1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kref.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 29 #ifdef CONFIG_GPIOLIB 30 #include <asm-generic/gpio.h> 31 #endif 32 33 #include "core.h" 34 #include "devicetree.h" 35 #include "pinmux.h" 36 #include "pinconf.h" 37 38 39 static bool pinctrl_dummy_state; 40 41 /* Mutex taken to protect pinctrl_list */ 42 static DEFINE_MUTEX(pinctrl_list_mutex); 43 44 /* Mutex taken to protect pinctrl_maps */ 45 DEFINE_MUTEX(pinctrl_maps_mutex); 46 47 /* Mutex taken to protect pinctrldev_list */ 48 static DEFINE_MUTEX(pinctrldev_list_mutex); 49 50 /* Global list of pin control devices (struct pinctrl_dev) */ 51 static LIST_HEAD(pinctrldev_list); 52 53 /* List of pin controller handles (struct pinctrl) */ 54 static LIST_HEAD(pinctrl_list); 55 56 /* List of pinctrl maps (struct pinctrl_maps) */ 57 LIST_HEAD(pinctrl_maps); 58 59 60 /** 61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 62 * 63 * Usually this function is called by platforms without pinctrl driver support 64 * but run with some shared drivers using pinctrl APIs. 65 * After calling this function, the pinctrl core will return successfully 66 * with creating a dummy state for the driver to keep going smoothly. 67 */ 68 void pinctrl_provide_dummies(void) 69 { 70 pinctrl_dummy_state = true; 71 } 72 73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 74 { 75 /* We're not allowed to register devices without name */ 76 return pctldev->desc->name; 77 } 78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 79 80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 81 { 82 return dev_name(pctldev->dev); 83 } 84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 85 86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 87 { 88 return pctldev->driver_data; 89 } 90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 91 92 /** 93 * get_pinctrl_dev_from_devname() - look up pin controller device 94 * @devname: the name of a device instance, as returned by dev_name() 95 * 96 * Looks up a pin control device matching a certain device name or pure device 97 * pointer, the pure device pointer will take precedence. 98 */ 99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 100 { 101 struct pinctrl_dev *pctldev; 102 103 if (!devname) 104 return NULL; 105 106 mutex_lock(&pinctrldev_list_mutex); 107 108 list_for_each_entry(pctldev, &pinctrldev_list, node) { 109 if (!strcmp(dev_name(pctldev->dev), devname)) { 110 /* Matched on device name */ 111 mutex_unlock(&pinctrldev_list_mutex); 112 return pctldev; 113 } 114 } 115 116 mutex_unlock(&pinctrldev_list_mutex); 117 118 return NULL; 119 } 120 121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 122 { 123 struct pinctrl_dev *pctldev; 124 125 mutex_lock(&pinctrldev_list_mutex); 126 127 list_for_each_entry(pctldev, &pinctrldev_list, node) 128 if (pctldev->dev->of_node == np) { 129 mutex_unlock(&pinctrldev_list_mutex); 130 return pctldev; 131 } 132 133 mutex_unlock(&pinctrldev_list_mutex); 134 135 return NULL; 136 } 137 138 /** 139 * pin_get_from_name() - look up a pin number from a name 140 * @pctldev: the pin control device to lookup the pin on 141 * @name: the name of the pin to look up 142 */ 143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 144 { 145 unsigned i, pin; 146 147 /* The pin number can be retrived from the pin controller descriptor */ 148 for (i = 0; i < pctldev->desc->npins; i++) { 149 struct pin_desc *desc; 150 151 pin = pctldev->desc->pins[i].number; 152 desc = pin_desc_get(pctldev, pin); 153 /* Pin space may be sparse */ 154 if (desc && !strcmp(name, desc->name)) 155 return pin; 156 } 157 158 return -EINVAL; 159 } 160 161 /** 162 * pin_get_name_from_id() - look up a pin name from a pin id 163 * @pctldev: the pin control device to lookup the pin on 164 * @name: the name of the pin to look up 165 */ 166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 167 { 168 const struct pin_desc *desc; 169 170 desc = pin_desc_get(pctldev, pin); 171 if (!desc) { 172 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 173 pin); 174 return NULL; 175 } 176 177 return desc->name; 178 } 179 180 /* Deletes a range of pin descriptors */ 181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 182 const struct pinctrl_pin_desc *pins, 183 unsigned num_pins) 184 { 185 int i; 186 187 for (i = 0; i < num_pins; i++) { 188 struct pin_desc *pindesc; 189 190 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 191 pins[i].number); 192 if (pindesc) { 193 radix_tree_delete(&pctldev->pin_desc_tree, 194 pins[i].number); 195 if (pindesc->dynamic_name) 196 kfree(pindesc->name); 197 } 198 kfree(pindesc); 199 } 200 } 201 202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 203 const struct pinctrl_pin_desc *pin) 204 { 205 struct pin_desc *pindesc; 206 207 pindesc = pin_desc_get(pctldev, pin->number); 208 if (pindesc) { 209 dev_err(pctldev->dev, "pin %d already registered\n", 210 pin->number); 211 return -EINVAL; 212 } 213 214 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 215 if (!pindesc) 216 return -ENOMEM; 217 218 /* Set owner */ 219 pindesc->pctldev = pctldev; 220 221 /* Copy basic pin info */ 222 if (pin->name) { 223 pindesc->name = pin->name; 224 } else { 225 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 226 if (!pindesc->name) { 227 kfree(pindesc); 228 return -ENOMEM; 229 } 230 pindesc->dynamic_name = true; 231 } 232 233 pindesc->drv_data = pin->drv_data; 234 235 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 236 pr_debug("registered pin %d (%s) on %s\n", 237 pin->number, pindesc->name, pctldev->desc->name); 238 return 0; 239 } 240 241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 242 const struct pinctrl_pin_desc *pins, 243 unsigned num_descs) 244 { 245 unsigned i; 246 int ret = 0; 247 248 for (i = 0; i < num_descs; i++) { 249 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 250 if (ret) 251 return ret; 252 } 253 254 return 0; 255 } 256 257 /** 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation 259 * @range: GPIO range used for the translation 260 * @gpio: gpio pin to translate to a pin number 261 * 262 * Finds the pin number for a given GPIO using the specified GPIO range 263 * as a base for translation. The distinction between linear GPIO ranges 264 * and pin list based GPIO ranges is managed correctly by this function. 265 * 266 * This function assumes the gpio is part of the specified GPIO range, use 267 * only after making sure this is the case (e.g. by calling it on the 268 * result of successful pinctrl_get_device_gpio_range calls)! 269 */ 270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 271 unsigned int gpio) 272 { 273 unsigned int offset = gpio - range->base; 274 if (range->pins) 275 return range->pins[offset]; 276 else 277 return range->pin_base + offset; 278 } 279 280 /** 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 282 * @pctldev: pin controller device to check 283 * @gpio: gpio pin to check taken from the global GPIO pin space 284 * 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin 286 * controller, return the range or NULL 287 */ 288 static struct pinctrl_gpio_range * 289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 290 { 291 struct pinctrl_gpio_range *range; 292 293 mutex_lock(&pctldev->mutex); 294 /* Loop over the ranges */ 295 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 296 /* Check if we're in the valid range */ 297 if (gpio >= range->base && 298 gpio < range->base + range->npins) { 299 mutex_unlock(&pctldev->mutex); 300 return range; 301 } 302 } 303 mutex_unlock(&pctldev->mutex); 304 return NULL; 305 } 306 307 /** 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 309 * the same GPIO chip are in range 310 * @gpio: gpio pin to check taken from the global GPIO pin space 311 * 312 * This function is complement of pinctrl_match_gpio_range(). If the return 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 315 * of the same GPIO chip don't have back-end pinctrl interface. 