1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kref.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 29 #ifdef CONFIG_GPIOLIB 30 #include "../gpio/gpiolib.h" 31 #include <asm-generic/gpio.h> 32 #endif 33 34 #include "core.h" 35 #include "devicetree.h" 36 #include "pinmux.h" 37 #include "pinconf.h" 38 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 209 pindesc = pin_desc_get(pctldev, pin->number); 210 if (pindesc) { 211 dev_err(pctldev->dev, "pin %d already registered\n", 212 pin->number); 213 return -EINVAL; 214 } 215 216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 217 if (!pindesc) 218 return -ENOMEM; 219 220 /* Set owner */ 221 pindesc->pctldev = pctldev; 222 223 /* Copy basic pin info */ 224 if (pin->name) { 225 pindesc->name = pin->name; 226 } else { 227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 228 if (!pindesc->name) { 229 kfree(pindesc); 230 return -ENOMEM; 231 } 232 pindesc->dynamic_name = true; 233 } 234 235 pindesc->drv_data = pin->drv_data; 236 237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 238 pr_debug("registered pin %d (%s) on %s\n", 239 pin->number, pindesc->name, pctldev->desc->name); 240 return 0; 241 } 242 243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 244 const struct pinctrl_pin_desc *pins, 245 unsigned num_descs) 246 { 247 unsigned i; 248 int ret = 0; 249 250 for (i = 0; i < num_descs; i++) { 251 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 252 if (ret) 253 return ret; 254 } 255 256 return 0; 257 } 258 259 /** 260 * gpio_to_pin() - GPIO range GPIO number to pin number translation 261 * @range: GPIO range used for the translation 262 * @gpio: gpio pin to translate to a pin number 263 * 264 * Finds the pin number for a given GPIO using the specified GPIO range 265 * as a base for translation. The distinction between linear GPIO ranges 266 * and pin list based GPIO ranges is managed correctly by this function. 267 * 268 * This function assumes the gpio is part of the specified GPIO range, use 269 * only after making sure this is the case (e.g. by calling it on the 270 * result of successful pinctrl_get_device_gpio_range calls)! 271 */ 272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 273 unsigned int gpio) 274 { 275 unsigned int offset = gpio - range->base; 276 if (range->pins) 277 return range->pins[offset]; 278 else 279 return range->pin_base + offset; 280 } 281 282 /** 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 284 * @pctldev: pin controller device to check 285 * @gpio: gpio pin to check taken from the global GPIO pin space 286 * 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin 288 * controller, return the range or NULL 289 */ 290 static struct pinctrl_gpio_range * 291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 292 { 293 struct pinctrl_gpio_range *range; 294 295 mutex_lock(&pctldev->mutex); 296 /* Loop over the ranges */ 297 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 298 /* Check if we're in the valid range */ 299 if (gpio >= range->base && 300 gpio < range->base + range->npins) { 301 mutex_unlock(&pctldev->mutex); 302 return range; 303 } 304 } 305 mutex_unlock(&pctldev->mutex); 306 return NULL; 307 } 308 309 /** 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 311 * the same GPIO chip are in range 312 * @gpio: gpio pin to check taken from the global GPIO pin space 313 * 314 * This function is complement of pinctrl_match_gpio_range(). If the return 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 317 * of the same GPIO chip don't have back-end pinctrl interface. 318 * If the return value is true, it means that pinctrl device is ready & the 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 320 * is false, it means that pinctrl device may not be ready. 321 */ 322 #ifdef CONFIG_GPIOLIB 323 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 324 { 325 struct pinctrl_dev *pctldev; 326 struct pinctrl_gpio_range *range = NULL; 327 struct gpio_chip *chip = gpio_to_chip(gpio); 328 329 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 330 return false; 331 332 mutex_lock(&pinctrldev_list_mutex); 333 334 /* Loop over the pin controllers */ 335 list_for_each_entry(pctldev, &pinctrldev_list, node) { 336 /* Loop over the ranges */ 337 mutex_lock(&pctldev->mutex); 338 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 339 /* Check if any gpio range overlapped with gpio chip */ 340 if (range->base + range->npins - 1 < chip->base || 341 range->base > chip->base + chip->ngpio - 1) 342 continue; 343 mutex_unlock(&pctldev->mutex); 344 mutex_unlock(&pinctrldev_list_mutex); 345 return true; 346 } 347 mutex_unlock(&pctldev->mutex); 348 } 349 350 mutex_unlock(&pinctrldev_list_mutex); 351 352 return false; 353 } 354 #else 355 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 356 #endif 357 358 /** 359 * pinctrl_get_device_gpio_range() - find device for GPIO range 360 * @gpio: the pin to locate the pin controller for 361 * @outdev: the pin control device if found 362 * @outrange: the GPIO range if found 363 * 364 * Find the pin controller handling a certain GPIO pin from the pinspace of 365 * the GPIO subsystem, return the device and the matching GPIO range. Returns 366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 367 * may still have not been registered. 368 */ 369 static int pinctrl_get_device_gpio_range(unsigned gpio, 370 struct pinctrl_dev **outdev, 371 struct pinctrl_gpio_range **outrange) 372 { 373 struct pinctrl_dev *pctldev; 374 375 mutex_lock(&pinctrldev_list_mutex); 376 377 /* Loop over the pin controllers */ 378 list_for_each_entry(pctldev, &pinctrldev_list, node) { 379 struct pinctrl_gpio_range *range; 380 381 range = pinctrl_match_gpio_range(pctldev, gpio); 382 if (range) { 383 *outdev = pctldev; 384 *outrange = range; 385 mutex_unlock(&pinctrldev_list_mutex); 386 return 0; 387 } 388 } 389 390 mutex_unlock(&pinctrldev_list_mutex); 391 392 return -EPROBE_DEFER; 393 } 394 395 /** 396 * pinctrl_add_gpio_range() - register a GPIO range for a controller 397 * @pctldev: pin controller device to add the range to 398 * @range: the GPIO range to add 399 * 400 * This adds a range of GPIOs to be handled by a certain pin controller. Call 401 * this to register handled ranges after registering your pin controller. 402 */ 403 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 404 struct pinctrl_gpio_range *range) 405 { 406 mutex_lock(&pctldev->mutex); 407 list_add_tail(&range->node, &pctldev->gpio_ranges); 408 mutex_unlock(&pctldev->mutex); 409 } 410 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 411 412 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 413 struct pinctrl_gpio_range *ranges, 414 unsigned nranges) 415 { 416 int i; 417 418 for (i = 0; i < nranges; i++) 419 pinctrl_add_gpio_range(pctldev, &ranges[i]); 420 } 421 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 422 423 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 424 struct pinctrl_gpio_range *range) 425 { 426 struct pinctrl_dev *pctldev; 427 428 pctldev = get_pinctrl_dev_from_devname(devname); 429 430 /* 431 * If we can't find this device, let's assume that is because 432 * it has not probed yet, so the driver trying to register this 433 * range need to defer probing. 