xref: /openbmc/linux/drivers/pinctrl/core.c (revision d2999e1b)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    unsigned number, const char *name)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, number);
233 	if (pindesc != NULL) {
234 		pr_err("pin %d already registered on %s\n", number,
235 		       pctldev->desc->name);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (pindesc == NULL) {
241 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 		return -ENOMEM;
243 	}
244 
245 	/* Set owner */
246 	pindesc->pctldev = pctldev;
247 
248 	/* Copy basic pin info */
249 	if (name) {
250 		pindesc->name = name;
251 	} else {
252 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 		if (pindesc->name == NULL) {
254 			kfree(pindesc);
255 			return -ENOMEM;
256 		}
257 		pindesc->dynamic_name = true;
258 	}
259 
260 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 	pr_debug("registered pin %d (%s) on %s\n",
262 		 number, pindesc->name, pctldev->desc->name);
263 	return 0;
264 }
265 
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 				 struct pinctrl_pin_desc const *pins,
268 				 unsigned num_descs)
269 {
270 	unsigned i;
271 	int ret = 0;
272 
273 	for (i = 0; i < num_descs; i++) {
274 		ret = pinctrl_register_one_pin(pctldev,
275 					       pins[i].number, pins[i].name);
276 		if (ret)
277 			return ret;
278 	}
279 
280 	return 0;
281 }
282 
283 /**
284  * gpio_to_pin() - GPIO range GPIO number to pin number translation
285  * @range: GPIO range used for the translation
286  * @gpio: gpio pin to translate to a pin number
287  *
288  * Finds the pin number for a given GPIO using the specified GPIO range
289  * as a base for translation. The distinction between linear GPIO ranges
290  * and pin list based GPIO ranges is managed correctly by this function.
291  *
292  * This function assumes the gpio is part of the specified GPIO range, use
293  * only after making sure this is the case (e.g. by calling it on the
294  * result of successful pinctrl_get_device_gpio_range calls)!
295  */
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 				unsigned int gpio)
298 {
299 	unsigned int offset = gpio - range->base;
300 	if (range->pins)
301 		return range->pins[offset];
302 	else
303 		return range->pin_base + offset;
304 }
305 
306 /**
307  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308  * @pctldev: pin controller device to check
309  * @gpio: gpio pin to check taken from the global GPIO pin space
310  *
311  * Tries to match a GPIO pin number to the ranges handled by a certain pin
312  * controller, return the range or NULL
313  */
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 {
317 	struct pinctrl_gpio_range *range = NULL;
318 
319 	mutex_lock(&pctldev->mutex);
320 	/* Loop over the ranges */
321 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 		/* Check if we're in the valid range */
323 		if (gpio >= range->base &&
324 		    gpio < range->base + range->npins) {
325 			mutex_unlock(&pctldev->mutex);
326 			return range;
327 		}
328 	}
329 	mutex_unlock(&pctldev->mutex);
330 	return NULL;
331 }
332 
333 /**
334  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335  * the same GPIO chip are in range
336  * @gpio: gpio pin to check taken from the global GPIO pin space
337  *
338  * This function is complement of pinctrl_match_gpio_range(). If the return
339  * value of pinctrl_match_gpio_range() is NULL, this function could be used
340  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341  * of the same GPIO chip don't have back-end pinctrl interface.
342  * If the return value is true, it means that pinctrl device is ready & the
343  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344  * is false, it means that pinctrl device may not be ready.
345  */
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 {
349 	struct pinctrl_dev *pctldev;
350 	struct pinctrl_gpio_range *range = NULL;
351 	struct gpio_chip *chip = gpio_to_chip(gpio);
352 
353 	mutex_lock(&pinctrldev_list_mutex);
354 
355 	/* Loop over the pin controllers */
356 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 		/* Loop over the ranges */
358 		mutex_lock(&pctldev->mutex);
359 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 			/* Check if any gpio range overlapped with gpio chip */
361 			if (range->base + range->npins - 1 < chip->base ||
362 			    range->base > chip->base + chip->ngpio - 1)
363 				continue;
364 			mutex_unlock(&pctldev->mutex);
365 			mutex_unlock(&pinctrldev_list_mutex);
366 			return true;
367 		}
368 		mutex_unlock(&pctldev->mutex);
369 	}
370 
371 	mutex_unlock(&pinctrldev_list_mutex);
372 
373 	return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378 
379 /**
380  * pinctrl_get_device_gpio_range() - find device for GPIO range
381  * @gpio: the pin to locate the pin controller for
382  * @outdev: the pin control device if found
383  * @outrange: the GPIO range if found
384  *
385  * Find the pin controller handling a certain GPIO pin from the pinspace of
386  * the GPIO subsystem, return the device and the matching GPIO range. Returns
387  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388  * may still have not been registered.
389  */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 					 struct pinctrl_dev **outdev,
392 					 struct pinctrl_gpio_range **outrange)
393 {
394 	struct pinctrl_dev *pctldev = NULL;
395 
396 	mutex_lock(&pinctrldev_list_mutex);
397 
398 	/* Loop over the pin controllers */
399 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 		struct pinctrl_gpio_range *range;
401 
402 		range = pinctrl_match_gpio_range(pctldev, gpio);
403 		if (range != NULL) {
404 			*outdev = pctldev;
405 			*outrange = range;
406 			mutex_unlock(&pinctrldev_list_mutex);
407 			return 0;
408 		}
409 	}
410 
411 	mutex_unlock(&pinctrldev_list_mutex);
412 
413 	return -EPROBE_DEFER;
414 }
415 
416 /**
417  * pinctrl_add_gpio_range() - register a GPIO range for a controller
418  * @pctldev: pin controller device to add the range to
419  * @range: the GPIO range to add
420  *
421  * This adds a range of GPIOs to be handled by a certain pin controller. Call
422  * this to register handled ranges after registering your pin controller.