316 * If the return value is true, it means that pinctrl device is ready & the 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 318 * is false, it means that pinctrl device may not be ready. 319 */ 320 #ifdef CONFIG_GPIOLIB 321 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 322 { 323 struct pinctrl_dev *pctldev; 324 struct pinctrl_gpio_range *range = NULL; 325 struct gpio_chip *chip = gpio_to_chip(gpio); 326 327 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 328 return false; 329 330 mutex_lock(&pinctrldev_list_mutex); 331 332 /* Loop over the pin controllers */ 333 list_for_each_entry(pctldev, &pinctrldev_list, node) { 334 /* Loop over the ranges */ 335 mutex_lock(&pctldev->mutex); 336 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 337 /* Check if any gpio range overlapped with gpio chip */ 338 if (range->base + range->npins - 1 < chip->base || 339 range->base > chip->base + chip->ngpio - 1) 340 continue; 341 mutex_unlock(&pctldev->mutex); 342 mutex_unlock(&pinctrldev_list_mutex); 343 return true; 344 } 345 mutex_unlock(&pctldev->mutex); 346 } 347 348 mutex_unlock(&pinctrldev_list_mutex); 349 350 return false; 351 } 352 #else 353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 354 #endif 355 356 /** 357 * pinctrl_get_device_gpio_range() - find device for GPIO range 358 * @gpio: the pin to locate the pin controller for 359 * @outdev: the pin control device if found 360 * @outrange: the GPIO range if found 361 * 362 * Find the pin controller handling a certain GPIO pin from the pinspace of 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 365 * may still have not been registered. 366 */ 367 static int pinctrl_get_device_gpio_range(unsigned gpio, 368 struct pinctrl_dev **outdev, 369 struct pinctrl_gpio_range **outrange) 370 { 371 struct pinctrl_dev *pctldev; 372 373 mutex_lock(&pinctrldev_list_mutex); 374 375 /* Loop over the pin controllers */ 376 list_for_each_entry(pctldev, &pinctrldev_list, node) { 377 struct pinctrl_gpio_range *range; 378 379 range = pinctrl_match_gpio_range(pctldev, gpio); 380 if (range) { 381 *outdev = pctldev; 382 *outrange = range; 383 mutex_unlock(&pinctrldev_list_mutex); 384 return 0; 385 } 386 } 387 388 mutex_unlock(&pinctrldev_list_mutex); 389 390 return -EPROBE_DEFER; 391 } 392 393 /** 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller 395 * @pctldev: pin controller device to add the range to 396 * @range: the GPIO range to add 397 * 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call 399 * this to register handled ranges after registering your pin controller. 400 */ 401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 402 struct pinctrl_gpio_range *range) 403 { 404 mutex_lock(&pctldev->mutex); 405 list_add_tail(&range->node, &pctldev->gpio_ranges); 406 mutex_unlock(&pctldev->mutex); 407 } 408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 409 410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 411 struct pinctrl_gpio_range *ranges, 412 unsigned nranges) 413 { 414 int i; 415 416 for (i = 0; i < nranges; i++) 417 pinctrl_add_gpio_range(pctldev, &ranges[i]); 418 } 419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 420 421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 422 struct pinctrl_gpio_range *range) 423 { 424 struct pinctrl_dev *pctldev; 425 426 pctldev = get_pinctrl_dev_from_devname(devname); 427 428 /* 429 * If we can't find this device, let's assume that is because 430 * it has not probed yet, so the driver trying to register this 431 * range need to defer probing. 432 */ 433 if (!pctldev) { 434 return ERR_PTR(-EPROBE_DEFER); 435 } 436 pinctrl_add_gpio_range(pctldev, range); 437 438 return pctldev; 439 } 440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 441 442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 443 const unsigned **pins, unsigned *num_pins) 444 { 445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 446 int gs; 447 448 if (!pctlops->get_group_pins) 449 return -EINVAL; 450 451 gs = pinctrl_get_group_selector(pctldev, pin_group); 452 if (gs < 0) 453 return gs; 454 455 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 458 459 struct pinctrl_gpio_range * 460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 461 unsigned int pin) 462 { 463 struct pinctrl_gpio_range *range; 464 465 /* Loop over the ranges */ 466 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 467 /* Check if we're in the valid range */ 468 if (range->pins) { 469 int a; 470 for (a = 0; a < range->npins; a++) { 471 if (range->pins[a] == pin) 472 return range; 473 } 474 } else if (pin >= range->pin_base && 475 pin < range->pin_base + range->npins) 476 return range; 477 } 478 479 return NULL; 480 } 481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 482 483 /** 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 485 * @pctldev: the pin controller device to look in 486 * @pin: a controller-local number to find the range for 487 */ 488 struct pinctrl_gpio_range * 489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 490 unsigned int pin) 491 { 492 struct pinctrl_gpio_range *range; 493 494 mutex_lock(&pctldev->mutex); 495 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 496 mutex_unlock(&pctldev->mutex); 497 498 return range; 499 } 500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 501 502 /** 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 504 * @pctldev: pin controller device to remove the range from 505 * @range: the GPIO range to remove 506 */ 507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 508 struct pinctrl_gpio_range *range) 509 { 510 mutex_lock(&pctldev->mutex); 511 list_del(&range->node); 512 mutex_unlock(&pctldev->mutex); 513 } 514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 515 516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 517 518 /** 519 * pinctrl_generic_get_group_count() - returns the number of pin groups 520 * @pctldev: pin controller device 521 */ 522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 523 { 524 return pctldev->num_groups; 525 } 526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 527 528 /** 529 * pinctrl_generic_get_group_name() - returns the name of a pin group 530 * @pctldev: pin controller device 531 * @selector: group number 532 */ 533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 534 unsigned int selector) 535 { 536 struct group_desc *group; 537 538 group = radix_tree_lookup(&pctldev->pin_group_tree, 539 selector); 540 if (!group) 541 return NULL; 542 543 return group->name; 544 } 545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 546 547 /** 548 * pinctrl_generic_get_group_pins() - gets the pin group pins 549 * @pctldev: pin controller device 550 * @selector: group number 551 * @pins: pins in the group 552 * @num_pins: number of pins in the group 553 */ 554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 555 unsigned int selector, 556 const unsigned int **pins, 557 unsigned int *num_pins) 558 { 559 struct group_desc *group; 560 561 group = radix_tree_lookup(&pctldev->pin_group_tree, 562 selector); 563 if (!group) { 564 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 565 __func__, selector); 566 return -EINVAL; 567 } 568 569 *pins = group->pins; 570 *num_pins = group->num_pins; 571 572 return 0; 573 } 574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 575 576 /** 577 * pinctrl_generic_get_group() - returns a pin group based on the number 578 * @pctldev: pin controller device 579 * @gselector: group number 580 */ 581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 582 unsigned int selector) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) 589 return NULL; 590 591 return group; 592 } 593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 594 595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 596 const char *function) 597 { 598 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 599 int ngroups = ops->get_groups_count(pctldev); 600 int selector = 0; 601 602 /* See if this pctldev has this group */ 603 while (selector < ngroups) { 604 const char *gname = ops->get_group_name(pctldev, selector); 605 606 if (gname && !strcmp(function, gname)) 607 return selector; 608 609 selector++; 610 } 611 612 return -EINVAL; 613 } 614 615 /** 616 * pinctrl_generic_add_group() - adds a new pin group 617 * @pctldev: pin controller device 618 * @name: name of the pin group 619 * @pins: pins in the pin group 620 * @num_pins: number of pins in the pin group 621 * @data: pin controller driver specific data 622 * 623 * Note that the caller must take care of locking. 