434 */ 435 if (!pctldev) { 436 return ERR_PTR(-EPROBE_DEFER); 437 } 438 pinctrl_add_gpio_range(pctldev, range); 439 440 return pctldev; 441 } 442 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 443 444 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 445 const unsigned **pins, unsigned *num_pins) 446 { 447 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 448 int gs; 449 450 if (!pctlops->get_group_pins) 451 return -EINVAL; 452 453 gs = pinctrl_get_group_selector(pctldev, pin_group); 454 if (gs < 0) 455 return gs; 456 457 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 458 } 459 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 460 461 struct pinctrl_gpio_range * 462 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 463 unsigned int pin) 464 { 465 struct pinctrl_gpio_range *range; 466 467 /* Loop over the ranges */ 468 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 469 /* Check if we're in the valid range */ 470 if (range->pins) { 471 int a; 472 for (a = 0; a < range->npins; a++) { 473 if (range->pins[a] == pin) 474 return range; 475 } 476 } else if (pin >= range->pin_base && 477 pin < range->pin_base + range->npins) 478 return range; 479 } 480 481 return NULL; 482 } 483 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 484 485 /** 486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 487 * @pctldev: the pin controller device to look in 488 * @pin: a controller-local number to find the range for 489 */ 490 struct pinctrl_gpio_range * 491 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 492 unsigned int pin) 493 { 494 struct pinctrl_gpio_range *range; 495 496 mutex_lock(&pctldev->mutex); 497 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 498 mutex_unlock(&pctldev->mutex); 499 500 return range; 501 } 502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 503 504 /** 505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 506 * @pctldev: pin controller device to remove the range from 507 * @range: the GPIO range to remove 508 */ 509 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 510 struct pinctrl_gpio_range *range) 511 { 512 mutex_lock(&pctldev->mutex); 513 list_del(&range->node); 514 mutex_unlock(&pctldev->mutex); 515 } 516 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 517 518 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 519 520 /** 521 * pinctrl_generic_get_group_count() - returns the number of pin groups 522 * @pctldev: pin controller device 523 */ 524 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 525 { 526 return pctldev->num_groups; 527 } 528 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 529 530 /** 531 * pinctrl_generic_get_group_name() - returns the name of a pin group 532 * @pctldev: pin controller device 533 * @selector: group number 534 */ 535 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 536 unsigned int selector) 537 { 538 struct group_desc *group; 539 540 group = radix_tree_lookup(&pctldev->pin_group_tree, 541 selector); 542 if (!group) 543 return NULL; 544 545 return group->name; 546 } 547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 548 549 /** 550 * pinctrl_generic_get_group_pins() - gets the pin group pins 551 * @pctldev: pin controller device 552 * @selector: group number 553 * @pins: pins in the group 554 * @num_pins: number of pins in the group 555 */ 556 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 557 unsigned int selector, 558 const unsigned int **pins, 559 unsigned int *num_pins) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) { 566 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 567 __func__, selector); 568 return -EINVAL; 569 } 570 571 *pins = group->pins; 572 *num_pins = group->num_pins; 573 574 return 0; 575 } 576 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 577 578 /** 579 * pinctrl_generic_get_group() - returns a pin group based on the number 580 * @pctldev: pin controller device 581 * @selector: group number 582 */ 583 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 584 unsigned int selector) 585 { 586 struct group_desc *group; 587 588 group = radix_tree_lookup(&pctldev->pin_group_tree, 589 selector); 590 if (!group) 591 return NULL; 592 593 return group; 594 } 595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 596 597 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 598 const char *function) 599 { 600 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 601 int ngroups = ops->get_groups_count(pctldev); 602 int selector = 0; 603 604 /* See if this pctldev has this group */ 605 while (selector < ngroups) { 606 const char *gname = ops->get_group_name(pctldev, selector); 607 608 if (gname && !strcmp(function, gname)) 609 return selector; 610 611 selector++; 612 } 613 614 return -EINVAL; 615 } 616 617 /** 618 * pinctrl_generic_add_group() - adds a new pin group 619 * @pctldev: pin controller device 620 * @name: name of the pin group 621 * @pins: pins in the pin group 622 * @num_pins: number of pins in the pin group 623 * @data: pin controller driver specific data 624 * 625 * Note that the caller must take care of locking. 626 */ 627 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 628 int *pins, int num_pins, void *data) 629 { 630 struct group_desc *group; 631 int selector; 632 633 if (!name) 634 return -EINVAL; 635 636 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 637 if (selector >= 0) 638 return selector; 639 640 selector = pctldev->num_groups; 641 642 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 643 if (!group) 644 return -ENOMEM; 645 646 group->name = name; 647 group->pins = pins; 648 group->num_pins = num_pins; 649 group->data = data; 650 651 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 652 653 pctldev->num_groups++; 654 655 return selector; 656 } 657 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 658 659 /** 660 * pinctrl_generic_remove_group() - removes a numbered pin group 661 * @pctldev: pin controller device 662 * @selector: group number 663 * 664 * Note that the caller must take care of locking. 665 */ 666 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 667 unsigned int selector) 668 { 669 struct group_desc *group; 670 671 group = radix_tree_lookup(&pctldev->pin_group_tree, 672 selector); 673 if (!group) 674 return -ENOENT; 675 676 radix_tree_delete(&pctldev->pin_group_tree, selector); 677 devm_kfree(pctldev->dev, group); 678 679 pctldev->num_groups--; 680 681 return 0; 682 } 683 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 684 685 /** 686 * pinctrl_generic_free_groups() - removes all pin groups 687 * @pctldev: pin controller device 688 * 689 * Note that the caller must take care of locking. The pinctrl groups 690 * are allocated with devm_kzalloc() so no need to free them here. 691 */ 692 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 693 { 694 struct radix_tree_iter iter; 695 void __rcu **slot; 696 697 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 698 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 699 700 pctldev->num_groups = 0; 701 } 702 703 #else 704 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 705 { 706 } 707 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 708 709 /** 710 * pinctrl_get_group_selector() - returns the group selector for a group 711 * @pctldev: the pin controller handling the group 712 * @pin_group: the pin group to look up 713 */ 714 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 715 const char *pin_group) 716 { 717 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 718 unsigned ngroups = pctlops->get_groups_count(pctldev); 719 unsigned group_selector = 0; 720 721 while (group_selector < ngroups) { 722 const char *gname = pctlops->get_group_name(pctldev, 723 group_selector); 724 if (gname && !strcmp(gname, pin_group)) { 725 dev_dbg(pctldev->dev, 726 "found group selector %u for %s\n", 727 group_selector, 728 pin_group); 729 return group_selector; 730 } 731 732 group_selector++; 733 } 734 735 dev_err(pctldev->dev, "does not have pin group %s\n", 736 pin_group); 737 738 return -EINVAL; 739 } 740 741 bool pinctrl_gpio_can_use_line(unsigned gpio) 742 { 743 struct pinctrl_dev *pctldev; 744 struct pinctrl_gpio_range *range; 745 bool result; 746 int pin; 747 748 /* 749 * Try to obtain GPIO range, if it fails 750 * we're probably dealing with GPIO driver 751 * without a backing pin controller - bail out. 752 */ 753 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 754 return true; 755 756 mutex_lock(&pctldev->mutex); 757 758 /* Convert to the pin controllers number space */ 759 pin = gpio_to_pin(range, gpio); 760 761 result = pinmux_can_be_used_for_gpio(pctldev, pin); 762 763 mutex_unlock(&pctldev->mutex); 764 765 return result; 766 } 767 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 768 769 /** 770 * pinctrl_gpio_request() - request a single pin to be used as GPIO 771 * @gpio: the GPIO pin number from the GPIO subsystem number space 772 * 773 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 774 * as part of their gpio_request() semantics, platforms and individual drivers 775 * shall *NOT* request GPIO pins to be muxed in. 776 */ 777 int pinctrl_gpio_request(unsigned gpio) 778 { 779 struct pinctrl_dev *pctldev; 780 struct pinctrl_gpio_range *range; 781 int ret; 782 int pin; 783 784 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 785 if (ret) { 786 if (pinctrl_ready_for_gpio_range(gpio)) 787 ret = 0; 788 return ret; 789 } 790 791 mutex_lock(&pctldev->mutex); 792 793 /* Convert to the pin controllers number space */ 794 pin = gpio_to_pin(range, gpio); 795 796 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 797 798 mutex_unlock(&pctldev->mutex); 799 800 return ret; 801 } 802 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 803 804 /** 805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 806 * @gpio: the GPIO pin number from the GPIO subsystem number space 807 * 808 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 809 * as part of their gpio_free() semantics, platforms and individual drivers 810 * shall *NOT* request GPIO pins to be muxed out. 811 */ 812 void pinctrl_gpio_free(unsigned gpio) 813 { 814 struct pinctrl_dev *pctldev; 815 struct pinctrl_gpio_range *range; 816 int ret; 817 int pin; 818 819 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 820 if (ret) { 821 return; 822 } 823 mutex_lock(&pctldev->mutex); 824 825 /* Convert to the pin controllers number space */ 826 pin = gpio_to_pin(range, gpio); 827 828 pinmux_free_gpio(pctldev, pin, range); 829 830 mutex_unlock(&pctldev->mutex); 831 } 832 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 833 834 static int pinctrl_gpio_direction(unsigned gpio, bool input) 835 { 836 struct pinctrl_dev *pctldev; 837 struct pinctrl_gpio_range *range; 838 int ret; 839 int pin; 840 841 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 842 if (ret) { 843 return ret; 844 } 845 846 mutex_lock(&pctldev->mutex); 847 848 /* Convert to the pin controllers number space */ 849 pin = gpio_to_pin(range, gpio); 850 ret = pinmux_gpio_direction(pctldev, range, pin, input); 851 852 mutex_unlock(&pctldev->mutex); 853 854 return ret; 855 } 856 857 /** 858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 859 * @gpio: the GPIO pin number from the GPIO subsystem number space 860 * 861 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 862 * as part of their gpio_direction_input() semantics, platforms and individual 863 * drivers shall *NOT* touch pin control GPIO calls. 864 */ 865 int pinctrl_gpio_direction_input(unsigned gpio) 866 { 867 return pinctrl_gpio_direction(gpio, true); 868 } 869 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 870 871 /** 872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 873 * @gpio: the GPIO pin number from the GPIO subsystem number space 874 * 875 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 876 * as part of their gpio_direction_output() semantics, platforms and individual 877 * drivers shall *NOT* touch pin control GPIO calls. 878 */ 879 int pinctrl_gpio_direction_output(unsigned gpio) 880 { 881 return pinctrl_gpio_direction(gpio, false); 882 } 883 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 884 885 /** 886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 887 * @gpio: the GPIO pin number from the GPIO subsystem number space 888 * @config: the configuration to apply to the GPIO 889 * 890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 891 * they need to call the underlying pin controller to change GPIO config 892 * (for example set debounce time). 893 */ 894 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 895 { 896 unsigned long configs[] = { config }; 897 struct pinctrl_gpio_range *range; 898 struct pinctrl_dev *pctldev; 899 int ret, pin; 900 901 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 902 if (ret) 903 return ret; 904 905 mutex_lock(&pctldev->mutex); 906 pin = gpio_to_pin(range, gpio); 907 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 908 mutex_unlock(&pctldev->mutex); 909 910 return ret; 911 } 912 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 913 914 static struct pinctrl_state *find_state(struct pinctrl *p, 915 const char *name) 916 { 917 struct pinctrl_state *state; 918 919 list_for_each_entry(state, &p->states, node) 920 if (!strcmp(state->name, name)) 921 return state; 922 923 return NULL; 924 } 925 926 static struct pinctrl_state *create_state(struct pinctrl *p, 927 const char *name) 928 { 929 struct pinctrl_state *state; 930 931 state = kzalloc(sizeof(*state), GFP_KERNEL); 932 if (!state) 933 return ERR_PTR(-ENOMEM); 934 935 state->name = name; 936 INIT_LIST_HEAD(&state->settings); 937 938 list_add_tail(&state->node, &p->states); 939 940 return state; 941 } 942 943 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 944 const struct pinctrl_map *map) 945 { 946 struct pinctrl_state *state; 947 struct pinctrl_setting *setting; 948 int ret; 949 950 state = find_state(p, map->name); 951 if (!state) 952 state = create_state(p, map->name); 953 if (IS_ERR(state)) 954 return PTR_ERR(state); 955 956 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 957 return 0; 958 959 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 960 if (!setting) 961 return -ENOMEM; 962 963 setting->type = map->type; 964 965 if (pctldev) 966 setting->pctldev = pctldev; 967 else 968 setting->pctldev = 969 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 970 if (!setting->pctldev) { 971 kfree(setting); 972 /* Do not defer probing of hogs (circular loop) */ 973 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 974 return -ENODEV; 975 /* 976 * OK let us guess that the driver is not there yet, and 977 * let's defer obtaining this pinctrl handle to later... 