423  */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 			    struct pinctrl_gpio_range *range)
426 {
427 	mutex_lock(&pctldev->mutex);
428 	list_add_tail(&range->node, &pctldev->gpio_ranges);
429 	mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432 
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 			     struct pinctrl_gpio_range *ranges,
435 			     unsigned nranges)
436 {
437 	int i;
438 
439 	for (i = 0; i < nranges; i++)
440 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443 
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 		struct pinctrl_gpio_range *range)
446 {
447 	struct pinctrl_dev *pctldev;
448 
449 	pctldev = get_pinctrl_dev_from_devname(devname);
450 
451 	/*
452 	 * If we can't find this device, let's assume that is because
453 	 * it has not probed yet, so the driver trying to register this
454 	 * range need to defer probing.
455 	 */
456 	if (!pctldev) {
457 		return ERR_PTR(-EPROBE_DEFER);
458 	}
459 	pinctrl_add_gpio_range(pctldev, range);
460 
461 	return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464 
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 				const unsigned **pins, unsigned *num_pins)
467 {
468 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 	int gs;
470 
471 	if (!pctlops->get_group_pins)
472 		return -EINVAL;
473 
474 	gs = pinctrl_get_group_selector(pctldev, pin_group);
475 	if (gs < 0)
476 		return gs;
477 
478 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
479 }
480 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
481 
482 /**
483  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
484  * @pctldev: the pin controller device to look in
485  * @pin: a controller-local number to find the range for
486  */
487 struct pinctrl_gpio_range *
488 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
489 				 unsigned int pin)
490 {
491 	struct pinctrl_gpio_range *range;
492 
493 	mutex_lock(&pctldev->mutex);
494 	/* Loop over the ranges */
495 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
496 		/* Check if we're in the valid range */
497 		if (range->pins) {
498 			int a;
499 			for (a = 0; a < range->npins; a++) {
500 				if (range->pins[a] == pin)
501 					goto out;
502 			}
503 		} else if (pin >= range->pin_base &&
504 			   pin < range->pin_base + range->npins)
505 			goto out;
506 	}
507 	range = NULL;
508 out:
509 	mutex_unlock(&pctldev->mutex);
510 	return range;
511 }
512 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
513 
514 /**
515  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
516  * @pctldev: pin controller device to remove the range from
517  * @range: the GPIO range to remove
518  */
519 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
520 			       struct pinctrl_gpio_range *range)
521 {
522 	mutex_lock(&pctldev->mutex);
523 	list_del(&range->node);
524 	mutex_unlock(&pctldev->mutex);
525 }
526 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
527 
528 /**
529  * pinctrl_get_group_selector() - returns the group selector for a group
530  * @pctldev: the pin controller handling the group
531  * @pin_group: the pin group to look up
532  */
533 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
534 			       const char *pin_group)
535 {
536 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
537 	unsigned ngroups = pctlops->get_groups_count(pctldev);
538 	unsigned group_selector = 0;
539 
540 	while (group_selector < ngroups) {
541 		const char *gname = pctlops->get_group_name(pctldev,
542 							    group_selector);
543 		if (!strcmp(gname, pin_group)) {
544 			dev_dbg(pctldev->dev,
545 				"found group selector %u for %s\n",
546 				group_selector,
547 				pin_group);
548 			return group_selector;
549 		}
550 
551 		group_selector++;
552 	}
553 
554 	dev_err(pctldev->dev, "does not have pin group %s\n",
555 		pin_group);
556 
557 	return -EINVAL;
558 }
559 
560 /**
561  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
562  * @gpio: the GPIO pin number from the GPIO subsystem number space
563  *
564  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
565  * as part of their gpio_request() semantics, platforms and individual drivers
566  * shall *NOT* request GPIO pins to be muxed in.
567  */
568 int pinctrl_request_gpio(unsigned gpio)
569 {
570 	struct pinctrl_dev *pctldev;
571 	struct pinctrl_gpio_range *range;
572 	int ret;
573 	int pin;
574 
575 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
576 	if (ret) {
577 		if (pinctrl_ready_for_gpio_range(gpio))
578 			ret = 0;
579 		return ret;
580 	}
581 
582 	mutex_lock(&pctldev->mutex);
583 
584 	/* Convert to the pin controllers number space */
585 	pin = gpio_to_pin(range, gpio);
586 
587 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
588 
589 	mutex_unlock(&pctldev->mutex);
590 
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
594 
595 /**
596  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
597  * @gpio: the GPIO pin number from the GPIO subsystem number space
598  *
599  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
600  * as part of their gpio_free() semantics, platforms and individual drivers
601  * shall *NOT* request GPIO pins to be muxed out.
602  */
603 void pinctrl_free_gpio(unsigned gpio)
604 {
605 	struct pinctrl_dev *pctldev;
606 	struct pinctrl_gpio_range *range;
607 	int ret;
608 	int pin;
609 
610 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
611 	if (ret) {
612 		return;
613 	}
614 	mutex_lock(&pctldev->mutex);
615 
616 	/* Convert to the pin controllers number space */
617 	pin = gpio_to_pin(range, gpio);
618 
619 	pinmux_free_gpio(pctldev, pin, range);
620 
621 	mutex_unlock(&pctldev->mutex);
622 }
623 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
624 
625 static int pinctrl_gpio_direction(unsigned gpio, bool input)
626 {
627 	struct pinctrl_dev *pctldev;
628 	struct pinctrl_gpio_range *range;
629 	int ret;
630 	int pin;
631 
632 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
633 	if (ret) {
634 		return ret;
635 	}
636 
637 	mutex_lock(&pctldev->mutex);
638 
639 	/* Convert to the pin controllers number space */
640 	pin = gpio_to_pin(range, gpio);
641 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
642 
643 	mutex_unlock(&pctldev->mutex);
644 
645 	return ret;
646 }
647 
648 /**
649  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
650  * @gpio: the GPIO pin number from the GPIO subsystem number space
651  *
652  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
653  * as part of their gpio_direction_input() semantics, platforms and individual
654  * drivers shall *NOT* touch pin control GPIO calls.
655  */
656 int pinctrl_gpio_direction_input(unsigned gpio)
657 {
658 	return pinctrl_gpio_direction(gpio, true);
659 }
660 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
661 
662 /**
663  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
664  * @gpio: the GPIO pin number from the GPIO subsystem number space
665  *
666  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
667  * as part of their gpio_direction_output() semantics, platforms and individual
668  * drivers shall *NOT* touch pin control GPIO calls.