624 */ 625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 626 int *pins, int num_pins, void *data) 627 { 628 struct group_desc *group; 629 int selector; 630 631 if (!name) 632 return -EINVAL; 633 634 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 635 if (selector >= 0) 636 return selector; 637 638 selector = pctldev->num_groups; 639 640 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 641 if (!group) 642 return -ENOMEM; 643 644 group->name = name; 645 group->pins = pins; 646 group->num_pins = num_pins; 647 group->data = data; 648 649 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 650 651 pctldev->num_groups++; 652 653 return selector; 654 } 655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 656 657 /** 658 * pinctrl_generic_remove_group() - removes a numbered pin group 659 * @pctldev: pin controller device 660 * @selector: group number 661 * 662 * Note that the caller must take care of locking. 663 */ 664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 665 unsigned int selector) 666 { 667 struct group_desc *group; 668 669 group = radix_tree_lookup(&pctldev->pin_group_tree, 670 selector); 671 if (!group) 672 return -ENOENT; 673 674 radix_tree_delete(&pctldev->pin_group_tree, selector); 675 devm_kfree(pctldev->dev, group); 676 677 pctldev->num_groups--; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 682 683 /** 684 * pinctrl_generic_free_groups() - removes all pin groups 685 * @pctldev: pin controller device 686 * 687 * Note that the caller must take care of locking. The pinctrl groups 688 * are allocated with devm_kzalloc() so no need to free them here. 689 */ 690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 691 { 692 struct radix_tree_iter iter; 693 void __rcu **slot; 694 695 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 696 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 697 698 pctldev->num_groups = 0; 699 } 700 701 #else 702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 703 { 704 } 705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 706 707 /** 708 * pinctrl_get_group_selector() - returns the group selector for a group 709 * @pctldev: the pin controller handling the group 710 * @pin_group: the pin group to look up 711 */ 712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 713 const char *pin_group) 714 { 715 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 716 unsigned ngroups = pctlops->get_groups_count(pctldev); 717 unsigned group_selector = 0; 718 719 while (group_selector < ngroups) { 720 const char *gname = pctlops->get_group_name(pctldev, 721 group_selector); 722 if (gname && !strcmp(gname, pin_group)) { 723 dev_dbg(pctldev->dev, 724 "found group selector %u for %s\n", 725 group_selector, 726 pin_group); 727 return group_selector; 728 } 729 730 group_selector++; 731 } 732 733 dev_err(pctldev->dev, "does not have pin group %s\n", 734 pin_group); 735 736 return -EINVAL; 737 } 738 739 /** 740 * pinctrl_gpio_request() - request a single pin to be used as GPIO 741 * @gpio: the GPIO pin number from the GPIO subsystem number space 742 * 743 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 744 * as part of their gpio_request() semantics, platforms and individual drivers 745 * shall *NOT* request GPIO pins to be muxed in. 746 */ 747 int pinctrl_gpio_request(unsigned gpio) 748 { 749 struct pinctrl_dev *pctldev; 750 struct pinctrl_gpio_range *range; 751 int ret; 752 int pin; 753 754 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 755 if (ret) { 756 if (pinctrl_ready_for_gpio_range(gpio)) 757 ret = 0; 758 return ret; 759 } 760 761 mutex_lock(&pctldev->mutex); 762 763 /* Convert to the pin controllers number space */ 764 pin = gpio_to_pin(range, gpio); 765 766 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 767 768 mutex_unlock(&pctldev->mutex); 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 773 774 /** 775 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 776 * @gpio: the GPIO pin number from the GPIO subsystem number space 777 * 778 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 779 * as part of their gpio_free() semantics, platforms and individual drivers 780 * shall *NOT* request GPIO pins to be muxed out. 781 */ 782 void pinctrl_gpio_free(unsigned gpio) 783 { 784 struct pinctrl_dev *pctldev; 785 struct pinctrl_gpio_range *range; 786 int ret; 787 int pin; 788 789 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 790 if (ret) { 791 return; 792 } 793 mutex_lock(&pctldev->mutex); 794 795 /* Convert to the pin controllers number space */ 796 pin = gpio_to_pin(range, gpio); 797 798 pinmux_free_gpio(pctldev, pin, range); 799 800 mutex_unlock(&pctldev->mutex); 801 } 802 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 803 804 static int pinctrl_gpio_direction(unsigned gpio, bool input) 805 { 806 struct pinctrl_dev *pctldev; 807 struct pinctrl_gpio_range *range; 808 int ret; 809 int pin; 810 811 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 812 if (ret) { 813 return ret; 814 } 815 816 mutex_lock(&pctldev->mutex); 817 818 /* Convert to the pin controllers number space */ 819 pin = gpio_to_pin(range, gpio); 820 ret = pinmux_gpio_direction(pctldev, range, pin, input); 821 822 mutex_unlock(&pctldev->mutex); 823 824 return ret; 825 } 826 827 /** 828 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 829 * @gpio: the GPIO pin number from the GPIO subsystem number space 830 * 831 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 832 * as part of their gpio_direction_input() semantics, platforms and individual 833 * drivers shall *NOT* touch pin control GPIO calls. 834 */ 835 int pinctrl_gpio_direction_input(unsigned gpio) 836 { 837 return pinctrl_gpio_direction(gpio, true); 838 } 839 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 840 841 /** 842 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 843 * @gpio: the GPIO pin number from the GPIO subsystem number space 844 * 845 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 846 * as part of their gpio_direction_output() semantics, platforms and individual 847 * drivers shall *NOT* touch pin control GPIO calls. 848 */ 849 int pinctrl_gpio_direction_output(unsigned gpio) 850 { 851 return pinctrl_gpio_direction(gpio, false); 852 } 853 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 854 855 /** 856 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 857 * @gpio: the GPIO pin number from the GPIO subsystem number space 858 * @config: the configuration to apply to the GPIO 859 * 860 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 861 * they need to call the underlying pin controller to change GPIO config 862 * (for example set debounce time). 