978 */ 979 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 980 map->ctrl_dev_name); 981 return -EPROBE_DEFER; 982 } 983 984 setting->dev_name = map->dev_name; 985 986 switch (map->type) { 987 case PIN_MAP_TYPE_MUX_GROUP: 988 ret = pinmux_map_to_setting(map, setting); 989 break; 990 case PIN_MAP_TYPE_CONFIGS_PIN: 991 case PIN_MAP_TYPE_CONFIGS_GROUP: 992 ret = pinconf_map_to_setting(map, setting); 993 break; 994 default: 995 ret = -EINVAL; 996 break; 997 } 998 if (ret < 0) { 999 kfree(setting); 1000 return ret; 1001 } 1002 1003 list_add_tail(&setting->node, &state->settings); 1004 1005 return 0; 1006 } 1007 1008 static struct pinctrl *find_pinctrl(struct device *dev) 1009 { 1010 struct pinctrl *p; 1011 1012 mutex_lock(&pinctrl_list_mutex); 1013 list_for_each_entry(p, &pinctrl_list, node) 1014 if (p->dev == dev) { 1015 mutex_unlock(&pinctrl_list_mutex); 1016 return p; 1017 } 1018 1019 mutex_unlock(&pinctrl_list_mutex); 1020 return NULL; 1021 } 1022 1023 static void pinctrl_free(struct pinctrl *p, bool inlist); 1024 1025 static struct pinctrl *create_pinctrl(struct device *dev, 1026 struct pinctrl_dev *pctldev) 1027 { 1028 struct pinctrl *p; 1029 const char *devname; 1030 struct pinctrl_maps *maps_node; 1031 int i; 1032 const struct pinctrl_map *map; 1033 int ret; 1034 1035 /* 1036 * create the state cookie holder struct pinctrl for each 1037 * mapping, this is what consumers will get when requesting 1038 * a pin control handle with pinctrl_get() 1039 */ 1040 p = kzalloc(sizeof(*p), GFP_KERNEL); 1041 if (!p) 1042 return ERR_PTR(-ENOMEM); 1043 p->dev = dev; 1044 INIT_LIST_HEAD(&p->states); 1045 INIT_LIST_HEAD(&p->dt_maps); 1046 1047 ret = pinctrl_dt_to_map(p, pctldev); 1048 if (ret < 0) { 1049 kfree(p); 1050 return ERR_PTR(ret); 1051 } 1052 1053 devname = dev_name(dev); 1054 1055 mutex_lock(&pinctrl_maps_mutex); 1056 /* Iterate over the pin control maps to locate the right ones */ 1057 for_each_maps(maps_node, i, map) { 1058 /* Map must be for this device */ 1059 if (strcmp(map->dev_name, devname)) 1060 continue; 1061 /* 1062 * If pctldev is not null, we are claiming hog for it, 1063 * that means, setting that is served by pctldev by itself. 1064 * 1065 * Thus we must skip map that is for this device but is served 1066 * by other device. 1067 */ 1068 if (pctldev && 1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1070 continue; 1071 1072 ret = add_setting(p, pctldev, map); 1073 /* 1074 * At this point the adding of a setting may: 1075 * 1076 * - Defer, if the pinctrl device is not yet available 1077 * - Fail, if the pinctrl device is not yet available, 1078 * AND the setting is a hog. We cannot defer that, since 1079 * the hog will kick in immediately after the device 1080 * is registered. 1081 * 1082 * If the error returned was not -EPROBE_DEFER then we 1083 * accumulate the errors to see if we end up with 1084 * an -EPROBE_DEFER later, as that is the worst case. 1085 */ 1086 if (ret == -EPROBE_DEFER) { 1087 pinctrl_free(p, false); 1088 mutex_unlock(&pinctrl_maps_mutex); 1089 return ERR_PTR(ret); 1090 } 1091 } 1092 mutex_unlock(&pinctrl_maps_mutex); 1093 1094 if (ret < 0) { 1095 /* If some other error than deferral occurred, return here */ 1096 pinctrl_free(p, false); 1097 return ERR_PTR(ret); 1098 } 1099 1100 kref_init(&p->users); 1101 1102 /* Add the pinctrl handle to the global list */ 1103 mutex_lock(&pinctrl_list_mutex); 1104 list_add_tail(&p->node, &pinctrl_list); 1105 mutex_unlock(&pinctrl_list_mutex); 1106 1107 return p; 1108 } 1109 1110 /** 1111 * pinctrl_get() - retrieves the pinctrl handle for a device 1112 * @dev: the device to obtain the handle for 1113 */ 1114 struct pinctrl *pinctrl_get(struct device *dev) 1115 { 1116 struct pinctrl *p; 1117 1118 if (WARN_ON(!dev)) 1119 return ERR_PTR(-EINVAL); 1120 1121 /* 1122 * See if somebody else (such as the device core) has already 1123 * obtained a handle to the pinctrl for this device. In that case, 1124 * return another pointer to it. 1125 */ 1126 p = find_pinctrl(dev); 1127 if (p) { 1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1129 kref_get(&p->users); 1130 return p; 1131 } 1132 1133 return create_pinctrl(dev, NULL); 1134 } 1135 EXPORT_SYMBOL_GPL(pinctrl_get); 1136 1137 static void pinctrl_free_setting(bool disable_setting, 1138 struct pinctrl_setting *setting) 1139 { 1140 switch (setting->type) { 1141 case PIN_MAP_TYPE_MUX_GROUP: 1142 if (disable_setting) 1143 pinmux_disable_setting(setting); 1144 pinmux_free_setting(setting); 1145 break; 1146 case PIN_MAP_TYPE_CONFIGS_PIN: 1147 case PIN_MAP_TYPE_CONFIGS_GROUP: 1148 pinconf_free_setting(setting); 1149 break; 1150 default: 1151 break; 1152 } 1153 } 1154 1155 static void pinctrl_free(struct pinctrl *p, bool inlist) 1156 { 1157 struct pinctrl_state *state, *n1; 1158 struct pinctrl_setting *setting, *n2; 1159 1160 mutex_lock(&pinctrl_list_mutex); 1161 list_for_each_entry_safe(state, n1, &p->states, node) { 1162 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1163 pinctrl_free_setting(state == p->state, setting); 1164 list_del(&setting->node); 1165 kfree(setting); 1166 } 1167 list_del(&state->node); 1168 kfree(state); 1169 } 1170 1171 pinctrl_dt_free_maps(p); 1172 1173 if (inlist) 1174 list_del(&p->node); 1175 kfree(p); 1176 mutex_unlock(&pinctrl_list_mutex); 1177 } 1178 1179 /** 1180 * pinctrl_release() - release the pinctrl handle 1181 * @kref: the kref in the pinctrl being released 1182 */ 1183 static void pinctrl_release(struct kref *kref) 1184 { 1185 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1186 1187 pinctrl_free(p, true); 1188 } 1189 1190 /** 1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1192 * @p: the pinctrl handle to release 1193 */ 1194 void pinctrl_put(struct pinctrl *p) 1195 { 1196 kref_put(&p->users, pinctrl_release); 1197 } 1198 EXPORT_SYMBOL_GPL(pinctrl_put); 1199 1200 /** 1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1202 * @p: the pinctrl handle to retrieve the state from 1203 * @name: the state name to retrieve 1204 */ 1205 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1206 const char *name) 1207 { 1208 struct pinctrl_state *state; 1209 1210 state = find_state(p, name); 1211 if (!state) { 1212 if (pinctrl_dummy_state) { 1213 /* create dummy state */ 1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1215 name); 1216 state = create_state(p, name); 1217 } else 1218 state = ERR_PTR(-ENODEV); 1219 } 1220 1221 return state; 1222 } 1223 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1224 1225 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1226 struct device *consumer) 1227 { 1228 if (pctldev->desc->link_consumers) 1229 device_link_add(consumer, pctldev->dev, 1230 DL_FLAG_PM_RUNTIME | 1231 DL_FLAG_AUTOREMOVE_CONSUMER); 1232 } 1233 1234 /** 1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1236 * @p: the pinctrl handle for the device that requests configuration 1237 * @state: the state handle to select/activate/program 1238 */ 1239 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1240 { 1241 struct pinctrl_setting *setting, *setting2; 1242 struct pinctrl_state *old_state = p->state; 1243 int ret; 1244 1245 if (p->state) { 1246 /* 1247 * For each pinmux setting in the old state, forget SW's record 1248 * of mux owner for that pingroup. Any pingroups which are 1249 * still owned by the new state will be re-acquired by the call 1250 * to pinmux_enable_setting() in the loop below. 