669  */
670 int pinctrl_gpio_direction_output(unsigned gpio)
671 {
672 	return pinctrl_gpio_direction(gpio, false);
673 }
674 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
675 
676 static struct pinctrl_state *find_state(struct pinctrl *p,
677 					const char *name)
678 {
679 	struct pinctrl_state *state;
680 
681 	list_for_each_entry(state, &p->states, node)
682 		if (!strcmp(state->name, name))
683 			return state;
684 
685 	return NULL;
686 }
687 
688 static struct pinctrl_state *create_state(struct pinctrl *p,
689 					  const char *name)
690 {
691 	struct pinctrl_state *state;
692 
693 	state = kzalloc(sizeof(*state), GFP_KERNEL);
694 	if (state == NULL) {
695 		dev_err(p->dev,
696 			"failed to alloc struct pinctrl_state\n");
697 		return ERR_PTR(-ENOMEM);
698 	}
699 
700 	state->name = name;
701 	INIT_LIST_HEAD(&state->settings);
702 
703 	list_add_tail(&state->node, &p->states);
704 
705 	return state;
706 }
707 
708 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
709 {
710 	struct pinctrl_state *state;
711 	struct pinctrl_setting *setting;
712 	int ret;
713 
714 	state = find_state(p, map->name);
715 	if (!state)
716 		state = create_state(p, map->name);
717 	if (IS_ERR(state))
718 		return PTR_ERR(state);
719 
720 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
721 		return 0;
722 
723 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
724 	if (setting == NULL) {
725 		dev_err(p->dev,
726 			"failed to alloc struct pinctrl_setting\n");
727 		return -ENOMEM;
728 	}
729 
730 	setting->type = map->type;
731 
732 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
733 	if (setting->pctldev == NULL) {
734 		kfree(setting);
735 		/* Do not defer probing of hogs (circular loop) */
736 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
737 			return -ENODEV;
738 		/*
739 		 * OK let us guess that the driver is not there yet, and
740 		 * let's defer obtaining this pinctrl handle to later...
741 		 */
742 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
743 			map->ctrl_dev_name);
744 		return -EPROBE_DEFER;
745 	}
746 
747 	setting->dev_name = map->dev_name;
748 
749 	switch (map->type) {
750 	case PIN_MAP_TYPE_MUX_GROUP:
751 		ret = pinmux_map_to_setting(map, setting);
752 		break;
753 	case PIN_MAP_TYPE_CONFIGS_PIN:
754 	case PIN_MAP_TYPE_CONFIGS_GROUP:
755 		ret = pinconf_map_to_setting(map, setting);
756 		break;
757 	default:
758 		ret = -EINVAL;
759 		break;
760 	}
761 	if (ret < 0) {
762 		kfree(setting);
763 		return ret;
764 	}
765 
766 	list_add_tail(&setting->node, &state->settings);
767 
768 	return 0;
769 }
770 
771 static struct pinctrl *find_pinctrl(struct device *dev)
772 {
773 	struct pinctrl *p;
774 
775 	mutex_lock(&pinctrl_list_mutex);
776 	list_for_each_entry(p, &pinctrl_list, node)
777 		if (p->dev == dev) {
778 			mutex_unlock(&pinctrl_list_mutex);
779 			return p;
780 		}
781 
782 	mutex_unlock(&pinctrl_list_mutex);
783 	return NULL;
784 }
785 
786 static void pinctrl_free(struct pinctrl *p, bool inlist);
787 
788 static struct pinctrl *create_pinctrl(struct device *dev)
789 {
790 	struct pinctrl *p;
791 	const char *devname;
792 	struct pinctrl_maps *maps_node;
793 	int i;
794 	struct pinctrl_map const *map;
795 	int ret;
796 
797 	/*
798 	 * create the state cookie holder struct pinctrl for each
799 	 * mapping, this is what consumers will get when requesting
800 	 * a pin control handle with pinctrl_get()
801 	 */
802 	p = kzalloc(sizeof(*p), GFP_KERNEL);
803 	if (p == NULL) {
804 		dev_err(dev, "failed to alloc struct pinctrl\n");
805 		return ERR_PTR(-ENOMEM);
806 	}
807 	p->dev = dev;
808 	INIT_LIST_HEAD(&p->states);
809 	INIT_LIST_HEAD(&p->dt_maps);
810 
811 	ret = pinctrl_dt_to_map(p);
812 	if (ret < 0) {
813 		kfree(p);
814 		return ERR_PTR(ret);
815 	}
816 
817 	devname = dev_name(dev);
818 
819 	mutex_lock(&pinctrl_maps_mutex);
820 	/* Iterate over the pin control maps to locate the right ones */
821 	for_each_maps(maps_node, i, map) {
822 		/* Map must be for this device */
823 		if (strcmp(map->dev_name, devname))
824 			continue;
825 
826 		ret = add_setting(p, map);
827 		/*
828 		 * At this point the adding of a setting may:
829 		 *
830 		 * - Defer, if the pinctrl device is not yet available
831 		 * - Fail, if the pinctrl device is not yet available,
832 		 *   AND the setting is a hog. We cannot defer that, since
833 		 *   the hog will kick in immediately after the device
834 		 *   is registered.
835 		 *
836 		 * If the error returned was not -EPROBE_DEFER then we
837 		 * accumulate the errors to see if we end up with
838 		 * an -EPROBE_DEFER later, as that is the worst case.