863 */ 864 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 865 { 866 unsigned long configs[] = { config }; 867 struct pinctrl_gpio_range *range; 868 struct pinctrl_dev *pctldev; 869 int ret, pin; 870 871 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 872 if (ret) 873 return ret; 874 875 mutex_lock(&pctldev->mutex); 876 pin = gpio_to_pin(range, gpio); 877 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 878 mutex_unlock(&pctldev->mutex); 879 880 return ret; 881 } 882 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 883 884 static struct pinctrl_state *find_state(struct pinctrl *p, 885 const char *name) 886 { 887 struct pinctrl_state *state; 888 889 list_for_each_entry(state, &p->states, node) 890 if (!strcmp(state->name, name)) 891 return state; 892 893 return NULL; 894 } 895 896 static struct pinctrl_state *create_state(struct pinctrl *p, 897 const char *name) 898 { 899 struct pinctrl_state *state; 900 901 state = kzalloc(sizeof(*state), GFP_KERNEL); 902 if (!state) 903 return ERR_PTR(-ENOMEM); 904 905 state->name = name; 906 INIT_LIST_HEAD(&state->settings); 907 908 list_add_tail(&state->node, &p->states); 909 910 return state; 911 } 912 913 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 914 const struct pinctrl_map *map) 915 { 916 struct pinctrl_state *state; 917 struct pinctrl_setting *setting; 918 int ret; 919 920 state = find_state(p, map->name); 921 if (!state) 922 state = create_state(p, map->name); 923 if (IS_ERR(state)) 924 return PTR_ERR(state); 925 926 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 927 return 0; 928 929 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 930 if (!setting) 931 return -ENOMEM; 932 933 setting->type = map->type; 934 935 if (pctldev) 936 setting->pctldev = pctldev; 937 else 938 setting->pctldev = 939 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 940 if (!setting->pctldev) { 941 kfree(setting); 942 /* Do not defer probing of hogs (circular loop) */ 943 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 944 return -ENODEV; 945 /* 946 * OK let us guess that the driver is not there yet, and 947 * let's defer obtaining this pinctrl handle to later... 948 */ 949 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 950 map->ctrl_dev_name); 951 return -EPROBE_DEFER; 952 } 953 954 setting->dev_name = map->dev_name; 955 956 switch (map->type) { 957 case PIN_MAP_TYPE_MUX_GROUP: 958 ret = pinmux_map_to_setting(map, setting); 959 break; 960 case PIN_MAP_TYPE_CONFIGS_PIN: 961 case PIN_MAP_TYPE_CONFIGS_GROUP: 962 ret = pinconf_map_to_setting(map, setting); 963 break; 964 default: 965 ret = -EINVAL; 966 break; 967 } 968 if (ret < 0) { 969 kfree(setting); 970 return ret; 971 } 972 973 list_add_tail(&setting->node, &state->settings); 974 975 return 0; 976 } 977 978 static struct pinctrl *find_pinctrl(struct device *dev) 979 { 980 struct pinctrl *p; 981 982 mutex_lock(&pinctrl_list_mutex); 983 list_for_each_entry(p, &pinctrl_list, node) 984 if (p->dev == dev) { 985 mutex_unlock(&pinctrl_list_mutex); 986 return p; 987 } 988 989 mutex_unlock(&pinctrl_list_mutex); 990 return NULL; 991 } 992 993 static void pinctrl_free(struct pinctrl *p, bool inlist); 994 995 static struct pinctrl *create_pinctrl(struct device *dev, 996 struct pinctrl_dev *pctldev) 997 { 998 struct pinctrl *p; 999 const char *devname; 1000 struct pinctrl_maps *maps_node; 1001 int i; 1002 const struct pinctrl_map *map; 1003 int ret; 1004 1005 /* 1006 * create the state cookie holder struct pinctrl for each 1007 * mapping, this is what consumers will get when requesting 1008 * a pin control handle with pinctrl_get() 1009 */ 1010 p = kzalloc(sizeof(*p), GFP_KERNEL); 1011 if (!p) 1012 return ERR_PTR(-ENOMEM); 1013 p->dev = dev; 1014 INIT_LIST_HEAD(&p->states); 1015 INIT_LIST_HEAD(&p->dt_maps); 1016 1017 ret = pinctrl_dt_to_map(p, pctldev); 1018 if (ret < 0) { 1019 kfree(p); 1020 return ERR_PTR(ret); 1021 } 1022 1023 devname = dev_name(dev); 1024 1025 mutex_lock(&pinctrl_maps_mutex); 1026 /* Iterate over the pin control maps to locate the right ones */ 1027 for_each_maps(maps_node, i, map) { 1028 /* Map must be for this device */ 1029 if (strcmp(map->dev_name, devname)) 1030 continue; 1031 /* 1032 * If pctldev is not null, we are claiming hog for it, 1033 * that means, setting that is served by pctldev by itself. 1034 * 1035 * Thus we must skip map that is for this device but is served 1036 * by other device. 1037 */ 1038 if (pctldev && 1039 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1040 continue; 1041 1042 ret = add_setting(p, pctldev, map); 1043 /* 1044 * At this point the adding of a setting may: 1045 * 1046 * - Defer, if the pinctrl device is not yet available 1047 * - Fail, if the pinctrl device is not yet available, 1048 * AND the setting is a hog. We cannot defer that, since 1049 * the hog will kick in immediately after the device 1050 * is registered. 1051 * 1052 * If the error returned was not -EPROBE_DEFER then we 1053 * accumulate the errors to see if we end up with 1054 * an -EPROBE_DEFER later, as that is the worst case. 1055 */ 1056 if (ret == -EPROBE_DEFER) { 1057 pinctrl_free(p, false); 1058 mutex_unlock(&pinctrl_maps_mutex); 1059 return ERR_PTR(ret); 1060 } 1061 } 1062 mutex_unlock(&pinctrl_maps_mutex); 1063 1064 if (ret < 0) { 1065 /* If some other error than deferral occurred, return here */ 1066 pinctrl_free(p, false); 1067 return ERR_PTR(ret); 1068 } 1069 1070 kref_init(&p->users); 1071 1072 /* Add the pinctrl handle to the global list */ 1073 mutex_lock(&pinctrl_list_mutex); 1074 list_add_tail(&p->node, &pinctrl_list); 1075 mutex_unlock(&pinctrl_list_mutex); 1076 1077 return p; 1078 } 1079 1080 /** 1081 * pinctrl_get() - retrieves the pinctrl handle for a device 1082 * @dev: the device to obtain the handle for 1083 */ 1084 struct pinctrl *pinctrl_get(struct device *dev) 1085 { 1086 struct pinctrl *p; 1087 1088 if (WARN_ON(!dev)) 1089 return ERR_PTR(-EINVAL); 1090 1091 /* 1092 * See if somebody else (such as the device core) has already 1093 * obtained a handle to the pinctrl for this device. In that case, 1094 * return another pointer to it. 1095 */ 1096 p = find_pinctrl(dev); 1097 if (p) { 1098 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1099 kref_get(&p->users); 1100 return p; 1101 } 1102 1103 return create_pinctrl(dev, NULL); 1104 } 1105 EXPORT_SYMBOL_GPL(pinctrl_get); 1106 1107 static void pinctrl_free_setting(bool disable_setting, 1108 struct pinctrl_setting *setting) 1109 { 1110 switch (setting->type) { 1111 case PIN_MAP_TYPE_MUX_GROUP: 1112 if (disable_setting) 1113 pinmux_disable_setting(setting); 1114 pinmux_free_setting(setting); 1115 break; 1116 case PIN_MAP_TYPE_CONFIGS_PIN: 1117 case PIN_MAP_TYPE_CONFIGS_GROUP: 1118 pinconf_free_setting(setting); 1119 break; 1120 default: 1121 break; 1122 } 1123 } 1124 1125 static void pinctrl_free(struct pinctrl *p, bool inlist) 1126 { 1127 struct pinctrl_state *state, *n1; 1128 struct pinctrl_setting *setting, *n2; 1129 1130 mutex_lock(&pinctrl_list_mutex); 1131 list_for_each_entry_safe(state, n1, &p->states, node) { 1132 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1133 pinctrl_free_setting(state == p->state, setting); 1134 list_del(&setting->node); 1135 kfree(setting); 1136 } 1137 list_del(&state->node); 1138 kfree(state); 1139 } 1140 1141 pinctrl_dt_free_maps(p); 1142 1143 if (inlist) 1144 list_del(&p->node); 1145 kfree(p); 1146 mutex_unlock(&pinctrl_list_mutex); 1147 } 1148 1149 /** 1150 * pinctrl_release() - release the pinctrl handle 1151 * @kref: the kref in the pinctrl being released 1152 */ 1153 static void pinctrl_release(struct kref *kref) 1154 { 1155 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1156 1157 pinctrl_free(p, true); 1158 } 1159 1160 /** 1161 