1251 */ 1252 list_for_each_entry(setting, &p->state->settings, node) { 1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1254 continue; 1255 pinmux_disable_setting(setting); 1256 } 1257 } 1258 1259 p->state = NULL; 1260 1261 /* Apply all the settings for the new state - pinmux first */ 1262 list_for_each_entry(setting, &state->settings, node) { 1263 switch (setting->type) { 1264 case PIN_MAP_TYPE_MUX_GROUP: 1265 ret = pinmux_enable_setting(setting); 1266 break; 1267 case PIN_MAP_TYPE_CONFIGS_PIN: 1268 case PIN_MAP_TYPE_CONFIGS_GROUP: 1269 ret = 0; 1270 break; 1271 default: 1272 ret = -EINVAL; 1273 break; 1274 } 1275 1276 if (ret < 0) 1277 goto unapply_new_state; 1278 1279 /* Do not link hogs (circular dependency) */ 1280 if (p != setting->pctldev->p) 1281 pinctrl_link_add(setting->pctldev, p->dev); 1282 } 1283 1284 /* Apply all the settings for the new state - pinconf after */ 1285 list_for_each_entry(setting, &state->settings, node) { 1286 switch (setting->type) { 1287 case PIN_MAP_TYPE_MUX_GROUP: 1288 ret = 0; 1289 break; 1290 case PIN_MAP_TYPE_CONFIGS_PIN: 1291 case PIN_MAP_TYPE_CONFIGS_GROUP: 1292 ret = pinconf_apply_setting(setting); 1293 break; 1294 default: 1295 ret = -EINVAL; 1296 break; 1297 } 1298 1299 if (ret < 0) { 1300 goto unapply_new_state; 1301 } 1302 1303 /* Do not link hogs (circular dependency) */ 1304 if (p != setting->pctldev->p) 1305 pinctrl_link_add(setting->pctldev, p->dev); 1306 } 1307 1308 p->state = state; 1309 1310 return 0; 1311 1312 unapply_new_state: 1313 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1314 1315 list_for_each_entry(setting2, &state->settings, node) { 1316 if (&setting2->node == &setting->node) 1317 break; 1318 /* 1319 * All we can do here is pinmux_disable_setting. 1320 * That means that some pins are muxed differently now 1321 * than they were before applying the setting (We can't 1322 * "unmux a pin"!), but it's not a big deal since the pins 1323 * are free to be muxed by another apply_setting. 1324 */ 1325 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1326 pinmux_disable_setting(setting2); 1327 } 1328 1329 /* There's no infinite recursive loop here because p->state is NULL */ 1330 if (old_state) 1331 pinctrl_select_state(p, old_state); 1332 1333 return ret; 1334 } 1335 1336 /** 1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1338 * @p: the pinctrl handle for the device that requests configuration 1339 * @state: the state handle to select/activate/program 1340 */ 1341 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1342 { 1343 if (p->state == state) 1344 return 0; 1345 1346 return pinctrl_commit_state(p, state); 1347 } 1348 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1349 1350 static void devm_pinctrl_release(struct device *dev, void *res) 1351 { 1352 pinctrl_put(*(struct pinctrl **)res); 1353 } 1354 1355 /** 1356 * devm_pinctrl_get() - Resource managed pinctrl_get() 1357 * @dev: the device to obtain the handle for 1358 * 1359 * If there is a need to explicitly destroy the returned struct pinctrl, 1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1361 */ 1362 struct pinctrl *devm_pinctrl_get(struct device *dev) 1363 { 1364 struct pinctrl **ptr, *p; 1365 1366 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1367 if (!ptr) 1368 return ERR_PTR(-ENOMEM); 1369 1370 p = pinctrl_get(dev); 1371 if (!IS_ERR(p)) { 1372 *ptr = p; 1373 devres_add(dev, ptr); 1374 } else { 1375 devres_free(ptr); 1376 } 1377 1378 return p; 1379 } 1380 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1381 1382 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1383 { 1384 struct pinctrl **p = res; 1385 1386 return *p == data; 1387 } 1388 1389 /** 1390 * devm_pinctrl_put() - Resource managed pinctrl_put() 1391 * @p: the pinctrl handle to release 1392 * 1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1394 * this function will not need to be called and the resource management 1395 * code will ensure that the resource is freed. 1396 */ 1397 void devm_pinctrl_put(struct pinctrl *p) 1398 { 1399 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1400 devm_pinctrl_match, p)); 1401 } 1402 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1403 1404 /** 1405 * pinctrl_register_mappings() - register a set of pin controller mappings 1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1407 * keeps a reference to the passed in maps, so they should _not_ be 1408 * marked with __initdata. 1409 * @num_maps: the number of maps in the mapping table 1410 */ 1411 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1412 unsigned num_maps) 1413 { 1414 int i, ret; 1415 struct pinctrl_maps *maps_node; 1416 1417 pr_debug("add %u pinctrl maps\n", num_maps); 1418 1419 /* First sanity check the new mapping */ 1420 for (i = 0; i < num_maps; i++) { 1421 if (!maps[i].dev_name) { 1422 pr_err("failed to register map %s (%d): no device given\n", 1423 maps[i].name, i); 1424 return -EINVAL; 1425 } 1426 1427 if (!maps[i].name) { 1428 pr_err("failed to register map %d: no map name given\n", 1429 i); 1430 return -EINVAL; 1431 } 1432 1433 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1434 !maps[i].ctrl_dev_name) { 1435 pr_err("failed to register map %s (%d): no pin control device given\n", 1436 maps[i].name, i); 1437 return -EINVAL; 1438 } 1439 1440 switch (maps[i].type) { 1441 case PIN_MAP_TYPE_DUMMY_STATE: 1442 break; 1443 case PIN_MAP_TYPE_MUX_GROUP: 1444 ret = pinmux_validate_map(&maps[i], i); 1445 if (ret < 0) 1446 return ret; 1447 break; 1448 case PIN_MAP_TYPE_CONFIGS_PIN: 1449 case PIN_MAP_TYPE_CONFIGS_GROUP: 1450 ret = pinconf_validate_map(&maps[i], i); 1451 if (ret < 0) 1452 return ret; 1453 break; 1454 default: 1455 pr_err("failed to register map %s (%d): invalid type given\n", 1456 maps[i].name, i); 1457 return -EINVAL; 1458 } 1459 } 1460 1461 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1462 if (!maps_node) 1463 return -ENOMEM; 1464 1465 maps_node->maps = maps; 1466 maps_node->num_maps = num_maps; 1467 1468 mutex_lock(&pinctrl_maps_mutex); 1469 list_add_tail(&maps_node->node, &pinctrl_maps); 1470 mutex_unlock(&pinctrl_maps_mutex); 1471 1472 return 0; 1473 } 1474 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1475 1476 /** 1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1479 * when registering the mappings. 1480 */ 1481 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1482 { 1483 struct pinctrl_maps *maps_node; 1484 1485 mutex_lock(&pinctrl_maps_mutex); 1486 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1487 if (maps_node->maps == map) { 1488 list_del(&maps_node->node); 1489 kfree(maps_node); 1490 mutex_unlock(&pinctrl_maps_mutex); 1491 return; 1492 } 1493 } 1494 mutex_unlock(&pinctrl_maps_mutex); 1495 } 1496 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1497 1498 /** 1499 * pinctrl_force_sleep() - turn a given controller device into sleep state 1500 * @pctldev: pin controller device 1501 */ 1502 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1503 { 1504 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1505 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1506 return 0; 1507 } 1508 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1509 1510 /** 1511 * pinctrl_force_default() - turn a given controller device into default state 1512 * @pctldev: pin controller device 1513 */ 1514 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1515 { 1516 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1517 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1518 return 0; 1519 } 1520 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1521 1522 /** 1523 * pinctrl_init_done() - tell pinctrl probe is done 1524 * 1525 * We'll use this time to switch the pins from "init" to "default" unless the 1526 * driver selected some other state. 