839 		 */
840 		if (ret == -EPROBE_DEFER) {
841 			pinctrl_free(p, false);
842 			mutex_unlock(&pinctrl_maps_mutex);
843 			return ERR_PTR(ret);
844 		}
845 	}
846 	mutex_unlock(&pinctrl_maps_mutex);
847 
848 	if (ret < 0) {
849 		/* If some other error than deferral occured, return here */
850 		pinctrl_free(p, false);
851 		return ERR_PTR(ret);
852 	}
853 
854 	kref_init(&p->users);
855 
856 	/* Add the pinctrl handle to the global list */
857 	mutex_lock(&pinctrl_list_mutex);
858 	list_add_tail(&p->node, &pinctrl_list);
859 	mutex_unlock(&pinctrl_list_mutex);
860 
861 	return p;
862 }
863 
864 /**
865  * pinctrl_get() - retrieves the pinctrl handle for a device
866  * @dev: the device to obtain the handle for
867  */
868 struct pinctrl *pinctrl_get(struct device *dev)
869 {
870 	struct pinctrl *p;
871 
872 	if (WARN_ON(!dev))
873 		return ERR_PTR(-EINVAL);
874 
875 	/*
876 	 * See if somebody else (such as the device core) has already
877 	 * obtained a handle to the pinctrl for this device. In that case,
878 	 * return another pointer to it.
879 	 */
880 	p = find_pinctrl(dev);
881 	if (p != NULL) {
882 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
883 		kref_get(&p->users);
884 		return p;
885 	}
886 
887 	return create_pinctrl(dev);
888 }
889 EXPORT_SYMBOL_GPL(pinctrl_get);
890 
891 static void pinctrl_free_setting(bool disable_setting,
892 				 struct pinctrl_setting *setting)
893 {
894 	switch (setting->type) {
895 	case PIN_MAP_TYPE_MUX_GROUP:
896 		if (disable_setting)
897 			pinmux_disable_setting(setting);
898 		pinmux_free_setting(setting);
899 		break;
900 	case PIN_MAP_TYPE_CONFIGS_PIN:
901 	case PIN_MAP_TYPE_CONFIGS_GROUP:
902 		pinconf_free_setting(setting);
903 		break;
904 	default:
905 		break;
906 	}
907 }
908 
909 static void pinctrl_free(struct pinctrl *p, bool inlist)
910 {
911 	struct pinctrl_state *state, *n1;
912 	struct pinctrl_setting *setting, *n2;
913 
914 	mutex_lock(&pinctrl_list_mutex);
915 	list_for_each_entry_safe(state, n1, &p->states, node) {
916 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
917 			pinctrl_free_setting(state == p->state, setting);
918 			list_del(&setting->node);
919 			kfree(setting);
920 		}
921 		list_del(&state->node);
922 		kfree(state);
923 	}
924 
925 	pinctrl_dt_free_maps(p);
926 
927 	if (inlist)
928 		list_del(&p->node);
929 	kfree(p);
930 	mutex_unlock(&pinctrl_list_mutex);
931 }
932 
933 /**
934  * pinctrl_release() - release the pinctrl handle
935  * @kref: the kref in the pinctrl being released
936  */
937 static void pinctrl_release(struct kref *kref)
938 {
939 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
940 
941 	pinctrl_free(p, true);
942 }
943 
944 /**
945  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
946  * @p: the pinctrl handle to release
947  */
948 void pinctrl_put(struct pinctrl *p)
949 {
950 	kref_put(&p->users, pinctrl_release);
951 }
952 EXPORT_SYMBOL_GPL(pinctrl_put);
953 
954 /**
955  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
956  * @p: the pinctrl handle to retrieve the state from
957  * @name: the state name to retrieve
958  */
959 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
960 						 const char *name)
961 {
962 	struct pinctrl_state *state;
963 
964 	state = find_state(p, name);
965 	if (!state) {
966 		if (pinctrl_dummy_state) {
967 			/* create dummy state */
968 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
969 				name);
970 			state = create_state(p, name);
971 		} else
972 			state = ERR_PTR(-ENODEV);
973 	}
974 
975 	return state;
976 }
977 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
978 
979 /**
980  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
981  * @p: the pinctrl handle for the device that requests configuration
982  * @state: the state handle to select/activate/program
983  */
984 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
985 {
986 	struct pinctrl_setting *setting, *setting2;
987 	struct pinctrl_state *old_state = p->state;
988 	int ret;
989 
990 	if (p->state == state)
991 		return 0;
992 
993 	if (p->state) {
994 		/*
995 		 * The set of groups with a mux configuration in the old state
996 		 * may not be identical to the set of groups with a mux setting
997 		 * in the new state. While this might be unusual, it's entirely
998 		 * possible for the "user"-supplied mapping table to be written
999 		 * that way. For each group that was configured in the old state
1000 		 * but not in the new state, this code puts that group into a
1001 		 * safe/disabled state.
1002 		 */
1003 		list_for_each_entry(setting, &p->state->settings, node) {
1004 			bool found = false;
1005 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1006 				continue;
1007 			list_for_each_entry(setting2, &state->settings, node) {
1008 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1009 					continue;
1010 				if (setting2->data.mux.group ==
1011 						setting->data.mux.group) {
1012 					found = true;
1013 					break;
1014 				}
1015 			}
1016 			if (!found)
1017 				pinmux_disable_setting(setting);
1018 		}
1019 	}
1020 
1021 	p->state = NULL;
1022 
1023 	/* Apply all the settings for the new state */
1024 	list_for_each_entry(setting, &state->settings, node) {
1025 		switch (setting->type) {
1026 		case PIN_MAP_TYPE_MUX_GROUP:
1027 			ret = pinmux_enable_setting(setting);
1028 			break;
1029 		case PIN_MAP_TYPE_CONFIGS_PIN:
1030 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1031 			ret = pinconf_apply_setting(setting);
1032 			break;
1033 		default:
1034 			ret = -EINVAL;
1035 			break;
1036 		}
1037 
1038 		if (ret < 0) {
1039 			goto unapply_new_state;
1040 		}
1041 	}
1042 
1043 	p->state = state;
1044 
1045 	return 0;
1046 
1047 unapply_new_state:
1048 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1049 
1050 	list_for_each_entry(setting2, &state->settings, node) {
1051 		if (&setting2->node == &setting->node)
1052 			break;
1053 		/*
1054 		 * All we can do here is pinmux_disable_setting.
1055 		 * That means that some pins are muxed differently now
1056 		 * than they were before applying the setting (We can't
1057 		 * "unmux a pin"!), but it's not a big deal since the pins
1058 		 * are free to be muxed by another apply_setting.