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1162 * @p: the pinctrl handle to release 1163 */ 1164 void pinctrl_put(struct pinctrl *p) 1165 { 1166 kref_put(&p->users, pinctrl_release); 1167 } 1168 EXPORT_SYMBOL_GPL(pinctrl_put); 1169 1170 /** 1171 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1172 * @p: the pinctrl handle to retrieve the state from 1173 * @name: the state name to retrieve 1174 */ 1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1176 const char *name) 1177 { 1178 struct pinctrl_state *state; 1179 1180 state = find_state(p, name); 1181 if (!state) { 1182 if (pinctrl_dummy_state) { 1183 /* create dummy state */ 1184 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1185 name); 1186 state = create_state(p, name); 1187 } else 1188 state = ERR_PTR(-ENODEV); 1189 } 1190 1191 return state; 1192 } 1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1194 1195 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1196 struct device *consumer) 1197 { 1198 if (pctldev->desc->link_consumers) 1199 device_link_add(consumer, pctldev->dev, 1200 DL_FLAG_PM_RUNTIME | 1201 DL_FLAG_AUTOREMOVE_CONSUMER); 1202 } 1203 1204 /** 1205 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1206 * @p: the pinctrl handle for the device that requests configuration 1207 * @state: the state handle to select/activate/program 1208 */ 1209 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1210 { 1211 struct pinctrl_setting *setting, *setting2; 1212 struct pinctrl_state *old_state = p->state; 1213 int ret; 1214 1215 if (p->state) { 1216 /* 1217 * For each pinmux setting in the old state, forget SW's record 1218 * of mux owner for that pingroup. Any pingroups which are 1219 * still owned by the new state will be re-acquired by the call 1220 * to pinmux_enable_setting() in the loop below. 1221 */ 1222 list_for_each_entry(setting, &p->state->settings, node) { 1223 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1224 continue; 1225 pinmux_disable_setting(setting); 1226 } 1227 } 1228 1229 p->state = NULL; 1230 1231 /* Apply all the settings for the new state */ 1232 list_for_each_entry(setting, &state->settings, node) { 1233 switch (setting->type) { 1234 case PIN_MAP_TYPE_MUX_GROUP: 1235 ret = pinmux_enable_setting(setting); 1236 break; 1237 case PIN_MAP_TYPE_CONFIGS_PIN: 1238 case PIN_MAP_TYPE_CONFIGS_GROUP: 1239 ret = pinconf_apply_setting(setting); 1240 break; 1241 default: 1242 ret = -EINVAL; 1243 break; 1244 } 1245 1246 if (ret < 0) { 1247 goto unapply_new_state; 1248 } 1249 1250 /* Do not link hogs (circular dependency) */ 1251 if (p != setting->pctldev->p) 1252 pinctrl_link_add(setting->pctldev, p->dev); 1253 } 1254 1255 p->state = state; 1256 1257 return 0; 1258 1259 unapply_new_state: 1260 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1261 1262 list_for_each_entry(setting2, &state->settings, node) { 1263 if (&setting2->node == &setting->node) 1264 break; 1265 /* 1266 * All we can do here is pinmux_disable_setting. 1267 * That means that some pins are muxed differently now 1268 * than they were before applying the setting (We can't 1269 * "unmux a pin"!), but it's not a big deal since the pins 1270 * are free to be muxed by another apply_setting. 1271 */ 1272 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1273 pinmux_disable_setting(setting2); 1274 } 1275 1276 /* There's no infinite recursive loop here because p->state is NULL */ 1277 if (old_state) 1278 pinctrl_select_state(p, old_state); 1279 1280 return ret; 1281 } 1282 1283 /** 1284 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1285 * @p: the pinctrl handle for the device that requests configuration 1286 * @state: the state handle to select/activate/program 1287 */ 1288 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1289 { 1290 if (p->state == state) 1291 return 0; 1292 1293 return pinctrl_commit_state(p, state); 1294 } 1295 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1296 1297 static void devm_pinctrl_release(struct device *dev, void *res) 1298 { 1299 pinctrl_put(*(struct pinctrl **)res); 1300 } 1301 1302 /** 1303 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1304 * @dev: the device to obtain the handle for 1305 * 1306 * If there is a need to explicitly destroy the returned struct pinctrl, 1307 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1308 */ 1309 struct pinctrl *devm_pinctrl_get(struct device *dev) 1310 { 1311 struct pinctrl **ptr, *p; 1312 1313 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1314 if (!ptr) 1315 return ERR_PTR(-ENOMEM); 1316 1317 p = pinctrl_get(dev); 1318 if (!IS_ERR(p)) { 1319 *ptr = p; 1320 devres_add(dev, ptr); 1321 } else { 1322 devres_free(ptr); 1323 } 1324 1325 return p; 1326 } 1327 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1328 1329 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1330 { 1331 struct pinctrl **p = res; 1332 1333 return *p == data; 1334 } 1335 1336 /** 1337 * devm_pinctrl_put() - Resource managed pinctrl_put() 1338 * @p: the pinctrl handle to release 1339 * 1340 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1341 * this function will not need to be called and the resource management 1342 * code will ensure that the resource is freed. 1343 */ 1344 void devm_pinctrl_put(struct pinctrl *p) 1345 { 1346 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1347 devm_pinctrl_match, p)); 1348 } 1349 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1350 1351 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps, 1352 bool dup) 1353 { 1354 int i, ret; 1355 struct pinctrl_maps *maps_node; 1356 1357 pr_debug("add %u pinctrl maps\n", num_maps); 1358 1359 /* First sanity check the new mapping */ 1360 for (i = 0; i < num_maps; i++) { 1361 if (!maps[i].dev_name) { 1362 pr_err("failed to register map %s (%d): no device given\n", 1363 maps[i].name, i); 1364 return -EINVAL; 1365 } 1366 1367 if (!maps[i].name) { 1368 pr_err("failed to register map %d: no map name given\n", 1369 i); 1370 return -EINVAL; 1371 } 1372 1373 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1374 !maps[i].ctrl_dev_name) { 1375 pr_err("failed to register map %s (%d): no pin control device given\n", 1376 maps[i].name, i); 1377 return -EINVAL; 1378 } 1379 1380 switch (maps[i].type) { 1381 case PIN_MAP_TYPE_DUMMY_STATE: 1382 break; 1383 case PIN_MAP_TYPE_MUX_GROUP: 1384 ret = pinmux_validate_map(&maps[i], i); 1385 if (ret < 0) 1386 return ret; 1387 break; 1388 case PIN_MAP_TYPE_CONFIGS_PIN: 1389 case PIN_MAP_TYPE_CONFIGS_GROUP: 1390 ret = pinconf_validate_map(&maps[i], i); 1391 if (ret < 0) 1392 return ret; 1393 break; 1394 default: 1395 pr_err("failed to register map %s (%d): invalid type given\n", 1396 maps[i].name, i); 1397 return -EINVAL; 1398 } 1399 } 1400 1401 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1402 if (!maps_node) 1403 return -ENOMEM; 1404 1405 maps_node->num_maps = num_maps; 1406 if (dup) { 1407 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1408 GFP_KERNEL); 1409 if (!maps_node->maps) { 1410 kfree(maps_node); 1411 return -ENOMEM; 1412 } 1413 } else { 1414 maps_node->maps = maps; 1415 } 1416 1417 mutex_lock(&pinctrl_maps_mutex); 1418 list_add_tail(&maps_node->node, &pinctrl_maps); 1419 mutex_unlock(&pinctrl_maps_mutex); 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * pinctrl_register_mappings() - register a set of pin controller mappings 1426 * @maps: the pincontrol mappings table to register. This should probably be 1427 * marked with __initdata so it can be discarded after boot. This 1428 * function will perform a shallow copy for the mapping entries. 