1527 * 1528 * @dev: device to that's done probing 1529 */ 1530 int pinctrl_init_done(struct device *dev) 1531 { 1532 struct dev_pin_info *pins = dev->pins; 1533 int ret; 1534 1535 if (!pins) 1536 return 0; 1537 1538 if (IS_ERR(pins->init_state)) 1539 return 0; /* No such state */ 1540 1541 if (pins->p->state != pins->init_state) 1542 return 0; /* Not at init anyway */ 1543 1544 if (IS_ERR(pins->default_state)) 1545 return 0; /* No default state */ 1546 1547 ret = pinctrl_select_state(pins->p, pins->default_state); 1548 if (ret) 1549 dev_err(dev, "failed to activate default pinctrl state\n"); 1550 1551 return ret; 1552 } 1553 1554 static int pinctrl_select_bound_state(struct device *dev, 1555 struct pinctrl_state *state) 1556 { 1557 struct dev_pin_info *pins = dev->pins; 1558 int ret; 1559 1560 if (IS_ERR(state)) 1561 return 0; /* No such state */ 1562 ret = pinctrl_select_state(pins->p, state); 1563 if (ret) 1564 dev_err(dev, "failed to activate pinctrl state %s\n", 1565 state->name); 1566 return ret; 1567 } 1568 1569 /** 1570 * pinctrl_select_default_state() - select default pinctrl state 1571 * @dev: device to select default state for 1572 */ 1573 int pinctrl_select_default_state(struct device *dev) 1574 { 1575 if (!dev->pins) 1576 return 0; 1577 1578 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1579 } 1580 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1581 1582 #ifdef CONFIG_PM 1583 1584 /** 1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1586 * @dev: device to select default state for 1587 */ 1588 int pinctrl_pm_select_default_state(struct device *dev) 1589 { 1590 return pinctrl_select_default_state(dev); 1591 } 1592 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1593 1594 /** 1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1596 * @dev: device to select sleep state for 1597 */ 1598 int pinctrl_pm_select_sleep_state(struct device *dev) 1599 { 1600 if (!dev->pins) 1601 return 0; 1602 1603 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1604 } 1605 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1606 1607 /** 1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1609 * @dev: device to select idle state for 1610 */ 1611 int pinctrl_pm_select_idle_state(struct device *dev) 1612 { 1613 if (!dev->pins) 1614 return 0; 1615 1616 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1617 } 1618 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1619 #endif 1620 1621 #ifdef CONFIG_DEBUG_FS 1622 1623 static int pinctrl_pins_show(struct seq_file *s, void *what) 1624 { 1625 struct pinctrl_dev *pctldev = s->private; 1626 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1627 unsigned i, pin; 1628 #ifdef CONFIG_GPIOLIB 1629 struct pinctrl_gpio_range *range; 1630 struct gpio_chip *chip; 1631 int gpio_num; 1632 #endif 1633 1634 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1635 1636 mutex_lock(&pctldev->mutex); 1637 1638 /* The pin number can be retrived from the pin controller descriptor */ 1639 for (i = 0; i < pctldev->desc->npins; i++) { 1640 struct pin_desc *desc; 1641 1642 pin = pctldev->desc->pins[i].number; 1643 desc = pin_desc_get(pctldev, pin); 1644 /* Pin space may be sparse */ 1645 if (!desc) 1646 continue; 1647 1648 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1649 1650 #ifdef CONFIG_GPIOLIB 1651 gpio_num = -1; 1652 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1653 if ((pin >= range->pin_base) && 1654 (pin < (range->pin_base + range->npins))) { 1655 gpio_num = range->base + (pin - range->pin_base); 1656 break; 1657 } 1658 } 1659 if (gpio_num >= 0) 1660 chip = gpio_to_chip(gpio_num); 1661 else 1662 chip = NULL; 1663 if (chip) 1664 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1665 else 1666 seq_puts(s, "0:? "); 1667 #endif 1668 1669 /* Driver-specific info per pin */ 1670 if (ops->pin_dbg_show) 1671 ops->pin_dbg_show(pctldev, s, pin); 1672 1673 seq_puts(s, "\n"); 1674 } 1675 1676 mutex_unlock(&pctldev->mutex); 1677 1678 return 0; 1679 } 1680 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1681 1682 static int pinctrl_groups_show(struct seq_file *s, void *what) 1683 { 1684 struct pinctrl_dev *pctldev = s->private; 1685 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1686 unsigned ngroups, selector = 0; 1687 1688 mutex_lock(&pctldev->mutex); 1689 1690 ngroups = ops->get_groups_count(pctldev); 1691 1692 seq_puts(s, "registered pin groups:\n"); 1693 while (selector < ngroups) { 1694 const unsigned *pins = NULL; 1695 unsigned num_pins = 0; 1696 const char *gname = ops->get_group_name(pctldev, selector); 1697 const char *pname; 1698 int ret = 0; 1699 int i; 1700 1701 if (ops->get_group_pins) 1702 ret = ops->get_group_pins(pctldev, selector, 1703 &pins, &num_pins); 1704 if (ret) 1705 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1706 gname); 1707 else { 1708 seq_printf(s, "group: %s\n", gname); 1709 for (i = 0; i < num_pins; i++) { 1710 pname = pin_get_name(pctldev, pins[i]); 1711 if (WARN_ON(!pname)) { 1712 mutex_unlock(&pctldev->mutex); 1713 return -EINVAL; 1714 } 1715 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1716 } 1717 seq_puts(s, "\n"); 1718 } 1719 selector++; 1720 } 1721 1722 mutex_unlock(&pctldev->mutex); 1723 1724 return 0; 1725 } 1726 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1727 1728 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1729 { 1730 struct pinctrl_dev *pctldev = s->private; 1731 struct pinctrl_gpio_range *range; 1732 1733 seq_puts(s, "GPIO ranges handled:\n"); 1734 1735 mutex_lock(&pctldev->mutex); 1736 1737 /* Loop over the ranges */ 1738 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1739 if (range->pins) { 1740 int a; 1741 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1742 range->id, range->name, 1743 range->base, (range->base + range->npins - 1)); 1744 for (a = 0; a < range->npins - 1; a++) 1745 seq_printf(s, "%u, ", range->pins[a]); 1746 seq_printf(s, "%u}\n", range->pins[a]); 1747 } 1748 else 1749 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1750 range->id, range->name, 1751 range->base, (range->base + range->npins - 1), 1752 range->pin_base, 1753 (range->pin_base + range->npins - 1)); 1754 } 1755 1756 mutex_unlock(&pctldev->mutex); 1757 1758 return 0; 1759 } 1760 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1761 1762 static int pinctrl_devices_show(struct seq_file *s, void *what) 1763 { 1764 struct pinctrl_dev *pctldev; 1765 1766 seq_puts(s, "name [pinmux] [pinconf]\n"); 1767 1768 mutex_lock(&pinctrldev_list_mutex); 1769 1770 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1771 seq_printf(s, "%s ", pctldev->desc->name); 1772 if (pctldev->desc->pmxops) 1773 seq_puts(s, "yes "); 1774 else 1775 seq_puts(s, "no "); 1776 if (pctldev->desc->confops) 1777 seq_puts(s, "yes"); 1778 else 1779 seq_puts(s, "no"); 1780 seq_puts(s, "\n"); 1781 } 1782 1783 mutex_unlock(&pinctrldev_list_mutex); 1784 1785 return 0; 1786 } 1787 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1788 1789 static inline const char *map_type(enum pinctrl_map_type type) 1790 { 1791 static const char * const names[] = { 1792 "INVALID", 1793 "DUMMY_STATE", 1794 "MUX_GROUP", 1795 "CONFIGS_PIN", 1796 "CONFIGS_GROUP", 1797 }; 1798 1799 if (type >= ARRAY_SIZE(names)) 1800 return "UNKNOWN"; 1801 1802 return names[type]; 1803 } 1804 1805 static int pinctrl_maps_show(struct seq_file *s, void *what) 1806 { 1807 struct pinctrl_maps *maps_node; 1808 int i; 1809 const struct pinctrl_map *map; 1810 1811 seq_puts(s, "Pinctrl maps:\n"); 1812 1813 