1059 		 */
1060 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1061 			pinmux_disable_setting(setting2);
1062 	}
1063 
1064 	/* There's no infinite recursive loop here because p->state is NULL */
1065 	if (old_state)
1066 		pinctrl_select_state(p, old_state);
1067 
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1071 
1072 static void devm_pinctrl_release(struct device *dev, void *res)
1073 {
1074 	pinctrl_put(*(struct pinctrl **)res);
1075 }
1076 
1077 /**
1078  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1079  * @dev: the device to obtain the handle for
1080  *
1081  * If there is a need to explicitly destroy the returned struct pinctrl,
1082  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1083  */
1084 struct pinctrl *devm_pinctrl_get(struct device *dev)
1085 {
1086 	struct pinctrl **ptr, *p;
1087 
1088 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1089 	if (!ptr)
1090 		return ERR_PTR(-ENOMEM);
1091 
1092 	p = pinctrl_get(dev);
1093 	if (!IS_ERR(p)) {
1094 		*ptr = p;
1095 		devres_add(dev, ptr);
1096 	} else {
1097 		devres_free(ptr);
1098 	}
1099 
1100 	return p;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1103 
1104 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1105 {
1106 	struct pinctrl **p = res;
1107 
1108 	return *p == data;
1109 }
1110 
1111 /**
1112  * devm_pinctrl_put() - Resource managed pinctrl_put()
1113  * @p: the pinctrl handle to release
1114  *
1115  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1116  * this function will not need to be called and the resource management
1117  * code will ensure that the resource is freed.
1118  */
1119 void devm_pinctrl_put(struct pinctrl *p)
1120 {
1121 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1122 			       devm_pinctrl_match, p));
1123 }
1124 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1125 
1126 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1127 			 bool dup, bool locked)
1128 {
1129 	int i, ret;
1130 	struct pinctrl_maps *maps_node;
1131 
1132 	pr_debug("add %d pinmux maps\n", num_maps);
1133 
1134 	/* First sanity check the new mapping */
1135 	for (i = 0; i < num_maps; i++) {
1136 		if (!maps[i].dev_name) {
1137 			pr_err("failed to register map %s (%d): no device given\n",
1138 			       maps[i].name, i);
1139 			return -EINVAL;
1140 		}
1141 
1142 		if (!maps[i].name) {
1143 			pr_err("failed to register map %d: no map name given\n",
1144 			       i);
1145 			return -EINVAL;
1146 		}
1147 
1148 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1149 				!maps[i].ctrl_dev_name) {
1150 			pr_err("failed to register map %s (%d): no pin control device given\n",
1151 			       maps[i].name, i);
1152 			return -EINVAL;
1153 		}
1154 
1155 		switch (maps[i].type) {
1156 		case PIN_MAP_TYPE_DUMMY_STATE:
1157 			break;
1158 		case PIN_MAP_TYPE_MUX_GROUP:
1159 			ret = pinmux_validate_map(&maps[i], i);
1160 			if (ret < 0)
1161 				return ret;
1162 			break;
1163 		case PIN_MAP_TYPE_CONFIGS_PIN:
1164 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1165 			ret = pinconf_validate_map(&maps[i], i);
1166 			if (ret < 0)
1167 				return ret;
1168 			break;
1169 		default:
1170 			pr_err("failed to register map %s (%d): invalid type given\n",
1171 			       maps[i].name, i);
1172 			return -EINVAL;
1173 		}
1174 	}
1175 
1176 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1177 	if (!maps_node) {
1178 		pr_err("failed to alloc struct pinctrl_maps\n");
1179 		return -ENOMEM;
1180 	}
1181 
1182 	maps_node->num_maps = num_maps;
1183 	if (dup) {
1184 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1185 					  GFP_KERNEL);
1186 		if (!maps_node->maps) {
1187 			pr_err("failed to duplicate mapping table\n");
1188 			kfree(maps_node);
1189 			return -ENOMEM;
1190 		}
1191 	} else {
1192 		maps_node->maps = maps;
1193 	}
1194 
1195 	if (!locked)
1196 		mutex_lock(&pinctrl_maps_mutex);
1197 	list_add_tail(&maps_node->node, &pinctrl_maps);
1198 	if (!locked)
1199 		mutex_unlock(&pinctrl_maps_mutex);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  * pinctrl_register_mappings() - register a set of pin controller mappings
1206  * @maps: the pincontrol mappings table to register. This should probably be
1207  *	marked with __initdata so it can be discarded after boot. This
1208  *	function will perform a shallow copy for the mapping entries.