1429 * @num_maps: the number of maps in the mapping table 1430 */ 1431 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1432 unsigned num_maps) 1433 { 1434 return pinctrl_register_map(maps, num_maps, true); 1435 } 1436 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1437 1438 void pinctrl_unregister_map(const struct pinctrl_map *map) 1439 { 1440 struct pinctrl_maps *maps_node; 1441 1442 mutex_lock(&pinctrl_maps_mutex); 1443 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1444 if (maps_node->maps == map) { 1445 list_del(&maps_node->node); 1446 kfree(maps_node); 1447 mutex_unlock(&pinctrl_maps_mutex); 1448 return; 1449 } 1450 } 1451 mutex_unlock(&pinctrl_maps_mutex); 1452 } 1453 1454 /** 1455 * pinctrl_force_sleep() - turn a given controller device into sleep state 1456 * @pctldev: pin controller device 1457 */ 1458 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1459 { 1460 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1461 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1462 return 0; 1463 } 1464 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1465 1466 /** 1467 * pinctrl_force_default() - turn a given controller device into default state 1468 * @pctldev: pin controller device 1469 */ 1470 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1471 { 1472 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1473 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1474 return 0; 1475 } 1476 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1477 1478 /** 1479 * pinctrl_init_done() - tell pinctrl probe is done 1480 * 1481 * We'll use this time to switch the pins from "init" to "default" unless the 1482 * driver selected some other state. 1483 * 1484 * @dev: device to that's done probing 1485 */ 1486 int pinctrl_init_done(struct device *dev) 1487 { 1488 struct dev_pin_info *pins = dev->pins; 1489 int ret; 1490 1491 if (!pins) 1492 return 0; 1493 1494 if (IS_ERR(pins->init_state)) 1495 return 0; /* No such state */ 1496 1497 if (pins->p->state != pins->init_state) 1498 return 0; /* Not at init anyway */ 1499 1500 if (IS_ERR(pins->default_state)) 1501 return 0; /* No default state */ 1502 1503 ret = pinctrl_select_state(pins->p, pins->default_state); 1504 if (ret) 1505 dev_err(dev, "failed to activate default pinctrl state\n"); 1506 1507 return ret; 1508 } 1509 1510 #ifdef CONFIG_PM 1511 1512 /** 1513 * pinctrl_pm_select_state() - select pinctrl state for PM 1514 * @dev: device to select default state for 1515 * @state: state to set 1516 */ 1517 static int pinctrl_pm_select_state(struct device *dev, 1518 struct pinctrl_state *state) 1519 { 1520 struct dev_pin_info *pins = dev->pins; 1521 int ret; 1522 1523 if (IS_ERR(state)) 1524 return 0; /* No such state */ 1525 ret = pinctrl_select_state(pins->p, state); 1526 if (ret) 1527 dev_err(dev, "failed to activate pinctrl state %s\n", 1528 state->name); 1529 return ret; 1530 } 1531 1532 /** 1533 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1534 * @dev: device to select default state for 1535 */ 1536 int pinctrl_pm_select_default_state(struct device *dev) 1537 { 1538 if (!dev->pins) 1539 return 0; 1540 1541 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1542 } 1543 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1544 1545 /** 1546 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1547 * @dev: device to select sleep state for 1548 */ 1549 int pinctrl_pm_select_sleep_state(struct device *dev) 1550 { 1551 if (!dev->pins) 1552 return 0; 1553 1554 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1555 } 1556 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1557 1558 /** 1559 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1560 * @dev: device to select idle state for 1561 */ 1562 int pinctrl_pm_select_idle_state(struct device *dev) 1563 { 1564 if (!dev->pins) 1565 return 0; 1566 1567 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1568 } 1569 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1570 #endif 1571 1572 #ifdef CONFIG_DEBUG_FS 1573 1574 static int pinctrl_pins_show(struct seq_file *s, void *what) 1575 { 1576 struct pinctrl_dev *pctldev = s->private; 1577 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1578 unsigned i, pin; 1579 1580 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1581 1582 mutex_lock(&pctldev->mutex); 1583 1584 /* The pin number can be retrived from the pin controller descriptor */ 1585 for (i = 0; i < pctldev->desc->npins; i++) { 1586 struct pin_desc *desc; 1587 1588 pin = pctldev->desc->pins[i].number; 1589 desc = pin_desc_get(pctldev, pin); 1590 /* Pin space may be sparse */ 1591 if (!desc) 1592 continue; 1593 1594 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1595 1596 /* Driver-specific info per pin */ 1597 if (ops->pin_dbg_show) 1598 ops->pin_dbg_show(pctldev, s, pin); 1599 1600 seq_puts(s, "\n"); 1601 } 1602 1603 mutex_unlock(&pctldev->mutex); 1604 1605 return 0; 1606 } 1607 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1608 1609 static int pinctrl_groups_show(struct seq_file *s, void *what) 1610 { 1611 struct pinctrl_dev *pctldev = s->private; 1612 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1613 unsigned ngroups, selector = 0; 1614 1615 mutex_lock(&pctldev->mutex); 1616 1617 ngroups = ops->get_groups_count(pctldev); 1618 1619 seq_puts(s, "registered pin groups:\n"); 1620 while (selector < ngroups) { 1621 const unsigned *pins = NULL; 1622 unsigned num_pins = 0; 1623 const char *gname = ops->get_group_name(pctldev, selector); 1624 const char *pname; 1625 int ret = 0; 1626 int i; 1627 1628 if (ops->get_group_pins) 1629 ret = ops->get_group_pins(pctldev, selector, 1630 &pins, &num_pins); 1631 if (ret) 1632 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1633 gname); 1634 else { 1635 seq_printf(s, "group: %s\n", gname); 1636 for (i = 0; i < num_pins; i++) { 1637 pname = pin_get_name(pctldev, pins[i]); 1638 if (WARN_ON(!pname)) { 1639 mutex_unlock(&pctldev->mutex); 1640 return -EINVAL; 1641 } 1642 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1643 } 1644 seq_puts(s, "\n"); 1645 } 1646 selector++; 1647 } 1648 1649 mutex_unlock(&pctldev->mutex); 1650 1651 return 0; 1652 } 1653 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1654 1655 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1656 { 1657 struct pinctrl_dev *pctldev = s->private; 1658 struct pinctrl_gpio_range *range; 1659 1660 seq_puts(s, "GPIO ranges handled:\n"); 1661 1662 mutex_lock(&pctldev->mutex); 1663 1664 /* Loop over the ranges */ 1665 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1666 if (range->pins) { 1667 int a; 1668 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1669 range->id, range->name, 1670 range->base, (range->base + range->npins - 1)); 1671 for (a = 0; a < range->npins - 1; a++) 1672 seq_printf(s, "%u, ", range->pins[a]); 1673 seq_printf(s, "%u}\n", range->pins[a]); 1674 } 1675 else 1676 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1677 range->id, range->name, 1678 range->base, (range->base + range->npins - 1), 1679 range->pin_base, 1680 (range->pin_base + range->npins - 1)); 1681 } 1682 1683 mutex_unlock(&pctldev->mutex); 1684 1685 return 0; 1686 } 1687 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1688 1689 static int pinctrl_devices_show(struct seq_file *s, void *what) 1690 { 1691 struct pinctrl_dev *pctldev; 1692 1693 seq_puts(s, "name [pinmux] [pinconf]\n"); 1694 1695 mutex_lock(&pinctrldev_list_mutex); 1696 1697 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1698 seq_printf(s, "%s ", pctldev->desc->name); 1699 if (pctldev->desc->pmxops) 1700 seq_puts(s, "yes "); 1701 else 1702 seq_puts(s, "no "); 1703 if (pctldev->desc->confops) 1704 seq_puts(s, "yes"); 1705 else 1706 seq_puts(s, "no"); 1707 seq_puts(s, "\n"); 1708 } 1709 1710 mutex_unlock(&pinctrldev_list_mutex); 1711 1712 return 0; 1713 } 1714 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1715 