: pin controller device 1207 */ 1208 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1209 { 1210 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1211 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1212 return 0; 1213 } 1214 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1215 1216 /** 1217 * pinctrl_force_default() - turn a given controller device into default state 1218 * @pctldev: pin controller device 1219 */ 1220 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1221 { 1222 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1223 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1227 1228 #ifdef CONFIG_PM 1229 1230 /** 1231 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1232 * @dev: device to select default state for 1233 */ 1234 int pinctrl_pm_select_default_state(struct device *dev) 1235 { 1236 struct dev_pin_info *pins = dev->pins; 1237 int ret; 1238 1239 if (!pins) 1240 return 0; 1241 if (IS_ERR(pins->default_state)) 1242 return 0; /* No default state */ 1243 ret = pinctrl_select_state(pins->p, pins->default_state); 1244 if (ret) 1245 dev_err(dev, "failed to activate default pinctrl state\n"); 1246 return ret; 1247 } 1248 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1249 1250 /** 1251 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1252 * @dev: device to select sleep state for 1253 */ 1254 int pinctrl_pm_select_sleep_state(struct device *dev) 1255 { 1256 struct dev_pin_info *pins = dev->pins; 1257 int ret; 1258 1259 if (!pins) 1260 return 0; 1261 if (IS_ERR(pins->sleep_state)) 1262 return 0; /* No sleep state */ 1263 ret = pinctrl_select_state(pins->p, pins->sleep_state); 1264 if (ret) 1265 dev_err(dev, "failed to activate pinctrl sleep state\n"); 1266 return ret; 1267 } 1268 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1269 1270 /** 1271 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1272 * @dev: device to select idle state for 1273 */ 1274 int pinctrl_pm_select_idle_state(struct device *dev) 1275 { 1276 struct dev_pin_info *pins = dev->pins; 1277 int ret; 1278 1279 if (!pins) 1280 return 0; 1281 if (IS_ERR(pins->idle_state)) 1282 return 0; /* No idle state */ 1283 ret = pinctrl_select_state(pins->p, pins->idle_state); 1284 if (ret) 1285 dev_err(dev, "failed to activate pinctrl idle state\n"); 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1289 #endif 1290 1291 #ifdef CONFIG_DEBUG_FS 1292 1293 static int pinctrl_pins_show(struct seq_file *s, void *what) 1294 { 1295 struct pinctrl_dev *pctldev = s->private; 1296 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1297 unsigned i, pin; 1298 1299 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1300 1301 mutex_lock(&pctldev->mutex); 1302 1303 /* The pin number can be retrived from the pin controller descriptor */ 1304 for (i = 0; i < pctldev->desc->npins; i++) { 1305 struct pin_desc *desc; 1306 1307 pin = pctldev->desc->pins[i].number; 1308 desc = pin_desc_get(pctldev, pin); 1309 /* Pin space may be sparse */ 1310 if (desc == NULL) 1311 continue; 1312 1313 seq_printf(s, "pin %d (%s) ", pin, 1314 desc->name ? desc->name : "unnamed"); 1315 1316 /* Driver-specific info per pin */ 1317 if (ops->pin_dbg_show) 1318 ops->pin_dbg_show(pctldev, s, pin); 1319 1320 seq_puts(s, "\n"); 1321 } 1322 1323 mutex_unlock(&pctldev->mutex); 1324 1325 return 0; 1326 } 1327 1328 static int pinctrl_groups_show(struct seq_file *s, void *what) 1329 { 1330 struct pinctrl_dev *pctldev = s->private; 1331 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1332 unsigned ngroups, selector = 0; 1333 1334 mutex_lock(&pctldev->mutex); 1335 1336 ngroups = ops->get_groups_count(pctldev); 1337 1338 seq_puts(s, "registered pin groups:\n"); 1339 while (selector < ngroups) { 1340 const unsigned *pins; 1341 unsigned num_pins; 1342 const char *gname = ops->get_group_name(pctldev, selector); 1343 const char *pname; 1344 int ret; 1345 int i; 1346 1347 ret = ops->get_group_pins(pctldev, selector, 1348 &pins, &num_pins); 1349 if (ret) 1350 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1351 gname); 1352 else { 1353 seq_printf(s, "group: %s\n", gname); 1354 for (i = 0; i < num_pins; i++) { 1355 pname = pin_get_name(pctldev, pins[i]); 1356 