mutex_lock(&pinctrl_maps_mutex); 1814 for_each_maps(maps_node, i, map) { 1815 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1816 map->dev_name, map->name, map_type(map->type), 1817 map->type); 1818 1819 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1820 seq_printf(s, "controlling device %s\n", 1821 map->ctrl_dev_name); 1822 1823 switch (map->type) { 1824 case PIN_MAP_TYPE_MUX_GROUP: 1825 pinmux_show_map(s, map); 1826 break; 1827 case PIN_MAP_TYPE_CONFIGS_PIN: 1828 case PIN_MAP_TYPE_CONFIGS_GROUP: 1829 pinconf_show_map(s, map); 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 seq_putc(s, '\n'); 1836 } 1837 mutex_unlock(&pinctrl_maps_mutex); 1838 1839 return 0; 1840 } 1841 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1842 1843 static int pinctrl_show(struct seq_file *s, void *what) 1844 { 1845 struct pinctrl *p; 1846 struct pinctrl_state *state; 1847 struct pinctrl_setting *setting; 1848 1849 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1850 1851 mutex_lock(&pinctrl_list_mutex); 1852 1853 list_for_each_entry(p, &pinctrl_list, node) { 1854 seq_printf(s, "device: %s current state: %s\n", 1855 dev_name(p->dev), 1856 p->state ? p->state->name : "none"); 1857 1858 list_for_each_entry(state, &p->states, node) { 1859 seq_printf(s, " state: %s\n", state->name); 1860 1861 list_for_each_entry(setting, &state->settings, node) { 1862 struct pinctrl_dev *pctldev = setting->pctldev; 1863 1864 seq_printf(s, " type: %s controller %s ", 1865 map_type(setting->type), 1866 pinctrl_dev_get_name(pctldev)); 1867 1868 switch (setting->type) { 1869 case PIN_MAP_TYPE_MUX_GROUP: 1870 pinmux_show_setting(s, setting); 1871 break; 1872 case PIN_MAP_TYPE_CONFIGS_PIN: 1873 case PIN_MAP_TYPE_CONFIGS_GROUP: 1874 pinconf_show_setting(s, setting); 1875 break; 1876 default: 1877 break; 1878 } 1879 } 1880 } 1881 } 1882 1883 mutex_unlock(&pinctrl_list_mutex); 1884 1885 return 0; 1886 } 1887 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1888 1889 static struct dentry *debugfs_root; 1890 1891 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1892 { 1893 struct dentry *device_root; 1894 const char *debugfs_name; 1895 1896 if (pctldev->desc->name && 1897 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1898 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1899 "%s-%s", dev_name(pctldev->dev), 1900 pctldev->desc->name); 1901 if (!debugfs_name) { 1902 pr_warn("failed to determine debugfs dir name for %s\n", 1903 dev_name(pctldev->dev)); 1904 return; 1905 } 1906 } else { 1907 debugfs_name = dev_name(pctldev->dev); 1908 } 1909 1910 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1911 pctldev->device_root = device_root; 1912 1913 if (IS_ERR(device_root) || !device_root) { 1914 pr_warn("failed to create debugfs directory for %s\n", 1915 dev_name(pctldev->dev)); 1916 return; 1917 } 1918 debugfs_create_file("pins", 0444, 1919 device_root, pctldev, &pinctrl_pins_fops); 1920 debugfs_create_file("pingroups", 0444, 1921 device_root, pctldev, &pinctrl_groups_fops); 1922 debugfs_create_file("gpio-ranges", 0444, 1923 device_root, pctldev, &pinctrl_gpioranges_fops); 1924 if (pctldev->desc->pmxops) 1925 pinmux_init_device_debugfs(device_root, pctldev); 1926 if (pctldev->desc->confops) 1927 pinconf_init_device_debugfs(device_root, pctldev); 1928 } 1929 1930 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1931 { 1932 debugfs_remove_recursive(pctldev->device_root); 1933 } 1934 1935 static void pinctrl_init_debugfs(void) 1936 { 1937 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1938 if (IS_ERR(debugfs_root) || !debugfs_root) { 1939 pr_warn("failed to create debugfs directory\n"); 1940 debugfs_root = NULL; 1941 return; 1942 } 1943 1944 debugfs_create_file("pinctrl-devices", 0444, 1945 debugfs_root, NULL, &pinctrl_devices_fops); 1946 debugfs_create_file("pinctrl-maps", 0444, 1947 debugfs_root, NULL, &pinctrl_maps_fops); 1948 debugfs_create_file("pinctrl-handles", 0444, 1949 debugfs_root, NULL, &pinctrl_fops); 1950 } 1951 1952 #else /* CONFIG_DEBUG_FS */ 1953 1954 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1955 { 1956 } 1957 1958 static void pinctrl_init_debugfs(void) 1959 { 1960 } 1961 1962 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1963 { 1964 } 1965 1966 #endif 1967 1968 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1969 { 1970 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1971 1972 if (!ops || 1973 !ops->get_groups_count || 1974 !ops->get_group_name) 1975 return -EINVAL; 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * pinctrl_init_controller() - init a pin controller device 1982 * @pctldesc: descriptor for this pin controller 1983 * @dev: parent device for this pin controller 1984 * @driver_data: private pin controller data for this pin controller 1985 */ 1986 static struct pinctrl_dev * 1987 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1988 void *driver_data) 1989 { 1990 struct pinctrl_dev *pctldev; 1991 int ret; 1992 1993 if (!pctldesc) 1994 return ERR_PTR(-EINVAL); 1995 if (!pctldesc->name) 1996 return ERR_PTR(-EINVAL); 1997 1998 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1999 if (!pctldev) 2000 return ERR_PTR(-ENOMEM); 2001 2002 /* Initialize pin control device struct */ 2003 pctldev->owner = pctldesc->owner; 2004 pctldev->desc = pctldesc; 2005 pctldev->driver_data = driver_data; 2006 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2007 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2008 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2009 #endif 2010 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2011 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2012 #endif 2013 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2014 INIT_LIST_HEAD(&pctldev->node); 2015 pctldev->dev = dev; 2016 mutex_init(&pctldev->mutex); 2017 2018 /* check core ops for sanity */ 2019 ret = pinctrl_check_ops(pctldev); 2020 if (ret) { 2021 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2022 goto out_err; 2023 } 2024 2025 /* If we're implementing pinmuxing, check the ops for sanity */ 2026 if (pctldesc->pmxops) { 2027 ret = pinmux_check_ops(pctldev); 2028 if (ret) 2029 goto out_err; 2030 } 2031 2032 /* If we're implementing pinconfig, check the ops for sanity */ 2033 if (pctldesc->confops) { 2034 ret = pinconf_check_ops(pctldev); 2035 if (ret) 2036 goto out_err; 2037 } 2038 2039 /* Register all the pins */ 2040 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2041 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2042 if (ret) { 2043 dev_err(dev, "error during pin registration\n"); 2044 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2045 pctldesc->npins); 2046 goto out_err; 2047 } 2048 2049 return pctldev; 2050 2051 out_err: 2052 mutex_destroy(&pctldev->mutex); 2053 kfree(pctldev); 2054 return ERR_PTR(ret); 2055 } 2056 2057 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2058 { 2059 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2060 if (PTR_ERR(pctldev->p) == -ENODEV) { 2061 dev_dbg(pctldev->dev, "no hogs found\n"); 2062 2063 return 0; 2064 } 2065 2066 if (IS_ERR(pctldev->p)) { 2067 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2068 PTR_ERR(pctldev->p)); 2069 2070 return PTR_ERR(pctldev->p); 2071 } 2072 2073 pctldev->hog_default = 2074 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2075 if (IS_ERR(pctldev->hog_default)) { 2076 dev_dbg(pctldev->dev, 2077 "failed to lookup the default state\n"); 