1209  * @num_maps: the number of maps in the mapping table
1210  */
1211 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1212 			      unsigned num_maps)
1213 {
1214 	return pinctrl_register_map(maps, num_maps, true, false);
1215 }
1216 
1217 void pinctrl_unregister_map(struct pinctrl_map const *map)
1218 {
1219 	struct pinctrl_maps *maps_node;
1220 
1221 	mutex_lock(&pinctrl_maps_mutex);
1222 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1223 		if (maps_node->maps == map) {
1224 			list_del(&maps_node->node);
1225 			kfree(maps_node);
1226 			mutex_unlock(&pinctrl_maps_mutex);
1227 			return;
1228 		}
1229 	}
1230 	mutex_unlock(&pinctrl_maps_mutex);
1231 }
1232 
1233 /**
1234  * pinctrl_force_sleep() - turn a given controller device into sleep state
1235  * @pctldev: pin controller device
1236  */
1237 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1238 {
1239 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1240 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1244 
1245 /**
1246  * pinctrl_force_default() - turn a given controller device into default state
1247  * @pctldev: pin controller device
1248  */
1249 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1250 {
1251 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1252 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1256 
1257 #ifdef CONFIG_PM
1258 
1259 /**
1260  * pinctrl_pm_select_state() - select pinctrl state for PM
1261  * @dev: device to select default state for
1262  * @state: state to set
1263  */
1264 static int pinctrl_pm_select_state(struct device *dev,
1265 				   struct pinctrl_state *state)
1266 {
1267 	struct dev_pin_info *pins = dev->pins;
1268 	int ret;
1269 
1270 	if (IS_ERR(state))
1271 		return 0; /* No such state */
1272 	ret = pinctrl_select_state(pins->p, state);
1273 	if (ret)
1274 		dev_err(dev, "failed to activate pinctrl state %s\n",
1275 			state->name);
1276 	return ret;
1277 }
1278 
1279 /**
1280  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1281  * @dev: device to select default state for
1282  */
1283 int pinctrl_pm_select_default_state(struct device *dev)
1284 {
1285 	if (!dev->pins)
1286 		return 0;
1287 
1288 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1289 }
1290 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1291 
1292 /**
1293  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1294  * @dev: device to select sleep state for
1295  */
1296 int pinctrl_pm_select_sleep_state(struct device *dev)
1297 {
1298 	if (!dev->pins)
1299 		return 0;
1300 
1301 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1302 }
1303 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1304 
1305 /**
1306  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1307  * @dev: device to select idle state for
1308  */
1309 int pinctrl_pm_select_idle_state(struct device *dev)
1310 {
1311 	if (!dev->pins)
1312 		return 0;
1313 
1314 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1315 }
1316 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1317 #endif
1318 
1319 #ifdef CONFIG_DEBUG_FS
1320 
1321 static int pinctrl_pins_show(struct seq_file *s, void *what)
1322 {
1323 	struct pinctrl_dev *pctldev = s->private;
1324 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1325 	unsigned i, pin;
1326 
1327 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1328 
1329 	mutex_lock(&pctldev->mutex);
1330 
1331 	/* The pin number can be retrived from the pin controller descriptor */
1332 	for (i = 0; i < pctldev->desc->npins; i++) {
1333 		struct pin_desc *desc;
1334 
1335 		pin = pctldev->desc->pins[i].number;
1336 		desc = pin_desc_get(pctldev, pin);
1337 		/* Pin space may be sparse */
1338 		if (desc == NULL)
1339 			continue;
1340 
1341 		seq_printf(s, "pin %d (%s) ", pin,
1342 			   desc->name ? desc->name : "unnamed");
1343 
1344 		/* Driver-specific info per pin */
1345 		if (ops->pin_dbg_show)
1346 			ops->pin_dbg_show(pctldev, s, pin);
1347 
1348 		seq_puts(s, "\n");
1349 	}
1350 
1351 	mutex_unlock(&pctldev->mutex);
1352 
1353 	return 0;
1354 }
1355 
1356 static int pinctrl_groups_show(struct seq_file *s, void *what)
1357 {
1358 	struct pinctrl_dev *pctldev = s->private;
1359 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1360 	unsigned ngroups, selector = 0;
1361 
1362 	mutex_lock(&pctldev->mutex);
1363 
1364 	ngroups = ops->get_groups_count(pctldev);
1365 
1366 	seq_puts(s, "registered pin groups:\n");
1367 	while (selector < ngroups) {
1368 		const unsigned *pins = NULL;
1369 		unsigned num_pins = 0;
1370 		const char *gname = ops->get_group_name(pctldev, selector);
1371 		const char *pname;
1372 		int ret = 0;
1373 		int i;
1374 
1375 		if (ops->get_group_pins)
1376 			ret = ops->get_group_pins(pctldev, selector,
1377 						  &pins, &num_pins);
1378 		if (ret)
1379 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1380 				   gname);
1381 		else {
1382 			seq_printf(s, "group: %s\n", gname);
1383 			for (i = 0; i < num_pins; i++) {
1384 				pname = pin_get_name(pctldev, pins[i]);
1385 				if (WARN_ON(!pname)) {
1386 					mutex_unlock(&pctldev->mutex);
1387 					return -EINVAL;
1388 				}
1389 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1390 			}
1391 			seq_puts(s, "\n");
1392 		}
1393 		selector++;
1394 	}
1395 
1396 	mutex_unlock(&pctldev->mutex);
1397 
1398 	return 0;
1399 }
1400 
1401 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1402 {
1403 	struct pinctrl_dev *pctldev = s->private;
1404 	struct pinctrl_gpio_range *range = NULL;
1405 
1406 	seq_puts(s, "GPIO ranges handled:\n");
1407 
1408 	mutex_lock(&pctldev->mutex);
1409 
1410 	/* Loop over the ranges */
1411 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1412 		if (range->pins) {
1413 			int a;
1414 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1415 				range->id, range->name,
1416 				range->base, (range->base + range->npins - 1));
1417 			for (a = 0; a < range->npins - 1; a++)
1418 				seq_printf(s, "%u, ", range->pins[a]);
1419 			seq_printf(s, "%u}\n", range->pins[a]);
1420 		}
1421 		else
1422 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1423 				range->id, range->name,