1716 static inline const char *map_type(enum pinctrl_map_type type) 1717 { 1718 static const char * const names[] = { 1719 "INVALID", 1720 "DUMMY_STATE", 1721 "MUX_GROUP", 1722 "CONFIGS_PIN", 1723 "CONFIGS_GROUP", 1724 }; 1725 1726 if (type >= ARRAY_SIZE(names)) 1727 return "UNKNOWN"; 1728 1729 return names[type]; 1730 } 1731 1732 static int pinctrl_maps_show(struct seq_file *s, void *what) 1733 { 1734 struct pinctrl_maps *maps_node; 1735 int i; 1736 const struct pinctrl_map *map; 1737 1738 seq_puts(s, "Pinctrl maps:\n"); 1739 1740 mutex_lock(&pinctrl_maps_mutex); 1741 for_each_maps(maps_node, i, map) { 1742 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1743 map->dev_name, map->name, map_type(map->type), 1744 map->type); 1745 1746 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1747 seq_printf(s, "controlling device %s\n", 1748 map->ctrl_dev_name); 1749 1750 switch (map->type) { 1751 case PIN_MAP_TYPE_MUX_GROUP: 1752 pinmux_show_map(s, map); 1753 break; 1754 case PIN_MAP_TYPE_CONFIGS_PIN: 1755 case PIN_MAP_TYPE_CONFIGS_GROUP: 1756 pinconf_show_map(s, map); 1757 break; 1758 default: 1759 break; 1760 } 1761 1762 seq_putc(s, '\n'); 1763 } 1764 mutex_unlock(&pinctrl_maps_mutex); 1765 1766 return 0; 1767 } 1768 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1769 1770 static int pinctrl_show(struct seq_file *s, void *what) 1771 { 1772 struct pinctrl *p; 1773 struct pinctrl_state *state; 1774 struct pinctrl_setting *setting; 1775 1776 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1777 1778 mutex_lock(&pinctrl_list_mutex); 1779 1780 list_for_each_entry(p, &pinctrl_list, node) { 1781 seq_printf(s, "device: %s current state: %s\n", 1782 dev_name(p->dev), 1783 p->state ? p->state->name : "none"); 1784 1785 list_for_each_entry(state, &p->states, node) { 1786 seq_printf(s, " state: %s\n", state->name); 1787 1788 list_for_each_entry(setting, &state->settings, node) { 1789 struct pinctrl_dev *pctldev = setting->pctldev; 1790 1791 seq_printf(s, " type: %s controller %s ", 1792 map_type(setting->type), 1793 pinctrl_dev_get_name(pctldev)); 1794 1795 switch (setting->type) { 1796 case PIN_MAP_TYPE_MUX_GROUP: 1797 pinmux_show_setting(s, setting); 1798 break; 1799 case PIN_MAP_TYPE_CONFIGS_PIN: 1800 case PIN_MAP_TYPE_CONFIGS_GROUP: 1801 pinconf_show_setting(s, setting); 1802 break; 1803 default: 1804 break; 1805 } 1806 } 1807 } 1808 } 1809 1810 mutex_unlock(&pinctrl_list_mutex); 1811 1812 return 0; 1813 } 1814 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1815 1816 static struct dentry *debugfs_root; 1817 1818 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1819 { 1820 struct dentry *device_root; 1821 const char *debugfs_name; 1822 1823 if (pctldev->desc->name && 1824 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1825 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1826 "%s-%s", dev_name(pctldev->dev), 1827 pctldev->desc->name); 1828 if (!debugfs_name) { 1829 pr_warn("failed to determine debugfs dir name for %s\n", 1830 dev_name(pctldev->dev)); 1831 return; 1832 } 1833 } else { 1834 debugfs_name = dev_name(pctldev->dev); 1835 } 1836 1837 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1838 pctldev->device_root = device_root; 1839 1840 if (IS_ERR(device_root) || !device_root) { 1841 pr_warn("failed to create debugfs directory for %s\n", 1842 dev_name(pctldev->dev)); 1843 return; 1844 } 1845 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1846 device_root, pctldev, &pinctrl_pins_fops); 1847 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1848 device_root, pctldev, &pinctrl_groups_fops); 1849 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1850 device_root, pctldev, &pinctrl_gpioranges_fops); 1851 if (pctldev->desc->pmxops) 1852 pinmux_init_device_debugfs(device_root, pctldev); 1853 if (pctldev->desc->confops) 1854 pinconf_init_device_debugfs(device_root, pctldev); 1855 } 1856 1857 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1858 { 1859 debugfs_remove_recursive(pctldev->device_root); 1860 } 1861 1862 static void pinctrl_init_debugfs(void) 1863 { 1864 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1865 if (IS_ERR(debugfs_root) || !debugfs_root) { 1866 pr_warn("failed to create debugfs directory\n"); 1867 debugfs_root = NULL; 1868 return; 1869 } 1870 1871 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1872 debugfs_root, NULL, &pinctrl_devices_fops); 1873 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1874 debugfs_root, NULL, &pinctrl_maps_fops); 1875 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1876 debugfs_root, NULL, &pinctrl_fops); 1877 } 1878 1879 #else /* CONFIG_DEBUG_FS */ 1880 1881 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1882 { 1883 } 1884 1885 static void pinctrl_init_debugfs(void) 1886 { 1887 } 1888 1889 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1890 { 1891 } 1892 1893 #endif 1894 1895 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1896 { 1897 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1898 1899 if (!ops || 1900 !ops->get_groups_count || 1901 !ops->get_group_name) 1902 return -EINVAL; 1903 1904 return 0; 1905 } 1906 1907 /** 1908 * pinctrl_init_controller() - init a pin controller device 1909 * @pctldesc: descriptor for this pin controller 1910 * @dev: parent device for this pin controller 1911 * @driver_data: private pin controller data for this pin controller 1912 */ 1913 static struct pinctrl_dev * 1914 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1915 void *driver_data) 1916 { 1917 struct pinctrl_dev *pctldev; 1918 int ret; 1919 1920 if (!pctldesc) 1921 return ERR_PTR(-EINVAL); 1922 if (!pctldesc->name) 1923 return ERR_PTR(-EINVAL); 1924 1925 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1926 if (!pctldev) 1927 return ERR_PTR(-ENOMEM); 1928 1929 /* Initialize pin control device struct */ 1930 pctldev->owner = pctldesc->owner; 1931 pctldev->desc = pctldesc; 1932 pctldev->driver_data = driver_data; 1933 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1934 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1935 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1936 #endif 1937 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1938 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1939 #endif 1940 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1941 INIT_LIST_HEAD(&pctldev->node); 1942 pctldev->dev = dev; 1943 mutex_init(&pctldev->mutex); 1944 1945 /* check core ops for sanity */ 1946 ret = pinctrl_check_ops(pctldev); 1947 if (ret) { 1948 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1949 goto out_err; 1950 } 1951 1952 /* If we're implementing pinmuxing, check the ops for sanity */ 1953 if (pctldesc->pmxops) { 1954 ret = pinmux_check_ops(pctldev); 1955 if (ret) 1956 goto out_err; 1957 } 1958 1959 /* If we're implementing pinconfig, check the ops for sanity */ 1960 if (pctldesc->confops) { 1961 ret = pinconf_check_ops(pctldev); 1962 if (ret) 1963 goto out_err; 1964 } 1965 1966 /* Register all the pins */ 1967 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1968 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1969 if (ret) { 1970 dev_err(dev, "error during pin registration\n"); 1971 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1972 pctldesc->npins); 1973 goto out_err; 1974 } 1975 1976 return pctldev; 1977 1978 out_err: 1979 mutex_destroy(&pctldev->mutex); 1980 kfree(pctldev); 1981 return ERR_PTR(ret); 1982 } 1983 1984 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 1985 { 1986 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 1987 if (PTR_ERR(pctldev->p) == -ENODEV) { 1988 dev_dbg(pctldev->dev, "no hogs found\n"); 1989 1990 return 0; 1991 } 1992 1993 if (IS_ERR(pctldev->p)) { 1994 