2078 } else { 2079 if (pinctrl_select_state(pctldev->p, 2080 pctldev->hog_default)) 2081 dev_err(pctldev->dev, 2082 "failed to select default state\n"); 2083 } 2084 2085 pctldev->hog_sleep = 2086 pinctrl_lookup_state(pctldev->p, 2087 PINCTRL_STATE_SLEEP); 2088 if (IS_ERR(pctldev->hog_sleep)) 2089 dev_dbg(pctldev->dev, 2090 "failed to lookup the sleep state\n"); 2091 2092 return 0; 2093 } 2094 2095 int pinctrl_enable(struct pinctrl_dev *pctldev) 2096 { 2097 int error; 2098 2099 error = pinctrl_claim_hogs(pctldev); 2100 if (error) { 2101 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2102 error); 2103 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2104 pctldev->desc->npins); 2105 mutex_destroy(&pctldev->mutex); 2106 kfree(pctldev); 2107 2108 return error; 2109 } 2110 2111 mutex_lock(&pinctrldev_list_mutex); 2112 list_add_tail(&pctldev->node, &pinctrldev_list); 2113 mutex_unlock(&pinctrldev_list_mutex); 2114 2115 pinctrl_init_device_debugfs(pctldev); 2116 2117 return 0; 2118 } 2119 EXPORT_SYMBOL_GPL(pinctrl_enable); 2120 2121 /** 2122 * pinctrl_register() - register a pin controller device 2123 * @pctldesc: descriptor for this pin controller 2124 * @dev: parent device for this pin controller 2125 * @driver_data: private pin controller data for this pin controller 2126 * 2127 * Note that pinctrl_register() is known to have problems as the pin 2128 * controller driver functions are called before the driver has a 2129 * struct pinctrl_dev handle. To avoid issues later on, please use the 2130 * new pinctrl_register_and_init() below instead. 2131 */ 2132 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2133 struct device *dev, void *driver_data) 2134 { 2135 struct pinctrl_dev *pctldev; 2136 int error; 2137 2138 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2139 if (IS_ERR(pctldev)) 2140 return pctldev; 2141 2142 error = pinctrl_enable(pctldev); 2143 if (error) 2144 return ERR_PTR(error); 2145 2146 return pctldev; 2147 } 2148 EXPORT_SYMBOL_GPL(pinctrl_register); 2149 2150 /** 2151 * pinctrl_register_and_init() - register and init pin controller device 2152 * @pctldesc: descriptor for this pin controller 2153 * @dev: parent device for this pin controller 2154 * @driver_data: private pin controller data for this pin controller 2155 * @pctldev: pin controller device 2156 * 2157 * Note that pinctrl_enable() still needs to be manually called after 2158 * this once the driver is ready. 2159 */ 2160 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2161 struct device *dev, void *driver_data, 2162 struct pinctrl_dev **pctldev) 2163 { 2164 struct pinctrl_dev *p; 2165 2166 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2167 if (IS_ERR(p)) 2168 return PTR_ERR(p); 2169 2170 /* 2171 * We have pinctrl_start() call functions in the pin controller 2172 * driver with create_pinctrl() for at least dt_node_to_map(). So 2173 * let's make sure pctldev is properly initialized for the 2174 * pin controller driver before we do anything. 2175 */ 2176 *pctldev = p; 2177 2178 return 0; 2179 } 2180 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2181 2182 /** 2183 * pinctrl_unregister() - unregister pinmux 2184 * @pctldev: pin controller to unregister 2185 * 2186 * Called by pinmux drivers to unregister a pinmux. 2187 */ 2188 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2189 { 2190 struct pinctrl_gpio_range *range, *n; 2191 2192 if (!pctldev) 2193 return; 2194 2195 mutex_lock(&pctldev->mutex); 2196 pinctrl_remove_device_debugfs(pctldev); 2197 mutex_unlock(&pctldev->mutex); 2198 2199 if (!IS_ERR_OR_NULL(pctldev->p)) 2200 pinctrl_put(pctldev->p); 2201 2202 mutex_lock(&pinctrldev_list_mutex); 2203 mutex_lock(&pctldev->mutex); 2204 /* TODO: check that no pinmuxes are still active? */ 2205 list_del(&pctldev->node); 2206 pinmux_generic_free_functions(pctldev); 2207 pinctrl_generic_free_groups(pctldev); 2208 /* Destroy descriptor tree */ 2209 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2210 pctldev->desc->npins); 2211 /* remove gpio ranges map */ 2212 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2213 list_del(&range->node); 2214 2215 mutex_unlock(&pctldev->mutex); 2216 mutex_destroy(&pctldev->mutex); 2217 kfree(pctldev); 2218 mutex_unlock(&pinctrldev_list_mutex); 2219 } 2220 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2221 2222 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2223 { 2224 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2225 2226 pinctrl_unregister(pctldev); 2227 } 2228 2229 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2230 { 2231 struct pctldev **r = res; 2232 2233 if (WARN_ON(!r || !*r)) 2234 return 0; 2235 2236 return *r == data; 2237 } 2238 2239 /** 2240 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2241 * @dev: parent device for this pin controller 2242 * @pctldesc: descriptor for this pin controller 2243 * @driver_data: private pin controller data for this pin controller 2244 * 2245 * Returns an error pointer if pincontrol register failed. Otherwise 2246 * it returns valid pinctrl handle. 2247 * 2248 * The pinctrl device will be automatically released when the device is unbound. 2249 */ 2250 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2251 struct pinctrl_desc *pctldesc, 2252 void *driver_data) 2253 { 2254 struct pinctrl_dev **ptr, *pctldev; 2255 2256 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2257 if (!ptr) 2258 return ERR_PTR(-ENOMEM); 2259 2260 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2261 if (IS_ERR(pctldev)) { 2262 devres_free(ptr); 2263 return pctldev; 2264 } 2265 2266 *ptr = pctldev; 2267 devres_add(dev, ptr); 2268 2269 return pctldev; 2270 } 2271 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2272 2273 /** 2274 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2275 * @dev: parent device for this pin controller 2276 * @pctldesc: descriptor for this pin controller 2277 * @driver_data: private pin controller data for this pin controller 2278 * @pctldev: pin controller device 2279 * 2280 * Returns zero on success or an error number on failure. 2281 * 2282 * The pinctrl device will be automatically released when the device is unbound. 2283 */ 2284 int devm_pinctrl_register_and_init(struct device *dev, 2285 struct pinctrl_desc *pctldesc, 2286 void *driver_data, 2287 struct pinctrl_dev **pctldev) 2288 { 2289 struct pinctrl_dev **ptr; 2290 int error; 2291 2292 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2293 if (!ptr) 2294 return -ENOMEM; 2295 2296 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2297 if (error) { 2298 devres_free(ptr); 2299 return error; 2300 } 2301 2302 *ptr = *pctldev; 2303 devres_add(dev, ptr); 2304 2305 return 0; 2306 } 2307 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2308 2309 /** 2310 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2311 * @dev: device for which resource was allocated 2312 * @pctldev: the pinctrl device to unregister. 2313 */ 2314 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2315 { 2316 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2317 devm_pinctrl_dev_match, pctldev)); 2318 } 2319 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2320 2321 static int __init pinctrl_init(void) 2322 { 2323 pr_info("initialized pinctrl subsystem\n"); 2324 pinctrl_init_debugfs(); 2325 return 0; 2326 } 2327 2328 /* init early since many drivers really need to initialized pinmux early */ 2329 core_initcall(pinctrl_init); 2330