1424 				range->base, (range->base + range->npins - 1),
1425 				range->pin_base,
1426 				(range->pin_base + range->npins - 1));
1427 	}
1428 
1429 	mutex_unlock(&pctldev->mutex);
1430 
1431 	return 0;
1432 }
1433 
1434 static int pinctrl_devices_show(struct seq_file *s, void *what)
1435 {
1436 	struct pinctrl_dev *pctldev;
1437 
1438 	seq_puts(s, "name [pinmux] [pinconf]\n");
1439 
1440 	mutex_lock(&pinctrldev_list_mutex);
1441 
1442 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1443 		seq_printf(s, "%s ", pctldev->desc->name);
1444 		if (pctldev->desc->pmxops)
1445 			seq_puts(s, "yes ");
1446 		else
1447 			seq_puts(s, "no ");
1448 		if (pctldev->desc->confops)
1449 			seq_puts(s, "yes");
1450 		else
1451 			seq_puts(s, "no");
1452 		seq_puts(s, "\n");
1453 	}
1454 
1455 	mutex_unlock(&pinctrldev_list_mutex);
1456 
1457 	return 0;
1458 }
1459 
1460 static inline const char *map_type(enum pinctrl_map_type type)
1461 {
1462 	static const char * const names[] = {
1463 		"INVALID",
1464 		"DUMMY_STATE",
1465 		"MUX_GROUP",
1466 		"CONFIGS_PIN",
1467 		"CONFIGS_GROUP",
1468 	};
1469 
1470 	if (type >= ARRAY_SIZE(names))
1471 		return "UNKNOWN";
1472 
1473 	return names[type];
1474 }
1475 
1476 static int pinctrl_maps_show(struct seq_file *s, void *what)
1477 {
1478 	struct pinctrl_maps *maps_node;
1479 	int i;
1480 	struct pinctrl_map const *map;
1481 
1482 	seq_puts(s, "Pinctrl maps:\n");
1483 
1484 	mutex_lock(&pinctrl_maps_mutex);
1485 	for_each_maps(maps_node, i, map) {
1486 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1487 			   map->dev_name, map->name, map_type(map->type),
1488 			   map->type);
1489 
1490 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1491 			seq_printf(s, "controlling device %s\n",
1492 				   map->ctrl_dev_name);
1493 
1494 		switch (map->type) {
1495 		case PIN_MAP_TYPE_MUX_GROUP:
1496 			pinmux_show_map(s, map);
1497 			break;
1498 		case PIN_MAP_TYPE_CONFIGS_PIN:
1499 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1500 			pinconf_show_map(s, map);
1501 			break;
1502 		default:
1503 			break;
1504 		}
1505 
1506 		seq_printf(s, "\n");
1507 	}
1508 	mutex_unlock(&pinctrl_maps_mutex);
1509 
1510 	return 0;
1511 }
1512 
1513 static int pinctrl_show(struct seq_file *s, void *what)
1514 {
1515 	struct pinctrl *p;
1516 	struct pinctrl_state *state;
1517 	struct pinctrl_setting *setting;
1518 
1519 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1520 
1521 	mutex_lock(&pinctrl_list_mutex);
1522 
1523 	list_for_each_entry(p, &pinctrl_list, node) {
1524 		seq_printf(s, "device: %s current state: %s\n",
1525 			   dev_name(p->dev),
1526 			   p->state ? p->state->name : "none");
1527 
1528 		list_for_each_entry(state, &p->states, node) {
1529 			seq_printf(s, "  state: %s\n", state->name);
1530 
1531 			list_for_each_entry(setting, &state->settings, node) {
1532 				struct pinctrl_dev *pctldev = setting->pctldev;
1533 
1534 				seq_printf(s, "    type: %s controller %s ",
1535 					   map_type(setting->type),
1536 					   pinctrl_dev_get_name(pctldev));
1537 
1538 				switch (setting->type) {
1539 				case PIN_MAP_TYPE_MUX_GROUP:
1540 					pinmux_show_setting(s, setting);
1541 					break;
1542 				case PIN_MAP_TYPE_CONFIGS_PIN:
1543 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1544 					pinconf_show_setting(s, setting);
1545 					break;
1546 				default:
1547 					break;
1548 				}
1549 			}
1550 		}
1551 	}
1552 
1553 	mutex_unlock(&pinctrl_list_mutex);
1554 
1555 	return 0;
1556 }
1557 
1558 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1559 {
1560 	return single_open(file, pinctrl_pins_show, inode->i_private);
1561 }
1562 
1563 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1564 {
1565 	return single_open(file, pinctrl_groups_show, inode->i_private);
1566 }
1567 
1568 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1569 {
1570 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1571 }
1572 
1573 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1574 {
1575 	return single_open(file, pinctrl_devices_show, NULL);
1576 }
1577 
1578 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1579 {
1580 	return single_open(file, pinctrl_maps_show, NULL);
1581 }
1582 
1583 static int pinctrl_open(struct inode *inode, struct file *file)
1584 {
1585 	return single_open(file, pinctrl_show, NULL);
1586 }
1587 
1588 static const struct file_operations pinctrl_pins_ops = {
1589 	.open		= pinctrl_pins_open,
1590 	.read		= seq_read,
1591 	.llseek		= seq_lseek,
1592 	.release	= single_release,
1593 };
1594 
1595 static const struct file_operations pinctrl_groups_ops = {
1596 	.open		= pinctrl_groups_open,
1597 	.read		= seq_read,
1598 	.llseek		= seq_lseek,
1599 	.release	= single_release,
1600 };
1601 
1602 static const struct file_operations pinctrl_gpioranges_ops = {
1603 	.open		= pinctrl_gpioranges_open,
1604 	.read		= seq_read,
1605 	.llseek		= seq_lseek,
1606 	.release	= single_release,
1607 };
1608 
1609 static const struct file_operations pinctrl_devices_ops = {
1610 	.open		= pinctrl_devices_open,
1611 	.read		= seq_read,
1612 	.llseek		= seq_lseek,
1613 	.release	= single_release,
1614 };
1615 
1616 static const struct file_operations pinctrl_maps_ops = {
1617 	.open		= pinctrl_maps_open,
1618 	.read		= seq_read,
1619 	.llseek		= seq_lseek,
1620 	.release	= single_release,
1621 };
1622 
1623 static const struct file_operations pinctrl_ops = {
1624 	.open		= pinctrl_open,
1625 	.read		= seq_read,
1626 	.llseek		= seq_lseek,
1627 	.release	= single_release,
1628 };
1629 
1630 static struct dentry *debugfs_root;
1631 
1632 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1633 {
1634 	struct dentry *device_root;
1635 
1636 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1637 					 debugfs_root);
1638 	pctldev->device_root = device_root;
1639 
1640 	if (IS_ERR(device_root) || !device_root) {
1641 		pr_warn("failed to create debugfs directory for %s\n",
1642 			dev_name(pctldev->dev));
1643 		return;
1644 	}
1645 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1646 			    device_root, pctldev, &pinctrl_pins_ops);