dev_err(pctldev->dev, "error claiming hogs: %li\n", 1995 PTR_ERR(pctldev->p)); 1996 1997 return PTR_ERR(pctldev->p); 1998 } 1999 2000 kref_get(&pctldev->p->users); 2001 pctldev->hog_default = 2002 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2003 if (IS_ERR(pctldev->hog_default)) { 2004 dev_dbg(pctldev->dev, 2005 "failed to lookup the default state\n"); 2006 } else { 2007 if (pinctrl_select_state(pctldev->p, 2008 pctldev->hog_default)) 2009 dev_err(pctldev->dev, 2010 "failed to select default state\n"); 2011 } 2012 2013 pctldev->hog_sleep = 2014 pinctrl_lookup_state(pctldev->p, 2015 PINCTRL_STATE_SLEEP); 2016 if (IS_ERR(pctldev->hog_sleep)) 2017 dev_dbg(pctldev->dev, 2018 "failed to lookup the sleep state\n"); 2019 2020 return 0; 2021 } 2022 2023 int pinctrl_enable(struct pinctrl_dev *pctldev) 2024 { 2025 int error; 2026 2027 error = pinctrl_claim_hogs(pctldev); 2028 if (error) { 2029 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2030 error); 2031 mutex_destroy(&pctldev->mutex); 2032 kfree(pctldev); 2033 2034 return error; 2035 } 2036 2037 mutex_lock(&pinctrldev_list_mutex); 2038 list_add_tail(&pctldev->node, &pinctrldev_list); 2039 mutex_unlock(&pinctrldev_list_mutex); 2040 2041 pinctrl_init_device_debugfs(pctldev); 2042 2043 return 0; 2044 } 2045 EXPORT_SYMBOL_GPL(pinctrl_enable); 2046 2047 /** 2048 * pinctrl_register() - register a pin controller device 2049 * @pctldesc: descriptor for this pin controller 2050 * @dev: parent device for this pin controller 2051 * @driver_data: private pin controller data for this pin controller 2052 * 2053 * Note that pinctrl_register() is known to have problems as the pin 2054 * controller driver functions are called before the driver has a 2055 * struct pinctrl_dev handle. To avoid issues later on, please use the 2056 * new pinctrl_register_and_init() below instead. 2057 */ 2058 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2059 struct device *dev, void *driver_data) 2060 { 2061 struct pinctrl_dev *pctldev; 2062 int error; 2063 2064 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2065 if (IS_ERR(pctldev)) 2066 return pctldev; 2067 2068 error = pinctrl_enable(pctldev); 2069 if (error) 2070 return ERR_PTR(error); 2071 2072 return pctldev; 2073 2074 } 2075 EXPORT_SYMBOL_GPL(pinctrl_register); 2076 2077 /** 2078 * pinctrl_register_and_init() - register and init pin controller device 2079 * @pctldesc: descriptor for this pin controller 2080 * @dev: parent device for this pin controller 2081 * @driver_data: private pin controller data for this pin controller 2082 * @pctldev: pin controller device 2083 * 2084 * Note that pinctrl_enable() still needs to be manually called after 2085 * this once the driver is ready. 2086 */ 2087 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2088 struct device *dev, void *driver_data, 2089 struct pinctrl_dev **pctldev) 2090 { 2091 struct pinctrl_dev *p; 2092 2093 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2094 if (IS_ERR(p)) 2095 return PTR_ERR(p); 2096 2097 /* 2098 * We have pinctrl_start() call functions in the pin controller 2099 * driver with create_pinctrl() for at least dt_node_to_map(). So 2100 * let's make sure pctldev is properly initialized for the 2101 * pin controller driver before we do anything. 2102 */ 2103 *pctldev = p; 2104 2105 return 0; 2106 } 2107 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2108 2109 /** 2110 * pinctrl_unregister() - unregister pinmux 2111 * @pctldev: pin controller to unregister 2112 * 2113 * Called by pinmux drivers to unregister a pinmux. 2114 */ 2115 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2116 { 2117 struct pinctrl_gpio_range *range, *n; 2118 2119 if (!pctldev) 2120 return; 2121 2122 mutex_lock(&pctldev->mutex); 2123 pinctrl_remove_device_debugfs(pctldev); 2124 mutex_unlock(&pctldev->mutex); 2125 2126 if (!IS_ERR_OR_NULL(pctldev->p)) 2127 pinctrl_put(pctldev->p); 2128 2129 mutex_lock(&pinctrldev_list_mutex); 2130 mutex_lock(&pctldev->mutex); 2131 /* TODO: check that no pinmuxes are still active? */ 2132 list_del(&pctldev->node); 2133 pinmux_generic_free_functions(pctldev); 2134 pinctrl_generic_free_groups(pctldev); 2135 /* Destroy descriptor tree */ 2136 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2137 pctldev->desc->npins); 2138 /* remove gpio ranges map */ 2139 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2140 list_del(&range->node); 2141 2142 mutex_unlock(&pctldev->mutex); 2143 mutex_destroy(&pctldev->mutex); 2144 kfree(pctldev); 2145 mutex_unlock(&pinctrldev_list_mutex); 2146 } 2147 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2148 2149 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2150 { 2151 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2152 2153 pinctrl_unregister(pctldev); 2154 } 2155 2156 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2157 { 2158 struct pctldev **r = res; 2159 2160 if (WARN_ON(!r || !*r)) 2161 return 0; 2162 2163 return *r == data; 2164 } 2165 2166 /** 2167 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2168 * @dev: parent device for this pin controller 2169 * @pctldesc: descriptor for this pin controller 2170 * @driver_data: private pin controller data for this pin controller 2171 * 2172 * Returns an error pointer if pincontrol register failed. Otherwise 2173 * it returns valid pinctrl handle. 2174 * 2175 * The pinctrl device will be automatically released when the device is unbound. 2176 */ 2177 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2178 struct pinctrl_desc *pctldesc, 2179 void *driver_data) 2180 { 2181 struct pinctrl_dev **ptr, *pctldev; 2182 2183 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2184 if (!ptr) 2185 return ERR_PTR(-ENOMEM); 2186 2187 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2188 if (IS_ERR(pctldev)) { 2189 devres_free(ptr); 2190 return pctldev; 2191 } 2192 2193 *ptr = pctldev; 2194 devres_add(dev, ptr); 2195 2196 return pctldev; 2197 } 2198 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2199 2200 /** 2201 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2202 * @dev: parent device for this pin controller 2203 * @pctldesc: descriptor for this pin controller 2204 * @driver_data: private pin controller data for this pin controller 2205 * 2206 * Returns an error pointer if pincontrol register failed. Otherwise 2207 * it returns valid pinctrl handle. 2208 * 2209 * The pinctrl device will be automatically released when the device is unbound. 2210 */ 2211 int devm_pinctrl_register_and_init(struct device *dev, 2212 struct pinctrl_desc *pctldesc, 2213 void *driver_data, 2214 struct pinctrl_dev **pctldev) 2215 { 2216 struct pinctrl_dev **ptr; 2217 int error; 2218 2219 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2220 if (!ptr) 2221 return -ENOMEM; 2222 2223 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2224 if (error) { 2225 devres_free(ptr); 2226 return error; 2227 } 2228 2229 *ptr = *pctldev; 2230 devres_add(dev, ptr); 2231 2232 return 0; 2233 } 2234 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2235 2236 /** 2237 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2238 * @dev: device for which which resource was allocated 2239 * @pctldev: the pinctrl device to unregister. 2240 */ 2241 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2242 { 2243 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2244 devm_pinctrl_dev_match, pctldev)); 2245 } 2246 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2247 2248 static int __init pinctrl_init(void) 2249 { 2250 pr_info("initialized pinctrl subsystem\n"); 2251 pinctrl_init_debugfs(); 2252 return 0; 2253 } 2254 2255 /* init early since many drivers really need to initialized pinmux early */ 2256 core_initcall(pinctrl_init); 2257