if (WARN_ON(!pname)) { 1357 mutex_unlock(&pctldev->mutex); 1358 return -EINVAL; 1359 } 1360 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1361 } 1362 seq_puts(s, "\n"); 1363 } 1364 selector++; 1365 } 1366 1367 mutex_unlock(&pctldev->mutex); 1368 1369 return 0; 1370 } 1371 1372 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1373 { 1374 struct pinctrl_dev *pctldev = s->private; 1375 struct pinctrl_gpio_range *range = NULL; 1376 1377 seq_puts(s, "GPIO ranges handled:\n"); 1378 1379 mutex_lock(&pctldev->mutex); 1380 1381 /* Loop over the ranges */ 1382 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1383 if (range->pins) { 1384 int a; 1385 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1386 range->id, range->name, 1387 range->base, (range->base + range->npins - 1)); 1388 for (a = 0; a < range->npins - 1; a++) 1389 seq_printf(s, "%u, ", range->pins[a]); 1390 seq_printf(s, "%u}\n", range->pins[a]); 1391 } 1392 else 1393 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1394 range->id, range->name, 1395 range->base, (range->base + range->npins - 1), 1396 range->pin_base, 1397 (range->pin_base + range->npins - 1)); 1398 } 1399 1400 mutex_unlock(&pctldev->mutex); 1401 1402 return 0; 1403 } 1404 1405 static int pinctrl_devices_show(struct seq_file *s, void *what) 1406 { 1407 struct pinctrl_dev *pctldev; 1408 1409 seq_puts(s, "name [pinmux] [pinconf]\n"); 1410 1411 mutex_lock(&pinctrldev_list_mutex); 1412 1413 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1414 seq_printf(s, "%s ", pctldev->desc->name); 1415 if (pctldev->desc->pmxops) 1416 seq_puts(s, "yes "); 1417 else 1418 seq_puts(s, "no "); 1419 if (pctldev->desc->confops) 1420 seq_puts(s, "yes"); 1421 else 1422 seq_puts(s, "no"); 1423 seq_puts(s, "\n"); 1424 } 1425 1426 mutex_unlock(&pinctrldev_list_mutex); 1427 1428 return 0; 1429 } 1430 1431 static inline const char *map_type(enum pinctrl_map_type type) 1432 { 1433 static const char * const names[] = { 1434 "INVALID", 1435 "DUMMY_STATE", 1436 "MUX_GROUP", 1437 "CONFIGS_PIN", 1438 "CONFIGS_GROUP", 1439 }; 1440 1441 if (type >= ARRAY_SIZE(names)) 1442 return "UNKNOWN"; 1443 1444 return names[type]; 1445 } 1446 1447 static int pinctrl_maps_show(struct seq_file *s, void *what) 1448 { 1449 struct pinctrl_maps *maps_node; 1450 int i; 1451 struct pinctrl_map const *map; 1452 1453 seq_puts(s, "Pinctrl maps:\n"); 1454 1455 mutex_lock(&pinctrl_maps_mutex); 1456 for_each_maps(maps_node, i, map) { 1457 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1458 map->dev_name, map->name, map_type(map->type), 1459 map->type); 1460 1461 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1462 seq_printf(s, "controlling device %s\n", 1463 map->ctrl_dev_name); 1464 1465 switch (map->type) { 1466 case PIN_MAP_TYPE_MUX_GROUP: 1467 pinmux_show_map(s, map); 1468 break; 1469 case PIN_MAP_TYPE_CONFIGS_PIN: 1470 case PIN_MAP_TYPE_CONFIGS_GROUP: 1471 pinconf_show_map(s, map); 1472 break; 1473 default: 1474 break; 1475 } 1476 1477 seq_printf(s, "\n"); 1478 } 1479 mutex_unlock(&pinctrl_maps_mutex); 1480 1481 return 0; 1482 } 1483 1484 static int pinctrl_show(struct seq_file *s, void *what) 1485 { 1486 struct pinctrl *p; 1487 struct pinctrl_state *state; 1488 struct pinctrl_setting *setting; 1489 1490 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1491 1492 mutex_lock(&pinctrl_list_mutex); 1493 1494 list_for_each_entry(p, &pinctrl_list, node) { 1495 seq_printf(s, "device: %s current state: %s\n", 1496 dev_name(p->dev), 1497 p->state ? p->state->name : "none"); 1498 1499 list_for_each_entry(state, &p->states, node) { 1500 seq_printf(s, " state: %s\n", state->name); 1501 1502 list_for_each_entry(setting, &state->settings, node) { 1503 struct pinctrl_dev *pctldev = setting->pctldev; 1504 1505 seq_printf(s, " type: %s controller %s ", 1506 map_type(setting->type), 1507 pinctrl_dev_get_name(pctldev)); 1508 1509 switch (setting->type) { 1510 case PIN_MAP_TYPE_MUX_GROUP: 1511 pinmux_show_setting(s, setting); 1512 break; 1513 case PIN_MAP_TYPE_CONFIGS_PIN: 1514 case PIN_MAP_TYPE_CONFIGS_GROUP: 1515 pinconf_show_setting(s, setting); 1516 break; 1517 default: 1518 break; 1519 } 1520 } 1521 } 1522 } 1523 1524 mutex_unlock(&pinctrl_list_mutex); 