1647 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1648 			    device_root, pctldev, &pinctrl_groups_ops);
1649 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1650 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1651 	if (pctldev->desc->pmxops)
1652 		pinmux_init_device_debugfs(device_root, pctldev);
1653 	if (pctldev->desc->confops)
1654 		pinconf_init_device_debugfs(device_root, pctldev);
1655 }
1656 
1657 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1658 {
1659 	debugfs_remove_recursive(pctldev->device_root);
1660 }
1661 
1662 static void pinctrl_init_debugfs(void)
1663 {
1664 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1665 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1666 		pr_warn("failed to create debugfs directory\n");
1667 		debugfs_root = NULL;
1668 		return;
1669 	}
1670 
1671 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1672 			    debugfs_root, NULL, &pinctrl_devices_ops);
1673 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1674 			    debugfs_root, NULL, &pinctrl_maps_ops);
1675 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1676 			    debugfs_root, NULL, &pinctrl_ops);
1677 }
1678 
1679 #else /* CONFIG_DEBUG_FS */
1680 
1681 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1682 {
1683 }
1684 
1685 static void pinctrl_init_debugfs(void)
1686 {
1687 }
1688 
1689 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1690 {
1691 }
1692 
1693 #endif
1694 
1695 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1696 {
1697 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1698 
1699 	if (!ops ||
1700 	    !ops->get_groups_count ||
1701 	    !ops->get_group_name)
1702 		return -EINVAL;
1703 
1704 	if (ops->dt_node_to_map && !ops->dt_free_map)
1705 		return -EINVAL;
1706 
1707 	return 0;
1708 }
1709 
1710 /**
1711  * pinctrl_register() - register a pin controller device
1712  * @pctldesc: descriptor for this pin controller
1713  * @dev: parent device for this pin controller
1714  * @driver_data: private pin controller data for this pin controller
1715  */
1716 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1717 				    struct device *dev, void *driver_data)
1718 {
1719 	struct pinctrl_dev *pctldev;
1720 	int ret;
1721 
1722 	if (!pctldesc)
1723 		return NULL;
1724 	if (!pctldesc->name)
1725 		return NULL;
1726 
1727 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1728 	if (pctldev == NULL) {
1729 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1730 		return NULL;
1731 	}
1732 
1733 	/* Initialize pin control device struct */
1734 	pctldev->owner = pctldesc->owner;
1735 	pctldev->desc = pctldesc;
1736 	pctldev->driver_data = driver_data;
1737 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1738 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1739 	pctldev->dev = dev;
1740 	mutex_init(&pctldev->mutex);
1741 
1742 	/* check core ops for sanity */
1743 	if (pinctrl_check_ops(pctldev)) {
1744 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1745 		goto out_err;
1746 	}
1747 
1748 	/* If we're implementing pinmuxing, check the ops for sanity */
1749 	if (pctldesc->pmxops) {
1750 		if (pinmux_check_ops(pctldev))
1751 			goto out_err;
1752 	}
1753 
1754 	/* If we're implementing pinconfig, check the ops for sanity */
1755 	if (pctldesc->confops) {
1756 		if (pinconf_check_ops(pctldev))
1757 			goto out_err;
1758 	}
1759 
1760 	/* Register all the pins */
1761 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1762 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1763 	if (ret) {
1764 		dev_err(dev, "error during pin registration\n");
1765 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1766 				      pctldesc->npins);
1767 		goto out_err;
1768 	}
1769 
1770 	mutex_lock(&pinctrldev_list_mutex);
1771 	list_add_tail(&pctldev->node, &pinctrldev_list);
1772 	mutex_unlock(&pinctrldev_list_mutex);
1773 
1774 	pctldev->p = pinctrl_get(pctldev->dev);
1775 
1776 	if (!IS_ERR(pctldev->p)) {
1777 		pctldev->hog_default =
1778 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1779 		if (IS_ERR(pctldev->hog_default)) {
1780 			dev_dbg(dev, "failed to lookup the default state\n");
1781 		} else {
1782 			if (pinctrl_select_state(pctldev->p,
1783 						pctldev->hog_default))
1784 				dev_err(dev,
1785 					"failed to select default state\n");
1786 		}
1787 
1788 		pctldev->hog_sleep =
1789 			pinctrl_lookup_state(pctldev->p,
1790 						    PINCTRL_STATE_SLEEP);
1791 		if (IS_ERR(pctldev->hog_sleep))
1792 			dev_dbg(dev, "failed to lookup the sleep state\n");
1793 	}
1794 
1795 	pinctrl_init_device_debugfs(pctldev);
1796 
1797 	return pctldev;
1798 
1799 out_err:
1800 	mutex_destroy(&pctldev->mutex);
1801 	kfree(pctldev);
1802 	return NULL;
1803 }
1804 EXPORT_SYMBOL_GPL(pinctrl_register);
1805 
1806 /**
1807  * pinctrl_unregister() - unregister pinmux
1808  * @pctldev: pin controller to unregister
1809  *
1810  * Called by pinmux drivers to unregister a pinmux.
1811  */
1812 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1813 {
1814 	struct pinctrl_gpio_range *range, *n;
1815 	if (pctldev == NULL)
1816 		return;
1817 
1818 	mutex_lock(&pinctrldev_list_mutex);
1819 	mutex_lock(&pctldev->mutex);
1820 
1821 	pinctrl_remove_device_debugfs(pctldev);
1822 
1823 	if (!IS_ERR(pctldev->p))
1824 		pinctrl_put(pctldev->p);
1825 
1826 	/* TODO: check that no pinmuxes are still active? */
1827 	list_del(&pctldev->node);
1828 	/* Destroy descriptor tree */
1829 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1830 			      pctldev->desc->npins);
1831 	/* remove gpio ranges map */
1832 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1833 		list_del(&range->node);
1834 
1835 	mutex_unlock(&pctldev->mutex);
1836 	mutex_destroy(&pctldev->mutex);
1837 	kfree(pctldev);
1838 	mutex_unlock(&pinctrldev_list_mutex);
1839 }
1840 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1841 
1842 static int __init pinctrl_init(void)
1843 {
1844 	pr_info("initialized pinctrl subsystem\n");
1845 	pinctrl_init_debugfs();
1846 	return 0;
1847 }
1848 
1849 /* init early since many drivers really need to initialized pinmux early */
1850 core_initcall(pinctrl_init);
1851