1525 1526 return 0; 1527 } 1528 1529 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1530 { 1531 return single_open(file, pinctrl_pins_show, inode->i_private); 1532 } 1533 1534 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1535 { 1536 return single_open(file, pinctrl_groups_show, inode->i_private); 1537 } 1538 1539 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1540 { 1541 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1542 } 1543 1544 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1545 { 1546 return single_open(file, pinctrl_devices_show, NULL); 1547 } 1548 1549 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1550 { 1551 return single_open(file, pinctrl_maps_show, NULL); 1552 } 1553 1554 static int pinctrl_open(struct inode *inode, struct file *file) 1555 { 1556 return single_open(file, pinctrl_show, NULL); 1557 } 1558 1559 static const struct file_operations pinctrl_pins_ops = { 1560 .open = pinctrl_pins_open, 1561 .read = seq_read, 1562 .llseek = seq_lseek, 1563 .release = single_release, 1564 }; 1565 1566 static const struct file_operations pinctrl_groups_ops = { 1567 .open = pinctrl_groups_open, 1568 .read = seq_read, 1569 .llseek = seq_lseek, 1570 .release = single_release, 1571 }; 1572 1573 static const struct file_operations pinctrl_gpioranges_ops = { 1574 .open = pinctrl_gpioranges_open, 1575 .read = seq_read, 1576 .llseek = seq_lseek, 1577 .release = single_release, 1578 }; 1579 1580 static const struct file_operations pinctrl_devices_ops = { 1581 .open = pinctrl_devices_open, 1582 .read = seq_read, 1583 .llseek = seq_lseek, 1584 .release = single_release, 1585 }; 1586 1587 static const struct file_operations pinctrl_maps_ops = { 1588 .open = pinctrl_maps_open, 1589 .read = seq_read, 1590 .llseek = seq_lseek, 1591 .release = single_release, 1592 }; 1593 1594 static const struct file_operations pinctrl_ops = { 1595 .open = pinctrl_open, 1596 .read = seq_read, 1597 .llseek = seq_lseek, 1598 .release = single_release, 1599 }; 1600 1601 static struct dentry *debugfs_root; 1602 1603 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1604 { 1605 struct dentry *device_root; 1606 1607 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1608 debugfs_root); 1609 pctldev->device_root = device_root; 1610 1611 if (IS_ERR(device_root) || !device_root) { 1612 pr_warn("failed to create debugfs directory for %s\n", 1613 dev_name(pctldev->dev)); 1614 return; 1615 } 1616 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1617 device_root, pctldev, &pinctrl_pins_ops); 1618 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1619 device_root, pctldev, &pinctrl_groups_ops); 1620 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1621 device_root, pctldev, &pinctrl_gpioranges_ops); 1622 pinmux_init_device_debugfs(device_root, pctldev); 1623 pinconf_init_device_debugfs(device_root, pctldev); 1624 } 1625 1626 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1627 { 1628 debugfs_remove_recursive(pctldev->device_root); 1629 } 1630 1631 static void pinctrl_init_debugfs(void) 1632 { 1633 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1634 if (IS_ERR(debugfs_root) || !debugfs_root) { 1635 pr_warn("failed to create debugfs directory\n"); 1636 debugfs_root = NULL; 1637 return; 1638 } 1639 1640 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1641 debugfs_root, NULL, &pinctrl_devices_ops); 1642 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1643 debugfs_root, NULL, &pinctrl_maps_ops); 1644 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1645 debugfs_root, NULL, &pinctrl_ops); 1646 } 1647 1648 #else /* CONFIG_DEBUG_FS */ 1649 1650 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1651 { 1652 } 1653 1654 static void pinctrl_init_debugfs(void) 1655 { 1656 } 1657 1658 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1659 { 1660 } 1661 1662 #endif 1663 1664 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1665 { 1666 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1667 1668 if (!ops || 1669 !ops->get_groups_count || 1670 !ops->get_group_name || 1671 !ops->get_group_pins) 1672 return -EINVAL; 1673 1674 if (ops->dt_node_to_map && !ops->dt_free_map) 1675 return -EINVAL; 1676 1677 return 0; 1678 } 1679 1680 /** 1681 * pinctrl_register() - register a pin controller device 1682 * @pctldesc: descriptor for this pin controller 1683 * @dev: parent device for this pin controller 1684 * @driver_data: private pin controller data for this pin controller 1685 */ 1686 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1687 struct device *dev, void *driver_data) 1688 { 1689 struct pinctrl_dev *pctldev; 1690 int ret; 1691 1692 if (!pctldesc) 1693 return NULL; 1694 if (!pctldesc->name) 1695 return NULL; 1696 1697 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1698 if (pctldev == NULL) { 1699 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1700 return NULL; 1701 } 1702 1703 /* Initialize pin control device struct */ 1704 pctldev->owner = pctldesc->owner; 1705 pctldev->desc = pctldesc; 1706 pctldev->driver_data = driver_data; 1707 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1708 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1709 pctldev->dev = dev; 1710 mutex_init(&pctldev->mutex); 1711 1712 /* check core ops for sanity */ 1713 if (pinctrl_check_ops(pctldev)) { 1714 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1715 goto out_err; 1716 } 1717 1718 /* If we're implementing pinmuxing, check the ops for sanity */ 1719 if (pctldesc->pmxops) { 1720 if (pinmux_check_ops(pctldev)) 1721 goto out_err; 1722 } 1723 1724 /* If we're implementing pinconfig, check the ops for sanity */ 1725 if (pctldesc->confops) { 1726 if (pinconf_check_ops(pctldev)) 1727 goto out_err; 1728 } 1729 1730 /* Register all the pins */ 1731 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1732 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1733 if (ret) { 1734 dev_err(dev, "error during pin registration\n"); 1735 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1736 pctldesc->npins); 1737 goto out_err; 1738 } 1739 1740 mutex_lock(&pinctrldev_list_mutex); 1741 list_add_tail(&pctldev->node, &pinctrldev_list); 1742 mutex_unlock(&pinctrldev_list_mutex); 1743 1744 pctldev->p = pinctrl_get(pctldev->dev); 1745 1746 if (!IS_ERR(pctldev->p)) { 1747 pctldev->hog_default = 1748 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1749 if (IS_ERR(pctldev->hog_default)) { 1750 dev_dbg(dev, "failed to lookup the default state\n"); 1751 } else { 1752 if (pinctrl_select_state(pctldev->p, 1753 pctldev->hog_default)) 1754 dev_err(dev, 1755 "failed to select default state\n"); 1756 } 1757 1758 pctldev->hog_sleep = 1759 pinctrl_lookup_state(pctldev->p, 1760 PINCTRL_STATE_SLEEP); 1761 if (IS_ERR(pctldev->hog_sleep)) 1762 dev_dbg(dev, "failed to lookup the sleep state\n"); 1763 } 1764 1765 pinctrl_init_device_debugfs(pctldev); 1766 1767 return pctldev; 1768 1769 out_err: 1770 mutex_destroy(&pctldev->mutex); 1771 kfree(pctldev); 1772 return NULL; 1773 } 1774 EXPORT_SYMBOL_GPL(pinctrl_register); 1775 1776 /** 1777 * pinctrl_unregister() - unregister pinmux 1778 * @pctldev: pin controller to unregister 1779 * 1780 * Called by pinmux drivers to unregister a pinmux. 1781 */ 1782 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1783 { 1784 struct pinctrl_gpio_range *range, *n; 1785 if (pctldev == NULL) 1786 return; 1787 1788 mutex_lock(&pinctrldev_list_mutex); 1789 mutex_lock(&pctldev->mutex); 1790 1791 pinctrl_remove_device_debugfs(pctldev); 1792 1793 if (!IS_ERR(pctldev->p)) 1794 pinctrl_put(pctldev->p); 1795 1796 /* TODO: check that no pinmuxes are still active? */ 1797 list_del(&pctldev->node); 1798 /* Destroy descriptor tree */ 1799 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1800 pctldev->desc->npins); 1801 /* remove gpio ranges map */ 1802 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1803 list_del(&range->node); 1804 1805 mutex_unlock(&pctldev->mutex); 1806 mutex_destroy(&pctldev->mutex); 1807 kfree(pctldev); 1808 mutex_unlock(&pinctrldev_list_mutex); 1809 } 1810 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1811 1812 static int __init pinctrl_init(void) 1813 { 1814 pr_info("initialized pinctrl subsystem\n"); 1815 pinctrl_init_debugfs(); 1816 return 0; 1817 } 1818 1819 /* init early since many drivers really need to initialized pinmux early */ 1820 core_initcall(pinctrl_init); 1821